Manuscript Details

Manuscript number	ATE_2016_1648
Title	A novel Pumped Thermal Electricity Storage (PTES) system with thermal integration
Article type	Research Paper

Abstract

Power to heat technologies are becoming more and more important due to the extreme need of energy storage solutions to help manage the mismatch between supply and demand of electric power in grids with a large penetration of intermittent renewable energy systems. Several Electric Energy Storage (EES) technologies have been proposed in the literature, with different characteristics in terms of storage capacity, response time and roundtrip efficiency. In this paper the attention was focused on Pumped Thermal Electricity Storage (PTES), which is a technology that stores electric energy as heat by means of Heat Pumps (HP) and converts it again to power with a Heat Engine (HE). In this study, a hybrid PTES application was studied, which took advantage of a low-grade heat source to boost the electric round-trip efficiency of the system beyond 100%. The main idea was to exploit the heat source to reduce the HP operational temperature difference; this \textit{thermal integration} boosted the HP COP and thus the electric efficiency of the whole system. A Matlab numerical model was developed, using the thermodynamic properties of the Coolprop data base, and the steady state operation of a PTES system composed by a vapour-compression HP and an Organic Rankine Cycle (ORC) we simulated. Heat source temperature values ranging from 80\degree C to 110 °C and different working fluids were studied. Among the refrigerants, which comply with the latest European environmental legislation, the most promising fluid was R1233zd(E): with such fluid a maximum round trip-efficiency of 1.3 was achieved, when the heat source temperature reaches 110 °C and the machinery isentropic efficiencies is 0.8, the heat exchangers pinch points is 5 K and the ORC condensation temperature is 35 °C.

Keywords	Energy storage; Pumped Thermal Energy Storage; Power to Heat; Enhanced Heat Recovery
Corresponding Author	Umberto Desideri
Corresponding Author's Institution	Università di Pisa
Order of Authors	guido francesco frate, Marco Antonelli, Umberto Desideri
Suggested reviewers	Matteo Morandin, Wolf D. Steinmann, Yinghui Zhou, François Marechal, B.V. Mathiesen

Submission Files Included in this PDF

File Name [File Type] Cover Letter.pdf [Cover Letter] pumped-thermal-electricity.pdf [Manuscript File] Highlights.doc [Highlights]

Submission Files Not Included in this PDF

File Name [File Type]

pumped-thermal-electricity.zip [LaTeX Source File]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

Dipartimento di Ingegneria dell'Energia, dei Sistemi, del Territorio e delle Costruzioni

Largo Lucio Lazzarino - 56122 Pisa (Italy) Tel. +39 050 2217300 Fax + 39 050 2217333 Partita IVA 00286820501 VAT No. IT00286820501 Codice fiscale 80003670504

> To Professor T.S. Zhao Editor in chief of Applied Thermal Engineering

Pisa, December 14, 2016

Dear Professor Zhao,

On behalf of the coauthors, I am pleased to submit the manuscript entitled:

"A novel Pumped Thermal Electricity Storage (PTES) system with thermal integration"

by G.F. Frate, M. Antonelli, U. Desideri

The paper is orignal and is neither under consideration for publication on any other

Journal nor was it submitted to any conference.

There is no conflict of interest with any public or private institution.

We are looking forward to hearing from you.

Best regards

Prof. Umberto Desideri, PhD

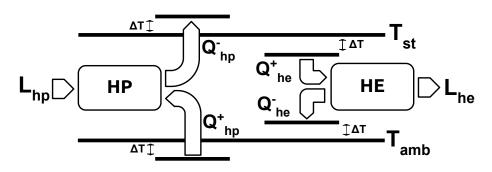
A novel Pumped Thermal Electricity Storage (PTES) system with thermal integration

Guido Francesco Frate, Marco Antonelli, Umberto Desideri*

Department of Energy, Systems, Territory and Constructions Engineering University of Pisa Largo Lucio Lazzarino - 56122 Pisa, Italy

Abstract

Power to heat technologies are becoming more and more important due to the extreme need of energy storage solutions to help manage the mismatch between supply and demand of electric power in grids with a large penetration of intermittent renewable energy systems. Several Electric Energy Storage (EES) technologies have been proposed in the literature, with different characteristics in terms of storage capacity, response time and roundtrip efficiency. In this paper the attention was focused on Pumped Thermal Electricity Storage (PTES), which is a technology that stores electric energy as heat by means of Heat Pumps (HP) and converts it again to power with a Heat Engine (HE). In this study, a hybrid PTES application was studied, which took advantage of a low-grade heat source to boost the electric round-trip efficiency of the system beyond 100%. The main idea was to exploit the heat source to reduce the HP operational temperature difference; this thermal integration boosted the HP COP and thus the electric efficiency of the whole system. A Matlab numerical model was developed, using the thermodynamic properties of the Coolprop data base, and the steady state operation of a PTES system composed by a vapour-compression HP and an Organic Rankine Cycle (ORC) we simulated. Heat source temperature values ranging from 80°C to 110°C and different working fluids were studied. Among the refrigerants, which comply with the latest


Preprint submitted to Applied Thermal Engineering

^{*}Corresponding author. Tel.: +39 0502217375

Email address: umberto.desideri@unipi.it (Umberto Desideri)

European environmental legislation, the most promising fluid was R1233zd(E): with such fluid a maximum round trip-efficiency of 1.3 was achieved, when the heat source temperature reaches 110° C and the machinery isentropic efficiencies is 0.8, the heat exchangers pinch points is 5K and the ORC condensation temperature is 35° C.

Keywords: Energy storage, Pumped Thermal Energy Storage, Power to Heat, Enhanced Heat Recovery

Figure 1: Working principles of classical PTES systems. The superscript + stands for heat gained by the component, while the superscript - stands for heat returned by the component.

