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Abstract—One of the key requirements of a radar system is to
detect targets against the background interference. This can be a
challenging problem in the maritime domain when the sea moves
in a complex manner and the characteristics are time-varying or
non-stationary. Understanding the characteristics of sea clutter
is therefore essential in developing effective and robust detection
schemes. The first part of this tutorial provides details of the
relevant statistical models from the literature which are typically
used to characterise the sea clutter. Using these models enables us
to represent clutter in different environments that may be difficult
to observe in trials and to predict the performance of radars over
a range of different conditions with more confidence. Future
radar systems may well comprise transmitters and receivers
which are separated by some distance. Analysis of bistatic sea
clutter is therefore covered in the second part of this paper with
a focus on how the statistics vary with different bistatic angles.
The paper then looks at the application of radar models for
clutter simulation and performance prediction for both coherent
and non-coherent detection schemes.

I. INTRODUCTION

Understanding radar sea clutter is extremely important in
developing useful detection schemes. Unfortunately, this can
be difficult as the observed characteristics of sea clutter are
dependent on the radar system, the collection geometry and the
environmental conditions. Traditional detection schemes work
by exploiting models for these statistical characteristics, which
may or may not be accurate in reality. The focus of this tutorial
paper is to look at these characteristics for both monostatic and
bistatic geometries. We then present relevant empirical models
and show how they can be used for simulating realistic sea
clutter and predicting the performance of detection schemes
in different scenarios.

The received radar signal comprises a combination of
clutter, noise and target returns with the strength of the
sea clutter determined by the radar range equation with the
mean normalised backscatter varying with the sea-state, the
collection geometry (grazing angle and azimuth angle relative
to the wind), the polarisation, bandwidth and the carrier
frequency. Section II presents a short introduction to the
scattering characteristics of sea clutter along with details of
the two key datasets used for examples in this paper.

The clutter will also fluctuate in amplitude which is repre-
sented by its distribution or probability density function (PDF).
With coarse range resolution, a reasonable model for the in-
phase or quadrature sea clutter PDF is the Gaussian distribu-
tion [1]. However, as the range resolution becomes finer, the
variation of the sea surface becomes better resolved and the

effect of breaking waves and other discrete events (sea-spikes)
are more pronounced. These returns have a larger magnitude
which has led to the development of PDF models with longer
‘tails’. There are also a number of white noise sources which
could potentially impact the detection performance. However
at microwave frequencies, the most dominant source is the
thermal noise from the radar receiver itself.

One of the most common formulations for the sea clutter
PDF is the compound Gaussian model which comprises a
speckle component for modelling the small ripples on top of
larger waves [1]. These larger waves are then modelled by a
slowly varying texture which can be assumed constant over a
typical radar dwell period. The most popular compound model
is the K distribution which is characterised by two parameters
(shape and scale) which can then be related to variations in
the collection geometry and environment (sea-state and swell
direction). There are other models which explicitly model sea
spikes including the KA and KK distributions, while others
such as the Pareto distribution just model the longer tails in
the presence of spikes.

In order to characterise the statistics of the interference
(clutter + noise), detection schemes need to consider multiple
samples in time and / or range. For this reason, understanding
the correlation from sample to sample along both of these
domains is also important. Along slow-time (pulse-to-pulse),
the temporal auto-correlation is often analysed in terms of its
frequency domain equivalent, the Doppler spectrum. Further
details of these sea clutter characteristics and the relevant
statistical models from the literature are given in Section III.

Bistatic radars have received considerable attention over
recent years for a number of reasons, including the extra
degrees of freedom that can be used to extract information on
targets and the covertness of the receive node [2]. However,
bistatic measurements are significantly more difficult than
monostatic ones as there are more variables which influence
the sea clutter statistics. Section IV presents a survey of recent
studies into bi-static sea clutter, focussing on how the clutter
characteristics vary with bistatic angle.

Methods for accurately simulating sea clutter are then
presented in Section V. These can be used to stimulate radar
processors during development and testing, generate realistic
responses and displays in radar trainers and to evaluate radar
detection algorithms. Section VI then looks at how sea clutter
models can be used for the prediction of radar performance
which is an essential part of the design, development, as-
sessment and marketing of radar systems. As many maritime
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radars are starting to exploit coherent processing techniques,
both non-coherent and coherent detectors are considered.

II. SEA-CLUTTER CHARACTERISTICS

Sea water has a high dielectric constant and hence absorbs
very little radar energy. Moreover, radio frequency energy
has very little penetration into the ocean surface. In calm
conditions, the ocean surface is flat and radar reflections are
highly specular. In this case, most of the transmitted energy
is scattered away from the radar transmitter and the measured
backscatter levels are low. However, as winds increase and the
ocean surface becomes rougher, the backscatter becomes more
diffuse and measured backscatter levels increase. The quali-
tative degree of roughness depends on the radar wavelength
with the same ocean surface generating specular reflections
at high frequencies (HF) but diffuse reflections at microwave
frequencies.

The perturbation theory for electromagnetic scattering was
developed by Rice [3] and later applied by Peake [4] to
compute the radar cross section of land. Wright [5] then
extended this theory to water and classified it as a ‘slightly
rough’ surface. He showed that the scattering elements of
primary importance for small grazing angles are capillary or
short-gravity waves. Bragg resonance occurs when the distance
travelled by the radar waves to successive capillary wave crests
is half the radar wavelength. In this case, the reflections add
together in phase and resonate to produce strong backscatter.
A theoretical backscatter model based on Bragg resonance is
presented by Ulaby et al. [6]. They note however, that since
their model uses only first order theory, the magnitude of
the cross polarised channels is predicted to be zero, which
is clearly not realistic.

While the Bragg theory does not always match measured
backscatter data well, it does provide some insight into the
properties of measured backscatter data. For instance, it is
commonly observed that backscatter measured with the ver-
tical polarisation is larger than that measured with the hori-
zontala. Bragg theory explains this difference due to Fresnel
reflection coefficients [6] and also proposes a reason for the
sinusoidal-like variation in ocean backscatter with azimuth
angle.

To extend the first order Bragg scattering theory, two scale
composite scattering theories were proposed to divide the
rough surface into large and small scale components [7]–
[11]. The physical motivation for the model comprises a large
scale component which is modelled by geometric or physical
optics and a small-scale component described by the existing
perturbation theory.

Further analysis of experimental data with higher wind
speeds then started to reveal more than one signicant com-
ponent to the Doppler spectrum. For low sea states, Hicks
et al. [12] found that the spectrum had a Gaussian shape
which broadened as the wind speed increased and became
asymmetrical. Similarly, for high sea states, an extra spectral
component due to sea-spray was observed by Money et al.
[13]. Wright [7] and later Duncan et al. [14] also found a
component which could not easily be explained using the

composite scattering theory. This was observed primarily in
the horizontal polarisation, at low grazing angles and was
strongest in the upwind direction (wind travelling to toward the
radar). This specular component is known as a ‘sea spike’ and
may be observed from incipient breaking waves, which also
have a distinct Doppler characteristic (see [1] for examples).
Breaking waves, together with shadowing from wave fronts
and multipath interference, also affect the magnitude of the
backscatter at low grazing angles and for both polarisations.
While the large magnitude variations appear ‘spiky’, sea spikes
are typically characterised by scattering which can either be
short lived (discrete) or persistent and last for seconds.

Lee et al. [15] have reported two possibilities to explain
the non-Bragg scattering. This includes a wave which is about
to break and has a much longer wavelength than the Bragg
resonant wave and a breaking wave which has a long wave-
length and large specular return. Other observed characteristics
of sea-spikes include a longer range extent which may extend
over more than one range cell, different pulse to pulse temporal
correlation and distinct Doppler properties.

In the remainder of this section, we describe two key data
sets which will be used for many of the examples in this paper.
These include the Ingara airborne sea clutter dataset in Section
II-A and the NetRAD bistatic sea clutter dataset in Section
II-B. Other example datasets include the Canadian IPIX X-
band radar [16] and the South African CSIR X-band radar
[17].

A. Ingara airborne sea clutter dataset

In many of the examples in this paper we will use sea clutter
collected by the Australian Defence Science and Technology
Group Ingara radar [18]. The motivation for the Ingara ex-
periments in 2004 and 2006 was to collect sea clutter data
covering as wide a parameter space as possible. The airborne
X-band radar had a 200 MHz bandwidth centred at 10.1 GHz
and a nominal pulse repetition frequency (PRF) of 600 Hz. At
a slant range of 3.4 km and with a two-way 3 dB (half-power)
azimuth beamwidth of θ3dB = 1◦, the azimuth resolution was
approximately 63 m. The sea clutter was collected over twelve
days with differing sea-states ranging from calm to very rough.
As shown in Fig. 1, the radar platform flew in a circular
spotlight collection mode with at least six full orbits around the
same patch of ocean to cover a large portion of grazing angles
between 15◦−45◦. There was also a range of wind and swell
directions which greatly effected the clutter statistics. Both
dual and fully polarised data were collected, with horizontal
(H) and vertical polarisations (V) transmitted alternatively in
the latter case.

An example of the dual polarised backscatter intensity data
is presented in Fig. 2 as a range-time intensity image. The
data corresponds to an upwind viewing geometry with grazing
angles between 30◦−35◦. Fig. 3 then shows the corresponding
Doppler spectra from the first 128 pulses. The periodic range
varying nature of the intensity and spectra are very evident and
consistent with the expected spatial variation of the sea surface
wave structure. Note that as the Ingara data was collected in
a side looking collection geometry from a moving platform,
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the observed Doppler spectrum is broader than what would be
observed from a stationary radar.

Fig. 1: Ingara circular spotlight collection geometry [19].

Fig. 2: Time domain intensity image of the Ingara airborne
data in the upwind direction.

Fig. 3: Doppler spectrum of the Ingara airborne data in the
upwind direction.

B. NetRAD bistatic sea clutter dataset

For the bistatic sea clutter analysis, we will use data col-
lected by the S-band ground based netted radar system known
as NetRAD [20]. This radar system was jointly developed
by the University College London, UK and the University
of Capetown, South Africa. It works in both monostatic and
bistatic configurations with the two nodes synchronized in
time with GPS disciplined oscillators over a 5 GHz wireless
link. The monostatic node is composed of a transmitter and
a co-located receiver, while the bistatic node operates only
as receiver. The transmitted signal has a carrier frequency
of 2.4 GHz, a PRF of 1 KHz and a bandwidth of 45 MHz,
giving a range resolution of 3.3 m. The antennas work with
either vertical or horizontal polarisations and have elevation
and azimuth 3 dB beamwidths of φ3dB = 9◦ and θ3dB = 11◦

respectively. They pointed at the sea surface with a grazing
angle of 1◦ and a variable bistatic angle, β.

The radar nodes were placed in an isosceles triangle as
shown in Fig. 4, with vertices at the two nodes and the
intersection point between their antenna patterns. The effect
of this bistatic geometry is that the two-way bistatic range r2w

b
is twice the one way monostatic range r1w

m and the equivalent
one-way bistatic range r1w

m = r2w
b /2. Hence the clutter power

is concentrated in the area illuminated by both the antennas
with a range interval [r1, r2] given by

r1 = L cos(θ3dB/2) cos−1 (θ1 − θ3dB/2) ,

r2 = L cos(θ3dB/2) cos−1 (θ1 + θ3dB/2) .
(1)

Fig. 4: NetRAD bistatic collection geometry (B: bistatic node,
M: monostatic node, L: baseline, β: bistatic angle).

