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Abstract

Multiscale models combining quantum mechanical and classical descrip-

tions are a very popular strategy to simulate properties and processes of

complex systems. Many alternative formulations have been developed

in the last decades and they are now available in all the most widespread

quantum chemistry packages. Their application to the study of light-

driven processes, however, is more recent and some methodological and

numerical problems are still to be solved. This is especially the case for

the polarizable formulation of these models, of which we review here the

recent advances. In particular, we identify and describe the most im-

portant specificities that the polarizable formulation introduces in the

simulation of excited state dynamics and in the modeling of excitation

energy and electron transfer processes.
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1. INTRODUCTION

Light is the trigger for many important biological processes, such as photosynthesis and

vision, just to cite the most widely known. Understanding how light is sensed and used

by various organisms is clearly of paramount importance for improving our knowledge of

the natural world. As a matter of fact, achieving a molecular-level picture of light-driven

processes could allow us to go beyond the “stage of understanding”, and lead the way in

using light as a tool to control and tune natural processes, for example for medical purposes,

as well as to design artificial devices for selected applications.

By definition, a molecular-level description of light-driven processes should be achievable

applying the proper quantum chemical approach. However, the many space and time scales

involved make this logical strategy unfeasible for realistic systems. A possible solution to

this apparently insurmountable limit is to introduce a multiscale strategy where quantum

mechanical (QM) and classical (C) models mix and merge to give a new hybrid framework

able to cope with multiple time and space scales. This hybrid QM/C framework is neither

unique nor perfect. Many different alternatives have been proposed so far, each one having

its own drawbacks and limitations. Nevertheless, up to now, it still represents the most

effective approach to investigate the response of (bio)systems to light, from the initial

electronic excitation, to energy/charge transfers and photochemical reactions.

The idea of coupling QM and classical descriptions dates back to the 70s of the last

century (1–3) and during these almost 50 years many models have been proposed. Nowadays

it is common to collect them depending on the coarseness used to describe the classical

part of the system. Within this framework, the continuum versus discrete (or atomistic)

antithesis is commonly introduced. In the former case, the classical part loses any atomistic

detail and becomes a continuum medium characterized by selected macroscopic properties,

among which the most important is the dielectric permittivity (4–7). In the latter case,

instead, the atomic details of the classical part remain, but the atoms and their interactions

are recast in a classical picture, commonly by introducing a Molecular Mechanics (MM)

force field (8–11).

The continuum formulation does not require any model for describing the interactions
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within the classical part but only a representation of its effect on the QM part. This is

commonly achieved by introducing a closed boundary between the QM and the classical

parts which defines the surface of the molecular cavity containing the QM system. This

boundary allows one to represent the polarization induced by the QM system into the

classical part, seen as a dielectric medium, as an apparent surface charge (ASC) distribution

(6, 7). In the numerical implementation of continuum models, this charge distribution is

commonly discretized into point charges, one for each of the finite elements (also known

as “tesserae” in the jargon of continuum models) of the mesh used to represent the cavity

surface. These point charges are finally used to define a QM operator to be added to the

Hamiltonian of the QM subsystem to include its interaction with the environment.

Similarly, in the most popular formulation of discrete models, the QM subsystem feels

the classical part as a set of point charges. This time, however, the point charges are

parameters defined by the specific MM force field selected for representing the classical sub-

system. This formulation is commonly indicated as electrostatic embedding (EE) QM/MM.

The resulting QM operator to be added to the Hamiltonian of the QM subsystem is de-

fined exactly as for ASC-like continuum models. However, the nature of the charges is

completely different, as in EE QM/MM they represent the atoms of the MM system, while

in QM/continuum they are a numerical representation of the polarization of the dielectric

medium. This difference is reflected in the fact that the MM charges exist independently

from the QM subsystem, they have fixed values, and their positions are determined by the

position of the MM atoms. On the contrary, the ASCs are induced by the QM subsystem

and their positions are linked to the the positions of the QM atoms through the cavity

surface. It is clear that ASC-like continuum models automatically include mutual polar-

ization effects between the QM and the classical subsystems, while this is not the case for

EE QM/MM approaches. In order to recover the effects of mutual polarization, the EE

embedding has to be changed so to include polarizable sites in the MM part. This can be

obtained in different ways: the most popular ones are those based on a Drude oscillator, a

fluctuating charge or an induced point dipole (IPD) model (12–19). A different strategy,

which avoids the introduction of parametrized force fields, relies on QM-based potentials,

also known as non-empirical polarizable potentials. Among them, the Effective Fragment

Potential (EFP) method (20–22) and the explicit polarization (X-Pol) model (23, 24) are

the most popular ones.

A polarizable formulation is expected to be better suited to describe the response of

the environment in light-driven processes, where the electronic transitions and the following

transformations involved require a model flexible enough to be applicable within a temporal

multiscale framework. For that reason, the present review is focused on the polarizable

formulation of the hybrid QM/C strategy. Moreover, such polarizable formulation can be

easily reduced to the non-polarizable one (while the opposite is not straightforward) and

this allows us to present a single general formalism.

This review is organized as follows. We start by describing the main methodological

aspects of polarizable hybrid approaches for ground and excited state systems (Section

2), and then we move to describe their extension to (non)adiabatic methods to simulate

excited state dynamics (Section 3). Finally, in Section 4, we present an alternative formu-

lation based on model Hamiltonians which approximate the nuclear degrees of freedom of

the system as quantum harmonic oscillators. For both types of approaches some examples

of application to selected light-driven processes are given. In particular, for the methods

explicitly simulating the nuclear motions either within an adiabatic or nonadiabatic frame-
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work, the focus will be on excited state proton transfer and singlet fission, while for vibronic

models the examples of excitation energy transfer and electron transfer will be presented

and discussed. We note that, in this review, we have deliberately neglected the application

of multiscale methods to optical spectroscopies and important photochemical reactions such

as photoisomerization and photodissociations, and we have paid little attention to photoin-

duced processes in materials. The reason for this choice is that the field of light-driven

processes is too large to be fully investigated in a single review and an arbitrary selection

is unavoidable. Moreover, comprehensive reviews on these and other aspects of multiscale

methods for photo-induced processes which are not discussed here have recently appeared

in the literature (25–33): the interested reader can refer to them to complement the present

selection of methods and processes.

2. HYBRID QM/C STRATEGY: THE POLARIZABLE FORMULATION

In this section, we develop a general formalism for the hybrid QM/C strategy which includes

a classical polarizable model either at a continuum or atomistic level. The discussion is

focused on the description of the ground state of an embedded molecule described at a

self-consistent field (SCF) level of theory, such as Hartree-Fock (HF) or Kohn-Sham (KS)

Density Functional Theory (DFT). In order to keep the notation simple, all the equations

are given for the HF model, but a generalization to DFT is straightforward.

2.1. A general, variational formalism for polarizable models

In a general framework, the embedded system can be described by means of three different

charge distributions: the QM charge density ρ, a fixed distribution of classical charges or

higher order multipoles M, and a polarizable charge distribution X. To clarify this point,

let us consider two examples (Figure 1). For an IPD-based polarizable QM/MM method

(1, 34–37), or, with little variations, for Drude oscillators polarizable QM/MM (38–40),

besides the QM density, each MM atom is commonly endowed with a point charge and

with a polarizability. Therefore, M is a collection of point charges placed at the positions

of the MM atoms, while X is a set of IPD at the polarizable MM atoms. For a continuum

solvation model, there is no fixed electrostatic distribution, so M = 0 and X is the ASC

distribution (6).

We assume that all the charge distributions interact classically and that the interaction

energy is bi-linear with respect to pairs of distributions. In general, we write

Eint(ρ,M) = 〈Φ(ρ),M〉, Eint(ρ,X) = 〈Ψ(ρ),X〉, Eint(M,X) = 〈Ψ(M),X〉, (1)

where Φ and Ψ are appropriate, model-dependent linear functionals of the distributions. In

this section, we also assume that the polarization degrees of freedom are the minimizers of

a variational energy functional (41). This is indeed the case for most polarizable models,

with a few notable exceptions, such as the QM/AMOEBA (36, 42) and QM/ddCOSMO

(43) models. A generalization to non variational models can be found elsewhere (44). The

variational assumption translates into the fact that the polarization degrees of freedom X

are obtained by solving a linear set of equations

AX = Ψ(ρ) + Ψ(M), (2)

where A is a symmetric, positive definite linear operator (or a matrix) and Ψ is the same
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Figure 1

Charge distributions for three multiscale models. Orange: QM molecule bearing the QM charge

distribution (ρ). Left: fixed charge distributions (M) and expressions for their interaction with ρ,
right: induced charge distributions (X) and expressions for their interaction with ρ.

linear functional of the sources defined above. This allows us to write the total energy as

E(ρ,X;M) = EQM(ρ) +Eself(M) + 〈Φ(ρ),M〉+ 1

2
〈X,AX〉+ 〈Ψ(ρ),X〉+ 〈Ψ(M),X〉, (3)

where Eself(M) is the coulomb interaction of the static sources with themselves and the

term 1
2
〈X,AX〉 accounts for the work required to polarize the system.