1 1. Introduction

In many developed country an ever increasing share of electric energy is 2 produced by Renewable Energy Sources (RES). The intrinsic aleatory nature of some of the RES poses many management and control issues. In fact the л traditional mode of operation of large electric grids was aimed at matching a 5 highly agglomerated demand with a small number of large power generation 6 systems. In this arrangement, peaks in the demand were smoothed by large 7 numbers of users, whose behavior was predictable by using long term statistics, and supply could be forecast in advance enough to guarantee a stable and secure service. The grids with large penetration of renewables are now facing new prob-10 lems: the deployment of power generation systems has not been programmed 11 by large utilities, but by residential and small industrial users, with significant 12

unbalances between supply and demand capacity, thus creating areas with over 13 capacity and areas with under capacity and with real difficulties in managing 14 generation of small power plants with dispatch priority. The new system has 15 therefore introduced a double mismatch between supply and demand: smaller 16 and local aggregation of the demand makes it more difficult to predict and the 17 installation of large shares of intermittent RES make it much more difficult to 18 predict the supply, which is strongly influenced by weather changes and pat-19 terns. 20

The problems described above are likely to intensify, since the share of installed productive capacity based on RES is intended to grow, in accordance with the general trends that characterize the legislation on greenhouse gases emissions of many developed countries, among which the European Union [1].

It is now well known that a further exploitation of RES is possible only in con-25 junction with efficient and reliable Electric Energy Storage (EES) technologies 26 [2, 3]. The main EES technology is Pumped Hydro Energy Storage (PHES), 27 which features high efficiency and large storage capacity and has been used 28 for several decades for the management of large electric grids. A PHES plant 29 requires peculiar geographical conditions for its operation and, at least in Eu-30 rope, the easily exploitable locations have been already utilized [4]. Since it is 31 practically impossible to add PHES capacity to control grids with large shares 32 of RES, in the last years the interest towards alternative EES technologies has 33 grown: the main examples of such technologies are Compressed Air Energy Storage (CAES) and Battery Energy Storage (BES), but more technologies are 35 available and being studied, such as Flywheels, Super-capacitors, Hydrogen, 36 Superconducting Magnetic and many others Energy Storage systems. Further 37 details can be found in [5, 6]. 38

A rather poorly studied EES technology is the Pumped Thermal Electricity
Storage (PTES), which has the peculiarity of storing the electric energy as
heat. The PTES essentially converts electric energy into heat by means of
Heath Pumps (HP), charging a Thermal Energy Storage (TES), and converts
the heat back with a Heat Engines (HE).

44 Two main PTES systems have been studied so far: one which uses closed Bray-

45 ton cycles and one which uses trans-critical CO_2 Rankine cycles. Some examples

⁴⁶ of Brayton PTES, using dynamic turbomachinery, are available in [7–10], while

two variants with volumetric machines can be found in [11, 12].

Some examples of trans-critical Rankine PTES can be found in [13–16]. A different concept with isothermal compression and expansion can be found in [17]. In the literature a few PTES systems are also available, that are powered by both electrical and thermal energy: this technique, that we identify with the term *thermal integration*, allows to achieve a higher electric efficiency than the standard PTES [18, 19].

Focusing on thermally integrated PTES, in this study we outlined and analysed a novel system, by simulating its steady state operation for several operational parameters and conditions. The idea behind the proposed PTES system is to use a HP to exploit a suitable heat source allowing the PTES to store the heat at a higher temperature, without affecting the HP performance. At the same time, the HE efficiency increases, since the discharge phase has a higher maximum temperature, and then the whole process takes place with a higher round-trip efficiency.

The outlined idea is not completely new, since it is mentioned in general terms in [15, 20] as a potential way to enhance the performance of standard PTES systems. Even though the idea was previously proposed, it was never thoroughly analysed, to the best of the authors knowledge, and the present paper contributes to fill up this gap.

67 2. Methodology

68 2.1. Theoretical analysis

PTES systems store electric energy as heat by means of a HP, while the thermal energy is converted back to electricity by using a HE. Hence, most of PTES systems are composed by three main components: a HP, a TES an HE. Each subsystem is characterized by a coefficient of performance: for the HP we 73 have:

74

78

81

91

93

$$COP = \frac{Q_{st}}{L_{hp}} \tag{1}$$

where L_{hp} is the electric energy absorbed by the HP, and Q_{st} is the heat provided by the HP to the TES tank.

For the HE we have:

$$\eta_{he} = \frac{L_{he}}{Q_{he}} \tag{2}$$

⁷⁹ where L_{he} is the electric energy supplied back by the HE. In conclusion, for the ⁸⁰ TES we have:

$$\eta_{st} = \frac{Q_{he}}{Q_{st}} \tag{3}$$

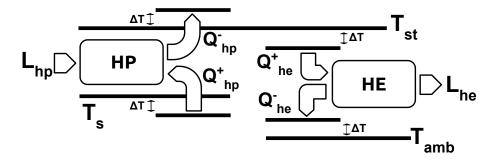
where Q_{he} is the heat provided to the HE by the TES.

In standard PTES the heat is exchanged with two thermal reservoirs; the cold reservoir provides the heat to the HP and receives the heat from the HE, while the hot reservoir is the TES. For the sake of simplicity we assumed the thermal reservoirs as isothermal, so the hot reservoir is characterized by the temperature T_{st} and the cold reservoir is characterized by the temperature T_{amb} , as illustrated in Figure 1. The HP, the TES and the HE are arranged in series, hence the round trip efficiency, namely the ratio between the absorbed and returned amounts of electric energy, can be defined as:

$$\eta_{rt} = \frac{L_{he}}{L_{hp}} = \eta_{st}\eta_{he}COP \tag{4}$$

92 If we assume to use ideal machines, we may write:

$$\begin{cases} COP_{id} = \frac{T_{st}}{T_{st} - T_{amb}} \\ \\ \eta_{id} = \frac{T_{st} - T_{amb}}{T_{st}} \end{cases}$$


⁹⁴ and the round-trip efficiency becomes:

95
$$\eta_{rt}^{id} = \eta_{st}$$

 η_{st} ranges from 0 to 1, so even in the ideal case the round-trip efficiency cannot

97 be higher than 1.

