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Abstract

The applicability of Compressive Sensing (CS) to radar imaging has been recently proven and its

capability to construct reliable radar images from a limited set of measurements demonstrated. In this

paper, a CS-based ISAR imaging method is proposed. The proposed method is tested for application

such as image reconstruction from compressed data, resolution enhancement and image reconstruction

from gapped data. The effectiveness of the proposed method is demonstrated on real datasets and the

performance evaluated by means of image contrast.

Index Terms

TBD

I. INTRODUCTION

ISAR imaging is a widely exploited technique used to obtain high resolution images of moving

targets by means of Fourier based imaging methods [31][5]. In particular, the transmission

of large bandwidth signals and the coherent integration of the received echoes from different

aspect angles are the key aspects to obtain images with fine resolution both in range and cross

range. By the way, real data can present missing samples both in the frequency and slow time

domain because of system malfunctioning or data compression for storage resource issues. In

this scenario, images obtained with Fourier based methods, such as the Range Doppler (RD)

algorithm [5], can be distorted because of the lack of data or can present a coarse resolution.

Recent results in signal processing have demonstrated the ability of Compressive Sensing (CS)
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to reconstruct a sparse or compressible signal from a limited number of measurements with a

high probability by solving an optimization problem [7]. Such a technique has been successfully

applied for data storage reduction in medical imaging [17] and radar imaging applications [2]

among others. One of the key aspect for the successful application of CS is that the signal

must be sparse, which means that it can be represented by few non-zero samples in a suitable

orthonormal basis. Different basis can be identified which support different sparsity index such as

that proposed in [8]. Specifically, the applicability of CS to the radar imaging problem has been

justified by observing that at high frequencies a radar signal is sparse in the image domain, i.e.

when represented in the 2D Fourier basis, since it can be approximated by the superimposition

of few prominent scatterer responses in the radar image plane with respect to the pixels in

the image. CS reconstruction capabilities has been tested for a number of radar applications,

such as Synthetic Aperture Radar Imaging (SAR) and Inverse Synthetic Radar Imaging (ISAR)

[26], ground penetrating radars [14], Multiple Input Multiple Output (MIMO) radar [33][1] and

3D ISAR imaging [25]. Specifically, three different applications of CS to the ISAR imaging

problem has been described in literature. First of all, CS can be applied for the reconstruction

of ISAR images from data with random missing samples. For example, in [30] and [29], CS

has been suggested as an effective ISAR image reconstruction tool in the case of data with

missing samples in the slow time and in the frequency domain, respectively. In addition, given

the CS capability of reconstructing images from undersampled data, the sampling constraints

related to Nyquist’s sampling theorem can be overcame, as demonstrated in [3]. CS for data

storage reduction has been suggested also in [6], [37] and [16]. In [13], CS has been suggested

as an effective reconstruction tool to recover a signal from its principal component extracted

via Principal Component Analysis (PCA) in order to reduce the clutter effects and enhance the

target return extraction. In this framework, the advantages of CS can be mainly associated with

the capability of obtaining good quality images from a limited number of measurements thus

reducing the amount of data to be stored and processed.

On the other hand, CS processing can be successfully applied to achieve resolution enhancement

in both delay time/ range and Doppler/ cross-range domain, as suggested in [36]. Specifically,

CS can be applied to reconstruct the image from data considering a larger data support in the

frequency/slow-time domain, thus enhancing the resolution in range and cross-range [12].

Finally, the CS can be used to process data that are not complete in one domain, presenting large
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portions of missing samples. Data can be incomplete, or gapped, in the slow time domain such

as data acquired by a multiple target tracking radar which collects data from different targets in

different and not adjacent slow time intervals, as shown in [34] and [38]. On the other hand,

data can be gapped in the frequency domain such as the signal obtained by transmitting over

different non-adjacent channels within a large bandwidth [35]. This latter case coincides with the

case of passive radars which exploit the DVB-T signals transmitted for broadcast TV services.