It has to be noted that some polarization models, such as the fluctuating charge (FQ)

model (45, 46), require one to perform a constrained minimization with respect to the

polarization degrees of freedom, for instance, in order to enforce the total charge of the

system or of a fragment. This is easily implemented using Lagrange multipliers, i.e., by

adding to the energy functional in eq. 3 a term

〈Λ,CX〉, (4)

where we assume that the constraints are linear. By optimizing the global energy functional

with respect to both the polarization degrees of freedom and the Lagrange multipliers, the

polarization equations are obtained and one can use the variational formalism presented in

the following with little modification.

The notation defined here is completely general. In order to better clarify it, let us

reconsider the two starting examples. Figure 1 provides a graphical representation of the

fixed and induced densities, as well as the expression of the interaction between the classical

and QM densities. For an IPD-based QM/MM model (Xi = µi) where a fixed distribution
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of charges (Mi = qi) is also present, we have

Φi(ρ) = Φ(ri)(ρ) =

∫
ρ(r)

|r− ri|
d3r, 〈Φ(ρ),M〉 =

∑
i

qiΦi(ρ), (5)

i.e., Φ(ρ) is the electrostatic potential generated by the QM distribution,

Ψi(ρ) = Ψ(ri)(ρ) =

∫
ρ(r)(r− ri)

|r− ri|3
d3r, 〈Ψ(ρ),X〉 = −

∑
i

µiΨi(ρ), (6)

i.e., Ψ(ρ) is the electric field generated by ρ and, analogously,

Ψi(M) =
∑
j

qj(rj − ri)

|rj − ri|3
d3r, 〈Ψ(M),X〉 = −

∑
i

µiΨi(M). (7)

Furthermore,

Eself(M) =
1

2

∑
i 6=j

qiqj
|ri − rj |

(8)

and

1

2
〈X,AX〉 =

1

2

∑
i

α−1
i µ2

i +
∑
i 6=j

µiTijµj

 , Tij =
1

|ri − rj |3
− 3

(ri − rj)⊗ (ri − rj)

|ri − rj |5
,

(9)

where αi is the polarizability of site i, and Tij is the interaction tensor between dipoles i

and j.

For a continuum solvation model (CSM) such as the conductor-like screening model (47),

the polarization degrees of freedom are the expansion coefficients qi of an apparent surface

charge discretized using a set of functions σi(r) (usually, piecewise constant or spherical

Gaussians (48)) placed at representative points si. With slight variations depending on the

implementation, we have

Ψi(ρ) = Ψ(si)(ρ) = −
∫
ρ(r)σi(r)

|r− si|
d3r, (10)

1

2
〈X,AX〉 =

1

2

∑
i,j

qiSijqj , Sij =

∫
d3r

∫
d3r′

σi(r)σj(r
′)

|r− r′| . (11)

In both cases, we note that the energy functional in eq. 3 is indeed a variational functional

of the polarization degrees of freedom X, i.e., the polarization equations are satisfied when

the functional is minimized (41)

∂E(ρ,M,X)

∂X
= AX−Ψ(ρ)−Ψ(M) = 0 (12)

This has an important advantage, as it makes computing analytical derivatives of the energy

straightforward. In fact, for a generic parameter ξ, we get

dEpol

dξ
=
∂Epol

∂ξ
+
∂Epol

∂X

∂X

∂ξ
=
∂Epol

∂ξ
, (13)

where the partial derivative denotes explicit derivatives only.
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2.2. Polarizable embedding at the self-consistent field level of theory

The formalism developed in section 2.1 can be used in a straightforward way to derive the

coupled QM/C equations when the QM portion of the system is described at a level of

theory based on the self-consistent field method (49). Let us introduce a basis set of atomic

orbitals (AO) χ. The QM density can be expanded as

ρ(r) =
∑
α

Zαδ(r−Rα)−
∑
µν

Pµνχµ(r)χν(r), (14)

where the first term accounts for the nuclear charges and P is the idempotent density

matrix, namely P = CoccC
†
occ, where Cocc is the occupied block of the molecular orbitals

(MO) coefficients matrix C.

In order to write the coupled HF/PE equations, let us first express the quantities Φ and

Ψ in terms of ρ. As both these quantities are linear functionals of the total density, they

can be written as the sum of a nuclear contribution plus an electronic one. The latter can in

turn be written as the contraction of the density matrix with the appropriate one-electron

integrals Φµν and Ψµν that are obtained by substituting in the model-specific definition of

Φ and Ψ the elementary density element χµ(r)χν(r) to the total density ρ(r):

Φ(ρ) = Φnuc +
∑
µν

PµνΦµν ; Ψ(ρ) = Ψnuc +
∑
µν

PµνΨµν (15)

Coupled HF/Polarizable environment equations are obtained exploiting the fact that

the total energy functional

E(P,X;M) = EHF(P)+Eself(M)+〈Φ(P),M〉+ 1

2
〈X,AX〉+〈Ψ(P),X〉+〈Ψ(M),X〉 (16)

is variational in both the density matrix P and the polarization degrees of freedom. Impos-

ing the stationarity conditions with respect to P and taking into account the constraints

gives a set of modified Roothan equations

F̃(P)C = SCE (17)

with a modified Fock matrix

F̃µν =
∂E(P,X;M)

∂Pµν
= hµν +Gµν(P) + 〈M,Φµν〉+ 〈X,Ψµν〉. (18)

The polarization equations are instead obtained by imposing the stationarity conditions

with respect to X
∂E(P,X;M)

∂X
= AX−Ψ(P)−Ψ(M) = 0. (19)

We note immediately that the two sets of equations 17 and 19 are coupled, as the former

depends on X and the latter on P. In practical implementations, the polarization equations

need to be solved at each SCF cycle, so that the Fock matrix can be updated. The total

energy is obtained by substituting the solutions to the coupled equations into the variational

energy functional. We note that the polarization terms simplify to

Epol =
1

2
〈Ψ(P) + Ψ(M),X〉. (20)
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2.3. Beyond the SCF description: the modeling of excited states

As shown in section 2.2, the coupling of polarizable methods to HF or DFT can be achieved

in an univocal, rigorous way thanks to the use of a variational formalism. Unfortunately, this

is not the case for virtually any other quantum chemical method, with the only excpection of

state-specific multiconfigurational SCF, for which an analogous variational energy functional

can be defined. In this section, we will illustrate what are the main approaches to couple

polarizable methods to the description of excited states

2.3.1. Linear response schemes. Excited states and transition properties can be success-

fully described in terms of linear response (LR) theory which, combined with a SCF QM

description, gives rise to the so-called time-dependent SCF equations(50). In vacuo, at the

HF level of theory, such equations read(
A B

B∗ A∗

)(
X

Y

)
= ω

(
1 0

0 −1

)(
X

Y

)
(21)

where the A and B matrices are given by

Aia,jb = δijδab(εa − εi) + (ia|jb)− (ab|ij)
Bia,jb = (ia|jb)− (aj|ib) (22)

where i, j are the indices of occupied molecular orbitals, and a, b of virtual molecular

orbitals, εi are the molecular orbital energies, and (ai|bj) is a bielectronic integral in the

Mulliken notation.

When a polarizable environment is included, the LR equations can be derived starting

from the variational energy functional following the same procedure used in vacuo (51,

52). However, the equations one obtains account for the presence of the environment in a

fundamental way, as the response matrix is modified with an additional term that accounts

for a dispersion-like polarization contribution. In particular, the A and B matrices in eq.

21 are modified as follows:

Ãia,jb = Aia,jb + Venv
iajb, B̃ia,jb = Bia,jb + Venv

iajb, (23)

where

Venv
iajb = 〈Ψia, Xjb〉 (24)

and Xjb is the polarization induced by the field Ψjb arising from orbitals φjφb. In other

words, the polarizable environment contributes to the molecular response properties and

excitation energies with a term 〈XK ,ΨK(ρK)〉, where ρK is the transition density between

the ground and the K-th excited states and XK the polarization induced by such a density.

We note that if the polarizable environment response has a (non-negligible) frequency de-

pendence, as it is the case for continuum solvation models, this can be easily accounted for

in a LR treatment, as one can use the zero-frequency limit of the response for the ground

state polarization equations and the optical limit for the linear response ones. This ap-

proach, known as non-equilibrium solvation in CSM, is nowadays routinely implemented

and used (53).

The LR treatment of embedded systems is sound and rigorous, however, it represents

only a part of the whole effect of a polarizable environment. In fact, the missing term is

8



the relaxation of the polarization in response to the change in the charge density of the QM

subsystem upon an electronic transition (54–56). This further effect, which is expected to

be large any time the excitation induces a large electronic charge redistribution such as in

charge-transfer excitations, requires a different formulation with respect to the LR frame-

work. In particular, the response of the environment to the excitation now becomes specific

to the involved excited state and as such it has been commonly described as state-specific

(SS) formulation. The main theoretical and methodological aspects of such formulation will

be summarized in the next section.

2.3.2. State-specific schemes. Several SS alternatives have been developed over the years,

which introduce a coupling between the excited state density and the environment at dif-

ferent levels of approximation (51, 57, 58).

SS models have the attractive feature that they achieve mutual polarization in their

description of the embedded system, however, they also exhibit a number of relevant prob-

lems (59). First, they are computationally expensive. In fact, they require one to assemble

the state or relaxed one-body density matrix several times, until self-consistent polarization

is reached. In LR calculations, there is no need to compute such a density (58). To make

an example, in a DFT SS calculation, computing the relaxed density requires one to solve

the Z-vector equations, which comes with a cost similar to the one associated with solving

the linear response equations. Then, the density has to be assembled, a new response of

the environment computed and the process repeated until convergence. Assuming that one

needs 5-10 iterations to converge, the overall calculation will be 10-20 times more expensive

than the corresponding LR one.