- 98 It is, however, possible to conceive a PTES system which takes advantage of a
- suitable heat source to provide heat at temperature $T_s > T_{amb}$, as illustrated in Figure 2. Introducing a third thermal reservoir does not influence the definition

Figure 2: Working principles of the proposed thermally integrated PTES system. The superscript + stands for heat gained by the component, while the subscript - stands for heat returned by the component.

100

103

105

1

of η_{rt} , since it takes in account only the electric amount of energy, but now we have:

$$\begin{cases} COP_{id} = \frac{T_{st}}{T_{st} - T_s} \\\\ \eta_{id} = \frac{T_{st} - T_{amb}}{T_{st}} \end{cases}$$

and for η_{rt} we find:

$$\eta_{rt}^{id} = \eta_{st} \left(\frac{T_{st} - T_{amb}}{T_{st} - T_s} \right) \tag{5}$$

¹⁰⁶ In such case the round-trip efficiency can be higher than 1 as long as:

1

107
$$T_s > T_{st}(1 - \eta_{st}) + \eta_{st}T_{amb}$$

108 If we have a perfectly insulated TES ($\eta_{st} = 1$), η_{rt} is always higher than 1.

This effect takes place because the thermal source allows to the HP to store the same amount of heat absorbing less electric energy; in practical terms the system is powered by both electric and thermal energy inputs; to take in account both those terms we defined a total efficiency as:

$$\eta_{tot} = \frac{L_{he} - L_{hp}}{Q_s} = \frac{\eta_{st}\eta_{he}COP - 1}{COP - 1}$$

where Q_s is the heat provided by the thermal source. In the ideal case we have:

115 116

$$\eta_{tot}^{id} = 1 - \frac{T_{st}(1 - \eta_{st}) + T_{amb}\eta_{st}}{T_s} \tag{6}$$

From Equations 5 and 6 we see that both the round-trip and the overall efficiency increase while T_s increase; conversely, if T_s is fixed, both the efficiencies increase while T_{st} tends to T_s , which is the same as saying that the HP has to work with minimum operational temperature difference to maximize the performance of the system.

In practical cases it is a non-sense to use a heat source from the combustion of fossil fuels, while it could be very interesting to use waste or low grade heat sources. In this perspective the main available heat sources are Industrial Waste Heat (IWH), low grade geothermal heat and solar thermal energy. For the sake of simplicity, we assumed the thermal source as a thermal reservoir at constant temperature, even though all the listed potential thermal sources provide sensible heat.

Based on the above assumptions and constraints the PTES system that we propose in this paper consists of a vapour-compression HP for the charging phase
of the TES and of an Organic Rankine Cycle (ORC) recovering the stored heat.
Figure 3 shows the T-s plane with the thermodynamic cycles of the HP and the ORC for one of the studied cases. Bearing in mind Equations 1, 2 and 3 and

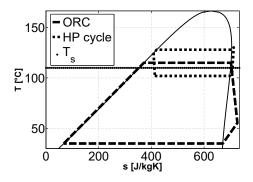
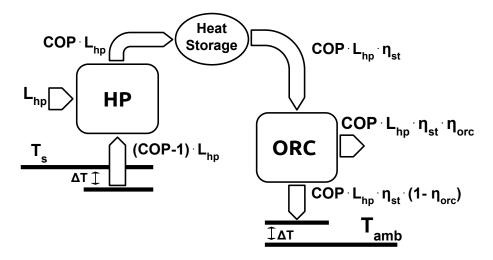
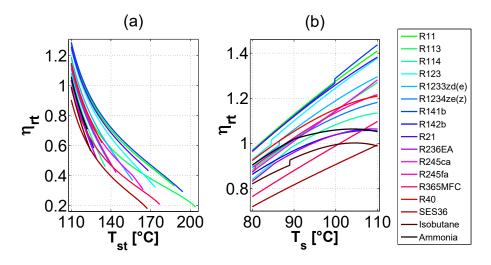



Figure 3: in T-s diagram of the Heat pump cycle and organic Rankine cycle with R1233zd(E); the represented case works with $\Delta T_{op}^{hp} = 10$ K and $T_s = 110^{\circ}$ C

- performing energy balances on the HP, the ORC and the TES, the main energy
- flows among the components were calculated and the results are illustrated in Figure 4.

Figure 4: Conceptual diagram of the proposed thermally integrated PTES system. The specified energy flows are calculated with Equations 1, 2 and 3 and the energy balance of each component.


136

137 2.2. Numerical model

The paper deals with the steady state simulation of the outlined storage 138 system, focusing on the influence of T_s and T_{st} on the round-trip efficiency. 139 A total of 17 fluids, chosen among the artificial and natural refrigerants con-140 tained in the Coolprop data base [21], were investigated; from this initial pool of 141 fluids we discarded all that underwent, or will be subjected in the near future, 142 to bans or restrictions due to European environmental legislation [22]. The re-143 maining environmentally friendly, or clean, fluids were further analyzed. 144 The initial 17 refrigerants were selected considering their critical temperature 145 T_{crit} : only the subcritical operation for the HP and the ORC was assumed, thus 146 many refrigerants were discarded because their T_{crit} was too low. 147

We performed all the simulations with MATLAB (ver. 2012b) and all the thermodynamic data were retrieved by the Coolprop data base. The developed 150 numerical model is based on some assumptions:

