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ABSTRACT
Surface-wave inversion is a non-linear and ill-conditioned problem usually solved
through deterministic or global optimization approaches. Here, we present an al-
ternative method based on machine learning. Under the assumption of a local one-
dimensional model, we train a residual neural network to predict the non-linear map-
ping between the full dispersion image and the model space, parameterized in terms
of shear wave velocity and layer thicknesses. On the one hand, compared to standard
convolutional neural networks, the residual network prevents the vanishing gradient
problem when training a deep network. On the other hand, the use of the full disper-
sion image avoids the time-consuming and often ambiguous picking procedure and
allows considering higher modes in the inversion framework. One key aspect of any
machine learning inversion strategy is the definition of an appropriate training set.
In this case, the models forming the training and validation examples are uniformly
drawn from previously defined ranges that cover a wide range of possible near-surface
layered Vs models. The reflectivity method constitutes the forward modelling opera-
tor that converts the model parameters into the observed shot gathers. The inversion
also includes aMonte Carlo simulation strategy that propagates onto the model space
the uncertainties related to noise in the data and the modelling error introduced by the
network approximation. We first discuss synthetic inversions to assess the applicabil-
ity of the proposed method and to analyse the effect of erroneous model parameter-
izations. The inversion results are also benchmarked with those provided by a more
standard approach in which the particle swarm optimization algorithm inverts the
fundamental mode only. Then, we discuss a field data application. Our tests confirm
that the residual neural network inversion provides accurate model estimations and
reliable uncertainty appraisals. One of the main benefits of the proposed approach
is that once the network is trained it provides the near-surface shear wave velocity
profile in near real-time.
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INTRODUCTION

Rayleigh wave measurements are highly sensitive to S-wave
velocity (Vs) and hence the multichannel analysis of surface
waves (MASW) (Park et al., 1999; Socco and Strobbia, 2004;
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Foti et al., 2018) is widely employed for near-surface inves-
tigations (Xia et al., 2003; Lai, 2005; Strobbia et al., 2010;
Serdyukov et al., 2017; Rahman et al., 2018; Cercato et al.,
2020) and also for statics corrections in deep seismic explo-
ration (Socco et al., 2010). Well-established inversion meth-
ods rely on dispersion curve inversion under the assumption
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Figure 1 Comparison between a convolutional block in CNN (left)
and a residual block in RNN (right).

of a one-dimensional (1D) subsurface structure (Dal Moro
et al., 2007; Socco and Boiero, 2008; Maraschini and Foti,
2010; Cercato, 2011; Di Giulio et al., 2019). The Rayleigh
wave phase velocity primarily depends on shear wave veloci-
ties (Vs), and layer thicknesses (h), while compressional-wave
velocities (Vp) and density exert minor roles in determining
the observed dispersion pattern (Cox and Teague, 2016). For
this reason, the subsurface is usually subdivided into a reason-
able number of layers, and the inverse problem is often param-
eterized in terms of Vs and thickness of the layers, while the
Vp and density values are either assumed to be known or re-
lated to the Vs values by a simplified relation (e.g., a constant
Poisson’s ratio in the investigated depth interval).

The extraction of the dispersion curve is a very delicate
procedure, especially when higher modes are more energetic
than the fundamental mode (Xia et al., 2003; Luo et al., 2009;
Boiero et al., 2011). For this reason, common inversion ap-
proaches reduce the human effort needed for the picking pro-
cedure and avoid modal misinterpretation by limiting the at-
tention to the fundamental mode only, although it is known
that higher modes are essential to better constrain the solution
in case of shear wave velocity inversions and/or high stiffness
contrasts within the soil column (Feng et al., 2005; Luo et al.,
2009; Farrugia et al., 2016; Sajeva and Menanno, 2017)

TheMASWproblem is non-linear and ill-posed.The non-
linearity is commonly tackled by adopting Monte Carlo (MC)
optimization algorithms to locate the global minimum of the
error function to be minimized. These methods ensure a wide
exploration of the parameters space, thus avoiding entrap-
ment in local minima. The ill-posedness is mitigated by in-
cluding appropriate model constraints into the error function.
To this respect, also the estimation of the uncertainty affect-
ing the recovered solution is of primary importance and for
this reason a Bayesian framework and Markov Chain Monte
Carlo methods (MCMC; Sambridge and Mosegaard, 2002;

Tarantola, 2005) can be employed to cast this inverse prob-
lem into a solid probabilistic framework (Aleardi et al., 2020)
for accurate posterior probability density (PPD) estimations.
However, these methods are usually computationally expen-
sive due to the considerable number of samples needed to
attain stable PPDs. For this reason, the MCMC approach
becomes computationally impractical for inverting large
datasets.