A second problematic factor concerns more theoretical aspects of such models. The po-

larizable environment introduces in fact a density-dependent term in the molecular Hamil-

tonian, making thus the approximate solution to the electronic Schrödinger equation a

non-linear problem. This is in contrast with the linear nature of the response equations

and introduces several difficulties. First, the transition and relaxation contributions to the

density become non-linearly coupled, which blurs the clear-cut distinction between such

quantities (60). If the SCF orbitals are recomputed, things become even more unclear from

a theoretical point of view, as the ground state orbitals become coupled to the excited

state densities (57). These problems become even more substantial if one adopts a post-

SCF description for the excited state (61), for instance, using Coupled-Cluster theory, as a

fully self-consistent procedure couples the amplitude and Λ equations to the left and right

eigenvector equations that one needs to solve in order to compute the excited state density

(61).

Second, the embedded electronic state obtained in a SS approach is not orthogonal to

the ground state, nor to any other excited state obtained with the same procedure. This

is a major theoretical problem, as it blurs again the definition itself of excited state in a

quantum mechanical sense.

A particularly interesting case is offered by the description of excited states in a polar-

izable environment using a multiconfigurational SCF (MCSCF) approach (62–64). MCSCF

methods grant in principle a direct access to excited states, that can be obtained by se-

lecting a specific root of the CI problem. In general, there are two approaches to compute

excited-state wavefunctions with such a method. A single root can be completely opti-

mized, obtaining thus both molecular orbitals and CI coefficients specifically for the desired

state, or several roots can be optimized at once, at the price of using state-averaged (SA)

www.annualreviews.org • 9



molecular orbitals. The latter approach has the advantage of producing more states at the

same time, and that such states are orthonormal. On the other hand, the common set of

molecular orbitals might not be particularly well suited for the description of all the states

at once, especially if such states involve large rearrangements of the electronic density. In

contrast, the single-state approach provides a fully optimized excited state wavefunction.

However, it may suffer of convergence issues for higher lying excited states and different

states obtained with this method are no longer orthogonal. A linear response formalism

can also be applied at the MCSCF level of theory in order to study excitation processes

(65).

As the MCSCF wavefunction is obtained via a non-linear optimization procedure, the

further non-linearity introduced by polarizable models is neither a theoretical nor a practical

limitation. Therefore, the single-state MCSCF method can be combined with polarizable

methods (62) in a genuinely SS fashion. This comes, however, with all the limitations dis-

cussed before, in particular, the lack of orthogonality between different states. Embedded

approaches based on SA or LR MCSCF can also be formulated and implemented (63, 64).

In this case, several orthogonal states can be obtained, but the response of the environment

will be either incomplete for linear response, or averaged for SA, which can be physically

questionable. A more specific problem is encountered when SA methods are used in order

to explore a potential energy surface via a molecular dynamics simulation, which requires

energy gradients. Here the SS approach is simpler, as it is fully variational. On the other

hand, a SA approach requires one to introduce a Lagrangian and solve coupled perturbed

equations in order to compute the state energy gradients (66). A possible way of overcoming

such problems is to approximate the QM/C coupling in order to remove crossed dependen-

cies. As an example, in the corrected LR (cLR) approach (51), the excited state density is

used to correct the energy in a state-specific way, but the density is left unchanged. This

is a compromise that can improve the energy, but not the transition or state properties,

and it is computationally much less expensive than a fully polarized SS approach. The

cLR approach can be also applied to SA MCSCF descriptions. In this case, a state-specific

polarization energy is computed and used to correct the state energy (64).

It should be mentioned that the difference between LR and SS approaches, and the issues

encountered with such methods, are more prominent in continuum solvation models than

in polarizable MM ones. This is due to the fact that in the latter polarization represents

a (small) fluctuation of the electrostatic distribution of the environment with respect to

its equilibrium one, which is mostly represented by the static multipolar distribution M.

As M is not present in CSM, the whole interaction is represented as a polarization term.

As polarization is the only part that introduces a non-linearity in the Hamiltonian, this

problem is much more severe for CSM. In view of these problems, a polarizable approach

that allows one to obtain more states at the same time, while introducing state-specific

corrections and retaining a clear-cut interpretation of the states from a QM point of view

is nowadays still not available.

2.3.3. Analytical Gradients. The discussion in the current section has been entirely focused

on the calculation of the energy of ground and excited states embedded in a polarizable

environment. However, the applicability of polarizable methods to the study of light-driven,

dynamical processes requires one to be able to explore a potential energy surface, which

in turn requires the availability of analytical gradients. The presence of a polarizable en-

vironment changes the calculation of the forces for both ground and excited states. Here
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we present an example of how these changes can be included within a linear response for-

mulation using the formalism presented in Section 2. The variational formalism makes the

derivation of gradients particularly straightforward, as the energy functional that has to be

differentiated is stationary with respect to the polarization degrees of freedom, making thus

all the chain-rule derivatives with respect to X vanish.

We start with the GS contribution by taking the derivative of eq. 16 with respect to the

position of QM atoms (R) and MM atoms (r).

∇RE(ρ,X;M) = ∇REQM(ρ) + 〈∇RΦ(ρ),M〉+ 〈∇RΨ(ρ),X〉 (25)

∇rE(ρ,X;M) = ∇rEself(M) + 〈∇rΦ(ρ),M〉+
1

2
〈X,∇rAX〉

+ 〈∇rΨ(ρ),X〉+ 〈∇rΨ(M),X〉 (26)

The first expression contains the purely QM gradients and two additional contributions

coming from the derivative of the interactions between X and M and the quantum density

ρ. The second expression contains the purely classical electrostatic forces — sum of three

terms, and again two contributions from the derivative of the interactions between the

quantum density and the classical densities X and M. Note that in eq. 25 the Ψ and Φ

functions are derived with respect to the sources and in eq. 26 with respect to the targets,

leading to different expressions. Eq. 26 accounts only for the electrostatic and polarization

contributions to the classical gradients, since E is the sum of the QM energy and the

polarization and electrostatic energy. Other contributions, such as dispersion-repulsion and

bonded terms, are needed to assemble the total gradients, but they are specific of the

model and not discussed here. Furthermore, such contributions are usually modeled using

a classical, additive potential and pose therefore little to no theoretical problem.

The gradients of a given excited state energy are the sum of the GS gradients and an

additional contribution due to the derivatives of the excitation energy. In case of a linear

response description, the latter term cannot be computed in a straightforward way, as the

linear response energy is not stationary with respect to the MO coefficients. In order to

avoid computing the derivatives of the MO coefficients, that would stem from various chain-

rule terms, a linear response Lagrangian which is variational in the MO coefficients(67), is

introduced and properties are obtained by its differentiation.

L =
(
X Y

)(A B

B∗ A∗

)(
X

Y

)
− ω

[(
X Y

)(1 0

0 −1

)(
X

Y

)
− 1

]
+
∑
ia

ZiaFia +
∑
pq

Wpq(Spq − δpq) (27)

In eq. 27 the first two terms are the LR energy functional, the third term enforces the

solution of the SCF equations and the fourth term enforces the orthonormality. Solving the

SCF and LR equations provides the MO coefficients and the X and Y vectors, however the

Z and W coefficients are still needed to build the Lagrangian, and thus its derivatives. The

latter terms are computed by solving the so-called Z-vector equations, which are obtained

by imposing the stationarity of eq. 27 with respect to the MO coefficients.

Properties can then be obtained by differentiation of the LR Lagrangian. We focus here

on the terms induced by a multiscale description, by directly reporting their expression in
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the AO basis. A detailed derivation can be found elsewhere(67, 68).

∇RLenv =
∑
µν

P∆
µν∇RFµν +

∑
µνκλ

P tr
µνP

tr
κλ2〈∇RΨµν ,Xκλ〉 (28)

∇rLenv =
∑
µν

P∆
µν∇rFµν +

∑
µνκλ

P tr
µνP

tr
κλ(2〈∇rΨµν ,Xκλ〉+ 〈Xµν ,∇rAXκλ〉) (29)

The expressions in eq. 29 contain two different contributions. The first depends on the

so-called relaxed density difference P∆ and is analogous to the environment contribution to

the GS gradients. It can therefore be computed by defining a total relaxed density matrix

P tot = P + P∆, and a total relaxed density ρtot(P tot) (as in eq. 14), which is then fed to

same GS gradients routines (i.e., this term is evaluated with eqs. 25, 26) with ρtot in place

of ρ. The second contribution is quadratic in the transition density P tr and is specific to

polarizable embedding schemes, which contribute explicitly to the LR equations.

Gradients of LR methods have been developed for several polarizable multiscale ap-

proaches, such as ASC models (68), fluctuating charges (69), IDP (70? ), and, recently, for

an embedding based on the AMOEBA force field (71).