151	\bullet the charge and the discharge phases are performed with the HP and the
152	ORC using the same working fluid. Water is not among the tested flu-
153	ids because it would have required a vacuum pump to extract the non-
154	condensable gasses from the condenser, while none of the other fluids
155	presented such requirement;
156	• $\eta_{is} = 0.8$ for both ORC expander and HP compressor;
157	• $\eta_{st} = 0.9;$
158	\bullet the evaporator and the condenser of the HP and the evaporator of the
159	ORC have the same pinch point $\Delta T^{hp}_{evap} = \Delta T^{hp}_{cond} = \Delta T^{orc}_{evap} = 5$ K;
160	• at the exit of HP condenser the fluid is subcooled by three degree ($\Delta T^{hp}_{sc} =$
161	3K);
162	\bullet at the exit of HP evaporator the fluid is superheated by three degree
163	$(\Delta T_{sh}^{hp} = 3\mathbf{K});$
164	\bullet the HP compression ends in the superheated or saturated steam state;
165	• the ORC expansion has a final vapor quality higher than 0.85 ;
166	\bullet if the ORC expansion ends in the superheated steam state at a temper-
167	ature 15K higher than the condensation temperature, the cycle can be
168	regenerated. In other words, if $T^{orc}_{sh,cond}$ was the temperature at the exit
169	of the expander and T_{cond}^{orc} was the ORC condensation temperature, the
170	cycle can be regenerated only when $\Delta T_{reg}^{orc} = T_{sh,cond}^{orc} - T_{cond}^{orc} \ge 15 \text{K}$. Un-
171	like other ORC applications, the regeneration is beneficial, since the heat
172	provided to the ORC is stored before being used, thus a more efficient
173	ORC leads to a more compact TES;
174	• the ORC condensation temperature is $T_{cond}^{orc} = 35^{\circ}\text{C};$
175	• the pressure losses in the heat exchangers are negligible;
176	• the minimum HP operational temperature difference $\Delta T_{op}^{hp} = T_{st} - T_s =$
177	10K. This was assumed as the minimum achievable value in practice.

Figure 5: Round-trip efficiency η_{rt} as function of T_{st} and T_s for all the investigated fluids. (a): fixed $T_s = 100^{\circ}$ C and varying T_{st} . (b): varying T_s with $\Delta T_{op}^{hp} = 10$ K and $T_{st} = T_s + \Delta T_{op}^{hp \circ}$ C. Discontinuities and sudden changes of slope were due to the ORC regenerator, which started working only when the condensation steam was sufficiently superheated.

178 3. Main results

The results obtained from the simulations are in agreement with the theoretical conclusions deduced in Section 2.1, confirming that also in the practical case both η_{rt} and η_{tot} are maximized by small ΔT_{op}^{hp} .

Figures 5 shows η_{rt} as a function of T_{st} and T_s for all the investigated fluids; Figure 5(a) shows the case with $T_s = 100^{\circ}$ C and variable T_{st} ; while Figure 5(b) shows the case with variable T_s and $T_{st} = T_s + 10$.

The results related to only the environmentally friendly refrigerants were isolated for the sake of clarity and illustrated in Figures 6(a) and 6(b). Figure 7(a) shows η_{tot} as a function of T_s . The negative values correspond to the case in which $\eta_{rt} < 1$ and thus the net work becomes negative.

For a better characterization of the performance of the proposed system, we compared the overall efficiency with that of a system which directly exploits the heat source; for a fair comparison we assumed to use an ORC with the same characteristics of that used in the PTES; this ORC exploited the heat source

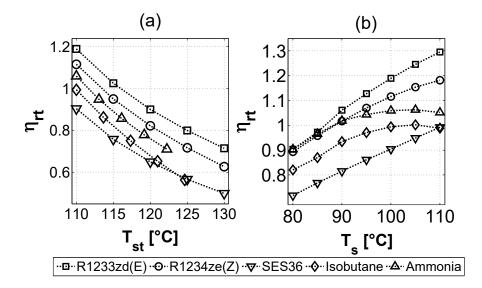


Figure 6: Round-trip efficiency η_{rt} as function of T_{st} and T_s for only the environmentally friendly fluids. (a): fixed $T_s = 100^{\circ}$ C and varying T_{st} . (b): varying T_s with $\Delta T_{op}^{hp} = 10$ K and $T_{st} = T_s + \Delta T_{op}^{hp \circ}$ C. Discontinuities and sudden changes of slope are due to the ORC regenerator, which starts working only when the condensation steam is sufficiently superheated.

directly so its evaporation temperature was $T_{evap}^{orc} = T_s - \Delta T_{evap}^{orc}$. Conversely, the PTES ORC had $T_{evap}^{orc} = T_{st} - \Delta T_{evap}^{orc}$.

We compared η_{tot} with the direct exploitation efficiency η_{dir} by defining:

96
$$\gamma = rac{\eta_{tot}}{\eta_{dir}}$$

Figure 7(b) shows γ as a function of T_s .

1

¹⁹⁸ 4. Discussion and ancillary results

199 4.1. Round trip efficiency and total efficiency

By varying T_s in the range from 80°C to 110°C, the highest values of η_{tot} and η_{rt} was found when $T_s = 110$ °C.

²⁰² Although working fluids such as R11 and R141b allowed to achieve $\eta_{rt} > 1.4$, the

²⁰³ maximum efficiency with an allowed fluid did not exceed $\eta_{rt} = 1.3$. The most

²⁰⁴ promising environmentally friendly fluid is R1233zd(E), followed by R1234ze(Z)

and Ammonia. The main results for those three fluids are summarized in table 1.

Fluids	R1233zd(E)		R1234ze(Z)			Ammonia			
T [°C]	80	95	110	80	95	110	80	95	110
η_{rt}	0.903	1.128	1.295	0.893	1.07	1.182	0.903	1.043	1.052
η_{tot}	-0.0104	0.014	0.032	-0.012	0.008	0.021	-0.011	0.0051	0.007
γ	-0.126	0.130	0.249	-0.141	0.073	0.167	-0.128	0.046	0.053

The results about efficiency confirmed that in principle η_{rt} and η_{tot} increase

Table 1: Summary of main results for the three most performing operative fluids. Negative values of η_{tot} and γ correspond to the case in which $\eta_{rt} < 1$ and thus the net work $L_{net} = L_{orc} - L_{hp} < 0$.