During these collections, the radar was located on a coastal
bay facing the Atlantic Ocean, and the wind and wave direc-
tion were approximately from the North-West. The weather re-
ports [21] indicated that the wind speed was between 35 km/h
to 55 km/h indicating a sea state between 4-5. Figs. 5 and
6 show data collected in October 2010 for the bistatic angle,
β = 60◦ with only the common ranges shown as defined in
(1).

The bistatic spectra shown on the right side of Fig. 6 show
predominately positive Doppler frequency, which is justified



4

by the fact that the angle formed by the sea waves and the
bistatic bisector influences the value of the centre frequency of
the bistatic clutter spectrum. If ψ is the aspect angle of the sea
waves with respect to the bistatic bisector in the illuminated
clutter patch (see Fig. 4), then the bistatic Doppler frequency
fb is given by [22],

fb =
2v

λ
cosψ cos

β

2
(2)

where v is the speed of the sea waves and λ is the radar
wavelength.

Fig. 5: Time domain intensity image of the NetRAD bistatic
data collected at β = 60◦.

Fig. 6: Doppler spectrum of the NetRAD bistatic data collected
at β = 60◦.

III. SEA-CLUTTER MODELS

Understanding the characteristics of sea clutter has been
an evolving process since radar was first invented. The most
common use of ground and airborne maritime radars is to

search for targets at low grazing angles. However, over the
past decade, much effort has been invested into understanding
the characteristics of sea clutter from higher grazing angles
[18], [19], [23]–[32]. This is primarily due to the advent of
high flying unmanned aerial vehicles, whose role is to detect
targets over large regions of the ocean. In this section, a
number of key statistical characteristics are presented for both
low and medium grazing angle regions. These include the
mean backscatter in Section III-A, the amplitude distribution
in Section III-B, texture correlation in Section III-C, sea spikes
in Section III-D, the Doppler spectrum in Sections III-E and
III-F, and parameter models in Section III-G. There are a
number of good reference books in the literature which are
relevant to the material presented here. They include Ward
Tough and Watts [1], Long [33] and Nathanson [34].

A. Mean backscatter

Modelling the detection performance of a target in clutter
requires models for the power of the target, ps, clutter, pc, and
noise, pn, with the former two determined by the radar range
equation,

ps =
PtG

2
0λ

2σtTpB

(4π)3R4LaLs
,

pc =
PtG

2
0λ

2σcTpB

(4π)3R4LaLs
,

pn = kT0FnB

(3)

where Pt is the transmit power, G0 is the one-way gain on
transmit and receive, σc and σt are the clutter and target radar
cross sections (RCS), R is the slant range, La and Ls represent
the atmospheric and system losses respectively and pulse
compression adds a gain given by the pulse length bandwidth
product, TpB. For the noise power, k is Boltzmann’s constant,
T0 is the receiver temperature and Fn is the receiver noise
figure. The sea clutter RCS, σc = σ0AM can be described in
terms of the resolution cell area, AM and the mean backscatter
per unit area, σ0. The resolution cell area for a pulsed radar
is defined by the compressed pulse length in range and the
antenna beam width in azimuth. A simplified illustration is
given in Fig. 7 with the area given approximately by

AM ≈ αbpRθ3dBc/(2B) secφ (4)

where φ is the local grazing angle and c is the speed of light.
The factor αbp in (4) can be used to account for the actual
antenna beamshape compared with an idealised rectangular
beam. As discussed in [1], αbp = 1 for a rectangular beam and
αbp = 0.75 for a Gaussian-shaped beam. Correctly modelling
the antenna sidelobes is particularly important when assessing
the Doppler spectrum of clutter returns from an airborne
platform as it will influence the observed Doppler spectrum.

The exact nature of the ocean backscatter depends on the
collection geometry as well as the ocean surface roughness and
atmospheric effects such as ducting [35]. The latter is often
captured by expressing the mean backscatter as σ0F 4, where
F is the propagation factor. While this effect can significantly
alter the mean backscatter at low grazing angles, it is expected
to be less significant as the grazing angle increases. For the
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Fig. 7: Clutter patch for a pulsed radar [1].

models presented here, we will not consider it further and this
factor is assumed to be unity.

A good starting point for the sea clutter mean backscatter
are the tables by Nathanson [36]. These cover a wide range
of sea states, grazing angles and radar frequencies but are
averaged over all wind directions. The general trends for the
mean backscatter as it varies with grazing angle are illustrated
in Fig. 8. This shows typical results for σ0 at X-band, for a
wind speed of about 15 kts (7.7 m/s). It can be seen that the
HH mean backscatter is generally lower than VV over a range
of grazing angles up to 50◦. For the first 10◦, the low grazing
angle or interference region has propagation which is strongly
affected by multipath scattering and shadowing from waves.
From 10◦− 45◦, the mean backscatter is approximately linear
and is known as the medium grazing angle or ‘plateau’ region.
Also shown in Fig. 8 is the cross-polarised, VH or HV mean
backscatter which is significantly lower than either of the VV
or HH values and does not show much variation with grazing
angle over the plateau region. A number of models for the
mean backscatter have been proposed in the literature and are
summarised in Section III-G.

Fig. 8: Mean backscatter variation with grazing angle. Adapted
from [1].

B. Amplitude distributions

Detection performance requires an accurate representation
of the radar backscatter amplitude or intensity probability
density function (PDF). Models for the amplitude distribu-
tion of sea clutter are usually developed empirically from
measurements of real data as it is not currently possible
to accurately predict the PDF of sea clutter under different
conditions using physical models of the sea surface. In order to
characterise these distributions, it is necessary to estimate the
distribution parameters. There are many techniques outlined
in the literature including those based on maximum likelihood
estimates [37], matching moments of the data with moments
of the analytical distributions (method of moments) [1], [37],
formulations based on the mean of zlogz [37], [38] and others
such as a least squares model fit between the PDF or CDF of
the model and the data [23].

There has been a long development of PDF models used to
fit both real aperture radar and synthetic aperture radar. Early
models include the Rayleigh, log-normal and Weibull, with the
latter two distributions used to model the longer tails observed
in backscatter due to high magnitude sea spikes [39], [40].
While these have always been present, they were not often
observed until the radar resolution became sufficiently fine. A
useful distribution family is known as the complex elliptical
symmetric distributions [41], [42] which can represent a large
number of models including the complex normal, complex-t,
generalised Gaussian, Rayleigh, and the compound Gaussian
models including the Weibull for some shape values. In the
following paragraphs, we summarise the Rayleigh, Weibull,
log-normal and generalised Gaussian distributions which are
used for the examples in Section IV-B.

Rayleigh: Consider a radar receiving in-phase and quadra-
ture data from an external clutter source with its amplitude
defined by Gaussian statistics with zero mean and variance,
x. The PDF of the amplitude is then given by a Rayleigh
PDF,

P (y) =
2y

x
exp

[
−y

2

x

]
(5)

where the mean, 〈y〉 =
√
πx/2 and the mean square,〈

y2
〉

= x = pc which is the clutter mean power defined in (3).
Note that this model is only valid for very coarse resolution
sea clutter.

Log-normal: The log normal distribution is typically de-
scribed in terms of power, z = y2, and arises if we assume
the logarithm of z is normally distributed with mean µ and
variance δ2. It is given by [39],

P (z) =
1

z
√

2πδ2
exp

[
− (ln z − µ)

2

2δ2

]
, z ≥ 0. (6)

Weibull: The Weibull distribution has been used extensively
for modelling both land [43] and sea clutter [40]. It is given
by

P (y) =
cw

bw

(
y

bw

)cw−1

exp

[
−
(
y

bw

)c
w

]
, y ≥ 0 (7)

where bw > 0 and cw > 0 are the scale and shape parameters
respectively. The Rayleigh distribution can be obtained by
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setting cw = 2 with smaller cw implying spikier data. Also for
some parameter values, the Weibull distribution is equivalent
to the K-distribution and can be considered a compound
Gaussian model [44].

Generalised Gaussian: The generalised Gaussian distribu-
tions has been used for modelling sea clutter in [45]. It is
given by

P (y) =
σ

αgΓ(σ−1)s
1/σ
g

exp

[
− 1

sg

(
y2

2αg

)σ]
, y ≥ 0 (8)

where sg =
[
Γ(σ−1)/Γ(2σ−1)

]σ
, Γ(·) is the Gamma

function, αg > 0 is the scale parameter and σ > 0 is the shape
parameter. The Rayleigh distribution is obtained by setting
σ = 0.5 with smaller σ implying spikier data.

A popular and widely used framework for developing PDF
models is the compound Gaussian model which was originally
proposed for use in sea clutter by Ward [46]. The model
comprises a temporal or fast varying component known as
speckle which relates to the Bragg scattering, and a slowly
varying component which captures the underlying swell and
models the texture.

In target detection analysis, the received pulses are often
converted to power (square law), z = y2 and the Rayleigh
distributed speckle component in (5) becomes exponential,

P (z|x) =
1

x
exp

[
− z
x

]
. (9)

For a frequency agile radar, or a scanning radar with suffi-
cient time between looks, a common method to improve the
detection performance is to sum a number of independent non-
coherent looks. However, if subsequent pulses are used or the
looks are not totally independent, then an ‘effective’ number
of looks will result [47]. Consider the sum of M independent
exponential random variables,

Z =

M∑
m=1

zm. (10)

The received power is then described by a gamma PDF,

P (Z|x) =
ZM−1

xMΓ(M)
exp

[
−Z
x

]
. (11)

The distribution in (11) models the speckle component of the
sea clutter. For the first order compound Gaussian model, the
texture is defined as the speckle mean power and treated as a
random variable with a distribution P (x),

P (Z) =

∫ ∞
0

P (Z|x)P (x)dx. (12)

The extension of this model to a multivariate distribution for
the single look vector z of length N × 1 is a spherically
invariant random process, with

P (z) =

∫ ∞
0

1

(πx)N |R|
exp

(
−zHR−1z

x

)
P (x)dx (13)

where R is the slow-time covariance of the speckle. One
common extension of the compound model is the inclusion

of the noise mean power, pn. This is achieved by offsetting
the variance x in the speckle PDF, giving

P (Z|x, pn) =
ZM−1

(x+ pn)MΓ(M)
exp

[
− Z

x+ pn

]
. (14)

The consequence of this variation is that numerical integration
must be used to evaluate (12) and it is no longer possible to
use the second order model in (13) to represent the speckle
correlation independently of the thermal noise.

The rest of this section outlines a number of compound
models which have been used for sea clutter modelling. From
these, only the K, KK and Pareto are truly compound Gaussian
models.