Over the past years, machine learning algorithms
(Monajemi et al., 2016; Goodfellow et al., 2016) have been
increasingly applied to solve geophysical inverse problems. In
this context, neural networks are very useful when the for-
ward relation is known, but the inverse mapping is either ex-
pensive to compute analytically or to approximate numeri-
cally. Therefore, the network is trained to predict the map-
ping between the data domain and the model parameters.
Compared to conventional fully connected networks, convo-
lutional neural networks (CNNs) are regularized networks
with two advantages: sparse connectivity and sharing weights
among convolutional layers that reduce the computational
cost, while improving the generalization ability (LeCun et al,
2015; Schmidhuber, 2015; Krizhevsky et al., 2017). The learn-
ing stage is an optimization process that minimizes a differ-
ence criterion between predicted and desired output, and a
sufficiently large training set is usually needed to adjust the
internal network parameters. However, once the network is
trained it provides an output from the input in real-time.
Some applications of CNN in geophysics can be found in
Lewis and Vigh (2017), Araya-Polo et al. (2018), Richard-
son (2018), Waldeland et al. (2018), Wang et al. (2019),
Wu and McMechan (2019), Puzyrev (2019), Park and Sacchi
(2020), Aleardi (2020),Moghadas (2020), Aleardi and Salusti
(2021).

The number of convolutional layers in a CNN plays a
crucial role as a deeper network can potentially better approx-
imate complex non-linear functions. It is generally believed
that the deeper the network, the higher is the accuracy (match
between desired and actual network outputs). However, one
common issue of CNN is related to the vanishing gradient
problem that occurs when the network is unable to propagate
gradient information from deep layers back to the shallow
ones. This usually occurs when the network gets deeper (i.e.,
formed of many convolutional layers) and is usually referred
to as the degradation problem: the accuracy gets saturated for
a given number of layers and then starts degrading rapidly if
additional layers are added. To solve this issue, Glorot and
Bengio (2010) proposed a residual neural network (RNN)
in which skip connections (also called shortcuts) are used to
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Figure 2 Schematic representation of the adopted RNN architecture annotated with key parameters. For example, in the second convolutional
layer “CONV 2” the term within bracket (3, 5 × 5, Pad) means that we use three convolutional filters with size 5 × 5 and that zero padding is
applied. The dimension of the input (374 × 132) refers to the synthetic inversion. (See the text for additional explanations). The stride is 1 in all
the convolutional layers.

connect shallow and deep layers so that the information is di-
rectly passed through the network. This means that the result
of a layer is added directly to the corresponding output of a
deeper layer. See He et al. (2016) for a rigorous mathematical
explanation of the vanishing gradient problem and of RNN
in terms of function classes.

In the context of MASW inversion, although a fully con-
nected network with a limited number of hidden layers can
provide quite accurate inverse mapping when only the funda-
mental mode of Rayleigh waves is considered (Yablokov et al.,
2020), we envisage that a CNN with a significant number
of layers is actually needed when the full dispersion image is
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Figure 3 The thick red lines represent the admissible Vs range for
generating the training and validation sets. The coloured lines show
10 out of the 20,000 generated models.

considered. For this reason, to avoid the degradation problem,
we adopt an RNN approach to MASW inversion. The use of
the full dispersion spectrum avoids the time and human ef-
fort needed for modal identification and manual picking. For
a previously defined number of layers, the unknowns in the in-
version are the Vs value and thickness of the layers, while the
Vp and density are not inverted due to their limited influence
on the Rayleigh waves dispersion pattern.

The RNN–MASW inversion includes three steps: (1)
Generation phase: define an ensemble of 1D Vs models and
compute the associated phase velocity spectra. The Vs mod-
els and associated spectra constitute the network output and

Figure 4 Evolution of the RMSE error on the training and validation
sets.

input responses, respectively. (2) Network design: define a
neural network architecture to approximate the non-linear
mapping between the dispersion image and the Vs model. (3)
Training phase: train the network by minimizing the differ-
ence between the predicted and desired output. The training
ensemble is built by drawing uniformly at random Vs mod-
els within a previously selected velocity range. The defined
velocity models should cover a wide range of possible near
subsurface scenarios. The reflectivity method (Kennett, 1983)
computes the seismic gathers from the velocity profiles under
the assumption of a 1D structure. In the forward modelling
phase, the density values are kept constant, while the Vp is
uniquely determined from the Vs by assuming a fixed Pois-
son ratio value. The RNN inversion is combined with a sub-
sequent MC simulation approach to estimate the uncertain-
ties affecting the retrieved solution. To this end, we propagate
onto the model space the uncertainties related to noise con-
tamination and also the so-called modelling error introduced
by the RNN approximation.As such, the networkwill provide
an approximated inverse mapping between the data and the
model space and the approximation error must be propagated
into the estimated velocity profile.