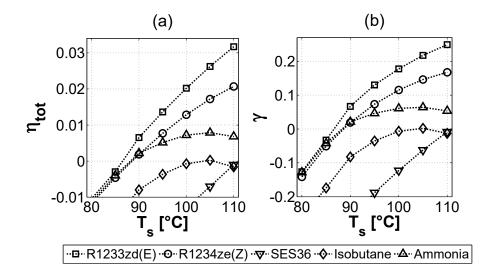


Figure 7: Total efficiency η_{tot} (figure (a)) and γ , the ratio between η_{tot} and the direct exploitation efficiency, (figure (b)) as function of T_s for the environmentally friendly fluids. Discontinuities and sudden changes of slope were due to the ORC regenerator, which starts working only when the condensation steam is sufficiently superheated

207

with higher values of T_s in agreement with what has been discussed in Section 209 2.1. However, we found that η_{rt} and η_{tot} does not increase monotonously when

T_s approaches T_{crit} : in fact, they both showed a maximum before starting to drop while T_s increased. This effect is clear in Figure 5 and 7 only for Isobutane and Ammonia, which had the lowest T_{crit} among the investigated fluids. The critical temperatures of the other fluids were well beyond the investigated temperature range, so the peaks of efficiency were not visible.

This effect could not be predicted by the theoretical analysis in Section 2.1, since the Carnot efficiency does not depend on the nature of the working fluid. η_{rt} and η_{tot} showed similar trends and the R1233zd(E) was again the fluid with which the highest overall efficiency was achieved: the maximum η_{tot} was achieved in correspondence of $T_s = 110^{\circ}$ C and its value was slightly higher than 3%.

 γ has similar trends with η_{tot} and η_{rt} , its maximum value being slightly lower than 0.25, which means that the PTES converts the provided energy (both the electric and the thermal amounts) with an efficiency four times lower than an hypothetical ORC which exploits the heat source directly.

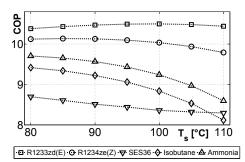


Figure 8: COP as a function of T_s for the environmentally friendly fluids.

224

225 4.2. Technical considerations

226 4.2.1. Operational pressures

The HP condensation and evaporation pressures are shown as a function of T_s in Figures 9(a) and 9(b), respectively. Due to the operational temperatures, it is important to work with pressures as low as possible, in order to reduce the mechanical stress on the piping and thermal equipment.

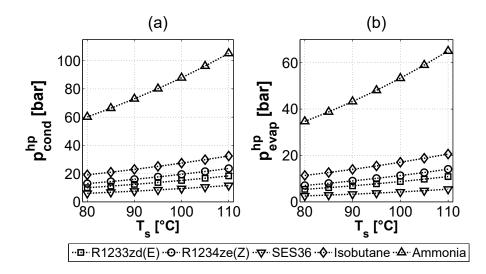


Figure 9: HP condensation and evaporation pressures, in (a) and in (b) respectively, as a function of T_s for the environmentally friendly fluids.

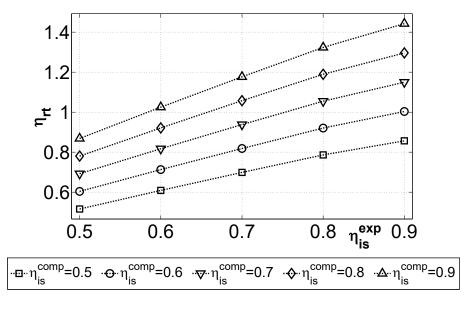


Figure 10: η_{rt} as a function of η_{is}^{exp} for different values of η_{is}^{comp} with R1233zd(E) as operative fluid, $\Delta T_{op} = 10$ K and $T_s = 100^{\circ}$ C

The Ammonia showed the highest pressures values, while the R1233zd(E) and the SES36 showed the lowest. As a rule of thumb the HP operational fluid pressures should be as low as possible in order to reduce the thermal equipment costs. In our study, the fluid which showed the highest efficiency, the R1233zd(E), had also the second lowest operational pressure values, which confirms such fluid as the most suitable for the proposed PTES system.

It is worth noting that the R1233zd(E) pressures were in line with that of the traditional heat pumps; in Table 2 we reported the desirable values of operational pressures for three commercial HP refrigerants that are comparable with that obtained with R1233zd(E) in our analysis. Therefore, the development of a suitable thermal equipment for the high temperature HP, which is necessary for the outlined PTES system, should not arise serious technical issues.

Fluids	R134a	R410a	R407c	R1233zd(E)
P_{cond}^{hp} [bar]	11.6	27.3	19.7*	18.4**
P_{evap}^{hp} [bar]		9.3	6.7*	10.9**

Table 2: Saturation pressures for three common HP refrigerants at the temperatures 5°C and 45°C. (*)R407c is a blend and only the liquid saturation pressures are reported. (**) The pressures of R1233zd(E) are calculated with $T_s = 110^{\circ}$ C.

242

24

243 4.2.2. Thermal and electric storage capacity

The storage capacity is the amount of electric energy that can be stored in the system. In our analysis such parameter was represented by L_{hp} , which is exactly the electric energy absorbed during the storage charging phase.