K-distribution: The most commonly used PDF model for
sea clutter in both real and synthetic aperture radar is the K-
distribution. To achieve a K-distribution, the texture is gamma
distributed

P (x) =
bν

Γ(ν)
xν−1 exp [−bx] , ν, b > 0 (15)

with shape given by ν and scale, b = ν/pc related to the mean
power, pc. If thermal noise is not present (pn = 0), the analytic
form of the distribution is given by

P (Z) =
2

Z
(bZ)

M+ν
2

1

Γ(M)Γ(ν)
Kν−M

(
2
√
bZ
)

(16)

where Kν−M (·) is the modified Bessel function of the second
kind with order ν−M . Commonly in the literature, the noise
is not explicitly modelled and the shape is really an ‘effective’
shape. A key relationship can be derived by matching moments
of the PDF with and without noise [1], giving

νeff = ν (1 + 1/C)
2 (17)

where C is the clutter to noise ratio (CNR).
Pareto-distribution: The Pareto model is described by two

parameters, yet can reasonably model the long tails present
in sea clutter distributions. It was first used for sea clutter
modelling by Balleri et al. [48], Fayard and Field [40] and
later by others at US Naval Research Laboratory (NRL) [49]
and DST Group [28], [50].

For the Pareto distribution, the texture has an inverse gamma
distribution

P (x) =
ca

Γ(a)
x−a−1 exp [−c/x] , a > 1, c > 0 (18)

where a is the shape and c = pc(a − 1) is the scale. The
general solution with no thermal noise is

P (Z) =
ZM−1caΓ(M + a)

(c+ Z)M+aΓ(M)Γ(a)
, a > 1, c > 0 (19)

which reduces to the generalised Pareto type II or Lomax
distribution for M = 1,

P (Z) =
aca

(c+ Z)1+a
. (20)

Note that when considering the kth moment for parameter
estimation, there is a constraint where k ≥ a and hence the
mean is undefined for a ≤ 1 and the second moment for a ≤ 2.
The second moment must be finite if the spatial component
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of the clutter results from a wide-sense stationary process.
Whether this is always the case for real clutter data is an open
question, but we find a > 2 for the Ingara data.

There are a number of effective shape parameters derived
for this distribution in [28]. Similar to the K-distribution, the
relationship based on matching moments is given by

aeff = (a− 2)(1 + 1/C)2 + 2. (21)

KK-distribution: The KK distribution represents a mixture
model of two K distributions with the second component
designed to model the long tail due to sea-spikes [23], [51].
To implement the KK model, the texture is defined as the
sum of two gamma components having shapes, ν1, ν2, and
scales b1, b2. The ratio of the two components is defined by a
weighting krat:

P (x) = (1− krat)Px(x; ν1, b1) + kratPx(x; ν2, b2) (22)

This model can be simplified by equating the two shape
parameters and considering the ratio of means as a single
parameter. Analysis in [51] found that the ratio of means
determined the degree of separation in the tail, while the ratio
of the two components determined the point where the tail
started diverging.

K+Rayleigh-distribution: Traditionally the dominant
Rayleigh component of the received backscatter has been
presumed to arise from additive white receiver noise. This case
is often referred to in the literature as the K+noise distribution.
The K+Rayleigh (K+R) distribution was formalised in [52]
after observations by Sletten [53] and Lamont-Smith [54]
who found evidence for a further Rayleigh component,
beyond what is captured by the thermal noise. It is defined by
explicitly separating the speckle mean into two components,
x = xr + pr, where the extra Rayleigh component, pr is
modelled in the same fashion as the thermal noise.

The K+R model uses a gamma distribution for the texture,

P (xr|νr, br) =
bνr

r

Γ(νr)
xνr−1

r exp [−brxr] , 0 ≤ xr ≤ ∞ (23)

where νr is the shape and br = νr/pc is the scale. To
calculate the compound integral in (12), the integration is then
performed with the modified speckle mean level, xr instead
of the total speckle x. The influence of the extra Rayleigh
component can be measured by the ratio of the mean of the
Rayleigh component to the mean of the gamma distributed
component of the clutter and is defined by kr = pr/pc. For the
Ingara data, it has typical values in the range 0 ≤ kr ≤ 4.

KA-distribution: The KA model was originally proposed in
[55] and then applied to sea clutter by Ward et al. [1], [56],
[57]. A comparison of this model and the KK distribution has
been applied to the Ingara data in [51].

The KA distribution represents a mixture of K and a
spike component. Each component of the mixture model is
functionally identical to the previously discussed K+Rayleigh
model, where the Rayleigh component power is now assumed
to arise due to the presence of one or more Rayleigh distributed
spikes. The probability of a spike being present, PM (m), is
modelled by Poisson statistics which gives a weighting or prior
probability for each mixture component. The single look KA

distribution can be written as a compound distribution with
the following components:

P (z|x) =

∞∑
m=0

exp(−bx) exp(−z/(x+ pn +mσsp))P (m)

x+ pn +mσsp

P (x) =
xβ0−1 exp(−β0x/σW)

Γ(ν)

(
β0
σW

)
,

(24)

where σsp is the sea-spike intensity, σW is the mean power
of the whitecap component and β0 is the shape parameter.
Note the summation in (24) corresponds to the sum of mixture
component probabilities which is typically small and can be
truncated at m = 1. The Poisson component can be described
by

P (m) = exp
(
−M̄

) M̄m

m!
(25)

where M̄ is the mean number of spikes in each range cell.
Example fits: In the following example in Figs. 9 and 10,

a block of data has been selected from the Ingara dataset
over a 5◦ span of azimuth angles in the upwind direction
and a 3◦ span of grazing angles centred at 30◦. This relates
to data covering 3.4 second in slow time and 300 m in
slant range. Before forming a histogram, the intensity data
is vectorised, normalised to ensure unity mean power and
converted to decibels (dBs) due to its wide dynamic range.
Then a reasonable choice of intensity values are 0 ≤ z ≤ 50
dB. The PDF is then just the histogram normalised to have
area 1 and the CDF is formed by a cumulative summation
across the intensity values, followed by a normalisation so the
maximum value is 1.

The model fits are often represented by the logarithm of the
complementary cumulative distribution function (CCDF=1-
CDF) as it highlights the tail of the distribution. For the
horizontally polarised data in Fig. 9, the top plot shows the
exponential, K and K+R distributions with a large mismatch
for the first two models. The bottom plot shows similar
fits for the Pareto, KK and KA distributions. These latter
two generally have a better fit due to the larger number of
parameters used for the model fit. For the vertically polarised
data in Fig. 10, the data is less spiky and all the models fit
the data well except for the exponential distribution.

C. Texture correlation

The correlation of the texture can be characterised by two
distinct components. The first is a correlation over a time
period on the order of seconds, while the second component is
along the range direction and is commonly referred to as spa-
tial correlation. These are typically considered independently
as characterisation of the two-dimensional texture is difficult
and may not be necessary for short time periods or short range
extents. It is also difficult for airborne platforms to characterise
the temporal component unless the radar is ground stabilised.
An example of a temporal correlation is shown in Fig. 11 for
the CSIR data set [17]. This view of the data highlights the
non-stationarity of the sea clutter as the correlation does not
decay to zero.

To obtain a useful estimate of the spatial correlation, the
intensity must be averaged to avoid the impact of speckle
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Fig. 9: Example CCDF fits for horizontally polarised Ingara
data in the upwind direction and 30◦ grazing.

Fig. 10: Example CCDF fits for vertical polarised Ingara data
in the upwind direction and 30◦ grazing.

either along range or slow-time. Fig. 12 shows the two-
sided spatial correlation for the VV polarisation of the IPIX
ground based radar [58]. The data has been averaged over
128 pulses and processed for three different range resolutions,
3 m, 9 m and 15 m. This result highlights that it is possible to
resolve different periodicities by processing the data at finer
resolutions. Fig. 13 then shows the spatial correlation of the
Ingara dataset averaged over 2 s. The result shows an initial
decay and a number of sinusoidal components due to the
interaction of the waves.

D. Sea spikes

To better understand the behaviour of the sea spike compo-
nents, it is useful to isolate them from the sea clutter return.
There are three main methods of characterising the sea-spike
component of the sea clutter. The first two methods fit relevant

Fig. 11: Temporal correlation for the CSIR data [1].

Fig. 12: Spatial correlation for the IPIX data, VV polarisation
with different spatial resolutions [58].

Fig. 13: Spatial correlation example from the Ingara data.

models to the PDF and the mean Doppler spectrum respec-
tively, [23], [51], [59]–[61]. The third method does not assume
any underlying statistical model, but involves thresholding the
magnitude of the data in order to distinguish between Bragg
scattering and sea-spike events [62]–[66]. There are often
secondary criteria imposed at this stage such as the spike width
and / or the interval between spikes.

An example of the third method has been presented in [24]
for the Ingara dataset. The approach taken is to threshold
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the magnitude of the raw backscatter data in the range/time
domain at 3 standard deviations above the mean. The percent-
age of sea-spikes present in the data was then measured. The
results showed that the majority occur in the lower grazing
angle region for the HH channel and are slightly higher in
the cross wind directions for the HV and VV channels. These
results were verified by comparing the trends with a separate
analysis using the KK PDF to model the sea clutter. An
image processing algorithm was then used to isolate the short
lived (discrete) and long lived (persistent) scatterers which are
attributed to whitecaps and lasted for at least 1 s. The results
in Figs. 14 and 15 revealed that the persistent whitecaps are
spread quite evenly in grazing and azimuth for the HH channel
with a clear trend in the cross-wind directions for the HV and
VV channels. Based on this information, the wave velocity,
life time and spike decorrelation time of the whitecaps were
able to be measured and are shown in Fig. 16.
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Fig. 14: Percentage of discrete sea-spike detections for the
Ingara dataset [24].

E. Doppler spectrum

The Doppler spectrum plays an important role in under-
standing the characteristics of sea clutter. In a non-coherent
detection scheme, it determines the amount of pulse to pulse
correlation, while for a coherent scheme it plays a more
significant role. In the literature, the mean Doppler spectrum
is often characterised by a single Gaussian component with
an offset and spread [12], [34], [67]. This is in contrast to
the asymmetrical spectra which is often observed due to the
interplay of both fast and slow scattering mechanisms [1]. As
discussed previously, the slow scattering response is primarily
associated with resonant Bragg scattering from wind induced
capillary wave structures on the sea surface and exhibits
Doppler shifts on the order of tens of Hertz (for X-band
systems), consistent with the anticipated phase velocity of
capillary waves. While the Bragg scattering response typically
dominates for vertically polarised radar systems, studies of
low grazing angle data have shown that horizontal polarised
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Fig. 15: Percentage of whitecap detections for the Ingara
dataset [24].
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Fig. 16: Sea-spike characteristic PDFs for the Ingara dataset -
wave velocity and life time [24].

systems can be heavily affected by fast scattering mechanisms,
so named for the higher Doppler frequencies they exhibit in
comparison with Bragg scattering.

One of the first bimodal models for low grazing angles was
proposed by Lee et al. [68] and comprises two components,
a Gaussian for the Bragg scatterers and a Lorentzian and/or
Voigtian for the non-Bragg component. The model describes
the Doppler spectrum with a good degree of accuracy, but
is complicated to understand and interpret. Fig. 17 shows a
vertically polarised example from a wavetank where the two
components can clearly be seen [68]. A similar model was
used by Lamont-Smith [69] who looked at the effect of varying
the grazing angle with data collected from both a large wave
tank and from a cliff top. His model uses a single Gaussian to
represent the slow Doppler component which dominates the
vertical channel, and two Gaussian components to represent
the slow and fast components in the horizontal channel. This
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also corresponds with later observations by Melville, et al.
[70] who found that the non-Bragg term was virtually absent
in their vertical channel data.