We first assess the applicability of the proposed approach
by inverting velocity spectra derived from synthetic seismic
data. In this section, we compare the RNN outcomes with
those achieved by a particle swarm optimization (PSO) and
we also investigate how erroneous assumptions on the num-
ber of layers affect the recovered model. Then, the method is
applied to field data. Some studies proposed machine learning
approaches for extracting dispersion curves (Dai et al., 2020)
or for surface waves inversion (Meier et al., 2007; Cheng et al.,
2019; Hu et al., 2020), especially at a seismological scale.
Other recent studies used RNN to solve geophysical problems
(Wang et al., 2020; Yang et al., 2020; Othman et al., 2021).
However, to the best of our knowledge, this is the first time
that an RNN and a MC approach are combined to solve the
MASW problem in which the near-surface Vs profile and the
associated uncertainties are jointly estimated from the full dis-
persion data.

METHODS

The selected residual neural network architecture

Both convolutional and RNNs can be expressed as a function
F that computes the output O from the input I through the
internal parameters P :

O = F (P,I) . (1)
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Figure 5 Example of generated Vs model (a), associated shot gather (b), Fourier amplitude spectrum (c) and phase velocity spectrum (d).

Both networks use convolutional filters and fully connected
layers to extract features from 1-D, 2-D, or 3-D inputs. The
filters are called ‘kernels’ and the extracted features are called

Figure 6 Evolution of the final RMSE error computed on the training
set for the CNN and RNN when the number of convolutional layers
is varied.

the features maps. In a CNN, the feature mapping from one
arbitrary convolutional layer to the next can be generically
written as follows (Sun et al., 2020):

Op
j = f

(
Bj +

I∑
i=1

Op−1
i ∗Wj

)
, j = 1, 2, . . . , J, (2)

where ∗ represents the convolution process, I denotes the num-
ber of the feature maps in the (p− 1)th layer, and J is the num-
ber of feature maps in the pth layer that corresponds to the
number of filters considered in that layer; Bj is a matrix with
the same size asOp

j expressing the biases for the pth layer;Op
j

represents the jth feature map in the pth layer,Op−1
i is the ith

feature map in the (p − 1) th layer, andWj represents the jth
filter of the pth layer that is the weight matrix connecting Op

j

with Op−1
i ; f () is the activation function that includes non-

linearity in the mapping process. Therefore, in a traditional
CNN, each layer feeds into the next layer (Fig. 1, left panel).
Differently, RNN uses shortcuts and skip connections to con-
nect shallow and deep layers directly (Fig. 1, right panel), thus
preventing the information loss that occurs when backprop-
agating the gradient. This means that the result of a shallow
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Figure 7 The multivariate Gaussian modelling error projected onto some model space dimensions. (a) Projection onto the directions defined
by the Vs of the second and fourth layer. (b) Projection onto the model space directions associated with the Vs and thickness of the first layer.
(c) Projection onto the directions defined by the thickness of the second and fourth layer. In (a)–(c) light and dark colours code low and high
probability values, respectively.

layer is added directly to the corresponding output of a deeper
layer so that the information is passed directly through the net-
work as an identity function. The idea of this approach is to
assume that the residual mapping (R(x) in Fig. 1, right panel)
is easier to optimize than the mapping f(x) associated with the
traditional CNN (Fig. 1, left panel). As an added advantage,
an identity mapping for a given layer (i.e., a function that pro-
vides an output equal to the input) can be simply obtained by
putting R(x) to zero. Many different types of residual blocks
have been proposed, but in this work we use the original con-
figuration schematically depicted in Fig. 1.

The final selected RNN architecture is represented in
Fig. 2. Note that for some residual blocks we use skip con-
nections to adjust features dimensions before addition layers.
In some cases, we apply a zero-padding operation to preserve
the dimensions after convolution.We use the leaky ReLU acti-
vation function (Hahnloser et al., 2000) with a leakage value
of 0.1. After a convolutional layer, a sub-sampling technique
is often used to reduce the dimensions of the feature maps.
Here we employ the max-pooling operation with a size of 2.