In this paper a common framework for the application of CS to ISAR imaging is provided.

Specifically, a CS-based ISAR imaging method is proposed for all the above mentioned appli-

cations. The effectiveness of such a method and its performances against different SNR values

will be proven by using the image contrast as image quality criteria on both simulated and real

data. It is worth saying that different quality criteria for CS-based ISAR imaging algorithms can

been identified, such as the one proposed in [10]. The reminder of the paper is organized as

follows. Section II presents the ISAR signal model in a CS framework and the proposed CS-based

imaging algorithm. Section III shows the results of the proposed CS based imaging algorithm

in different applications using simulated data while Section V demonstrate the effectiveness of

the proposed method on real data. Final comments are summarized in Section VI.

II. SIGNAL MODEL

Let consider the geometry in Fig.1 where Tz(z1, z2, z3) is a Cartesian reference system em-

bedded on the target, Tξ(ξ1, ξ2, ξ3) is a Cartesian reference system centred on the transmitter,

RTxTg ,RRxTg ,RTxRx represent the transmitter-target, and receiver-target, transmitter-receiver

distances, β is the bistatic angle and iLoSBi is the unit vector identifying the bisector of the

bistatic angle [12].

It is worth pointing out that the bistatic geometry in Fig.1 can be used to model the received

signal in both active and passive radar systems, and both monostatic and bistatic configurations.

It is well known that under the stop & go assumption, the target motion can be split into two

components: a translational motion denoted by R0 (t), and a rotational component which can

be described by means of the total angular rotation vector, ΩT (n), while the motion component

which contributes to the synthetic aperture formation is denoted by the effective rotation angle

Ωeff (n). It is worth pointing out that the translational component is assumed to be perfectly

compensated by means of autofocusing techniques [11][19] before the application of CS-based
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Figure 1. Bistatic geometry representation

imaging algorithm. However, it is worth remarking that different signal models have been

proposed in literature which include the motion compensation step while solving the optimization

problem related to CS, such as the one proposed in [27]. In addition, it is assumed that the target

is stationary during the transmission and reception of a sweep or a pulse, thus the slow time

can be considered a discrete variable, which will be denoted by n. The received signal can be

defined as

sR(t, n) =

ˆ

V

γ′(z)sT (t− τ(z, n), n)h (n) dz (1)

where sT (t, n) is the transmitted signal within the nth sweep, t denotes the fast time, n =

1, .., N , N is the number of transmitted sweeps, τ(z, n) =
RTxTg(z,n)+RRxTg(z,n)

c
represents the

delay-time of a point on the target with coordinates z in the Cartesian reference system Tz , at

the nth sweep, c is the speed of the light in a vacuum, h (n) is the signal support in the slow time

domain and γ′(z) is the target reflectivity function defined within the volume V occupied by the

target. At the output of the matched filter, after Fourier transforming along the time domain, the

baseband signal in the frequency/slow-time domain can be expressed as
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SR(f, n) = W (f, n)

ˆ

V

γ′(z)e−j2πfτ(z,n)dz (2)

where f denotes the frequency which is the Fourier transform variable of the fast time t. A

special attention should be given to the signal support W (f, n) which defines the region occupied

by the signal SR(f, n) in the Fourier domain. At the output of the matched filter, W (f, n) is

given by

W (f, n) = |ST (f, n)|2 h(n) (3)

where h(n) = u(n)−u(n−N) and u(n) is the unit step discrete function. When the transmitted

signal is unchanged over adjacent sweeps, which is usually the case for active radar systems,

Eq.(3) can be rewritten as W (f, n) = |ST (f)|2 h(n) .

In the case of passive radars, according to the CAF (Cross Ambiguity Function) batches

algorithm proposed in [23], in order to form the RD image, both the transmitted and the received

signal are split into N batches of fixed temporal length, so that each batch is associated to a

different sweep. Since the broadcast signal is content dependent, the transmitted signal can

change from batch to batch, therefore Eq.(3) is appropriate for the passive case as well.