Many authors investigating sea-spikes observed that there
is a degree of polarisation independence in the non-Bragg
component when looking at sea clutter backscatter. Jessup
et al. [62] observed that as the grazing angle increased, the
polarisation ratio (HH/VV) which is typically less than one,
now approached unity. This influenced the model presented
by Walker [59] which uses a combination of three Gaussian
components to describe the Doppler spectrum. This included
components to model the Bragg scatterers, the persistent po-
larisation independent return from the breaking waves (white-
caps) and the discrete short lived spikes.

At medium grazing angles, Stacy et al. [71] and subse-
quently Rosenberg et al. [60], [61] reported on Doppler spectra
measured from the Ingara data. They fitted the observed
spectra to the Walker model with good agreement. However
further investigations [24] found that the Walker model did not
totally describe the scattering and a modification was required.
Consequently, a new two component Doppler spectrum model
was introduced in [19] using the Gaussian building blocks that
both Walker [59] and Lamont-Smith [69] used.

Fig. 17: Mean Doppler spectrum example from a wavetank
for vertically polarised data at 7◦ grazing with: (◦) data, (-
-) Voigtian component, (· · ·) Gaussian component and (—)
combined mean spectrum [68].

F. Evolving Doppler model
While the previous Doppler models are useful to capture

the overall mean, the Doppler spectrum actually evolves in
both range and time. This evolution in range can be seen
in Fig. 3 for the Ingara data, while an example of the time
evolution from the IPIX dataset is shown as a spectrogram in
Fig. 18. Therefore it is important to correctly model this effect
to achieve realistic simulation of sea clutter and accurately
determine the detection performance of a coherent radar.

There are only a few models which can model the time and
range-varying characteristics of the Doppler spectra. These
include the auto-regressive model by Greco et al. [16], the
range / time evolution model by Watts [72] and those by
Davidson [73] and McDonald and Cerutti-Maori [32].

Fig. 18: Normalised spectrogram of the IPIX data showing the
time varying spectrum [16].

In this section, we now present the Watts model in further
detail. This model has been verified with the CSIR dataset
[74], the NetRAD dataset [75] and the Ingara dataset in [27],
[76]. It has the following components:

• A model for the texture PDF, correlated over time or
range with mean intensity, x. This has previously been
modelled as a gamma distribution in [72] and inverse
gamma distribution in [77], resulting in compound K and
Pareto distributions respectively.

• A Gaussian-shaped spectrum

G(f, x, s) =
x√
2πs

exp

[
− (f −mf(x))2

2s2

]
(26)

where s is the spectrum width and mf(x) is the mean
Doppler frequency.

• The mean Doppler is related to the normalised mean
intensity:

mf (x) = A+B
x

〈x〉
(27)

• A PDF for the spectrum width, s with mean, ms and
variance, σ2

s . The original work in [72] proposed a
Gaussian PDF although a gamma PDF should fit equally
well for parameter values encountered in practice.

This model has been extended for multiple phase centres in
[78] and for a multiple phase centre scanning radar in [79].
It was also observed for the Ingara data that at high values
of normalised intensity, the rate of increase of mf(x) with x
appeared to reduce when looking up or downwind. In [76], this
observation was explained as an increasing bimodal behaviour
above some level of intensity.

A possible general model for the clutter power spectrum
was given by a mixture model of two Gaussian-shaped power
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spectra:

G(f, x, s1, s2) =
αx√
2πs1

exp

[
− (f −mf1(x))2

2s21

]
+

(1− α)x√
2πs2

exp

[
− (f −mf2(x))2

2s22

]
(28)

where

mf1(x) = A+Bx, x ≤ tbi

= A+Btbi, x > tbi

mf2(x) = A+Bx.

(29)

This has the effect of broadening the spectrum if x exceeds
some threshold, tbi. Such bimodal behaviour will be reflected
in estimates of the mean Doppler shift and variance of the total
spectrum. Fig. 19 shows an example of the bimodal fit of the
Ingara data from [27], where the HH upwind result clearly
has two components, while the VV upwind and all crosswind
results are more linear.

Fig. 19: Spectrum mean of the Ingara data as a function of
intensity. Blue is the measured data and red is the bimodal
model fit [27].

G. Parameter models

Practical use of these statistical models requires a way to
relate the model parameters to the sea conditions, collection
geometry, polarisation and frequency. This can be done either
empirically based on measured data or with physical based
electromagnetic modelling [1], [31], [80]. In general, these
latter approaches are too computationally intensive to be used
for most applications and are not described further here.

Many empirical models for the mean backscatter are based
on fits to Nathanson’s tables [36] with some adding a variation
to account for changes in the wind direction. These cover
a range of frequencies and geometric and environmental
conditions. They include the Technology Services Corporation

TABLE I: Summary of mean backscatter models. Note all
models are valid for both HH and VV polarisations.

Model Frequency Grazing Azimuth Sea state
(GHz) angle (◦) angle (◦)

TSC 0.5-35 0-90 0-360 0-5
NAAWS 0.5-70 0-30 0-360 3-6

NRL 0.5-40 0.1-60 averaged 0-6
MASUKO 10, 34 0-70 0-360 2-6

IRSG 10.1 20-45 0-360 2-6
GIT 1-100 0.1-10 0-360 0.4-7.1

DST Continuous 10.1 0.1-45 0-360 2-6

(TSC) [35], NATO Anti Air Warfare Systems (NAAWS)
[81], Hybrid [82] and Naval Research Laboratory (NRL) [83]
models. A second group of mean backscatter models are
designed to fit the relationships described by Ulaby et al.
[6]. These are the Masuko [84] and Ingara Imaging Radar
Systems Group (IRSG) linear [85] models. One final mean
backscatter model which is widely used in the literature is from
the Georgia Institute of Technology (GIT) [86] and covers
0.1◦−10◦ grazing, all azimuth angles, a range of wind speeds
from 3−30 kts (1.5−15.4 m/s), frequencies from 1−100 GHz
and both horizontal and vertical polarisations. Figs. 20 and 21
shows slices through many of these models along both grazing
and wind speed for the horizontal polarisation and upwind
direction. For the first plot, the wind speed is fixed at 9.4 m/s,
while for the second, the grazing angle is fixed at 30◦.

While a number of the models described here cover grazing
angles above 10◦, they have shown to be a poor fit to the
Ingara medium grazing angle data set [85]. Most are designed
for either low gazing angles (typically less than 10◦) or
medium grazing angles (greater than 15◦) and cannot be used
continuously when modelling radar performance or simulating
sea clutter for geometries that span both the low and medium
grazing angle regions. To address this problem, the DST
continuous model was developed in [87] covering 0.1◦ - 45◦

grazing and combining the GIT model at low grazing angles
and a fit to the Ingara data for medium grazing angles. This
model covers both horizontal and vertical polarisations, any
wind direction and sea states 1 − 6. Table I summarises the
mean backscatter models presented here where the sea state,
S̃ is used to represent the sea condition. To convert between
wind speed U and sea state, the following relationship is used,
U = 3.2S̃0.8 [35].

An example is shown in Fig. 22 with the data on the left
and the model fit on right. The data comprises an instantiation
of the GIT model for grazing angles 0.1◦−10◦ and the Ingara
data from 15◦ − 45◦.

The K-distribution is the most common amplitude distribu-
tion model for representing the fluctuation of sea clutter. At
low grazing angles (< 10◦), there are a few models for the
K-distribution shape, ν, based on a dataset summarised in [1].
This includes the original shape model presented by Ward [88]
and the updated fits by Watts and Wicks [89]. At medium
grazing angles, there are a number of models based on the
Ingara medium grazing angle data set. The first was designed
to model only the geometry for an individual day [90]. This
was then extended by Crisp et al. [91] and then Rosenberg
et al. [76] to include extra components for the environmental
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Fig. 20: Relative mean backscatter variation with grazing
angle. Data is from the horizontal polarisation, 9.4 m/s wind
speed and upwind [85]. Dashed lines indicate regions where
the models are not valid. Models / data represented include:
blue - IRSG linear, magenta - NAAWS, red - TSC, green -
GIT, M - Masuko, � - Nathanson, • Ingara data.

Fig. 21: Relative mean backscatter variation with wind speed.
Data is from the horizontal polarisation, 30◦ grazing and
upwind [85]. Dashed lines indicate regions where the models
are not valid. Models / data represented include: blue - IRSG
linear, magenta - NAAWS, red - TSC, green - GIT, • Ingara
data.

conditions and resolution cell area. Finally, a continuous model
over the grazing angle range 0.1◦−45◦ was presented in [87]
using a modified version of the Watts and Wicks model to
cover all swell directions combined with the medium grazing
angle model from [76]. Fig. 23 shows the data on the left
and an example model fit on the right for a resolution cell
area Ac = 756 m2. The data comprises an instantiation of the
modified Watts and Wicks model for grazing angles 0.1◦−10◦

and the Ingara data from 15◦ − 45◦.
There are very few models for the Doppler spectrum, given

the difficulty in modelling its time and range varying nature.
Many are based on a single Gaussian model for representing
the mean spectrum such as the one by Wetzel [67]. This model
is based on low grazing angle data in the upwind direction and
relates the mean velocity of the Doppler spectrum to the wind
speed:

VHH = 0.25 + 0.25U,

VVV = 0.25 + 0.18U,
(30)

where VVV and VHH denote the velocities of the vertical and
horizontal polarisations respectively. The half-power width is

quite variable but is given approximately by ∆ = 0.24U .
At medium grazing angles, a parametric model for the

parameters of the evolving Doppler model was given in [92]
and later extended for the bimodal case in [76]. This model
is based on the data at the finest resolution cell area of the
Ingara data, 0.75× 63 m2 and includes both the wind and
swell directions.

Due to the non-stationarity of sea clutter, it is difficult to
model the spatial correlation of sea clutter. This is shown in
Fig. 13 which highlights the variability in the autocorrelation.
As a result, it is typically characterised by the length of the
initial decay, rc measured at the point where the normalised
correlation reaches 1/e ≈ 0.37. Using this value, either a
negative exponential or Gaussian function can be used to
model the correlation. An example of the latter is given by

Rspat(y) = exp

[
−y

2

r2c

]
. (31)

At low grazing angles, a suitable model for the spatial decor-
relation length is presented in [93],

rc =
πU2

2g

√
3 cos2 θ + 1 (32)

where g ≈ 9.81 m/s2 is the gravitational acceleration and θ
is the azimuth wind direction with respect to the radar line of
sight. For medium grazing angles, the model in [76] can be
used.

Fig. 22: Mean backscatter - data on left and model fit on right.
Data comprises the GIT model for grazing angles 0.1◦ − 10◦

and the Ingara data from 15◦ − 45◦ [87].