This is the most common sub-sampling strategy in which a
sliding windowwith predefined dimensions extracts the maxi-
mum value from a rectangular neighbourhood of pixels form-
ing the features maps. After the last convolutional layer, the
feature maps are fed into the fully connected layer, and we use
the dropout regularization to avoid overfitting. Dropout is a
methodology where randomly selected neurons are ignored
during the training phase (i.e., in our case the 10%). The in-
ternal network parameters P (e.g., bias and filter values within
the convolutional layers) are first initialized according to the
He method (He et al., 2015) and then updated during the
learning procedure that minimizes the root-mean-square-error
(RMSE) between the desired and the computed output. The
updating process is driven by the RMSprop optimizer (i.e., an
unpublished, adaptive learning rate method) running for four
epochs. The updating of the internal network parameters can
be generically written as follows:

Pi = Pi−1 − γ
∂ε

∂Pi−1
, (3)

Figure 8 Example of noise-contaminated shot gather (a) and the associated Fourier amplitude and phase velocity spectra (b, and c, respectively).
Compare with Figure 5 that shows the same shot and spectra before noise contamination.
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Figure 9 Comparison of the RNN and PSO results on three different subsurface models. (a) Comparison of the true and predicted Vs profiles.
(b) Comparison of the observed phase velocity spectrum and the fundamental mode computed on the RNN and PSO results.

where i represents the iteration number, ε is the loss function
value and γ is the so-called learning rate.Here we set the initial
learning rate to 0.0004, and this value is halved every epoch.
We also use batch normalization within each convolutional
layer as a regularization operator (Santurkar et al., 2018), and
we employ a batch size of 64.

As it can be noticed from Fig. 2, several hyperparameters
define the RNN architecture: number of convolutional layers
and filters, activation function, stride and size of the convo-
lutional filters, strategy to initialize the weights, number of
epochs, learning rate value and a method that minimizes the
error function. Personal preferences and experiences usually
determine the hyperparameter setting.Here we employ a trial-
and-error procedure in which different hyperparameters are
modified and the final net architecture has been determined
according to its accuracy on the validation set.

Data, model parameters and the Monte Carlo uncertainty
propagation

The network input (i.e., the observed data d of the RNN in-
version) is an L× Pmatrix representing the full phase-velocity
spectrum,with L and P denoting the number of samples along

the velocity and frequency axes, respectively. For example, the
input dimension shown in Fig. 2 refers to the synthetic case
with L = 374 and P = 132. The output m is a vector contain-
ing the Vs and thickness (h) values for a previously defined
number of layers (N):

m = [
Vs1, Vs2, . . . , VsN, h1, h2, . . . ,hN−1

]
. (4)

For what concerns the uncertainty assessment, we take into
account both the noise affecting the data and the approxima-
tion error introduced by the network. To this end, we adopt a
MC approach: Let M denote the models forming the training
set, whereasN represents the associated RNN predictions. Ac-
cording to Hansen and Cordua (2017), a sample of the mod-
elling error can be computed as the difference between de-
sired and predicted models (E = M − N). Under a Gaussian
assumption, the modelling error distribution can be written
as N (0, C e), where C e represents the covariance of E and
N indicates the Gaussian distribution. We also assume that
Gaussian noiseN (0, Cn) contaminates the seismic gather. The
following iterative MC approach is used for the uncertainty
quantification:
1. Use the trained network to compute the predicted model
mb from the observed dispersion image d;

© 2021 The Authors. Near Surface Geophysics published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists
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Figure 10 Comparison of the RNN and PSO results on three different subsurface models. (a) Comparison of the true and predicted Vs profiles.
(b) Comparison of the observed phase velocity spectrum and the fundamental mode computed on the RNN and PSO results.

2. Run a reflectivity modelling to compute the noise-free seis-
mic data sb associated with mb;
3. Draw n from N (0, Cn) and compute sn = sb + n;
4. Compute the phase velocity spectrum from sn, thus obtain-
ing dn;
5. Use the trained RNN to compute the predicted model mn

from dn;

6. Draw e from N (0, Ce) and compute me = mn + e;
7. Store me and repeat from 3) to 7) for q times.

Each vector me can be considered a possible solution
in agreement with the observed data and the assumed dis-
tributions for noise and modelling errors. An approximated
PPD can be numerically derived from the ensemble of q MC

Figure 11 Comparison of phase velocity spectrum associated with models 4, 5, and 6 (shown in Figure 10) and the fundamental and first higher
modes computed on the RNN and PSO solutions. The white arrows point towards the first higher mode identified in the dispersion spectrum.

© 2021 The Authors. Near Surface Geophysics published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists
and Engineers.,Near Surface Geophysics, 1–18



RNN–MC analysis of surface waves inversion 9

Figure 12 PPD estimated by the MC simulation approach for the six models previously shown in Figures 9 and 10. The blue lines depict the
true Vs profile.

simulations. For simplicity, we assume Gaussian-distributed
noise and modelling errors, but the MC approach can
handle whatever parametric or non-parametric distribution.
Note that the MC approach is extremely fast because the
network instantaneously predicts a model from the input
data.