Assume that the effective rotation angle of the target is constant within the observation time,

Ωeff (n) ≈ Ωeff , and assume that the Cartesian reference system Tz is oriented so that z3 is

parallel to Ωeff . In this case, under the straight iso-range approximation, the signal after motion

compensation can be rewritten as [20]

S(f, n) = W (f, n)

ˆ

z1

ˆ

z2

γ(z1, z2)e−j
4πf
c

cos(β(n)2 )(z1 cos(Ωeffn)+z2 sin(Ωeffn))dz1dz2 (4)

where γ(z1, z2) =
´
z3

γ′(z)dz3 is the target reflectivity function projection onto the image plane.

Suppose that the target consists of K pointlike scatterers and that the interactions among

scatterers can be neglected, so that its reflectivity function becomes

γ (z1, z2) =
K∑
k=1

σkδ
(
z1 − z(k)

1 , z2 − z(k)
2

)
(5)
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where σk is the complex amplitude of the kth scatterer.

Under this hypothesis and assuming that the bistatic angle variation is relatively small within

the observation time, β(n) ≈ β(0) = β0 , Eq.(4) can be rewritten as

S(f, n) = W (f, n)
K∑
k=1

σke
−j 4πf

c
k0(z

(k)
1 cos(Ωeffn)+z

(k)
2 sin(Ωeffn)) (6)

where k0 = cos
(
β0
2

)
.

Changes in the bistatic angle affect the Point Spread Function (PSF) of the system and can

cause defocusing effects as demonstrated in [20].

By defyining the spatial frequencies as

Z1(f, n) =
2fk0cos(Ωeffn)

c

Z2(f, n) =
2fk0sin(Ωeffn)

c

(7)

Eq.(6) can be rewritten as

S(Z1, Z2) = W (Z1, Z2)
K∑
k=1

σke
−j2π

(
z
(k)
1 Z1+z

(k)
2 Z2

)

= W (Z1, Z2)Γ(Z1, Z2)

(8)

where Γ(Z1, Z2) =
K∑
k=1

σke
−j2π

(
z
(k)
1 Z1+z

(k)
2 Z2

)
is the Fourier transform of the target reflectivity

function γ (z1, z2).

Eq.(8) clearly shows that the motion compensated signal is related to the Fourier transform

of the target reflectivity function. In particular, the inverse Fourier transform of Eq.(8) s given

by

I(z1, z2) = w(z1, z2)⊗⊗γ(z1, z2)

=
K∑
k=1

σkw(z1 − z(k)
1 , z2 − z(k)

2 )
(9)

where the symbol ⊗⊗ denotes the 2D convolution operator, w(z1, z2) is the inverse Fourier

transform of W (Z1, Z2) and coincides with the PSF of the system in the range/cross-range

domain.
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It is worth pointing out that the knowledge of the modulus of the effective target rotation

vector, Ωeff , is needed to calculate the inverse Fourier transform. It is usually known in SAR

systems where the motion of the platform is known a priori. Conversely, in ISAR systems the

target is non-cooperative and, hence, Ωeff is not known. As a consequence, Ωeff should be

estimated before forming the ISAR image.

Under the hypothesis that the aspect angle variation within the observation time is sufficiently

small (∆θ = ΩeffTobs << 10) [5], the spatial frequencies can be approximated as follows:

Z1(f, n) ≈ 2fk0

c

Z2(f, n) ≈ 2f0k0Ωeffn

c

(10)

This means that the region in the Fourier domain where the signal is defined can be approx-

imated by a rectangular domain. Therefore, the two spatial frequencies can be assumed to be

independent of each other and a two-dimensional Fast Fourier Transform (FFT) can be applied

to form the ISAR image.