IV. BISTATIC CLUTTER ANALYSIS AND MODELLING

Bistatic radars offer extra degrees of freedom that can be
utilised for target detection and offer covertness for the receive
node [2], [94]. Unfortunately, there are not as many results
for bistatic sea clutter when compared to the monostatic case.
The few data well documented in the literature are reported
in Table II (adapted from [22]). In this section, we will
focus on results from the NetRAD radar system with the
characterisation based on the geometry in Fig. 24 where φ1 is
the incidence angle, φ2 is the scattering angle and the bistatic
angle, β = arccos(sinφ1 sinφ2− cosφ1 cosφ2 cos θB). When
the azimuth component of the bistatic angle, θB = 0◦ or 180◦,
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Fig. 23: K-distribution shape with resolution cell area Ac =
756 m2. The data comprises the modified Watts and Wicks
model for grazing angles 0.1◦− 10◦ and the Ingara data from
15◦ − 45◦ [87].

the scattering geometry is referred as in-plane, otherwise it is
out-of-plane.

To determine the range cell area for the bistatic case, the
footprint is determined by the intersection of the transmit
and receive beams. Three cases are considered in [95], cor-
responding to the limiting cases of range, beamwidth and
Doppler. Assuming small grazing angles and a large range
sum compared to the baseline, (rT + rR > L), then the range
limited case has bistatic range resolution given by

∆rb =
c

2B cosβ/2 cosϕ
(33)

where ϕ is the angle from the bistatic bisector and a line
connecting two potential targets. Assuming that the cross range
of the receive beam is greater than that of the transmit beam,
the bistatic range cell area is then given by

AB =
crTθ3dB

2B cos2(β/2) cosϕ
. (34)

TABLE II: Documented bistatic sea clutter experiments.

Organisation Sea state Freq. Pol. φ1 φ2 θB
John Hopkins 1-3, C-band VV, VH 0.2◦-3◦ 10◦-90◦ 180◦

University 5 X-band HH 1◦-8◦ 12◦-45◦ 180◦

(1966-67)
GEC Stanmore 5 X-band VV, HH 6◦-90◦ 6◦-180◦ 165◦,
(1967) ≈ 0◦-90◦ ≈ 0◦-180◦ 180◦

Georgia Institute 90◦-
of Technology 3-4 X-band VV, HH ≈ 0◦ ≈ 0◦ 160◦

(1982-84)
NetRAD 60◦-
(UCL / UCT) 3-4 S-band VV, HH ≈ 1◦ ≈ 1◦ 165◦

(2010-2018)

A. Bistatic radar cross section

One of the main results on the mean backscatter of bistatic
sea clutter has been presented by Domville in [97], after
an extensive recording campaign with an X-band airborne
continuous wave transmitter and a receiver in a second aircraft.
This in-plane model has been summarised in [1] with an
example shown in Fig. 25 for a windspeed of U = 7.5 m/s
and the HH polarisation. In this figure, the two grazing angles

Fig. 24: Bistatic radar geometry, based on [96].

are φ1 and φ2, where φ1 = φ2 corresponds to the monostatic
case and φ2 = 180− φ1 corresponds to specular scattering.

Fig. 25: Example of in-plane bistatic mean backscatter for the
HH polarisation with a wind speed of 7.5 m/s [1].

Experimental results have been presented in [98] using
data collected by the NetRAD system during a measurement
campaign in 2010 at Scarbourough, Cape Town (see Section
II-B). Table III reports the CNR and the mean backscatter in
dBm2/m2 for the monostatic data, σ0, and the bistatic data,
σ0

B. For almost all datasets, it was observed that the mean
backscatter for the bistatic case is nearly always less than
monostatic. Note that the monostatic results will vary with
bistatic angle as the antenna’s were pointing at a difference
patch of the sea for each collection.

B. Amplitude distributions

A study of the bistatic sea clutter amplitude statistics has
been reported in [98], [99] for the NetRad dataset on two
different days with baselines of 1827 m and 728 m respec-
tively. The statistical models used include the Weibull (W),
K, Log-Normal (LN), Pareto (IG, in the following figures)
and the Generalized Gaussian (|GG|). The shape and scale
parameters of the theoretical distributions were estimated
using the method of moments technique [100] and the data
region contains only samples where the bistatic-clutter power
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TABLE III: Summary of mean backscatter measurements for
the NetRAD data (adapted from [98]). Note that the two VV
β = 90◦ measurements occurred at different times.

Bistatic Monostatic
β Pol. CNR (dB) σ0

B (dB) CNR (dB) σ0 (dB)
15◦ VV -7 - -12 -
30◦ VV 10.5 -59 8 -59
60◦ VV 27 -47.9 26 -47.1
90◦ VV 25 -55 33 -44.5
90◦ VV 32 -47.8 39 -37.6
90◦ HV 26 -55 16 -59.8
15◦ HH -10 - -4 -
30◦ HH -15 - -5 -
90◦ HH 18 -61 31 -44.8

was high and the contribution from thermal noise was less
significant.

For the datasets collected with the larger baseline, the LN
and Pareto models have a good fit over the entire range
extent, while the log-normal distribution is able to follow the
tails of the data histograms where the clutter power is high.
For the datasets with a small baseline, the data seems to be
appropriately represented by the K distribution model, but the
good fit of this model gets less precise when the clutter is less
powerful. Two examples are shown in Fig. 26 for bistatic HH
data with β = 90◦, and bistatic VV data with β = 60◦.
Note that due to the geometry, the range cell under test,
rCUT = 1380 m for β = 90◦ and rCUT = 1900 m
for β = 60◦.

(a)

(b)

Fig. 26: NetRAD amplitude PDF for (a) bistatic HH data with
β = 90◦, (b) bistatic VV data with β = 60◦ [99].

Further information about the spikiness of the data can

be obtained by looking at the variation of Weibull shape
parameter, cw where small values indicate an increasing de-
viation from Gaussianity. The study in [99] found that for
bistatic data, the HH shape parameter is almost always higher
than for monostatic data. The behaviour is different in the
VV polarisation, where the bistatic shape parameter is often
smaller than the monostatic one. Based on these results, we can
conclude that the bistatic clutter is less spiky than monostatic
in the HH polarisation, while it is comparable for VV.

C. Texture correlation

The long time clutter correlation for the NetRAD bistatic
data has been studied in [75] and is reproduced in Figs. 27 and
28 for the HH and VV polarisations. From these datasets it is
apparent that for the monostatic HH data, the correlation time
is only about 5 s, while for the HH bistatic data, the texture
correlation exhibits a slightly periodic behaviour for β = 90◦

and β = 120◦ (not shown). In the VV data, this periodicity is
much clearer for both monostatic and bistatic data, particularly
for β = 60◦ and β = 90◦.

Fig. 27: Temporal correlation for the NetRAD HH data at
β = 60◦ and β = 90◦ [75].

Fig. 28: Temporal correlation for the NetRAD VV data at
β = 60◦ and β = 90◦ [75].

Another important aspect which influences the performance
of multistatic detection schemes is the degree of texture
cross correlation between the monostatic and bistatic nodes.
This has been studied in [101] with the maximum values
shown in Fig. 29 over a range of bistatic angles. In general,
the maximum texture cross-correlation coefficient fluctuates
between 0.2 and 0.5 for co-polarised data, and between 0.7
and 0.05 for cross-polarised data.
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Fig. 29: Maximum texture cross correlation between the
monostatic and bistatic nodes of the NetRAD data [101].

D. Sea spikes

To better understand the behaviour of the sea spike com-
ponents, consider an example of the NetRAD time-history in
Fig. 30 for a selected range cell of the bistatic and monostatic
VV data. In this dataset, the bistatic angle is β = 60◦ and
the range cell under test rCUT = 1900 m from the receivers.
Although the monostatic data shows a power level higher than
the bistatic data, the presence of spikes is evident in both plots.
It can be noted that there is not a great correlation between
the spiking events. For the bistatic data, one high spike with
short duration is present at about 60 s, with other long spikes
at 90 s and 115 s. On the other hand, the monostatic data
shows only one spike at 80 s with other minor events at 45 s
and 55 s.

Fig. 30: Time history of the NetRAD amplitude clutter samples
with VV polarisation and β = 60◦. Selected spikes are plotted
in red [99].

Fig. 31 shows the range-time map for β = 60◦ [99]. In these
results, the horizontal axis corresponds to the time in seconds
and the vertical axis to a range interval where the bistatic CNR
is high. The range-time diagrams are characterised by bands of
high power, i.e. clusters of persistent spikes which migrate in
range due to their velocity. The duration of this back-scattering
contribution is similar to that of the whitecap component in
Walker’s model [59], since these persistent spikes last from
one to about 20 s. The discrete sea spikes are contained

within the high-power bands, meaning that they mainly occur
on the crests of the sea waves. Together, the discrete and
persistent spikes are generally considered as part of the same
non-Bragg scattering component and are observed mostly in
the HH polarised data, whereas the banded pattern shows a
less uniform power level than in the VV polarised data. In
general, discrete spikes occur mainly in horizontally polarised
data both for the monostatic and bistatic data, but in the case
of the vertical polarisation, the bistatic data seems to have
a higher number of discrete spikes than the monostatic data
[102].

Fig. 31: Time domain image of the NetRAD bistatic data
collected at β = 60◦ [103].

Automatic classification of the sea spike components has
been undertaken in [66] where spikes are defined as short
echoes with an amplitude much higher than the background.
Samples which have a power level higher than the power
threshold and last longer than the minimum spike width are
classified as spikes, and those spikes which have a separation
smaller than the minimum interval are joined together to form
one spike [66]. The power threshold was set as 6 times the
mean power of the received returns, the minimum spike width
was 80 ms and the minimum interval between spikes was
150 ms. These values were chosen empirically by evaluating
the performance of the spike selection algorithm in the time-
history plots of clutter samples and in the masks of selected
spikes. Fig. 30 shows the time history of the amplitude clutter
samples with the spikes highlighted in red, whereas Fig. 32
shows the mask of the selected sea spikes (same range interval
as the range-time maps in Fig. 31), where a white pixel
corresponds to a spiky sample. The figures confirm a good
classification of the spiking events.

Once quantified, the statistics of the spike width in seconds
and the time interval between spikes can be determined by
forming histograms of the data and comparing them with an
exponential PDF. Fig. 33 shows that the exponential distribu-
tion is a reasonable model for the spike width. The results in
[66], [103] show that the mean spike width is higher for the
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Fig. 32: Detection mask of the selected sea spikes for the
NetRAD HH bistatic data collected at β = 60◦ [103].

lower bistatic angles with longer spikes present in the bistatic
VV data and most of the HH data. The mean interval between
spikes is also generally higher for the bistatic data. Table IV
summarises the results for β = 60◦, showing the ratio of the
number of samples belonging to a spike and the number of
received samples, psp, the mean spike width, dm and the mean
interval between spikes, im.

Fig. 33: Empirical distribution of spike width for the NetRAD
bistatic HH data with β = 60◦ [103].

TABLE IV: Average spike parameters in the NetRAD data for
β = 60◦ [103].

Bi HH Mono HH Bi VV Mono VV
psp 8.41% 13.25% 11.87% 12.17%
dm (s) 0.93 0.75 1.22 1.00
im (s) 12.22 6.51 14.13 8.56

E. Doppler spectrum

In the open literature, there are few references focusing on
the spectral characteristics of bistatic sea clutter. Some results
for the NetRAD data have been illustrated in [75] using the
unimodal Gaussian Doppler spectrum model in Section III-F.