SYNTHETIC INVERS ION

For the synthetic experiments, we use a training set of 19,000
examples including the phase velocity spectra associated with
Vs and h values. The validation set is composed of 1000 exam-
ples: This results in a 95/5 split. The subsurface Vs models in-
clude five layers (N= 5 in Fig. 2) and have been generated with
uniform probability within a previously defined range (Fig. 3)
that covers a wide range of possible subsurface scenarios. We
assume a constant, depth-independent density value equal to
1.8 g/cm3, whereas the Vp in each layer is related to the Vs
by a Poisson’s ratio equal to 0.38. As previously mentioned,
the density and Vp values are not considered in the inversion

procedure. The phase velocity spectra have been computed on
shot gathers generated via the reflectivity method employing a
zero-phase source wavelet with a peak frequency of 15 Hz.We
assume an off-end acquisition layout with 48 equally spaced
receivers with minimum and maximum offsets equal to 10
and 245 m, respectively. The network has also been trained
on different numbers of models in the training set (e.g., 5000,
10,000, 20,000, 30,000), but we found that 20,000 consti-
tutes the best compromise between the network accuracy and
the computational cost of the generation and training phases.
The generation of the 20,000 examples takes 1.5 hours, us-
ing a parallel hybrid Matlab-Fortran code running on a two
deca-core Intel E5-2630 at 2.2 GHz (128 Gb RAM). For the
network training, we use the Matlab implementation of RNN
running on a common notebook equipped with a quad-core
Intel Core i-7 7700HQ CPU@2.80 GHz, with 16 Gb RAM.
The computing time for training the final network config-
uration is 6 minutes, approximately. Note that the training
converges to the final loss value after less than three epochs
(Fig. 4). Similar errors on the validation and training sets prove

© 2021 The Authors. Near Surface Geophysics published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists
and Engineers.,Near Surface Geophysics, 1–18



10 M. Aleardi and E. Stucchi

Figure 13 RNN results on four-layer models. (a) Comparison between the true Vs profile, the RNN predictions and the MC PPD estimations.
(b) Comparison between the phase velocity spectra associated with the true models shown in (a) and the fundamental mode computed on the
RNN results.

that overfitting has been avoided. As an example, Fig. 5 shows
a Vs model and associated shot gather, Fourier spectrum and
dispersion pattern.

Before describing in detail the RNN results, we show in
Fig. 6 a direct comparison between the RMSE values com-
puted on the training set for RNN and CNNwhen the number
of layers is varied.The first 11 RNN layers maintain the hyper-
parameter setting previously shown in Fig. 2, while the convo-
lutional layers 12–15 use the same configuration of layer 11
(15 filters with dimensions 3 × 3). The CNN and RNN ar-
chitectures are the same; the only difference is that skip con-
nections and addition layers are not employed in the CNN.
It is clear that for nine convolutional layers the CNN gets
saturated and then the accuracy starts decreasing when other
layers are added. Conversely, the RNN accuracy steadily in-
creases and eventually reaches a stable value for 11 convo-
lutional layers. We observed this decrease in the accuracy of
the CNN predictions also for other tests (not shown here for
brevity) that employed different hyperparameter settings (i.e.,
size of convolutional filters, type of activation function, learn-
ing rate). Therefore, we deem that this result is not related to
the specific CNN architecture we used.

Figure 7 shows some projections of the multivariate mod-
elling error (assumed to be Gaussian distributed) onto specific
model space directions. As expected, the standard deviation of
the modelling error increases as the depth of the considered
layer increases. For example, a high precision characterizes
the estimated velocity and thickness of the first layer, while
higher uncertainties affect the estimated Vs and thickness of
the fourth layer.

First, we apply the RNN inversion under the assumption
that the number of layers is perfectly known. In other words,
the RNN is applied to invert phase-velocity spectra generated
by five-layer models. We also compare the RNN predictions
with those provided by a more standard PSO inversion in
which the error function to be minimized is a linear combi-
nation of data fitting and a model regularization term:

E (m) = ||d −G (m) ||22 + γ ||m − mprior||22. (5)

Similar, to the RNN inversion the model vector m only in-
cludes the Vs and thickness of the layers, and the number of
layers is assumed perfectly known, while the Poisson’s ratio
and density are kept fixed to their true values. Different from

© 2021 The Authors. Near Surface Geophysics published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists
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Figure 14 RNN results on seven-layer models. (a) Comparison between the true Vs profile, the RNN predictions, and the MC PPD estimations.
(b) Comparison between the phase velocity spectra associated with the true models shown in (a) and the fundamental mode computed on the
RNN results.