In particular, under the assumption of small aspect angle variation, the received signal after

motion compensation can be rewritten as

S(f, n) = W (f, n)
K∑
k=1

σke
−j 4πk0

c

(
fz

(k)
1 +f0z

(k)
2 Ωeffn

)
(11)

Let the variables (τ, υ) represent the delay-time and Doppler frequency respectively, which

are defined as

τ =
2z1k0

c

υ =
2f0k0Ωeffz2

c

(12)

By substituting Eq.(12) into Eq.(11), the motion compensated signal becomes

S(f, n) = CW (f, n)
K∑
k=1

σke
−j2π(fτk+nυk) (13)

where C = c2

4f0k20Ωeff
.
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It is worth noting that the summation in Eq. (13) represents the two-dimensional Fourier

series of the target reflectivity function in the delay-time/Doppler domain. Eq. (12) suggests

how to scale the ISAR image from delay-time/Doppler domain to range/cross-range domain and

vice-versa. The use of Eq.(12) and Eq.(13) allows for an ISAR image to be formed also when

Ωeff remains unknown. Nevertheless, in order to scale the ISAR image using spatial coordinates

along the cross-range, Ωeff must be estimated [18].

In a real scenario, both the variables in the signal domain (f, n) and in the image domain

(τ, υ) are discrete variables. It is therefore appropriate to write the signal in Eq.(13) as a function

of discrete variables, defined as follows

f = f0 +m∆f m = 1, ...,M

t = nTR n = 1..., N

υ = p∆υ p = 1, ..., P

τ = q∆τ q = 1, ..., Q

(14)

where ∆f is the frequency step, TR is the Pulse Repetition Interval (PRI), ∆υ = 1
NTR

= 1
Tobs

is the Doppler frequency pixel spacing and ∆τ = 1
Q∆f

is the delay-time pixel spacing.

It is worth remarking that usually Q = M and P = N and when this holds, ∆ν and ∆τ coincide

with the Doppler and the delay-time resolutions.

By exploiting Eq.(14) the discrete version of the received signal after motion compensation can

be written as

S(m,n) = C ·W (n,m) ·
K∑
k=1

σke
−j2πmqk

Q e−j2π
npk
P (15)

where W (m,n) = (u(n)−u(n−N)) ·(u(m)−u(m−M)) is the signal support in the discrete

slow time/frequency domain and u(.) is the unit step discrete function.

Eq. (15) highlights that the received signal after motion compensation is linked to the 2D Fourier

transform of the target reflectivity function. Therefore, by using the inverse Fourier transform of

Eq. (15), the ISAR image which represents an approximation of the target reflectivity function,

can be expressed as

I(q, p) = C

K∑
k=1

σk · w(q − qk, p− pk) (16)
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For the sake of simplicity, it is possible to write the relation between S(m,n) and I(q, d) in

a matricial form. In order to use a notation coherent with all the applications described in this

document, the ISAR data after motion compensation, S(m,n) , will be identified by the matrix

Sc , while the ISAR image, I(q, p) , will be identified by the matrix I , as follows

Sc = ΨxIΨ
T
y (17)

where Ψx ∈ CM×Q and Ψy ∈ CN×P are the Fourier dictionaries that perform the range

compression and the cross range compression respectively.

The generic element of the Fourier dictionaries is defined as follows

[Ψx]n,p = e−j2π
np
P

[Ψy]m,q = e−j2π
mq
Q

(18)

where Ψx and Ψy are defined as complete Fourier matrices, in which P = N and Q = M .

The signal in Eq.(17) represents the complete data from which the ISAR image can be obtained

by applying Fourier based methods with a resolution given by the theoretical bounds [4]. In a

real scenario, the signal acquired by the system can suffer from data loss due to hardware

malfunctioning or compression requirements. In these cases, the acquired signal is assumed to

be obtained from the signal in Eq.(17) after a sensing process

S = ΦxΨxIΨ
T
y ΦT

y

= ΘxIΘ
T
y

(19)

where S ∈ CM ′×N ′ , I ∈ CM×N . The matrices Φx ∈ CM ′×M and Φy ∈ CN ′×N represent

the sensing matrices which performs the random selection of samples in the frequency/slow

time domain respectively and M ′ < M and N ′ < N are the data dimensions after the sensing

operation.