We conclude this section mentioning approaches going beyond a SCF-based LR descrip-

tion for which analytical gradients are available. Deriving and implementing gradients for

methods such as the ones described in Section 2.3.2 is not an easy task, so very few imple-

mentations are available. Due to the cost of computing the relaxed SS density, gradients

are more commonly available for already expensive post Hartree–Fock methods, for which

a state-specific formulation is available. We mention here, in the context of continuum

models, the SS formulations at the equation-of-motion Coupled Cluster level of theory (72)

and linear-response Coupled Cluster (73), and at the second-order adiabatic diagrammatic

correction (ADC(2)) level (74). The latter level of theory has also been coupled to an

IPD polarizable MM formulation (75). As mentioned in Section 2.3.2, MCSCF methods

can naturally be coupled to a polarizable environment in a SS fashion. As the excited

state energy is variational, the implementation of gradients does not suffer of any particular

complications due to the presence of the embedding (34, 62), so that once standard SCF

gradients have been implemented, the extension to MCSCF gradients is straightforward.

3. EXCITED STATE DYNAMICS: FROM ADIABATIC TO NONADIABATIC
DESCRIPTIONS

Molecular dynamics is a powerful technique for the study of complex systems, where it is

largely used to perform statistical sampling over the many degrees of freedom of the system.

Within this framework, MD simulations entirely based on MM force fields are commonly

used. In light-driven processes however, a QM description of at least part of the system

has to be introduced and methods going beyond a ground state description need to be

considered in order to follow the irreversible transformation of the initial electronic energy

while the system relaxes to a different state or undergoes a photochemical reaction (76).

In principle the time evolution of a given QM system is determined by its time dependent

Schrödinger equation, describing both the nuclear (R) and electronic (r) degrees of freedom

ih̄
∂

∂t
Ψ(R, r, t) = (Ĥel(R, r) + T̂nuc(R))Ψ(R, r, t). (30)

Here, the total Hamiltonian is the sum of the electronic Hamiltonian and the kinetic en-

ergy of the nuclei T̂nuc. Solving this problem is challenging and presents a steeply scaling
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computational cost, so it is a viable strategy only for small molecules.

To tackle the problem of a large molecular system, possibly interacting with an en-

vironment in its full dimensionality, the usual approach consists in considering some sort

of classical approximation for the nuclear motions. Within this framework, we necessarily

neglect any nuclear quantum effect, such as zero-point energy and tunnelling(77, 78). How-

ever, approximate approaches can be introduced to recover at least a part of these effects.

For example, in case of the zero point energy a strategy commonly adopted is to perform

a sudden heating of the QM region, to approximately recover the energy contribution (79).

In case of proton transfers, a successful strategy is to use quantum mechanics to describe

just the proton(s) motion (80).

The classical approximation for the nuclear motion can be combined with a Born-

Oppenheimer (BO) picture, so that the evolution is fully determined by the potential energy

surface of the associated adiabatic electronic state.

Obviously, the BO approximation breaks down when different electronic states get closer

in energy, and in that case there can be population transfer between the involved states.

Because this phenomenon is often encountered in light driven processes, nonadiabatic dy-

namics plays a major role in the field.

A large variety of mixed quantum-classical nonadiabatic schemes have been developed

(81–83), and among them the most commonly used is the the trajectory-based Surface

Hopping (SH) method, pioneered by Tully (84, 85). A trajectory-like approach for the

nuclear motion is in fact extremely effective for complex systems as it opens the way to the

on-the-fly evaluation of electronic energies and nonadiabatic couplings. More in detail, the

reason of the popularity of SH is most probably due to its simplicity, although a careful

implementation is needed to obtain meaningful results (86). Surface hopping is a stochastic

approach, therefore a simulation consists in a swarm of several trajectories, which is also

needed in order to mimic the nuclear quantum wavepacket. In SH the trajectories are

independent. This allows to trivially achieve parallel computing, and makes it easy to add

trajectories to the swarm, if needed.

Due to its effectiveness in describing light-driven processes in complex systems, here the

focus will be mainly on the SH approach. First, the main theoretical and numerical aspects

of the general formulation will be presented and discussed, and after that its extension

to hybrid QM/C approaches and to multichromophoric systems, will be presented and

discussed.

3.1. The Surface Hopping approach

The SH method is a mixed quantum-classical approach in which the nuclear motion is de-

scribed by a classical trajectory R(t), while the electrons are represented by a wavefunction

Ψel(r,R, t). It is assumed that the equation of motion for the electronic wavefunction is

the time dependent electronic Schrödinger equation (TDESE)

ih̄
dΨel

dt
= ĤelΨel (31)

where Ĥel is the electronic Hamiltonian, see equation 30. Let ϕk(r;R(t)) be the eigenstates

of Ĥel, i.e. the adiabatic states: Ĥelϕk = Ekϕk. By expanding the electronic wavefunction

in terms of the adiabatic states

Ψel(r,R, t) =
∑
k

Ak(t)ϕk(r;R(t)) (32)
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one immediately arrives at the following equation for the coefficients

Ȧj = − i
h̄
AjEj −

∑
k

AkṘ · gjk (33)

where gjk = 〈ϕj |∇R|ϕk〉 are the nonadiabatic (or derivative) coupling (NAC) vectors. In

the above equations 32 and 33, the sums are extended to the number Nst of electronic states

of interest, which is kept as small as possible to reduce the computational burden.

The TDESE is integrated concurrently with Newton’s equation for the nuclei,

mα
∂2

∂t2
Rα(t) = −∇αEk(R(t)) (34)

which evolve on the PES Ek of the “current” state k. Actually, at any time during the time

evolution the current state may change from k to j, according to a stochastic algorithm,

and in that case we have a “hop”. The hopping transition probability Tk→j is most often

evaluated according to Tully’s “fewest switches” scheme. The idea is that Tk→j is larger

than zero only if, in the time interval ∆t considered, there is a net flux of probability from

state k to state j, so that hops are only allowed when actually needed. In particular, the

transition probability in the time interval from t to t+ ∆t is (80, 85)

Tk→j =
1

ρkk

∫ t+∆t

t

max(0, Bkj)dt with Bkj = 2<
(
ρjkgkj · Ṙ

)
(35)

where ρkj = AkA
∗
j are the electronic density matrix elements, so that ρkk = |Ak(t)|2 is the

state k probability. Other schemes have been proposed (87, 88), still keeping the concept

that the transition probability is obtained from the variation of the state probabilities, rather

than from their values, in order to minimize the number of hops. It has been observed (88)

that the standard fewest switches algorithm only allows transitions between states which

are directly coupled, and therefore cannot account for the “superexchange” mechanism,

which refers to a diabatic scheme where a transition between two electronic states |a〉 and

|b〉 which are not directly coupled is mediated by a state too high in energy to be populated.

For example, such a mechanism is important in singlet fission (see below), where a locally

excited singlet is converted in a triplet pair, possibly through the coupling with high lying

charge transfer states. However, apart from symmetry reasons (which are usually not

important in molecular photochemistry), nothing prevents the adiabatic counterparts of |a〉
and |b〉 from being coupled: therefore, no special care for superexchange is needed in the

fewest switches algorithm when working in the adiabatic representation.

The SH scheme is representation dependent, i.e. the results depend on the electronic

basis used to expand Ψel in equation 32. Here we deliberately restrict ourselves to consider

the case in which Ψel is expanded in terms of adiabatic functions, as SH is known to work

best in the adiabatic representation. In fact, the nuclei are expected to follow the adiabatic

PES, at least far from strong interaction regions. Moreover, due to the local character

of the NAC, hops between adiabatic PES are only likely in regions where the electronic

energy differences are small. For SH, this is an important feature, especially considering

the rescaling of the nuclear velocities performed after a hop.

On the other hand, the numerical integration of the TDESE is better performed re-

sorting to a diabatic basis. In fact, in contrast to the NAC, the diabatic quantities depend

smoothly on the nuclear coordinates and can be easily interpolated in the given numerical
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integration timestep ∆t. In the local diabatization (LD) method (89), a crude diabatic

basis {η} in the time interval from t to t + ∆t is defined by setting ηk(r) = ϕk(r;R(t)),

for all k = 1, . . . Nst, i.e. the diabatic states correspond to the adiabatic ones at the be-

ginning of the integration time step (90). The diabatic-to-adiabatic transformation ma-

trix T at time t + ∆t is obtained by Löwdin orthonormalization of the overlap matrix

Skj = 〈ϕk(t)| ϕj(t+ ∆t)〉. The derivative couplings in the locally diabatic basis are zero by

construction, and the integration of the TDESE only requires the matrix H =
〈
η
∣∣∣Ĥel∣∣∣η〉,

which is in turn obtained from the adiabatic energies. More in detail, H(t) corresponds to

the diagonal matrix E(t) collecting the adiabatic energies Ek(t), while at time t + ∆t one

has H(t + ∆t) = TE(t + ∆t)T+. As mentioned above, at variance with the nonadiabatic

couplings, the H matrix lends itself to a linear interpolation in the time interval ∆t, being

defined in terms of the constant functions ηk.

In the LD scheme, the risk of missing a strong interaction region or a trivial crossing

(i.e. a crossing of two states which are not coupled) is ruled out by construction, thanks

to the diabatization procedure. Therefore, the time step for the integration of the TDESE

does not need to be smaller than the one for the propagation of the nuclear trajectory (91).