RNN, in the PSO inversion only the picked fundamental mode
is considered as the observed data d. In equation (5),G consti-
tutes the forward modelling operator that computes the fun-
damental mode for the considered model m. In our case, the

Haskell–Thompson method is employed (Haskell, 1953). The
prior model mprior is equal to the central values of the ranges
used to define the training and validation examples (see Fig. 3).
The optimal value of the trade-off parameter γ has been set

Figure 15 (a) The average and band-pass filtered observed shot gather used to compute the observed phase velocity spectrum in (b). In (b) the
dotted white rectangle encloses the portion of the dispersion image considered as observed data in the RNN inversion.

© 2021 The Authors. Near Surface Geophysics published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists
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Figure 16 Evolution of the RMSE error on the training and validation
sets over epochs.

through the L-curve approach (Aster et al., 2018). The PSO
has been run for 150 iterations and employing a population
of 100 particles randomly initialized over the ranges shown
in Fig. 3. A single PSO run takes 20 minutes, approximately,
using a parallel Matlab implementation running on the quad-
core i-7 Intel previously mentioned.

For both RNN and PSO, the data input for the inversion
has been derived from shot gathers contaminated with un-
correlated Gaussian noise with a standard deviation equal to
50% of the standard deviation of the whole noise-free gather
(Fig. 8). As expected the Gaussian noise added to the seismic
dataset mainly affects the low and high frequencies (i.e., fre-
quencies lower than 10 Hz and higher than 30 Hz). The noise
model is assumed to be known during the inversions.

Figures 9(a) and 10(a) show the RNN and PSO predic-
tions obtained for six different subsurface models extracted
from the validation set. In all cases, the RNN predictions well
reproduce the true Vs profiles and are much closer to the true
model than the PSO results. Note that the RNN inversion re-
covers the velocity reversals and the significant Vs contrasts in
the true models. Figures 9(b) and 10(b) compare the observed
phase velocity spectrum and the fundamental mode computed
on the PSO and RNN results. These figures illustrate that both
approaches provide final data predictions that well reproduce
the fundamental mode. Therefore, if we focus the attention
on the PSO prediction we note that it provides good data
fitting, but poor model accuracy. This suggests the severe ill-
conditioning of the inverse problem and that the PSO results
can be improved either by including a more informative prior
model (e.g., narrower model search ranges and a mprior vector
closer to the true solution), or by including higher modes in
the observed data. Figure 11 compares the first higher modes
predicted by the RNN and PSO results, and we observe that
the higher mode is better recovered by the RNN inversion.
This comparison is limited to models 4–6 previously shown
in Fig. 10 because the first higher mode is easily recognizable
in the phase velocity spectrum.

Differently from the PSO approach, the implemented
RNN inversion also allows for an accurate assessment of the
model uncertainties. Figure 12 shows the PPD provided by the
MC sampling for the six models considered in Figs. 9 and 10.
As expected, we observe that the uncertainty increases moving
from the shallow to the deep part of the model, where the data
illumination is poor. To numerically compute the PPD, we use
1000 MC simulations that take 2 minutes of computing time
to be generated when a parallel Matlab code runs on the quad-
core i-7 Intel. Notably, in all cases, the true model lies within
the velocity range spanned by the MC simulations. This illus-
trates the reliability of the implemented inversion workflow.

We now investigate the effects of an erroneous subsur-
face parameterization on the RNN predictions. To this end,
we use the previously shown velocity ranges (see Fig. 3) to
randomly generate three models with four and seven layers,
respectively. Then we use the previously trained network (that
inherently assumes a five-layer parameterization) to invert the
phase velocity spectra generated on these new models. For the
four-layer case (Fig. 13a), we observe that the RNN estimates
include some fictitious layers in the deeper part of the model
(i.e., where data illumination is poor), but characterized by Vs
values similar to the actual model. The true models always lie
in the velocity range spanned by the MC simulations, and, as
expected, the accuracy and precision of the results decrease as
the depth increases. This test illustrates that despite the over-
parameterization, the overall velocity profile is well recovered
by the trained RNN, especially in the shallowest part of the
subsurface. The fundamental mode generated by the predicted
RNN model well reproduces the fundamental mode visible in
the phase velocity spectrum (Fig. 13b). In contrast, when the
number of layers is underestimated (i.e., under parameteriza-
tion of the inverse problem), some biased predictions start to
appear also in the shallow part of the model (i.e., erroneous
velocity and thickness estimations; Fig. 14a). In addition, the
true model lies sometimes at the extreme edge of the Vs range
spanned by the MC simulations (e.g., the leftmost panel of
Fig. 14(a) around 30 m depth) and the predicted fundamental
modes show larger mismatches with the fundamental modes
visible in the observed spectra with respect to the previous test
(i.e., compare Fig. 13b with Fig. 14b).