Θx and Θy are the undercomplete Fourier matrices which satisfy the RIP property and provide

stronger non-coherence than the Gaussian matrix [36]. These matrices are defined by taking into

account the indexes of the pulses and frequency bins selected by the sensing process. In particular,

the generic element of the these matrices are defined as follows
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Figure 2. CS image reconstruction block diagram

[Θx]i,p = e−j2π
pni
P

[Θy]i,q = e−j2π
qmi
Q

(20)

where {ni}N
′

i=1 are the pulse indexes, {mj}M
′

j=1 are the frequency bin indexes while p and q

are defined in Eq.(14).

According to the CS formulation, the image reconstruction process in case of noise is based

on a minimization problem, given by [7]

Î = min
I
‖I‖`0 s.t. ‖S−ΘxIΘy

T‖2
F ≤ ε (21)

where ‖·‖F denotes the Frobenius norm and ‖·‖`0 denotes the `0-norm. The minimization

algorithm in Eq.(21) can be solved via 2D-SL0 algorithm [9].

It is worth pointing out that the image at the output of the CS reconstruction algorithm cannot

be directly compared with the image at the output of the RD algorithm because there is no

relationship between the pixel size and the spatial resolution of the image in the Rayleigh sense

[5]. For this reason, a raw data is reconstructed from the CS image, as shown in Fig.2, by means

of the Fourier dictionaries as

Ŝ = ΨxÎΨ
T
y (22)

At this point, an ISAR image can be obtained by means of the conventional RD algorithm

applied to the reconstructed data and can be fairly compared with the image obtained via RD

algorithm applied to the original data.
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III. CS ISAR APPLICATIONS

This section focuses on the application of CS to the ISAR imaging problem. In particular,

Sec.III-A deals with the image reconstruction from compressed data, Sec.III-B deals with the

problem of resolution enhancement via CS exploitation and Sec.III-C deals with the CS image

reconstruction from gapped data.

A. Image reconstruction from compressed data

ISAR signals usually consist of huge matrices of data which determine the computational

burden of the image processing. In order to reduce the computational load, a data reduction can

be performed. By the way, as the data compression increases, the quality of ISAR images obtained

via conventional Fourier based methods decreases. In particular, when the sample structure of

the data does not meet the Nyquist’s requirement, the ISAR image suffers from high sidelobes

and distortion. In this scenario, the capabilities of CS of reconstructing the ISAR image from

a compressed signal, which has a number of samples that is lower than the Nyquist bound, is

fundamental [3]. CS can be applied in the delay time/frequency dimension, Doppler/slow time

dimension or both frequency/slow-time. Without loss of generality, we will focus our attention

on the 2D formulation [24]. The advantages of the 2D fomulation in Eq.(19) with respect to

1D methods or staking operations that can be found in literature is that this formulation deals

with smaller matrices and so a reduced computational burden [26]. The key concept of the data

compression in the CS framework is illustrated in Fig.3(a), in which the data before and after the

sensing operation and the ISAR image are schematically represented. As can be easily noticed,

the data after the sensing operation is obtained by randomically discarding some samples in the

frequency/slow time domain.

B. Resolution enhancement

It is well known that the spatial resolution in ISAR images is strictly related to the transmitted

bandwidth and the observation time. In some cases, it may happen that these two parameters

are not large enough to obtain a desired range/cross range resolution. Different techniques have

been proposed in literature to enhance the resolution of ISAR images, such as spatially variant

apodization techniques and bandwidth extrapolation based methods [22][32][39][28]. By the

way, these techniques are efficient when the gaps to be filled are small with respect to the whole

May 29, 2015 DRAFT



12

spectral and observation time occupancy of the signal. Conversely, CS can be successfully applied

to a version of the received signal in which the dimensions in the frequency and slow time domain

have been increased, as schematically represented in Fig.3(b). In this case, the available samples

are assumed to be the result of a sensing operation performed over a larger domain and the

signal is reconstructed over a larger bandwidth and a longer observation time, which leads to a

finer resolution.