At variance, standard methods based on NAC most often require a much smaller time step

(83, 87). Moreover, the algorithm employed in the evaluation of the overlap is not influenced

by the inclusion of the interaction with an MM environment, polarizable or not. Notice

also that the trivial crossing problem is quite commonly encountered, for example in energy

or charge transfer in multichromophoric systems, where the strength of the interaction is

modulated by the distance between the chromophores. The main drawback with the LD

method is the evaluation of the fewest switches transition probability: equation 35 cannot

be used, as the NAC are not evaluated (being replaced by the overlaps), and in any case

the aim of the LD scheme is precisely to avoid the direct computation of quantities like

the integral of equation 35. The expression for the fewest switches transition probability

originally proposed in the LD scheme (89), which is still in use nowadays (92, 93), is subject

to numerical instabilities, especially in the presence of many weakly interacting states. A

better formulation, still in the spirit of the fewest switches algorithm, has been recently

proposed by some of us (94).

In many photochemical processes, effects due to the quantum nature of the nuclei, like

interference, tunneling, or the zero point energy, can be neglected or circumvented. This is

one of the main reasons for the success of independent trajectory methods like SH. However,

the quantum decoherence effect, due to the decoupling of two wavepackets traveling on

different PES, can seldom be ignored. To understand why quantum decoherence is lost

in standard SH, let us start considering the Born Huang expansion for the full quantum

wavefunction(95)

Ψ(t) =
∑
k

|θk(t)〉ϕk (36)

where the nuclear wavepackets are represented as generic kets |θk〉. The full quantum

electronic density matrix is then

ρ
(q)
kj = |θk〉 〈θj | (37)

In the coordinates representation, ρ
(q)
kj is given by the product θk(R, t)θ∗j (R, t). As the

two wavepackets evolve on different PES, they will eventually diverge in space. When this

happens, one gets ρ
(q)
kj ' 0, i.e. zero coherence, so that the motion of the two wavepackets is

uncorrelated. The same consideration can be repeated in the momentum (p) representation:

www.annualreviews.org • 15



two wavepackets located in different regions of the momentum space are decoupled, as the

product θk(p, t)θ∗j (p, t) would vanish. Surface hopping behaves very differently in this

respect. In fact, in SH the electronic density matrix is ρkj = AkA
∗
j , which may be equal to

zero only if one of the two amplitudes is zero, i.e. one of the two states has zero probability.

If k is the current state, Ak 6= 0 for sure, so that all the other amplitudes Aj are always

propagated coherently with the current state, along the nuclear trajectory which evolves on

Ek.

In practice, the lack of quantum decoherence can be neglected in SH only for a ultrafast

dynamics consisting in a single passage through a strong interaction region. In the other

cases, such as multiple passages through a strong interaction region (96, 97), crossing of

several strong interaction regions (82), or even for a trajectory wandering for a relatively

long time (say, few picoseconds) in a weak coupling region (98), the decoherence effects are,

in principle, important. The evaluation of quantum decoherence requires information on

the nuclear evolution on the PES different from the current one. This information is clearly

not available in independent trajectory methods such as SH, and its computation would

be very expensive, especially for large systems, requiring at each time step the evaluation

of PES and gradients in several points of the nuclear configurational space. Therefore, a

plethora of different approximate algorithms (97–102) for the introduction of decoherence

corrections in SH has been developed, all aimed at annihilating, far from strong interaction

regions, the amplitudes of the states different from the current one.

3.2. The effects of the environment

Light-driven processes present a strong dependence on the environment. This will be ev-

ident especially in Section 4 where the focus will be on excitation energy and electron

transfer. There are however, many other processes where the environment not only affects

the dynamics but it can also make the whole process unlikely or even not possible.

An example is the excited state proton transfer (ESPT), an important process in both

chemical and biological systems. Most of the ESPT processes occur through intermolecular

or intramolecular hydrogen bonding, D–H· · ·A where the proton donor, D and the proton

acceptor, A, are electronegative atoms, such as N or O (103). Upon electronic excitation,

the acidity and basicity of donor and acceptor, respectively, are enhanced as a consequence

of the redistribution of electronic density in the molecule. In such a way, proton transfer

from the donor to the acceptor can take place in the excited state (generally through an

ultrafast process) while it is thermodynamically impeded at the ground state. It is clear,

that the presence of a protic solvent which interacts through H-bonds with the the acceptor

can compete with the proton transfer thus leading to a slower process or even preventing it

at all. In addition to that, the environment can change the relative stability of the normal

(D–H· · ·A) and the tautomeric (D· · ·H–A) forms, and affect the energy barrier between

them.

The time evolution of the ESPT reaction cannot be obtained from static calculations

but it requires an explicit dynamic simulation which in many cases can be performed using

an adiabatic approach. Various approaches have been used so far to properly included the

effect of the environment in the dynamic description. In some works, classical molecular

dynamics was combined with QM/MM potentials based on empirical valence bond (EVB)

theory. Many initial configurations and sets of velocities were evolved using classical MD on

the excited state EVB potential energy surface, to explore the nonequilibrium response to
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photoexcitation for 2-(2-hydroxyphenyl)-4-methyloxazole in solution and in protein (104),

and 3-hydroxyflavone in different solvents (105). In particular, in the latter study, it was

found that the ultrafast intramolecular proton transfer results from a combination of ballis-

tic transfer and intramolecular vibrational redistribution, which leads to the excitation of a

set of low-frequency promoting vibrational modes independently of the solvent. Instead, the

analysis of the slow proton transfer trajectories reveals a solvent-mediated proton transfer

mechanism, which is limited by diffusion.

Another interesting case of ESPT is that of photoacids which dissociate in the excited

state transferring a proton to a nearby solvent molecule or to a strong base present in solu-

tion (106–108). In this case the simulation requires to include at least one solvent molecule

in the QM subsystem, but in some cases larger clusters are involved. This is the case of

reactions in aqueous solutions, where the key role is played by the solvation shells, which

facilitate the PT by fluctuations of the hydrogen bond network or breaking and formation

of hydrogen bonds. Photoacids have been studied with both adiabatic and adiabatic tech-

niques mostly based on TDDFT eventually combined with electrostatic embedding MM

(109, 110).

Another important light-driven process where the environment can dramatically affect

the dynamics is singlet fission (SF). In SF a locally excited singlet (or a combination of

singlet excitons), here labeled S1, is converted in a close lying singlet component of a triplet

exciton pair (1TT ). As such, it allows to generate two excitons by a single photon. It

has been established that charge transfer (CT) states play an important role in the mech-

anism of singlet fission. According to the energetics, there may be a two-step mechanism,

where low-lying CT states are first populated from S1 before 1TT is generated. Or else,

the transition from the locally excited singlet to 1TT can be mediated by the interaction

with CT states too high in energy to be populated (the superexchange effect). The direct

mechanism, in which 1TT is populated from S1 without intervention of other states, is

also possible. The fundamental role played by CT states in the SF process automatically

implies that the environment will have a strong impact on the process through the tuning

of the CT energies. Materials most commonly employed in singlet fission are represented

by molecular crystals, although covalent dimers are used as well (111). In any case, taking

into account correctly the interaction with the environment is of paramount importance,

given its strong influence on the SF quantum yield. Several simulations of singlet fission

dynamics have been performed, resorting to model Hamiltonians (111, 112), but there are

very few fully dimensional SH on-the-fly simulations. Probably one of the main reasons is

that the quantum chemistry method used has to be flexible enough to allow at least for a

correct treatment of doubly excited configurations and CT states. Prezhdo and co-workers

(113) performed a simulation of singlet fission dynamics for pentacene at the interface with

C60. Accomasso et al. (114) performed SH simulations of singlet fission in a molecular

crystal of 2,5-bis(fluorene-9-ylidene)-2,5-dihydrothiophene, with electronic states obtained

using the FOMO-CI method in a semiempirical framework. The simulation was brought

about in a QM/MM scheme, inserting two or three molecules in the QM part. Difference in

the energetics of locally excited, CT and 1TT states were found to be more important than

the changes in the couplings between these states, confirming the importance of a correct

assessment of the influence of the environment on the electronic energies.

From this brief introduction it is clear that the inclusion of the environment effects in

the adiabatic or nonadiabatic modeling of light-driven processes is necessary to achieve a

realistic picture. Such a modeling, however, requires to carefully consider some new issues
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with respect to an isolated molecular system. Still limiting our analysis to hybrid methods

using a classical embedding, the following specificities have to be taken into account: i)

the environment modifies the energies and forces acting on the QM atoms, ii) in case of an

atomistic model there are additional degrees of freedom that have to be propagated along

the dynamics as well, and iii) in case of nonadiabatic dynamics such as SH, a polarizable

embedding introduces additional complexity in the description of multiple excited states.

If the selected model is a QM/MM with an electrostatic embedding, all these issues are

easily solved. Within this framework, in fact, the atoms of the environment are described

by fixed point charges which behave classically. As a result, their presence only increases

the number of coordinates to be treated in the classical equation of motion. Moreover,

the additional electrostatic contribution to the forces acting on the QM subsystem can be

obtained exactly in the same way one calculates the effects of the nuclei. Once taken into

account these two aspects, both NAD or BO simulations described so far can be performed

with only a limited increase of the computational cost.