²⁴⁷ The energy balance on the HP yields:

$$\begin{cases} Q_s = L_{hp}(COP - 1) \\ Q_{st} = L_{hp}COP \end{cases}$$

$$\tag{7}$$

In the investigated temperature range the COP of R1233zd(E) was quite constant and it showed values comparable to 10.5, as can be seen in Figure 8, hence, from the second of the Equations 7 it follows that, for every kWh of stored electric energy, we have to accumulate more than ten kWh of heat. This thermodynamic requirement establishes a practical and economical limitation to the size of the storage system, encouraging the use of heat storage media that can guarantee high energy density, such as Phase Change Materials (PCM). An accurate analysis about the optimal PCM for the proposed PTES system is beyond the purpose of this paper.

From the second of Equation 7 it also follows that higher COPs lead to higher efficiency, but also to a larger heat storage tank volume, which generally entails higher costs and larger thermal losses. These contrasting effects must be taken into account during the storage sizing, thus the choice of the magnitude of L_{hp} needs to be the outcome of a thermo-economic optimization process. Such an in-depth analysis requires to specify at least the nature of the thermal source and the TES materials, hence it is beyond the scopes of the present paper.

From the first of Equations 7 it follows that also Q_s is almost ten times greater than L_{hp} . Therefore, a system with high η_{rt} , i.e. with high COP, is limited in size not only by the volume of the TES, but also by the maximum amount of heat provided by the source. Moreover, Equations 7 are written in terms of energy but are also valid in terms of power, thus the heat source has to supply not only the adequate amount of energy, but also the adequate amount of power.

If the heat is provided by IWH or geothermal resources, the size of the thermal 271 source is fixed both in terms of energy and power, setting a practical limitation 272 to the size of the PTES electric capacity. If there are no pre-existing thermal 273 sources, Q_s has to be produced and thus it will have a production cost, for 274 example the costs of purchase and installation of the solar collectors, in case 275 of solar energy exploitation. Hence, from the economical point of view the op-276 timum size of L_{hp} can be obtained only with a thermo-economic optimization 277 that takes into account the efficiency, the thermal energy production cost and 278 the limitations imposed by the Equations 7. 279

280 4.2.3. Comparison with other PTES systems

281 Round trip efficiency

As previously mentioned, the main kinds of PTES are those which use transcritical CO_2 cycles or closed Brayton cycles. Both those systems have a round trip efficiency that is hardly higher than 0.6, which is less than half of the efficiency achieved by our system. However this comparison is rather unfair, because those systems are designed to work with only electric inputs, while our system owes its higher round trip efficiency to the thermal integration.

The proper comparison has to be done between systems that take advantage of both thermal and electric energy inputs. To the best of the author knowledge the examples of such systems available in the literature are:

- [18] a PTES system integrated with IWH that achieves an η_{rt} slightly higher than 0.8 with a heat input provided at a maximum temperature of 80°C;
- [19] a PTES system integrated with solar thermal energy, where the heat is provided at a maximum temperature slightly lower than 100°C and the system achieves a maximum $\eta_{rt} = 0.84$;
- [15] a transcritical CO_2 PTES system. Such system utilizes only electric input and the thermal integration is mentioned only as way of enhancement of η_{rt} . No further details are given in the paper;
- [20] a system designed to work with only electric input whose performances can be boosted with an additional thermal input. the round-trip efficiency exceeds 1 when the heat is provided at $T_s > 88^{\circ}$ C.

It is interesting to compare the efficiency of thermally integrated PTES, being equal the temperature of the heat source: in fact, this guarantees that the compared systems are taking advantage of comparable heat sources. It is true that a complete comparison requires to compare the exergetic efficiencies of the examined systems, but being such data unavailable in the literature, we can settle for the specified approximate comparison.

Since our system achieved $\eta_{rt} > 0.9$ for $T_s \ge 80$ and $\eta_{rt} > 1$ for $T_s \ge 86.5$, we can

conclude that, under the simplifying assumption of an isothermal heat source,
the efficiency of our system is higher than any other described in the literature.
It is worth noting that in the literature examples, the process that provides the
heat is sometimes not isothermal, thus the comparison would require further
analysis.

315 Plant design complexity

Apart from featuring high efficiency, a PTES system should have a simple 316 plant design. The efficiency can be a good indicator of the quality of the system, 317 only as long as its complexity does not impair its own technical and economical 318 feasibility. On the other side, although the design simplicity is one of the most 319 important features, it is often necessary to complicate the system in order to 320 achieve satisfactory efficiency. From this point of view, the thermal integra-321 tion can bring great advantages, boosting the η_{rt} to such an extent that many 322 add-ons intended to enhance it might become unnecessary, promoting a much 323 simpler plant design. 324

Plant complexity often has the effect of pushing the system towards high ranges of capacity (from ten to hundreds of MWh), in order to justify the technical and economical efforts. Some examples of high capacity PTES with complex design can be found in [7, 20, 23].

The fundamental problem of a high capacity PTES is that it has to with-329 stand the comparison against similar capacity PHES systems, which usually 330 have higher efficiency and are already a well consolidated technology. However, 331 the PTES have the great advantage of offering a comparable storage service, 332 without requiring any particular geographical constraint. In this perspective 333 the thermal integration can be a double-edged sword since it actually boosts 334 the η_{rt} , but it links the PTES to the thermal source geographical position, forc-335 ing it to lose its main advantage over the PHES. 336

Among the thermal sources that can be exploited, only the solar one establishes no geographical constraints. Despite this, solar energy has to be produced rather than recuperated from low grade resources often considered unprofitable, fur-

thermore, the required solar field has to be of adequate size, as stated in Section 340 4.2.2, and the economical feasibility of such solution requires careful evaluation. 341 For all the highlighted reasons, the thermal integration seems to be more suit-342 able for systems with little or medium capacity $(L_{hp} < 5 \div 10 \text{ MWh})$, in which 343 range the systems have to be as cheap and simple as possible, thus they can ben-344 efit a lot from the efficiency boost due to thermal integration. Moreover, small 345 size PTES do not have to compete against PHES, so they can endure some ge-346 ographical constraints dictated by the availability of the heat sources. Finally, 347 for such medium or small systems, the solar integration could become more af-348 fordable, especially in conjunction with microgeneration scenarios, in which the 349 same array of solar collectors could provide heat for multiple applications. 350

351 4.3. Sensitivity analysis

A sensitive analysis was performed on the round-trip efficiency results, in agreement with the other studies on PTES systems available in the literature. The investigation was focused on the influence of isentropic efficiencies, heat exchangers pinch points and condensation temperature of ORC, by studying a total of six variables, as indicated in Table 3.