C. Image reconstruction from gapped data

A gapped data is defined as an incomplete set of data, in which a large amount of samples

are missing in the frequency domain, slow time domain or both. Gaps in the frequency domain

can be associated with transmission in non-adjacent frequency ranges, for example in the case

in which some bandwidths are dedicated to other services, or in the case of passive radars which

exploit the DVB-T signals. A data with gaps in the slow time domain can be associated to the

signal acquired by a multi-target radar system, in which different targets are illuminated for

different time intervals. A schematic representation of the concept of gapped data is in Fig.3(c).

The difference between a compressed data and a gapped data is that in a compressed data the

missing samples in a domain are usually associated with very small gaps, which can be the

results of a system malfunctioning. In a gapped data, the missing samples correspond to large

gaps that can be associated with transmission disruption in frequency or slow time.

IV. DATASET DESCRIPTION

The proposed CS ISAR image reconstruction algorithm was tested on real data. In particular,

two different sets of real data have been used, one acquired by an active system and one by a

passive system.

A. Dataset 1

The data from the active radar consists of a real turntable data publicly released by the Georgia

Technology Research Institute (GTRS) [15]. The data contains the phase history of a T72 tank

measured for a set of azimuth and elevation angles by a full-polarimetric X band radar. In order

to test the algorithm, the data acquired with an azimuth angle and elevation angle equal to of

θaz = 90 and θel = 30 respectively is considered.
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(a)

(b)

(c)

Figure 3. CS data compression (a), resolution enhancement (b) and reconstruction from gapped data (c) concept
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(a) (b)

(c) (d)

Figure 4. Real active data (a) and RD image (b). Real passive data (c) and RD image (d)

Fig.4(a) shows the original complete data while Fig.4(b) shows the RD image obtained from

the complete data.

B. Dataset 2

The real passive data refers to the measurement campaign held in Livorno (Tuscany, Italy)

in which a DVB-T passive radar demonstrator developed by the RaSS (Radar and Surveillance

System) laboratory team has been employed. The details of this system can be found in [21].

The acquisition geometry is in Fig.4(c). The ISAR data consists of 3 adjacent DVB-T channels,

as shown in Fig.4(d).

May 29, 2015 DRAFT



15

V. RESULTS

In this section, the results of the ISAR image reconstruction via CS will be shown and com-

pared to the image obtained via conventional RD algorithm. In order to make a fair comparison,

the Image Contrast (IC) [19] is used as a quality index. The image contrast is defined as the ratio

between the image intensity standard deviation and the image intensity mean value, as follows

IC =

√
E{[|I| − E{|I|}]2}

E{|I|}
(23)

where E{·} denotes the expectation over the spatial coordinates of the image and |I| denotes

the image intensity. In order to understand the capabilities of the proposed CS ISAR image

reconstruction algorithm, the performance will be evaluated in different scenarios. In particular,

the IC will be evaluated for different percentages of discarded samples, which will be denoted

by compression rate (CR) in all the above mentioned applications, for different SNR (Signal to

Noise Ratio) values. It is worth pointing out that each original data contains a noise contribution.

For this reason, in order to vary the SNR, a realization of additive Gaussian noise is added to

the data so that the SNR can be defined as

SNR =
Ps

Pn + σ2
n

(24)

where Ps and Pn denote the useful signal power and the noise power of the original data,

respectively, and σ2
n is the standard deviation of the additive Gaussian white noise, which is

evaluated by inverting Eq.(24). Ps can be estimated by considering the image obtained by the

RD algorithm. In fact, since 2D Fourier transform in the RD algorithm performs a matched

filter, the useful signal samples will add coherently in the spatial resolution cells occupied by

the target, so that Ps can be estimated as

Ps =
1

PTQT

PT∑
p=1

QT∑
q=1

|I (p, q)|2 (25)

where PT and QT denote the resolution cells in Doppler and range occupied by the target.