These experiments demonstrated that an overparameter-
ization is preferable to an under parameterization: in the for-
mer case, the true velocity profile is well recovered and the
dispersion pattern is well reproduced by the estimated model.
In the latter, the RNNprovides biased predictions and the data
match decreases. For this reason, poor data fitting may indi-
cate an under parameterization of the inverse problem. In all
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Figure 17 The multivariate Gaussian modelling error projected onto some model space directions. (a) Projection onto the directions pertaining
to the Vs and thickness of the first layer. (c) Projection onto the directions defined by the Vs of the second and fourth layers. In (a) and (b) light
and dark colours code low and high probability values.

cases, if different parameterizations result in similar data fit-
ting, the model with the minimum number of layers should be
preferred.

F IELD DATA INVERSION

We apply the implemented approach to a single seismic gather
of the interPACIFIC project (Garofalo et al., 2016). The source
is an 8-kg sledgehammer and the minimum andmaximum off-
set are 3 m and 50m, respectively, for a receiver interval of 1 m
and an off-end acquisition layout. For the considered source
position, 12 different shots have been recorded. The sample-
by-sample covariance estimated on these 12 shots gives an
approximated estimate of the data covariance matrix to be
used in theMC uncertainty propagation (Aleardi et al., 2018).
The observed phase velocity spectrum has been computed on
the average seismic record derived from the 12 available shots
after band-pass filtering (7–80 Hz). Figure 15 shows the so
obtained shot gather and the associated phase velocity spec-
trum.The main difficulty posed by this dataset is related to the
type of source employed and the consequent lack of low fre-
quencies, which are crucial to constrain the Vs of the deep lay-
ers. Due to the low signal-to-noise ratio at frequencies below
17 Hz and higher than 70 Hz, the frequency range of interest
for the RNN inversion is 17–68 Hz (Fig. 15b). For this reason,
we expect that the accuracy and precision of the inversion re-
sults significantly decrease as the depth increases.

Due to the very different frequency ranges character-
izing this field data with respect to the previous synthetic
test, we derive new training and validation sets of 19,000
and 1000 examples, respectively, generated on the same Vs

range depicted in Fig. 3. The training seismograms are gen-
erated using a source wavelet estimated from the field data
(Xing and Mazzotti, 2019). Based on previous results ob-
tained in the investigated area (Xing and Mazzotti, 2019),
we first consider an eight-layer parameterization. The gener-
ation of the 20,000 examples takes 1.3 hours, using the par-
allel hybrid Matlab-Fortran code running on the two deca-
core Intel previously described. We maintain the same net-
work architecture previously described (Fig. 2) that we train
for four epochs (Fig. 16) for a total computing time of 6
minutes on the quad-core Intel. Again the similar RMSE val-
ues computed on the validation and training sets indicate the
generalization capability of the network and that overfitting
has been avoided. Note that in this case, the final RMSE er-
ror is higher than the one previously obtained for the syn-
thetic test (Fig. 4). This decreased accuracy is probably re-
lated to the lack of low frequencies in the observed dispersion
data.

Similar to the synthetic test, the difference between de-
sired and actual RNN outputs gives the modelling error dis-
tribution. As an example, Fig. 17 shows some projections of
this multivariate Gaussian error onto specific model space di-
rections. We again observe that the uncertainty increases as
the depth of the considered layer increases. Due to the lack
of low frequency, we also observe a decreased precision with
respect to the synthetic example (see Fig. 7).

Figure 18 shows examples of RNN predictions and the
associated uncertainty estimations obtained on two models
extracted from the validation set. To simulate a realistic situa-
tion close to the one expected for the real dataset, we compute
the observed phase velocity spectra after contaminating the
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Figure 18 (a) and (b) RNN predictions and MC uncertainty estimations were obtained for two models extracted from the validation set. In the
right panels, the dotted red line represents the fundamental mode computed on the RNN prediction.

noise-free synthetic gathers with the noise model estimated for
the field data. We observe that the predicted RNN model well
reproduces the true Vs profile, especially at shallow depth, al-
though the overall accuracy is decreased with respect to the
synthetic experiments. However, the fundamental modes gen-
erated by the RNN predictions well match the fundamental
modes visible in the observed dispersion patterns for the con-
sidered frequency range. As expected, the uncertainty signifi-
cantly increases as the depth increases and the estimated PPD
illustrates that the Vs values below 15–20 m depth lie in the
so-called equivalence region of solutions (Fernandez Martinez
et al., 2012).