On the contrary, the use of a polarizable QM/classical formulation introduces new theo-

retical and numerical issues that have to be carefully considered. In the context of dynamics,

atomistic approaches are by far preferable to continuum ones. Continuum models in fact

are not easy to be recast in a time-dependent formulation. So far, the most effective in

this direction are the ones based on real-time (RT) descriptions. This framework has been

explored within a RT-TDDFT formulation by introducing an equation of motion for the

ASC (115, 116). This is achieved by rewriting eq. 2 in the frequency domain and using

the full spectrum of the solvent frequency-dependent dielectric permittivity. By Fourier

transforming the resulting equation back to the time domain, one arrives at the definition

of time-dependent ASCs to be used in combination with the quantum Liouville equation,

which describes the time evolution of the electronic degrees of freedom. Such a combi-

nation leads to working equations for the QM density propagation in the presence of an

environment that rigorously account for the delayed polarization (nonequilibrium effects).

RT-TDDFT approaches have been also combined with polarizable embedding QM/MM

using an induced dipole formulation (117, 118). However, these approaches are mostly

focused on the description of the time evolution of the electronic density following a pertur-

bation and as such they are generally used for simulating spectroscopy. On the contrary,

their extension to include nuclear dynamics is neither straightforward nor computationally

effective.

When compared to continuum models, polarizable atomistic approaches are clearly a

much better strategy to include environment effects in both adiabatic and nonadiabatic

dynamics. For adiabatic approaches, the inclusion of a polarizable embedding can be ob-

tained by using the formulations of both energy and gradients presented in Section 2.3. As a

matter of fact, ground state BOMD in combination with a polarizable embedding QM/MM

has been already presented in the literature both using a Drude (119) or an induced dipole

formulation (37, 42, 120). Moreover, a very recent extension to excited state dynamics

within a TDDFT approach has been presented still using the induced dipole formulation

(71).

In a nonadiabatic framework, instead, the inclusion of polarization in the the classical

environment is much more problematic. In fact, each electronic state of the QM system

polarizes the classical part in a different way, and is then characterized by a different Ĥel.
This results in an incorrect description of the PES in the vicinity of avoided crossings and

conical intersections.
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Figure 2

Schematic representation of two possible relaxation processes of an excited molecule embedded in

a polarizable environment. The two electronic states of the QM molecule are depicted in blue
(GS) and red (S1), the response of the environment is colored accordingly. In the case depicted to

the right, upon excitation the molecule undergoes an adiabatic relaxation process which involves
only the S1 state, since the GS is far in energy. The environment will always respond to the S1

density. In the case depicted to the left, the molecule goes through a region of strong nonadiabatic

coupling with the ground state, so the relaxation involves both the states. The environment
response is a average over the two states (purple) in the region of strong NAC, whereas is specific

of the state elsewhere.

These conceptual difficulties have not found an effective solution so far, and, to the

best of our knowledge, no trajectory-based nonadiabatic simulations with polarizable MM

environment have been reported in the literature. Despite that, here we can try to sketch

two possible approximations which could be used as a starting point for a future implemen-

tation. The first one is to introduce a LR description, which, as discussed in the previous

Section, does not involve a state-specific response of the environment. The drawbacks of

this formulation have been already discussed in the previous section and involve limita-

tions both in the choice of the QM method (that is generally limited to single reference

approaches) and in the environment response which does not account for the state-specific

relaxation of the polarization. The second strategy is that of employing a state-averaged

polarization in the vicinity of crossings and a state specific approach elsewhere. Hagras

and Glover proposed an algorithm to interpolate between the two descriptions, in terms of

a switching function depending on the energy difference between a reference state and the

other electronic states considered (121). A schematic representation of the second strategy

is shown in Fig. 2. This strategy, contrary to the first, has the advantage of being the most

natural for multireference QM approaches, such as CASSCF, which are often required in

nonadiabatic simulations.

3.3. Multichromophoric systems

Many fundamental light-driven processes are not localized on a single molecule but they

involve (large) multichromophoric aggregates. The processes involved in light-harvesting in

natural and artificial systems, such as charge and energy transfer, are well known examples.

While SH and other NAD approaches can still be applied, some changes have to be included
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with respect to their standard formulation.

The first one concerns the feasibility of these approaches in the presence of molecular

aggregates. Due to the rapid increase in the computational cost with the size of the ag-

gregate, approximate approaches have been devised and successfully used. Among them,

one of the most commonly adopted is the Frenkel exciton model (122–124). Within this

framework, it is assumed that the electronic states of the aggregate can be represented as

linear combinations of diabatic states, namely excitations localized on each individual chro-

mophore. Taking into account only one state per chromophore (or “site”) for simplicity,

the electronic Hamiltonian of an aggregate of M sites becomes

Ĥel = |g〉 Eg 〈g|+
M∑
J

|J〉 EJ 〈J |+
M∑
I 6=J

|I〉VIJ 〈J | (38)

where |g〉 is the ground state and |J〉 is a locally excited state on the J-th chromophore. In

turn, |J〉 is expressed as an antisymmetrized product of monomer wave functions

|J〉 = ϕ
(g)
1 ∧ ϕ(g)

2 ∧ . . . ∧ ϕ(ex)
J ∧ . . . ∧ ϕ(g)

M (39)

and similarly for the ground state |g〉. The individual chromophores wavefunctions, together

with the site energies EJ , are obtained by quantum chemistry calculations on single sites. An

advantage of this quasi-diabatic scheme is the possibility of introducing ad-hoc corrections to

the site energies. In a semiempirical framework, the individual chromophore wavefunctions

are automatically orthogonal, and this “strong orthogonality” condition is normally also

assumed in the ab initio case, so that 〈I| J〉 = δIJ .

The excitonic coupling VIJ is well approximated by the Coulomb integral of the transi-

tion charge densities for sites I and J :

VIJ ' VCoul =

∫
dr1dr2

ρtr
I (r1) ρtr

J (r2)

r12
(40)

where ρtr
I/J (r) are the transition densities of the donor and acceptor, respectively.

The presence of an environment has two major effects on the couplings. First, a sys-

tem polarized by the environment has different electronic properties, and thus a different

transition density. Second, the environment can screen the Coulomb interaction between

the transition densities, so that the coupling is mediated by the environment itself. For

a homogeneous environment it can be thought as a dielectric screening of the Coulomb

coupling and roughly scales the total Coulomb coupling by the squared refraction index

of the medium. However, even in homogeneous media, this term strongly depends on the

relative orientations of the donor and acceptor transition moments (125), and in hetero-

geneous media it also depends on the nature and the orientation of the molecules of the

environment (126). Excitonic couplings will be further discussed in Section 4 in relation

with model Hamiltonian approaches.

For a modeling point of view, the first effect is easily introduced with any multiscale

strategy capable of polarizing the electronic density. However, only a polarizable model

is able to capture the second effect, as it indeed arises from the polarizable nature of the

environment (34, 125, 127). This term is related to the response equation 24 and, in the

same formalism, can be written as

Venv = 〈X[ρtr
I ],Ψ(ρtr

J )〉 (41)
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where Ψ(ρtr
I ) is the electrostatic property generated by the I transition density ρtr

I , and

X[ρtr
I ] is the polarization induced by the J transition density. Given the bilinear form of

the interaction, the coupling term does not change by exchanging the I and J labels.

In SH implementations, the Coulomb integral has been evaluated by approximating

each transition density with a site-centered dipole (122), or with atomic charges (123). In

the TrEsp method (128), these charges are computed by fitting the electrostatic potential

generated by the transition density, in the same way as ESP charges. Employing a method

allowing to obtain atomic charges depending as little as possible on the molecular geometry

(129) could be beneficial in this context, especially considering that the gradient of the

excitonic coupling is usually obtained neglecting the dependence of these charges on nuclear

coordinates.

The diagonalization of the electronic Hamiltonian of equation 38 yields the adiabatic

ground ϕ0 = |g〉 and excited states ϕi =
∑
J cJ,i |J〉, on which the SH dynamics is per-

formed. The corresponding nonadiabatic couplings gij have been approximated by Mart̀ınez

and coworkers(122) resorting to the Hellmann-Feynman theorem

gij '
c+
i ∇RH cj
Ej − Ei

(42)

where H is the electronic Hamiltonian matrix in the excitonic basis. In this way, the

calculation of NAC does not increase the computational burden, but intra-chromophore

couplings are neglected, so that the decay to the ground state is not taken into account (for

example, an isolated chromophore would never decay).

On the other hand, when the local diabatization method presented in Section 3.1 was

adopted (123), the evaluation of the overlaps Sij = 〈ϕi(t)| ϕj(t+ ∆t)〉 was performed with-

out introducing further approximations, with a procedure conceptually simple but more

computationally expensive. In fact, the Sij are readily obtained in terms of the excitonic

overlaps SIJ = 〈I(t)| J(t+ ∆t)〉 using the coefficients cJ,i. In turn, from equation 39 and

exploiting the orthogonality of individual chromophore wavefunctions, SIJ is just a product

of single-site overlaps

SIJ =
〈
ϕ

(g)
1 (t)

∣∣∣ ϕ(g)
1 (t+ ∆t)

〉
. . .
〈
ϕ

(ex)
I (t)

∣∣∣ ϕ(g)
I (t+ ∆t)

〉
. . .〈

ϕ
(g)
J (t)

∣∣∣ ϕ(ex)
J (t+ ∆t)

〉
. . .
〈
ϕ

(g)
M (t)

∣∣∣ ϕ(g)
M (t+ ∆t)

〉
. (43)

Overlaps involving the excitonic ground state |g〉 are obtained in the same way, and this

allows to describe correctly the decay to S0.