To estimate the linear model for the mean in (27), the
center of gravity (CoG) of the distribution must be measured
as defined in [16]. Fig. 34 shows the CoG estimates plotted
against the two-way range for HH data [75]. The results for
β = 90◦ and 120◦ show a trend of increasing CoG with
range, while the bistatic data at β = 60◦ shows a decrease
in the CoG values with range. Similar behavior is evident in
the monostatic data at β = 60◦. The VV monostatic data
(not shown) does not have the same increasing or decreasing
behavior as in the HH case. Further results on the spectrum
width can be found in [75]. Given the small amount of data,
it is difficult to draw any strong conclusions on the spectral
characteristics.

Fig. 34: Monostatic and bistatic centre of gravity for the
NetRAD HH data [75].

F. Modelling bistatic sea clutter

Due to the complexities in measuring bistatic sea clutter,
there are not many bistatic clutter models in the literature. The
exception is the mean backscatter for both in-plane and out-
of-plane geometries. Based on the work of Domville [97] and
other experimental data, it has been observed that the bistatic
mean backscatter is dominated by the return with the smallest
grazing angle between the transmitter and receiver. Willis
[104] has analysed the Domville data using Barton’s model
for bistatic land clutter [105], and proposed the following
relationship,

σ0
B(φ1, φ2) = γ

√
sinφ1 sinφ2 (35)

where γ is the constant gamma coefficient. To improve the
accuracy of this model, Griffiths et al. [2] has proposed a
variation using the monostatic GIT model, σM, calculated at
both the transmit and receive nodes. If these values are used
inside the geometric mean, the bistatic mean backscatter can
be modelled as

σ0
B(φ1, φ2, θ) =

√
σM(φ1, θ)σM(φ2, θ). (36)

For out-of-plane bistatic mean backscatter, the change in az-
imuth angle requires two further effects to be modelled. These
include a reduction of the co-polarised scattering component



17

and an increase in the cross-polarised component [2]. Both of
these effects can be attributed to ‘skew de-polarization’, which
is a projection of the electromagnetic field from the frame of
the transmitting antenna to the frame of the receiving antenna.
To model this effect, sinusoidal functions have been included
in the model below with three variables, m,n and k adjusted
to match the data. The model proposed in [2] uses Long’s
model [106] for the monostatic cross-polarised signal, σ0

Mx

σ0
Mx

(θ) = 100.1(29.8 ln(0.5144U)+6 cos θ−84.7). (37)

Then assuming that the co-polar and cross-polar components
add incoherently, the complete model is given by

σ0
B(φ1, φ2, θB) =

√
σ0

M(φ1, 0)σ0
M(φ2, θB)| cos θB|m

+ k
√
σ0

Mx
(0)σ0

Mx
(θB)| sin θB|n, k,m, n > 0.

(38)

V. SIMULATION OF RADAR SEA CLUTTER

One of the ways that models of sea clutter are used is
to simulate realistic clutter signals. These can be used to
stimulate radar processors during development and testing,
generate realistic responses and displays in radar trainers and
to evaluate radar detection algorithms. A simulated signal must
reproduce as faithfully as possible the characteristics of real
clutter including its amplitude statistics, short-term temporal
correlation (including that represented by the Doppler spectra)
and spatial and longer-term temporal variations. It must also
represent the variation of range and azimuth over time as ob-
served from a wide-area surveillance radar. Finally to simulate
realistic clutter from an airborne radar, it is important to model
the effects of aircraft motion on the radar returns.

Many of the techniques discussed here are presented in
[1]. We shall restrict discussions to the simulation of sea
clutter represented by compound Gaussian models and, in
particular, the K and Pareto distributions. As discussed in
Section III-B, compound models have a Gaussian speckle
component, a texture component and temporal and spatial
correlations. The texture is approximately constant within a
cell-under-test (CUT) over the tens of milliseconds typically
associated with a radar dwell. This value will have a PDF
given by a gamma distribution (K model) or an inverse-gamma
distribution (Pareto model), and contain both spatial and
long-term temporal correlations. The intensity of the speckle
component will have an exponential PDF, modulated in power
by the local texture. When using pulse to pulse frequency
agility, this fluctuation will be approximately random and for
a fixed frequency radar will fluctuate according to a short-term
temporal correlation, usually modelled by a Doppler spectrum.
It may be noted that although it is convenient to model clutter
behaviour using autocorrelation functions and spectra, most
clutter returns are time-varying and range-varying and cannot
be represented by a stationary stochastic process with complete
accuracy.

In order to simulate sea clutter returns, it is convenient
to generate the texture and speckle components separately.
The sections below first show how the memoryless nonlinear
transform (MNLT) may be used to generate texture samples.

This is followed by methods for generating coherent and non-
coherent speckle signals.

A. Clutter texture simulation with the memoryless non-linear
transform

The MNLT is a fairly straightforward way to transform a set
of random Gaussian-distributed variables to have a different
PDF. Samples are first generated from a zero mean, unit
variance Gaussian process and for each sample value p, the
cumulative distribution of the Gaussian process at that point is
equated to a cumulative distribution with the desired PDF, Pdist
evaluated at q. For successive random samples, the resulting
values q will then have the required PDF. This can be written
as ∫ ∞

q

Pdist(q
′)dq′ =

1√
2π

∫ ∞
p

exp

(
−p
′2

2

)
dp′

=
1

2
erfc

(
p√
2

)
. (39)

where erfc(·) is the complementary error function. If we then
define the complementary quantile function, Q, so that∫ ∞

Q(κ)

Pdist(q)dq = κ, (40)

the required value q can be given by

q(p) = Q

(
1

2
erfc

(
p√
2

))
. (41)

For example, if we want to generate a gamma distribution with

Pdist(p) =
1

Γ(ν)
pν−1e−p, (42)

then∫ ∞
Q(κ)

Pdist(q)dq =
Γ(ν,Q(κ))

Γ(ν)
=

1

2
erfc

(
p√
2

)
. (43)

and the gamma random variable is recovered by solving this
relationship and evaluating the quantile function. Quantile
functions of various functions are available in packages such
as Mathematica [107].

B. Clutter texture simulation with correlated samples

It is easy to generate Gaussian samples with a desired
spectrum or autocorrelation function (ACF) using filtering
techniques in the time or frequency domains. For example, if
the required correlation coefficient is ρ(t) for slow-time t, then
the equivalent power spectral density S(f) can be determined
by the Fourier transform, F [ρ(t)]. To generate a sequence of
M samples, a voltage spectrum is generated as

√
F [ρ(t)],

multiplied by a vector of M random Gaussian samples with
zero mean and variance 1, N [0, 1], and then transformed back
to the time domain. The mean level and standard deviation of
the real component of the transformed data are then adjusted to
give the required values. A 2-dimensional array of correlated
samples can be generated in a similar way.

However, if correlated Gaussian samples are transformed
using the MNLT, the resulting samples will have the desired
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PDF but their ACF will have changed. Within some limitations
discussed below it is possible to determine the ACF that the
Gaussian samples should have to achieve the required ACF.

The relationship between the ACFs at the input and output
of the MNLT was first described in [108]. As illustrated below
and examined in [109], there are some limitations to the
mappings that can achieved. A good illustration of the method
with specific application to the simulation of K distributed sea
clutter is presented in [110], with further details in [1]. If the
ACF of the transformed variables, y, is given by 〈y(0)y(t)〉 it
can be shown that the desired normalised ACF RG(t) of the
Gaussian samples is related by

〈y(0)y(t)〉 =
1

2π

∞∑
n=0

RG(t)n

2nn!

×
(∫ ∞
−∞

e−x
2/2H

(
x√
2

)
Q

(
0.5erfc

(
x√
2

))
dx

)2

(44)

where H(x) is a Hermite polynomial, readily accessible
in packages like Mathematica [107]. This expression looks
complicated but can readily be processed using numerical
computing methods. Usually, only a few terms of the infinite
summations are required. This method has the advantage that
it can reproduce samples with negative values of correlation
coefficient.

As an example, we can illustrate the generation of gamma
distributed samples. If we set 〈y〉 = 1, then

〈
y2
〉

= 1 + 1/ν
and if the required correlation coefficient is ρ(t), then
〈y(0)y(t)〉 = 1 + ρ(t)/ν. Now (44) can be solved to give

〈y(0)y(t)〉 = f(0) + f(1)RG(t) + f(2)R2
G(t) + . . . (45)

This result has to be inverted for each value of the lag, t, to
find the required values of RG(t). It is then a simple matter to
generate Gaussian samples with the required ACF, as discussed
above. Fig. 35 shows examples of the mapping between the
desired correlation coefficient of gamma distributed variables,
ρ(t), and the correlation coefficient of the Gaussian variables
RG(t), prior to application of the MNLT. For ν = ∞, the
mapping is 1 : 1 but as ν reduces it is not possible to map all
negative values of ρ(t) onto RG(t). For example with ν = 0.1,
only ρ(t) > −0.1 can be modelled.

The method can also be applied in two dimensions to
simulate an area of sea. An example is shown in Fig. 36 with
the correlation coefficient modelled as

ρ(m1,m2) = exp

(
−|m1|+ |m2|

10

)
cos

(
π|m2|

8

)
(46)

with −∞ ≤ m1,m2 ≤ ∞ and the gamma shape parameter,
ν = 2.

As discussed above, there are some limitations to the values
of negative correlation coefficient that can be achieved by
this method, especially in very spiky clutter. Some other
methods of producing correlated gamma variates are described
in [111], [112]. However, these methods lack the ability to
introduce anti-correlations or are only approximate solutions
that do not reproduce the higher order moments correctly.
The use of an MNLT is proposed in [113], but does not
address the general solution for an arbitrary ACF. Despite

the limitations of the method proposed here, it is found in
practice that it is usually possible to adequately reproduce
the ACFs and PDFs encountered in real sea clutter. It should
also be remembered that this is only a model of sea clutter.
This representation may not fully represent the large discrete
sea spikes sometimes observed, which may have a significant
effect on radar performance. In these circumstances it may be
necessary to treat clutter spikes separately.

Fig. 35: Mapping between the correlation coefficient of gamma
distributed variables, ρ(t), and the correlation coefficient of the
Gaussian variables RG(t), for various values of gamma shape
parameter, ν.

Fig. 36: A gamma distributed random field with ν = 2 and
correlation coefficient given by (46).

C. Non-coherent amplitude or intensity speckle samples

Once samples of the texture component have been generated
they can be used to modulate the power of the speckle
component. For a coherent signal, the speckle will be rep-
resented by a complex Gaussian process, which may also be
correlated. The envelope of the returns will have a Rayleigh
distribution and the intensity or power of the returns will
have an exponential distribution. For many applications, the
non-coherent speckle signals are assumed to be either fully
correlated or independent from pulse to pulse. In that case
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suitable samples with Rayleigh or exponential distributions
are easily generated using standard methods. Alternatively, a
more precise result can be obtained by generating sequences
of complex Gaussian samples with an appropriate Doppler
spectrum and then forming with modulus or modulus squared
as appropriate.