Figure 19(a) shows the inversion results obtained on the
field data for an eight-layer parameterization. Again the ve-
locities of the shallow layers are estimated with high preci-

sion, while the uncertainty rapidly increases in the deeper part
of the model. In Fig. 19(b), we observe that the RNN esti-
mated model well reproduces the fundamental mode visible
in the observed dispersion pattern, but also the interpreted
first higher mode. Therefore, we deem that the final predic-
tions are in agreement with the observed data and with the
assumed noise and modelling errors.

We repeat the field data inversion, but considering a
6-layer parameterization. Similar to the previous test, we
generate new 20,000 six-layer examples and we retrain the
network with the same architecture. The inversion results
are represented in Fig. 20. The predicted Vs profile in the
shallowest part of the model (down to 8 m) is very similar
to the results obtained for an eight-layer model. The differ-
ences become more significant around 10 m depth where the
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Figure 19 Field inversion result for an eight-layer parameterization. (a) RNN-predicted model (blue line) and associated PPD estimations. (b)
Comparison between the observed phase velocity spectrum and the fundamental and first higher modes computed on the RNN prediction. The
white arrow points towards the interpreted first higher mode visible in the observed spectrum.

eight-layer parameterization predicts aVs reversal with higher
velocity contrasts with the surrounding layers. The shear wave
velocity in the deeper part of the model is higher when the
six-layer parameterization is considered, although this part is
associated with significant model uncertainties. Compared to
Fig. 19(b), the RNN prediction for a six-layer model gener-

ates a fundamental and, especially, a first higher mode with
increased differences with the observed dispersion pattern.

DISCUSS ION

We proposed a hybrid RNN–MC inversion procedure for the
estimation of the Vs profile from surface wave dispersion data

Figure 20 Field inversion result for a six-layer parameterization. (a) RNN-predicted model (blue line) and associated PPD estimations. (b)
Comparison between the observed phase velocity spectrum and the fundamental and first higher modes computed on the RNN prediction. The
white arrow points towards the interpreted first higher mode visible in the observed spectrum.
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under the assumption of a locally 1D layered model. The use
of RNN instead of standard CNN allowed us to train a deep
network while mitigating the vanishing gradient problem.We
exploited the full phase velocity spectrum to avoid both the
human effort related to the picking procedure and the am-
biguity affecting the modal identification. The inclusion of a
MC simulation was aimed at properly propagating onto the
RNN prediction both the noise affecting the observed data
and the modelling error associated with the network approxi-
mation.Different from standard inversion approaches, the im-
plemented method does not include any model constraint into
the error function, but the network is trained on a dataset con-
taining realistic subsurface scenarios and learns how to repro-
duce a similar model to fit the input data.

The first stage of the presented approach is the data gen-
eration that is the most computationally demanding although
perfectly parallelizable. However, the RNN inversion requires
a relatively small dataset for training and indeed the comput-
ing time for generating the ensemble of 20,000 models form-
ing the training and validation sets was less than 2 hours in
both synthetic and field applications. The computational cost
of the generation phase can be drastically reduced by employ-
ing optimized codes running on a larger computer cluster. The
learning phase is much less computationally demanding and
took only 6 minutes in both synthetic and field example cases.
This means that different network architectures can also be
tested at an affordable computational cost.

The main limitation of the implemented method is that
the network can only be trained for a fixed parameterization
(i.e. , for a fixed number of layers). This means that if no
previous information is available about the investigated area,
different training and validation sets with different numbers
of layers must be generated and different networks must be
trained. Once these networks have been trained and applied
to the observed data, the optimal model parameterization can
be chosen based on the difference between the observed and
predicted data. If different parameterizations give comparable
data predictions the one with the minimum number of layers
should be preferred. The main benefit of our inversion algo-
rithm is that once the network has been trained it provides Vs
predictions in real-time and also the associated uncertainties
can be assessed with a very limited extra computational effort.
For this reason, the proposed approach is particularly use-
ful when several dispersion data pertaining to two- or three-
dimensional seismic acquisitions must be inverted.

Now we are trying to extend the method to invert the
full seismic gather, thus overcoming the 1D assumption. In
this context, compression techniques could be used to reduce

the dimensions of the input and output of the network and
to make the computing time of the learning phase affordable
(Aleardi and Salusti, 2021).

CONCLUSIONS

We presented a hybrid RNN–MC approach to invert surface
wave dispersion data that also provides the uncertainty af-
fecting the recovered solution. Synthetic and field experiments
showed very promising results and demonstrated that a RNN
can effectively approximate the inverse of a nonlinear oper-
ator that is very difficult and expensive to compute. The im-
plemented approach needs a relatively small training set for
the learning process, and once the network has been trained
it provides model predictions and associated uncertainties in
near real-time.
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