Taking into account the strong orthogonality assumption, and the approximation in-

volved in the evaluation of the excitonic couplings VIJ , the Frenkel exciton model is better

suited to treat assemblies in which there is not a significant overlap between the single

chromophore wavefunctions.

A similar formulation can also be used in the context of charge transfers. for example,

to simulate charge transport in organic semiconductors, Blumberger and coworkers have

developed the fragment orbital-based SH (FOB-SH) method (130, 131), which is based on a

one-particle approximation of the electronic wavefunction. In particular, a non-orthogonal

basis set, which plays the same role as the exciton basis in the Frenkel exciton model, is

built using the LUMO orbitals of the individual isolated sites. The site energies are approx-

imated by a classical force field, while the coupling between sites VIJ is taken as directly

proportional to the overlap between the site-localized orbitals. This method represents a
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very cost effective way to describe realistically charge transport in molecular assemblies.

However the introduction of the interaction with the environment in the site-localized basis

is expected to increase considerably the computational burden.

4. MODEL HAMILTONIAN APPROACHES

In the previous Section we have shown how to obtain a description of photoinduced dynamics

taking explicitly into account the system and environment’s nuclear coordinates, albeit

at the price of a classical description of their motion. A different, and in certain ways

opposite, path can be taken, by projecting all of the complexity of the system into an

effective Hamiltonian, which models the electronic and vibronic interactions within the

total system, but retaining the quantum nature of the nuclei. Such a strategy is useful

when describing multichromophoric processes, such as charge and energy transfer.

In many energy and electron transfer processes, the initial and final states are strongly

localized and can be treated as quasi-diabatic(132), forming thus a useful starting point

for studying inter-chromophoric processes. Within this framework, we can write the total

Hamiltonian as

Ĥ = Ĥel + Ĥvib + Ĥel−vib (44)

where Ĥel is the electronic Hamiltonian in a quasi-diabatic basis of electronic states, such

as the one described in eq. 38 of the previous section. For simplicity, here we assume that

there exist two electronic states i (initial) and f (final) that are relevant to the photoinduced

interchromophoric process.

The vibrational part of the Hamiltonian comprises all the nuclear degrees of freedom

of the molecules involved in the photoinduced processes and of the environment. These

degrees of freedom are usually approximated as a manifold of harmonic oscillators linearly

coupled to the electronic states, in the displaced harmonic oscillator model (See Figure 3)

Ĥel−vib =
∑
k

ωk
√
h̄ωkx̂k

(
gik |i〉 〈i|+ gfk |f〉 〈f |

)
(45)

Ĥvib =
∑
k

ω2
k

2
(x̂2
k + p̂2

k). (46)

Here, the index k runs over the normal modes, and x̂k and p̂k are the mass-weighted position

and momentum operator associated with the k-th mode with frequency ωk. The quantities

g
i/f
k define the dimensionless coupling between mode k and state i/f (Figure 3a). The

dimensionless displacement between the minima of states i and f are described by the

Huang-Rhys factors

Sifk =
1

2

(
gik − gfk

)2

. (47)

Passing from the i minimum to the f minimum, the f energy decreases by a quantity λ

called the reorganization energy. In this model, the reorganization energy is the same for

the i→ f and f → i transitions, and

λ =
∑
k

λk =
∑
k

h̄ωkS
if
k . (48)

When the discrete normal modes are replaced with a continuum, a spectral density J(ω)

can be defined as (133, 134)

J(ω) = π
∑
k

δ(ω − ωk)ω2
kS

if
k . (49)
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Figure 3

(a) Depiction of the displaced harmonic oscillator comprising the ground state and states i and f

along the k-th normal mode. In the box, the displacement between the minima d
(if)
k and the

corresponding reorganization energy λk = h̄Skωk are shown. (b) Initial- and final-state PESs

along two modes, one normal mode of the chromophore(s) and one of the solvent. Several slices

along the chromophore normal modes are shown at different values of the solvent coordinate.

The spectral density can be also derived from linear-response theory (135, 136), which offers

a way to map any motion of the environment to an effective collection of harmonic modes.

In general, it is useful to separate the internal vibrations of the photo-active moieties

from the motions of the surrounding environment, i.e. J(ω) = Jint(ω) + Jenv(ω). Likewise,

the reorganization energy can be separated as λ = λint + λenv.

This framework allows for the description of different photoinduced processes in several

classes of systems. Furthermore, the ingredients of this Hamiltonian, such as site energies,

electronic couplings, and vibronic couplings, can be easily obtained from (multiscale) quan-

tum chemical calculations. The power of these approaches is their simplicity, coupled to

the easy physical interpretation of the effective Hamiltonians.

Model Hamiltonian approaches can be classified according to the relative strengths of

the electronic (V ) and the vibronic couplings (λ). In particular, when V � λ, the so-called

“weak coupling limit” applies, and the dynamics can be described with a system of kinetic

equations obtained from a perturbative approach as discussed in the following section. We

recall, however, that in many cases the two couplings have comparable magnitudes or that

the electronic coupling is much larger than the vibronic one. These are the most common

regimes observed, for example, in the pigment-protein complexes used by photosynthetic

organisms to collect sunlight. In these cases, advanced levels of quantum dynamics theories

and computational approaches become necessary as simple perturbation theories cannot be

applied (137, 138).

4.1. Weak coupling limit

In the weak coupling limit, the dynamics of the system can be described with a Golden

Rule perturbative treatment of V (139–141), that is, the rate of transfer between an initial

i and a final f state can be calculated from the electronic coupling Vif as:

kif =
2π

h̄
|Vif |2

∑
v,v′

p(Ev)
∣∣〈v|v′〉∣∣2 δ(Eiv − Efv′) =

2π

h̄
|Vif |2 FCWD (50)
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Here, the indices v and v′ run over the vibrational states of i and f , and p(Ev) is the

equilibrium population of the initial state. The sum is also denoted as the FCWD factor

(Franck-Condon weighted density of states). Two other major assumptions are made in

this case: the vibrational degrees of freedom are completely equilibrated, hence the p(Ev)

factor, and that the electronic coupling does not depend on the nuclear coordinates, which

corresponds to the Condon approximation. Assuming equilibration, the Golden Rule rates

obey the detailed balance condition, i.e.
kif
kfi

= exp(−βh̄ω(0)
if ), where h̄ω

(0)
if is the adiabatic

energy difference between initial and final states.

Making use of the properties of the Fourier transform, the Golden Rule equation 50 can

be recast as a time-domain integral (142)

kif =
|Vif |2

h̄2

∫ ∞
−∞

dt e
iω

(i)
if
t−gif (t)

(51)

where h̄ω
(i)
if is the energy difference between the two states i and f calculated at the i

equilibrium geometry, and gif (t) is the cumulant generating function, which in the linear

vibronic coupling approximation can be written as (132, 142–144):

gif (t) = −
∑
k

(
Sifk

[
(n̄k + 1)(e−iωkt − 1) + n̄k(e+iωkt − 1)

]
− iSifk ωkt

)
(52)

Here, the Huang-Rhys factors Sifk (eq. 47) describe how the i− f energy gap couples to the

normal mode k, and n̄k is the average vibrational quantum number of oscillator k according

to the Bose-Einstein distribution. A more general expression for gif (t) can be obtained,

taking into account the mixing of normal modes passing from state i to state f , also called

Duschinsky rotations (141). The function gif (t) can be written in terms of the the spectral

density defined above (135, 145, 146).

These expressions are completely general, and, although they have mainly been devel-

oped with relation to charge transfer processes (144), they make no specification on the

nature of initial and final states. In the following, we will consider the specificity of each

type of photoinduced process in order to find the simplest expressions for the FCWD factors

and the strategies used to compute the electronic couplings.

4.2. Excitation Energy Transfer

In excitation energy transfer (EET), the initial state is an excited state localized on a donor

(part of) molecule, and the final state is localized on an acceptor moiety. EET can occur

between singlet states or between a singlet and a triplet. In the latter case, the process is

known as triplet energy transfer (TET) or Dexter energy transfer.

In general, the electronic coupling involved in EET can be written as VCoul + Vshort,

where VCoul is the Coulomb coupling shown in eq. 40, and Vshort is a term containing all

short-range contributions (147, 148). The Coulomb coupling is the dominant term in singlet

EET. When the donor and acceptor moieties are well separated, the leading term in the

multipole expansion of VCoul gives rise to the well known dipolar coupling of Förster theory,

and to the r−3 dependence of the EET coupling (and the r−6 dependence of the EET rate).

The Coulomb coupling and its approximations have been discussed in Section 3.3. Here,

we remark that the ingredients of eq. 40, namely the transition densities, are easily accessi-

ble from electronic structure calculations on the separate donor and acceptor, and several

methods have been devised to practically compute these quantities (34, 127, 128).
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In singlet energy transfer, the short-range terms become important when the electron

densities of the donor and acceptor moieties overlap, and when the two moieties are cova-

lently linked. The Coulomb contribution to the coupling is identically zero in triplet energy

transfer, and therefore this process only occurs when there is overlap between the electron

densities of the interacting moieties.