Since it is not practical to analyse the separate effects of each variable, we followed a *Monte Carlo* approach: the system was iteratively simulated, randomly drawing the analysed variables from a range of acceptable values; within this range the probability of being picked up is uniform and each range is centered around a mean value, corresponding to that used in the main analysis for the related variable. The selected variation ranges and the related mean values are listed in Table 3.

Every simulation produces a value of η_{rt} that is function of T_s , as pointed out in the main analysis, and of η_{is}^{comp} , η_{is}^{exp} , ΔT_{evap}^{hp} , ΔT_{evap}^{hp} , ΔT_{evap}^{orc} and T_{cond}^{orc} . We repeated the whole process a suitable number of time and we obtained a set of $\eta_{rt} values$ on which a multi-variable linear regression was performed, in order to find the most appropriate linear relation between the efficiency, T_s and the aforementioned six variables.

Variables	η_{is}^{comp}	η_{is}^{exp}	ΔT^{hp}_{evap}	ΔT^{hp}_{cond}	ΔT_{evap}^{orc}	T_{cond}^{orc}
mean value	0.8	0.8	5	5	5	15
Variation range	± 0.2	± 0.2	± 3	± 3	± 3	± 10

 Table 3: Mean values and variation ranges of the variables selected for the sensitivity analysis.

Coefficient	В	A_1	A_2	A_3	A_4	A_5	A_6	A_7
Reference Variable	-	T_s	ΔT^{hp}_{evap}	ΔT^{hp}_{cond}	η_{is}^{comp}	T_{cond}^{orc}	ΔT_{evap}^{orc}	η_{is}^{exp}
Numerical Value	-1.0634	0.0114	-0.0464	-0.0466	1.1796	-0.0146	-0.0111	1.4332

Table 4: Numerical values of linear regression coefficients

370 In practical terms, we assumed that η_{rt} can be written as:

$$\eta_{rt} = \sum_{i=1}^{n} A_i x_i + B$$

371

382

where B is a constant and each of the x_i is a variable among T_s and the six listed in Table 3.

The residual ϵ_j was the error that affects the linear model with respect to the j-th random evaluation of η_{rt} and it can be defined as:

376
$$\epsilon_j = \eta_{rt}^j - \sum_{i=1}^n A_i x_i^j + B$$

where x_i^j and η_{rt}^j are respectively the input variables and the result of the j-th random evaluation of the round trip efficiency.

The best linear relation minimizes the sum of $(\epsilon_j)^2$ and as a measure of the quality of the fit the parameter R^2 is used, which in our particular case is defined as:

$$R^{2} = 1 - \frac{\sum_{j} \epsilon_{j}}{\sum_{j} (\eta_{rt}^{j} - \langle \eta_{rt}^{j} \rangle)}$$

where $\langle \eta_{rt}^j \rangle$ is the mean values of η_{rt}^j . R^2 ranges from 0 to 1 and the closer to 1 it is, the better the model traces the fitted data.

The linear model parameters may change with number of randomly generated 385 points, thus in order to achieve a satisfactory independence from the number of 386 random evaluations of η_{rt} , we generated an adequate number of points. Then, 38 we monitored each parameter of the linear model while increasing the number of 388 generated points and we stopped when the relative variation from an iteration 389 to the following was smaller than 5%. We found that a number of 10^4 random 390 evaluations was appropriate to satisfy the established precision criterion. In 391 Table 4 we indicated the coefficients of the linear model; such model was char-392 acterized by $R^2 = 0.9684$. 393

With the linear model we have $A_i = \frac{\partial \eta_{rt}}{\partial x_i}$, that can be seen as a measure of the influence of x_i on η_{rt} . From Table 4 we can see that the isentropic efficiencies had the greatest impact, followed by ΔT_{evap}^{hp} and ΔT_{cond}^{hp} , while ΔT_{evap}^{orc} was the least influential variable.

The sensitivity analysis suggests that the ORC expander, followed closely by the HP compressor, is the piece of equipment that has to be selected with the greatest care. On the contrary, the ORC evaporator could have had a relatively high pinch-point, without severely affecting the round trip efficiency.

In order to isolate the effects of the isentropic efficiencies, which were the two most influential variables, we repeated the sensitivity analysis, fixing all the other variables to their mean values and assuming $T_s = 100^{\circ}$ C; Figure 10 summarizes the results of this last analysis, illustrating how crucial can be to work with a high quality equipment for expansion and compression.

407 5. Conclusions

PTES systems generally store electrical energy in the form of heat by means of a HP and convert it back with a HE. In the previously studied configurations, the HP takes the heat at the same temperature at which the HE gives it back. Conversely, in the present paper we propose a system that takes advantage of a suitable heat source, in order to enable the HP to absorb the heat at temperatures higher than that at which it is discharged. We referred to such technique as thermal integration and we found that, by means of reducing the operational ΔT of the HP, it enhances the round-trip efficiency of the storage system.

PTES is an emerging electric storage technology, but it is difficult to achieve round-trip efficiencies higher than 0.6. In this perspective, we found that the thermal integration can be a great way to boost the PTES performance. The number of papers that analyse such application is scarce compared with that of papers about batteries, CAES or other innovative electric storage technologies, but our results confirmed the considerable potential of thermally integrated PTES systems as electric storage technologies.