D. Coherent speckle samples

As discussed in Section III-F, the spectrum of the speckle
component can be modelled as having a Gaussian-shaped
spectrum, with a randomly fluctuating spectrum width and
a mean Doppler shift that may vary with the local intensity
(dependent on the wind direction). This model was originally
proposed in [72], [114] and its use for simulating data has
been further developed in [76]. The model parameters have
also been measured over a wide range of sea conditions and
viewing geometries at X-band [27], [72], [77], [92], [115]),
which is an important pre-requisite for the use of models in
radar design.

1) Simulation in the frequency domain: To generate clutter
samples directly in the frequency domain, the average power
spectrum for the nth frequency bin at a given range and burst
is defined as:

G(n, x) =
x√
2πs

exp

−
((
n− N

2

)
fr
N −mf(x)

)2
2s2

 (47)

where n = 1, . . . , N and the local intensity of the texture
is x. The spectrum is defined here to have 0 Hz centred
on frequency bin N/2. The parameters of simulation defined
previously include the PRF, fr, the number of pulses in a burst,
N , the spectrum mean Doppler parameters A, B, the spectrum
width parameters ms, σs, the shape parameter of the clutter,
ν and the CNR, C. The coherent spectra are then generated
as

S(n, x) =
√
G(n, x)g(n) + γ(n) (48)

where g(n) are random complex samples with a Gaussian PDF
of the form N [0, 1] + jN [0, 1] and γ(n) are complex noise
samples. If

〈∑Nb
n=1G(n, x)

〉
= 1, then γ(n) will have the

form

γ(n) = N [0,
√
N/(2C)] + jN [0,

√
N/(2C)]. (49)

Finally, complex time domain samples for each burst can
obtained by an inverse Fourier transform,

s(n, x) = F−1
[√

G(n, x)g(n) + γ(n)
]
. (50)

2) Simulation in the time domain: If it is desirable to
simulate longer returns from range gates which evolve in time
and do not have discontinuities from concatenating data blocks
with different values of mean intensity, then coherent time
domain data with a continuously changing spectrum can be
simulated [72]. For given values of x and s, a finite impulse
response (FIR) filter can be designed and applied to coherent
samples taken from a zero-mean complex Normal distribution.
Over time in a given range gate, x and s will slowly change

and if new values are defined for each PRI, the FIR filter
weight can be changed from pulse to pulse. Provided that x
and s only change very slowly (at least with respect to the
length of a few pulse bursts), the resulting data should have
a defined spectrum with the required characteristics. Consider
an FIR filter of length L having weights of the form:

w(l, xm1,m2 , sm1,m2) =

√
xm1,m2

2
exp

(
−jmf(xm1,m2

)
2πl

fr

)
× exp

(
−
(

2πsm1,m2 l

fr

)2
)

(51)

for l = −L/2, . . . , 0, . . . , L/2, where the sampling interval
is 1/fr. Now xm1,m2

and sm1,m2
are the values of x and s

defined for range m1 and azimuth m2, as in (46). If the filter
weights change slowly enough for each pulse, the resulting
data will then have an appropriate time-varying spectrum. For
best fidelity, it may be appropriate to either increase the PRF
and later down-sample as required, or increase the length of
the filter, L. A possible guideline is that sL/fr ≈ 1.

3) Summary of coherent sea clutter simulation: The steps
required to generate complex bursts of data at different range
gates include:

1) Define the correlation coefficient ρ(·) of the intensity,
x, as a function of range and, in general, from pulse
to pulse. For the generation of successive bursts of data
at a given range, the intensity is assumed to be constant
over a burst, so the correlation coefficient can be defined
from burst to burst. For the direct generation of time-
series data described in Section V-D2, the correlation
from pulse to pulse will be required.

2) Define the equivalent correlation coefficient for the
spectrum standard deviation, s.

3) Generate a 2-dimensional array of correlated samples,
x, with a gamma or inverse gamma distribution having
shape parameter ν and unit mean level (assuming the K
or Pareto distribution models are being used).

4) Generate a 2-dimensional array of correlated samples,
s, with a gamma or Gaussian distribution and mean ms,
and standard deviation, σs.

5) Define other simulation parameters.
6) Generate complex spectra as described above and trans-

form to the time domain if required/appropriate.

As an example, Fig. 37 shows a simulated series of power
spectrum from one range gate over a period of 32 s, while
Fig. 38 shows a reasonable match of the original and simulated
texture correlation. The modelled parameters are taken from
real data with ν = 0.4, ms = 59 Hz, σs = 4.7 Hz, A = 5 Hz,
B = 5 Hz, fr = 5 kHz and M = 64 pulses.

E. Platform motion and antenna scanning

The effects of platform motion and antenna scanning can
also be incorporated in the coherent clutter simulation. The
simplest approach is to assume a Gaussian-shaped spatially
homogenous spectrum, as defined in (47), with the standard



20

Fig. 37: Simulated power spectra.

Fig. 38: Correlation coefficient of the texture component and
the Gaussian samples before MNLT.

deviation of the spectrum increased to
√
s2 + s2plat with

splat ≈
0.6θ3dBvp| sinψ0|

λ
, (52)

where vp is the platform velocity and ψ0 is the antenna look
direction relative to the platform track (ψ0 = 0 is along-track).

A point target or discrete clutter spike within the beam will
also have its spectrum broadened due to azimuth scanning of
the antenna, even from a stationary platform. For a dwell that
matches the full beamwidth of the antenna, the spectrum will
be broadened by an additional component sscan, where

sscan =
0.265θ̇scan

θ3dB
(53)

and θ̇scan is the antenna azimuth scanning rate. In the bimodal
version of the clutter model (see Section III-F) the broadening
might be applicable to the second higher Doppler frequency
component. If the processing dwell is significantly less than
an antenna beamwidth, this effect may be ignored.

F. Multiple antenna apertures

Modelling the sea clutter return from multiple antennas in
an array is often desired in order to investigate techniques
such as space time adaptive processing, adaptive beamforming,
along-track interferometry and similar techniques. Ideally, this

requires a knowledge of the spatial disposition of scatterers
within the radar beam, but this is beyond the capability
of current models. However, some headway can be made
by considering a spatially distributed model of the clutter
being uniformly spread across the radar beam. The techniques
presented here were originally published in [78], and later
extended to a scanning radar in [79]. Another technique for
simulating the coherent return from multiple phase centres has
recently been published by McDonald and Cerutti-Maori in
[32].

1) Model construction: When modelling the simultaneous
returns from multiple phase centres, it will be necessary to
sub-divide the clutter patch into Ns sub-patches, where the
centre of each patch subtends an angle θk from the centre of
the array and k = 1, . . . , Ns. In general Ns � 1 within the
antenna main beam and it is important that the sub-patches
also extend over the antenna sidelobes if a moving platform
is to be modelled. Fig. 39 shows two antenna phase centres
separated by D, and at a distance R0 from the clutter patch.

Fig. 39: Geometry of clutter sub-patches observed by two
phase-centres [78].

For a single aperture, the returns from the sub-patches
should combine to give a mean value equal to the local
clutter texture, x. When considering two or more apertures,
the relative phase of the returns from the sub-patches at each
antenna aperture must be modelled. At a given range, R0, the
total intensity of the returns from all clutter sub-patches are
weighted by the one way antenna beam pattern, F (θk) and
are equal to the local mean intensity,

Ns∑
k=1

xk = x (54)

where the mean power for the kth patch is xk = F (θk)x.
The sub-patches do not need to be the same size or uniformly
spaced across the aperture.

We will assume that returns from each sub-patch in the time
domain are given by s(tn, xk), where the time is sampled at
the pulse repetition interval, T , over a coherent processing
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interval of N samples with tn = nT . We will also make the
initial assumption that the returns from each sub-patch have the
same normalised power spectral density, but are independent of
each other (i.e. with an independent speckle component). The
average power spectrum at a given range and sub-patch is then
defined as G(n, xk) using the definition in (47). Note that the
values of x and s are the same for each average spectrum with
only xk changing. The coherent spectra are then generated as

S(n, xk) =
√
G(n, xk)g(n) (55)

and complex time domain samples for each sub-patch are
given by s(tn, xk) = F [S(n, xk)] with the total return in
a single aperture given by

s(tn, x) =

Ns∑
k=1

s(tn, xk). (56)

At this point, discrete spikes can also be added to the returns
if required. These may be modelled as a point response at a
particular position within the beam, or as a distributed return
arising across two or more clutter sub-patches. Each spike can
be given its own power spectral density.

When observed simultaneously by two apertures, the geom-
etry over the main beam in the far field is shown in Fig. 39.
Assuming that the transmitter phase centre is located at the
centre of the array, the phase difference ϕk between returns
in the two apertures is

ϕk =
2π

λ
(Rk,2 −Rk,1) ≈ 2πD sin θk

λ
(57)

where Rk,1 and Rk,2 are the ranges from phase centres 1 and
2 respectively to the kth clutter sub-patch. It is assumed for
simplicity that the antenna beam is pointing normal to the
array but in general any squint angle can be modelled. Also,
if the antennas are moving with an along-track velocity vp,
then the phase from each clutter sub-patch will increment or
decrement from pulse to pulse due to the change in platform
position. So now for two phase centres,

s1(tn, x) =

Ns∑
k=1

s(tn, xk) exp

(
j

2πvptn
λ

sin θk

)
,

s2(tn, x) =

Ns∑
k=1

s(tn, xk) exp (jϕk) exp

(
j

2πvptn
λ

sin θk

)
.

(58)

where the power spectral densities will be the same for the
returns in each aperture, but their phase relationships will be
a function of the aperture spacing. Finally, thermal noise can
be added as complex Gaussian samples to the time domain
returns in each channel, according to the CNR required.

Apart from any discrete spikes that may be added, this
model assumes that the normalised power spectral density
of the clutter returns is the same in each clutter sub-patch.
However, this is just for convenience and each clutter sub-
patch could have a different normalised power spectral density.
For example, the clutter returns observed through the antenna
sidelobes may have a power spectral density that varies with
look direction. Also, the areas of the sub-patches or their

angular spacing does not need to be equal. In fact, an uneven
spacing may help to avoid artefacts in any angle-dependent
processing of the returns.

2) Summary for simulation of two or more phase-centres:
The following steps should be followed to simulate correlated
returns from multiple phase-centres. The method can easily be
extended to multiple phase-centres.

1) If simulating returns in successive range gates, generate
an array of correlated values of x, having a Gamma
distribution, with shape parameter ν.

2) Determine the power spectral density of the returns at
each range, according to the spectrum model being used.

3) For each range gate, divide the antenna beam into
Ns angular sectors, giving Ns clutter sub-patches. The
accuracy should improve as Ns increases.

4) Calculate the mean intensity of the return in each clutter
sub-patch according to (54).

5) For each clutter sub-patch, generate a complex spectrum
with the appropriate weighted mean intensity and ran-
dom values of speckle as shown in (55).

6) Transform each complex spectrum into the time domain,
giving N values of a complex time domain series
s(tn, xk) for each sub-patch.

7) Add discrete spikes as required.
8) Apply the appropriate phase weighting to the returns

from each sub-patch and sum over all sub-patches to
give s1(tn, x) and s2(tn, x), as shown in (58).

9) Add thermal noise independently to each channel.