While it is possible to evaluate the short-range terms from calculations on the sepa-

rate molecules, a much more accurate approach starts from a “supermolecule” calculation

containing both the donor and the acceptor, followed by a diabatization scheme to recover

the localized states, which will be, by construction, orthogonal and localized as much as

possible onto the donor or acceptor fragments, respectively.

Among the diabatization methods, the Fragment Excitation Difference (FED) scheme

was specifically designed to localize valence excited states on molecular fragments defined

by the investigator (149, 150). The FED scheme finds the combination of (adiabatic)

excited states that localizes as much as possible the excitation density ρexmn (r), namely the

sum of attachment and detachment densities (149). The localized states can be found by

diagonalizing the matrix

∆xmn =

∫
r∈D

ρexmn (r) dr−
∫
r∈A

ρexmn (r) dr (53)

Diabatization methods like the FED scheme are called “additional operator” diabati-

zations. This additional operator, such as ∆x in FED, is defined in order to have maxi-

mal/minimal eigenvalues for the localized states. Transforming the electronic Hamiltonian

matrix (which is diagonal in the adiabatic basis) in the basis of ∆x eigenvectors yields a

matrix whose off-diagonal elements represent the electronic couplings (148). This scheme

can be generalized easily to triplet states, where the spin density σ(r) is localized on the

fragments (151).

In addition to the coupling, the other fundamental term to evaluate to get the EET rate

is the FCWD factor. The calculation of this quantity can be simplified by assuming that

valence excited states localized on one molecule are essentially coupled only to vibrations of

the same molecule. The normal modes can then be partitioned in those of the donor and of

the acceptor. It is then easy to see that in this case the FCWD factor from eq. 50 reduces

to

FCWD =

∫ ∞
−∞

dEfD(E)fA(E) (54)

where fD(E) and fA(E) are the FCWD functions of the donor and acceptor, respectively,

and are readily derived from the donor emission and acceptor absorption spectra (147, 148).

For this reason, the FCWD factor is also called spectral overlap when considering EET

processes.

The environment influences the EET rate in different ways through the electronic cou-

pling and the FCWD factor. Clearly, the FCWD factor depends on the energies of the

donor- and acceptor-localized excited states, which in turn are tuned by the surrounding

environment. This effect is particularly important in pigment-protein complexes, where

both the rate and overall direction of EET are determined by how the protein tunes the

pigments’ excitation energies. Another important (and often overlooked) effect is the ex-

plicit polarization term which we discussed in Section 3.3. This term can reduce the EET

rate by a factor of four, depending on the specific system and orientation between the

chromophores (147).
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Several works employed the theory described here to compute EET rates in artificial

model dyads in solution. The relatively limited computational requirements make this

approach amenable to high-throughput analyses of donor-acceptor dyads (152). By coupling

calculations in solution with a continuum model, it is possible to rationalize the solvent-

dependent behaviour of EET rates and to assign different timescales observed in transient

absorption to different conformers (153). In an analogous way, Curutchet et al. (126)

showed how the EET rate in a photosynthetic pigment-protein complex can be tuned by

the heterogeneous protein environment.

4.3. Photoinduced Electron Transfer

In photoinduced electron transfer, the initial state is usually a locally excited state, directly

generated by light absorption, whereas the final state is a charge-separated state, where

the initially excited moiety remains either positively charged after donating an electron, or

negatively charged after donating a hole. In the latter case, the process is also called “hole

transfer” (HT).

The electronic couplings involved in ground-state electron and hole transfer can be

expressed on the basis of frozen molecular orbitals of the donor and acceptor molecule

(154). For example, the hole transfer coupling is related to the matrix element of the Fock

operator between the frozen HOMO orbitals of the two molecules

VDA ∼ 〈φHOMO
D |F̂ |φHOMO

A 〉 (55)

similarly, the electron transfer coupling is related to the Fock matrix element between the

LUMO orbitals of the two molecules. In principle, also photoinduced ET/HT couplings

may be approximated by directly calculating the orbitals of the isolated molecules, and

then computing the relevant matrix elements (155), but this procedure is less accurate for

photoinduced ET/HT than for the corresponding ground-state processes (150).

As in the case of the EET coupling, the couplings involved in photoinduced ET/HT

can be obtained from a diabatization scheme with an additional operator. The fragment

charge difference scheme (FCD), originally proposed by Voityuk and Rosch for groud-state

ET (156), was later generalized to the photoinduced case (157). In FCD, the additional

operator is defined by its matrix elements ∆qmn

∆qmn =

∫
r∈D

ρmn (r) dr−
∫
r∈A

ρmn (r) dr (56)

where ρmn(r) is the transition density between states m and n, and the state density when

m = n. Similarly to the FED scheme, here the transformation to diabatic states can be

obtained by diagonalizing a two-by-two matrix of ∆q values. However, it was shown that,

for couplings involving charge-separated states, more than two adiabatic states should be

considered as a basis to construct localized states (157, 158). This led to generalizing FCD

to a multistate treatment (158), where a N × N ∆q matrix is diagonalized to separate

three subspaces, characterized by local excitations (∆q = 0) and by pure charge-transfer

excitations (∆q = 1 or −1). Within each subspace, the states are additionally rotated in

order to ensure that the subspace Hamiltonian is diagonal. For couplings between covalently

bonded moieties, the multistate treatment has shown that several adiabatic excited states

are needed to recover a localized charge-transfer state (158). Multistate FCD additionally

allows for an automation of the coupling calculation (158).
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The theory detailed in Section 4.1 can be readily applied to photoinduced ET/HT

processes; however, it requires a computational evaluation of the harmonic frequencies and

Huang-Rhys factors used in eq. 52. Within the linear vibronic coupling approximation, only

ground-state normal mode frequencies are needed, and Huang-Rhys factors can be computed

from the displacement in equilibrium positions between the different states (142).

The popular Marcus theory and its variations (146, 159) might be viewed as precise

approximations to the Golden Rule rate theory (142). In particular, by two key approx-

imations, the high-temperature and the short-time limits, eq. 51 can be transformed into

the classical Marcus equation:

kif =
|Vif |2

h̄

√
π

λkBT
exp

(
− (∆G◦ + λ)2

4λkBT

)
(57)

where ∆G◦ is the free energy difference between the initial and final state. These as-

sumptions are valid when the reorganization energy is mainly due to the environment, i.e.

λenv � λint.

The importance of the environment in tuning photoinduced ET can be understood

from the involvement of a charge-separated state, which is strongly influenced by the elec-

trostatics of the surroundings, much more than locally excited states. In addition, a polar

environment gives a large contribution to the reorganization energy, as the environment

polarization changes significantly between the locally excited initial state and the charge-

separated final state. Originally, Marcus derived an expression for the solvent contribution

to the reorganization energies, approximating the donor and acceptor moieties as spheres

in a continuum dielectric. Within this model, λenv ∝
(

1

εop
− 1

εst

)
, where εop and εst are

the optical and static dielectric constants of the medium.

Any modern CSM can be directly applied to calculating reorganization energies and

free energy differences, by exploiting the difference between nonequilibrium and equilibrium

solvation (160, 161), in a more refined analogue of the simplified Marcus model. Similarly,

MD-based techniques can be used to determine reorganization energies in the linear response

approximation (144, 162).

The photoinduced ET rates computed with the formalism here described have been used

to understand the photoprotective chlorophyll quenching in pigment-protein complexes, and

how it can be tuned by the protein environment (163). By analyzing the solvent-dependence

of the electronic energies and couplings, Stasyuk et al. found that the photoinduced ET

pathways strongly depend on solvent polarity in a molecular triad (164). Finally, combi-

nations of photoinduced ET and EET calculations were used to obtain a complete under-

standing of the photophysics of molecular dyads (161, 165). Inserting the calculated rates

in a kinetic model allowed for the time-resolved description of electronic populations (161).

5. Conclusions

The modeling of light-driven processes has seen an enormous development in the last decades

both in terms of realism and accuracy. Part of these achievements can surely be connected to

the introduction of multiscale approaches which combine quantum chemical methods with

classical models. It is in fact thanks to this hybrid strategy that the quantum chemical

methods developed to study the photophysics and the photochemistry of small isolated

molecules have been generalized to describe complex systems such as proteins and DNA, on

one side, and interfaces and materials, on the other side. In this review, we have presented

www.annualreviews.org • 27



the most recent advances of this strategy and discussed methodological and physical aspects

of its application to selected light-driven processes. From this analysis, what should clearly

come out is that the hybrid strategy is now a mature approach which can be successfully

integrated with the most powerful experimental techniques so to obtain a complete and

accurate picture of light-matter interaction in complex systems. Some aspects can still

be improved but the infrastructure of the strategy is robust and its future is certainly

bright especially if an effective combination with machine learning methods will be realized.

Some examples in this direction have already appeared, for example in the construction of

force fields or in providing potential energy surfaces and forces to be used in nonadiabatic

dynamics (166, 167), but many more will come in the near future.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings

that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

L.C. and B.M. acknowledge funding by the European Research Council, under the grant

ERC-AdG-786714 (LIFETimeS).

LITERATURE CITED

1. Warshel A, Levitt M. 1976. Theoretical studies of enzymic reactions: dielectric, electrostatic

and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103:227–

249

2. Rivail JL, Rinaldi D. 1976. A quantum chemical approach to dielectric solvent effects in molec-

ular liquids. Chem. Phys. 18:233–242
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