A number of heat source temperatures in the range from 80° C to 110° C was 423 studied and the performance of the system for several working fluids was simu-424 lated. By focusing on the fluids that comply with the latest European environ-425 mental legislation, we found that the R1233zd(E) is the most promising, since 426 such fluid showed a maximum round-trip efficiency equal to 1.3 when the heat 427 source temperature was 110°C. Such value is not surprising, since the round-428 trip is usually defined taking in account only electric energy terms and it can 429 be higher than 1 if the heat source is at sufficiently high temperature. 430

431 6. References

- [1] EU-Commission, A Roadmap for moving to a competitive low carbon economy in 2050 (2011).
- [2] D. Connolly, H. Lund, B. Mathiesen, E. Pican, M. Leahy, The technical
 and economic implications of integrating fluctuating renewable energy using
 energy storage, Renewable Energy 43 (2012) 47 60.
- [3] A. Gallo, J. Simões-Moreira, H. Costa, M. Santos, E. M. dos Santos, Energy
 storage in the energy transition context: A technology review, Renewable
- and Sustainable Energy Reviews 65 (2016) 800 822.
- [4] M. Gimeno-Gutiérrez, R. Lacal-Arántegui, Assessment of the European

- potential for pumped hydropower energy storage based on two existing
 reservoirs, Renewable Energy 75 (2015) 56 868.
- [5] M. Budt, D. Wolf, R. Span, J. Yan, A review on compressed air energy
 storage: Basic principles, past milestones and recent developments, Applied
 Energy 170 (2016) 250 268.
- [6] M. Aneke, M. Wang, Energy storage technologies and real life applications
 A state of the art review, Applied Energy 179 (2016) 350 377.
- [7] T. Desrues, J. Ruer, P. Marty, J. Fourmigué, A thermal energy storage
 process for large scale electric applications, Applied Thermal Engineering
 30 (5) (2010) 425 432.
- [8] A. J. White, Loss analysis of thermal reservoirs for electrical energy storage
 schemes, Applied Energy 88 (11) (2011) 4150 4159.
- [9] A. White, G. Parks, C. N. Markides, Thermodynamic analysis of pumped
 thermal electricity storage, Applied Thermal Engineering 53 (2) (2013) 291
 298.
- [10] J. Guo, L. Cai, J. Chen, Y. Zhou, Performance evaluation and parametric
 choice criteria of a Brayton pumped thermal electricity storage system,
 Energy 113 (2016) 693 701.
- 459 [11] J. Howes, Concept and development of a pumped heat electricity storage
 460 device, Proceedings of the IEEE 100 (2) (2012) 493–503.
- [12] J. D. McTigue, A. J. White, C. N. Markides, Parametric studies and optimisation of pumped thermal electricity storage, Applied Energy 137 (2015)
 800 811.
- [13] M. Morandin, F. Maréchal, M. Mercangoz, F. Buchter, Conceptual design
 of a thermo-electrical energy storage system based on heat integration of
 thermodynamic cycles-Part A: Methodology and base case, Energy 45 (1)
 (2012) 375 385.

- [14] M. Morandin, F. Maréchal, M. Mercangoz, F. Buchter, Conceptual design
 of a thermo-electrical energy storage system based on heat integration of
 thermodynamic cycles-Part B: Alternative system configurations, Energy
 45 (1) (2012) 386 396.
- [15] M. Mercangoz, J. Hemrle, L. Kaufmann, A. Z'Graggen, C. Ohler, Electrothermal energy storage with transcritical CO₂ cycles, Energy 45 (1)
 (2012) 407 415.
- 475 [16] Y.-J. Baik, J. Heo, J. Koo, M. Kim, The effect of storage temperature on
 476 the performance of a thermo-electric energy storage using a transcritical
 477 CO₂ cycle, Energy 75 (2014) 204 215.
- 476 [17] Y.-M. Kim, D.-G. Shin, S.-Y. Lee, D. Favrat, Isothermal transcritical CO₂
 479 cycles with TES (thermal energy storage) for electricity storage, Energy
 480 49 (2013) 484 501.
- [18] R. B. Peterson, A concept for storing utility-scale electrical energy in the
 form of latent heat, Energy 36 (10) (2011) 6098 6109.
- [19] S. Henchoz, F. Buchter, D. Favrat, M. Morandin, M. Mercangoz, Thermoeconomic analysis of a solar enhanced energy storage concept based on
 thermodynamic cycles, Energy 45 (1) (2012) 358 365.
- 486 [20] W. Steinmann, The CHEST (Compressed Heat Energy STorage) concept
 487 for facility scale thermo mechanical energy storage, Energy 69 (2014) 543
 488 552.
- [21] I. H. Bell, J. Wronski, S. Quoilin, V. Lemort, Pure and Pseudo-pure Fluid
 Thermophysical Property Evaluation and the Open-Source Thermophysical
 Property Library CoolProp, Industrial & Engineering Chemistry Research
- 492 53 (6) (2014) 2498–2508.
- 493 [22] EU-517/2014, REGULATION (EU) No 517/2014 OF THE EUROPEAN
- 494 PARLIAMENT AND OF THE COUNCIL of 16 April 2014 on fluorinated
- greenhouse gases and repealing Regulation (EC) No 842/2006 (2014).

- 496 [23] M. Morandin, M. Mercangoz, J. Hemrle, F. Maréchal, D. Favrat, Ther-
- 497 moeconomic design optimization of a thermo-electric energy storage system
- based on transcritical CO_2 cycles, Energy 58 (2013) 571 587.

Highlights:

- •• A novel thermally integrated Pumped Thermal Electricity Storage was proposed
- •• A numerical model was developed and the steady state operation of PTES was simulated
- •• The thermal integration boosted the electric round-trip efficiency beyond 100%
- •• A comparison between standard and thermally integrated PTES was proposed
- •• Practical limitations to capacity size due to required amount of heat were discussed