On the other hand, the noise power will be estimated as

Pn =
1

PQ

P∑
p=1

Q∑
q=1

|I (p, q)|2 − Ps (26)

May 29, 2015 DRAFT



16

A. Image Reconstruction from compressed data

Let consider the data of the active system described in Sec.IV-B and suppose to randomly

discard samples both in the frequency and in the slow time domain in order to obtain a

compressed data, as shown in Fig.5(a). The ratio between the number of discarded samples

and the total number of samples denotes the CR in this application. It this case, a CR = 76%

and an SNR = 5dB are used. Fig.5(a)-(b) show the compressed data and ISAR image obtained

by applying the RD algorithm to the compressed data respectively. As can be noticed, the

ISAR image in Fig.5(b) is highly distorted because of the lack of samples in the compressed

data. Conversely, by applying the proposed CS ISAR reconstruction algorithm a good quality

image can be obtained, as shown in Fig.5(c). As can be noted from a visual inspection, the

distortion effect and the sidelobes are dramatically reduced in the image obtained via the CS

ISAR processing and the quality of the image can be compared with that of image obtained

via conventional RD algorithm applied to the complete data in Fig.4(b). In addition, the IC

plots in Fig.6 show that the image quality does not decrease for a given SNR as the CR

increases. However, by observing the plots in Fig.6(a) it can be easily noticed that the IC

increases for very high CR values, leading to misleading conclusion on the image quality. In

fact, as the CR increases, the number of reconstructed scatterers decreases and the IC increases

with respect to the value obtained when more target scatterers are reconstructed. In fact, there

exists a relationship between the number of measurements M ′ and N ′ and the sparsity degree.

Since the sparsity degree of an ISAR image is related to the number of scatterers composing the

target, the fewer the measurements, the higher the CR, the fewer the scatterers the CS algorithm

effectively reconstructs, so leading to higher IC values.

Similar conclusions can be drawn when observing the results obtained with the passive data

in Fig.7. The images in Fig.7 have been obtained by applying the same CR and SNR of the

previous case. The comparison between the ISAR image obtained by applying the conventional

RD algorithm to the compressed data (Fig.7(b)) and the image obtained with the CS ISAR algo-

rithm (Fig.7(c)) shows a significant enhancement in the image quality. In particular, a comparison

between the CS ISAR image and the image obtained with the complete data in Fig.4(d) shows

the reconstruction capabilities of the proposed CS-based ISAR algorithm. The performances
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(a) (b)

(c)

Figure 5. ISAR data after compression with CR = 76% (a), RD image (b) and CS ISAR image (c)

measured by means of the IC show that the RD algorithm reconstruction capabilities decrease

as the CR increases. Conversely, the image quality is almost constant for a given SNR as the

CR increases for the proposed CS ISAR algorithm. Even in this case, the IC increase for high

CR values in the CS ISAR case does not denote an enhancement in the image quality, but a

reduced number of reconstructed scatterers.

B. Resolution enhancement

As mentioned in Sec.III-B, this application is based on the processing of a version of the

acquired data with more samples in both the frequency and in the slow time domain in order to
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(a)

(b)

Figure 6. IC evaluated for different SNR values in the case of CS ISAR image reconstruction algorithm (a) and conventional

RD algorithm (b)

synthesize a larger bandwidth and observation time and, hence, a finer resolution.

In order to clearly understand the reconstruction capabilities in terms of resolution enhancement,

the original data sets in Fig.4(a) and Fig.4(c) are taken as touchstones while the acquired data

at the input of the processing chain is extracted from the complete one considering a subset of

samples in the frequency and slow time domain. For the sake of simplicity, we will refer to

the CR also in this case to denote the amount of discarded data with respect to the number of

samples in the complete data.