VI. RADAR PERFORMANCE PREDICTION IN SEA CLUTTER

One of the important uses of models of sea clutter is
in the prediction of radar performance. This is an essential
part of the design, development, assessment and marketing
of radar systems. The essential methods for predicting the
performance of radars in sea clutter are described in detail
in [1]. The radar range equation in (3) is used to estimate
the power received from targets, clutter and thermal noise.
This requires knowledge of the radar parameters, the losses
within the radar, the atmospheric losses, propagation effects,
the prevailing weather conditions, the viewing geometry and
so on. Many of these terms require a significant amount
of effort to define accurately. For example, losses in the
radar will include microwave losses in the radar, antenna
and radome, together with filter mismatch losses within the
receiver. Propagation effects will include attenuation due to
the atmosphere, clouds and precipitation (which will vary with
frequency and altitude) and may also include ducting, which
affects detection ranges and apparent local grazing angles. It
may also be necessary to undertake a very detailed analysis
of the radar signal processing to fully assess the effects of
receiver frequency response, mismatch losses, sampling losses,
quantisation losses, etc. Often these are not strictly losses,
but represent actual performance compared with idealised
assumptions made when analysing performance (i.e. constant
false alarm rate (CFAR) losses, integration losses, etc.).

When assessing the detection performance, the clutter, target
and noise power levels are first estimated. These power levels
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are usually defined at a point in the receiver where the noise
bandwidth and noise figure are fully defined, but prior to any
signal processing or detection/demodulation stages. For sea
clutter returns, the appropriate level of σ0 is obtained from a
chosen model as discussed in Section III-G.

The effect of any coherent signal processing prior to the first
threshold stage must then be assessed. Coherent processing
over a dwell will require models of the target and clutter
Doppler spectra, as discussed below. The aim is to achieve
estimates of the target, clutter and noise levels following such
processing (e.g. in each Doppler bin following a Doppler
filtering operation) prior to a detection threshold.

For non-coherent processing following a non-linear pro-
cessing stage, the assessment is potentially more complex as
the statistics of the combined target, clutter and noise signals
will be different. These statistics will be further modified by
pulse-to-pulse integration. This is discussed in detail in [1] for
detection in K distributed sea clutter, with a similar analysis
in [47], [116] for detection in K and Pareto-distributed clutter.

Following detection there may be further data processing
stages such as range collapsing, scan-to-scan-integration and
tracking. The effect of these on the final probabilities of
detection and false alarm must also be calculated. Given
the desired performance at the radar output (i.e. the radar
display, tracker performance, etc.), it is then possible to work
backwards to the required performance at the first detection
threshold where analytic calculations are usually made. Scan-
to-scan integration may be particularly important when sea
clutter spikes are detected. These may have durations of a
second or more and appear target-like with a single beam dwell
of a scanning radar. However, by integrating from scan-to-scan
over several seconds, the spikes may be suppressed in relation
to a more persistent target.

A. Detection in compound Gaussian clutter

The compound Gaussian models of sea clutter was given in
(12) with the speckle PDF given by P (Z|x) and the texture
PDF by P (x). The probability of false alarm, Pfa is equivalent
to the CCDF and is defined with a threshold τ ,

Pfa(τ) =

∫ ∞
τ

∫ ∞
0

P (Z|x)P (x)dxdZ (59)

=

∫ ∞
0

Γ (M, τ/(x+ pn))

Γ(M)
P (x)dx (60)

and must be evaluated numerically. If the clutter speckle com-
ponent is not independent from pulse to pulse (for example, if
the radar is operating with a fixed frequency), the calculations
are more difficult and the reader is referred to [1], [47], [116].

To assess the probability of detection, the target PDF must
be appropriately modelled. The Swerling target models are
often used [117] and a generalised gamma model can be used
to extend the range of fluctuation characteristics [118]. The
simplest case is the Swerling Case 2 target model which has a
noise-like RCS (an exponential PDF of intensity), fluctuating
randomly from pulse to pulse. This type of fluctuation may
be encountered with extended range targets (at least filling a
resolution cell) which are rapidly rotating or observed with a

frequency-agile waveform. The single look PDF for a Swerling
Case 2 target with added clutter speckle and noise is given by

P (z|x) =
1

x+ pn + ps
exp

[
− z

x+ pn + ps

]
. (61)

Pulse-to-pulse integration and averaging over all values of
x can be undertaken as for clutter and noise alone. For a
discussion on analysis techniques for more complex targets,
see [1], [47].

B. Coherent detection prediction

The assessment of coherent processing requires a knowledge
of the spectrum of the target and clutter in the CUT, as
well as their amplitude statistics. There are many different
detection schemes that have been proposed for use with
targets in compound Gaussian clutter [119]. Simple Doppler
filtering with an independently controlled threshold in each
Doppler bin has been used in many radars. This makes no
assumptions about the spectrum characteristics, but is not
necessarily the best approach as controlling false alarms at
the edges of the spectrum can be difficult [120]. If the clutter
has compound Gaussian statistics, the optimum approach is
to whiten the clutter-plus-noise in the CUT [119], [121].
However, this requires knowledge of the covariance matrix
of the clutter-plus-noise, which is in general unknown. Many
schemes have been proposed for estimating the covariance
matrix from surrounding range cells [122]–[127]. However,
the assessment of their performance is usually predicated on
the clutter being a spherically invariant random process. This
assumes that the texture and speckle are mutually independent
processes and that the normalised covariance matrix of the
speckle can be estimated by averaging over surrounding cells.
However, the observations of real clutter, that lead to the model
described in Section III-F, suggest that the mean Doppler shift
may in fact often be correlated with the local texture and
the normalised covariance matrix fluctuates randomly from
one cell to the next. The ability to estimate a covariance
matrix from surrounding cells is then dependent on the spatial
correlation of the spectrum characteristics.

A recent review of the performance of different detection
schemes in real sea clutter is given in [128]. It is not the
intention here to explore all the different coherent detection
techniques that have been proposed, but to indicate how clutter
models can be used to assess their performance. The models
of Doppler spectra, as described in Section III-F can be used
in the prediction of performance. If simple Doppler filtering
is considered, the clutter, noise and target levels must be
predicted at the output of the filters. In addition, depending
on how the detection threshold is set, the amplitude statistics
of the signals in each Doppler bin must be estimated with
consideration for how they vary over range or time.

1) Doppler filtering: The effect of the range-varying spec-
trum width and mean is to change the statistics of the clutter
intensity in each Doppler bin. This is most significant near the
edges of the spectra where the clutter statistics become spikier
(see for example, [1, Chapter 2]). Using the spectrum model in
Section III-F, this effect can be estimated using the moments
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of the clutter intensity in each Doppler bin, x′(fd), averaged
over all possible values of x and s. Assuming Doppler analysis
of an idealised filter with N pulses, pass-band ∆f = fr/N :

〈
x′(fd)

〉
=

∫ fd−
∆f
2

fd−
∆f
2

∫ ∞
0

∫ ∞
0

P (s)P (x)G(f, x, s)dxdsdf,

〈
x′(fd)

2〉 =

∫ fd−
∆f
2

fd−
∆f
2

∫ ∞
0

∫ ∞
0

P (s)P (x)G2(f, x, s)dxdsdf

(62)

where P (s) is the PDF of the spectrum width. If the noise
power in each Doppler bin is related to the overall CNR by

pn =
〈x〉
C.N

, (63)

then the CNR in each Doppler bin, C ′(fd), for the idealised
Doppler filter will be

C ′(fd) =
〈x′(fd)〉
pn

. (64)

It has been found that the amplitude statistics in individual
Doppler bins can be modelled with a K plus noise distribution
[74]. This suggests that the moments of intensity for each
Doppler bin, given in (62) could be fitted to a gamma
distribution, to determine the shape parameter ν′(fd) in each
Doppler bin so that

ν′(fd) =

( 〈
x′(fd)

2
〉

〈x′(fd)〉2 − 1

)−1
. (65)

Using this method, the power levels and amplitude statistics
of the clutter and noise can be predicted in each Doppler bin.
The methods from Section VI-A can then be used to predict
detection performance.

2) Whitening filters: The performance impact of pre-
Doppler or post-Doppler whitening filters can also be studied
using these models, [120], [128]. For example, in [129], the
effects of errors in the estimation of spectra or covariance
matrices was analysed. A more direct approach is to use Monte
Carlo methods with simulated data to assess performance
[120], [128]. This has the advantage of incorporating the
effects of range-varying and time-varying spectra on estimates
of the covariance matrices, but requires large data samples to
accurately assess the performance for each set of conditions.

C. Performance prediction using simulated data

As discussed above, some aspects of detection in sea clutter
are difficult to analyse and it may be necessary to resort
to simulation and Monte Carlo methods. For non-coherent
processing, a good example is the cell-averaging CFAR de-
tector, which predicts the mean level of the CUT from the
surrounding range cells. The statistical nature of such an
estimate leads to a CFAR loss when compared to an exact
knowledge of the mean level in the CUT. If the clutter is highly
spatially correlated, for example in the presence of a long sea
swell pattern, a better estimate of the local value of intensity
can be obtained using a shorter cell-average length instead
of the overall mean level. This may even lead to a potential

‘CFAR gain’ as opposed to the usual loss (see for example
[1, Chapter 13]). Such performance can only be predicted and
quantified with simulation methods.

As discussed above, some coherent detectors attempt to
estimate the covariance matrix of the CUT from surrounding
range cells. To fully assess the performance of these detectors,
realistic simulations of data with appropriate spatial and tem-
poral correlation are required. It is of course important to have
confidence that the models are sufficiently representative of
the real clutter to give reliable predictions of performance. As
an example, Fig. 40 shows the performance of a Normalised
Adaptive Matched Filter (NAMF) [121], using a covariance
estimated by averaging K range cells around the CUT. The
figure compares the performance in real clutter compared to
simulated performance using model parameters derived from
the Ingara data. While the performance is not identical, the
trends in both the Pfa variation and detection performance are
well reproduced by the model.

(a)

(b)

Fig. 40: Comparison of real and simulated detection perfor-
mance; (a) Pfa vs. Doppler frequency for K = 4 and 64,
with a desired Pfa = 10−3 [128], (b) Detection performance
measured by the signal to interference ratio (SIR) required to
achieve Pd = 0.5 and Pfa = 10−3 [130].

VII. CONCLUSIONS

Modelling sea clutter requires understanding of the phe-
nomenology and the appropriate statistical models which can
be used to represent its characteristics. The first part of this
tutorial paper looked at the mean backscatter, amplitude dis-
tribution, sea spikes, texture correlation and the Doppler spec-
trum. To use these models, it is essential to relate the model
parameters to the environmental conditions, the collection
geometry and the radar frequency and polarisation. Together
these models can be used to extrapolate clutter characteristics
in unmeasured conditions, accurately simulate sea clutter and
to predict the performance of radars with more confidence.
The second part of the paper summarised the characteristics of
bistatic clutter and how the statistics vary with different bistatic
angles. The paper then looked at the application of radar
models for clutter simulation and performance prediction for
both coherent and non-coherent detection schemes. In all these
aspects of maritime radar design, development and testing, it
has been demonstrated here that good models of sea clutter
are essential.
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