In the case of real active data, the acquired signal is in Fig.9(a) and the amount of discarded
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(a) (b)

(c)

Figure 7. ISAR data after sensing with CR = 76% (a), RD image (b) and CS ISAR image (c)

data is 50%. Fig.9(b) and (c) show the RD image and the CS ISAR image respectively. The

image obtained with the CS ISAR algorithm clearly shows a considerable better quality with

respect to the RD image. In addition, the quality of the CS ISAR image is comparable with

that of the original ISAR image in Fig.4(b). As expected, the performance evaluation by means

of IC shows that the image quality decreases as the amount of discarded data increases for the

RD algorithm. Conversely, the image quality is almost constant for the CS ISAR image as the

CR increases. Even in this scenario, the IC value increase for high CR values is due to some

missing scatterers in the reconstructed image with respect to lower CR values.
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(a) (b)

Figure 8. IC evaluated for different SNR values in the case of CS ISAR image reconstruction algorithm (a) and conventional

RD algorithm (b)

In the case of passive data, the acquired signal is extracted from the complete one by taking

only the central DVB-T channel, as shown in Fig.11(a). In this way, the acquired data has the

same number of samples in the slow time domain with respect to the original data, so that

the resolution enhancement is expected only in the range domain. The RD image is shown in

Fig.11(b) while the CS ISAR image is in Fig.11(c). A visual inspection clearly shows that the

distortion effect and the sidelobes are significantly reduced in the CS ISAR image with respect

to the RD image. In addition, the IC plots in Fig.11(d) show the CS ISAR algorithm outperforms

the RD algorithm for different SNR values.

C. Image Reconstruction from gapped data

Let consider the dataset associated with the real active system described in Sec.IV-B. A

gapped data both in the frequency and slow time domain is extracted from the complete data

by discarding samples in the signal domain, as shown in Fig.12(a). The amount of discarded

samples is of 70% with respect to the total samples in the complete data. Fig.12(b) and (c) show

the RD and the CS ISAR image respectively. The RD image clearly shows high sidelobes while

the CS ISAR image is comparable with the RD image obtained from the complete data. As for

the previous cases, the IC plots in Fig.13 shows that the image quality is almost constant as the

CR increases while the IC decreases for the RD image. The increase in the IC values for high
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(a) (b)

(c)

Figure 9. ISAR data after sensing with CR = 50% (a), RD image (b) and CS ISAR image (c)

CR is compatible with a reduced number of reconstructed scatterers with respect to the case

with lower CR.

In the case of passive data, the acquired data is extracted from the complete one by discarding

the central DVB-T channel, as shown in Fig.14(a). The RD image and the CS ISAR image are

shown in Fig.14(b) and (c) respectively. Even in this scenario, the proposed CS ISAR method

outperforms the RD algorithm. This results is also proven by the plots in Fig.14(d), in which

the IC for the RD and the CS ISAR image are plotted for different SNR values. These results

demonstrate the effectiveness of the CS ISAR algorithm in case of data acquired on non adjacent

DVB-T channels.
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(a) (b)

Figure 10. IC evaluated for different SNR values in the case of CS ISAR image reconstruction algorithm (a) and conventional

RD algorithm (b)

VI. CONCLUSION

In this paper the capabilities of CS for ISAR image reconstruction and resolution enhancement

have been demonstrated. In particular, a CS- based ISAR method based on the application of

the RD processing to the signal obtained from the CS estimated image has been proposed.

This method allows for a fair comparison between the ISAR image obtained via conventional

RD processing and the image obtained with the CS-based ISAR method. The proposed method

has been applied to two different real datasets to demonstrate the effectiveness of the proposed

method in the case of data compression, resolution enhancement and for image reconstruction

from gapped data. The comparison between conventional RD processing and the proposed

method has been carried out in terms of IC, which has demonstrated the effectiveness of CS

ISAR with respect to conventional RD imaging for all the considered applications.
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(a) (b)

(c) (d)

Figure 11. ISAR data after sensing (a), RD image (b), CS ISAR image (c) and IC (d)
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