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Abstract. Minimal Dark Matter (MDM) is a theoretical framework highly appreciated for
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the original analysis, the scalar eptaplet has been found to decay too quickly to be around
today, while the fermionic quintuplet is now being probed by indirect Dark Matter (DM)
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generalizations of this framework. We propose and explore two distinct directions. One is to
abandon the assumption of DM electric neutrality in favor of absolutely stable, millicharged
DM candidates which are part of SU(2)L multiplets with integer isospin. Another possibility
is to lower the cutoff of the model, which was originally fixed at the Planck scale, to allow for
DM decays. We find new viable MDM candidates and study their phenomenology in detail.
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1 Introduction

The presence of Dark Matter (DM) in the universe is a clear evidence for new physics beyond
the Standard Model (SM). Despite lacking a unique description of DM in terms of elementary
particles, a number of general requirements have been identified for DM candidates to fit
observations. One of these is stability on cosmological scales.

Stability may be explained in terms of symmetries. One may impose a symmetry on
a DM model by hand to force stability of the DM candidate, hoping this symmetry can
be later justified naturally in ultraviolet completions of the model. Another elegant way to
ensure stability is instead through accidental symmetries, the same mechanism that makes
the proton stable in the SM. In fact, if one considers only local symmetries as fundamental,
other exact or approximate global symmetries can arise as accidental “gifts” given by the
specific matter content of the model, which are preserved up to a certain dimension in an
effective theory description.

This is the main idea behind the “Minimal Dark Matter” (MDM) setup first presented
in ref. [1], where the SM is augmented with a new generic multiplet X with mass M and
quantum numbers (c,n, Y ) under the SM gauge group SU(3)c × SU(2)L × U(1)Y , without
introducing new symmetries. The requirement that the multiplet contains a suitable DM
candidate with the correct relic abundance, which is stable on cosmological time scales and
is not excluded by present observations, is then used to constrain X ’s quantum numbers.
For example, the MDM multiplet must be color neutral to avoid the stringent constraints on
colored particles [2, 3] which seem to exclude the parameter space of thermal relics. Moreover,
n must be odd or X ’s components would all have sizable tree-level interactions with the Z
boson, which are excluded by direct DM searches. The authors of ref. [1] then go on and
assume DM electric neutrality, which implies Y = 0. In order to avoid Yukawa couplings
with SM fields, as well as dimension-5 effective operators that would cause the DM to decay
quickly, it must be n > 5 for spin-1

2 multiplets and n > 7 for scalars. Finally, the consistency
condition that the theory does not produce a Landau pole below the assumed cut-off at the
Planck scale is used to set an upper bound on n, n 6 5 for Majorana fermions and n 6 7
for real scalars1 (these bounds are conservative with respect to those for Dirac fermions and
complex scalars). As a result, the authors of ref. [1] single out a fermionic SU(2)L quintuplet
and a scalar septuplet as the only viable MDM multiplets.

The eptaplet candidate was recently excluded by the presence of an overlooked dimen-
sion-5 operator trilinear in X [4] which makes the DM candidate decay too quickly, while
the fermionic quintuplet is seriously constrained by gamma-ray line searches in the Galac-
tic Center [6, 7]. In the light of these recent results and of the good sensitivity of present
searches to MDM candidates, a critical reanalysis of the MDM framework is timely. Despite
the extended literature on the subject and variations thereof (see e.g. refs. [8–21] for some
very recent works), some assumptions and basic aspects of the MDM setup remain, that
could be more thoroughly examined, and others that could be easily generalized or naturally
extended. These are, for instance, the assumption that the cutoff of the theory is at the
Planck scale; or the choice of taking small X -Higgs quartic couplings; or even the seemingly
natural assumption that the DM is electrically neutral. The aim of this work is to exam-

1We refer the reader to table 9 of ref. [4] for a list of two-loop Landau poles in theories where the SM is
augmented with an extra multiplet with zero hypercharge. Notice that the results presented there are deter-
mined by “integrating in” the extra multiplet atM equal to the Z-boson mass. The case of arbitrary multiplet
mass can be derived by considering that the Landau pole scales approximately linearly with M . For scalar
multiplets, an exhaustive analysis should include also the renormalization of quartic scalar interactions [5].

– 2 –
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ine these aspects in detail, proposing generalizations and studying their phenomenological
consequences, in the spirit of Gell-Mann’s Totalitarian Principle “everything not forbidden
is compulsory”. In extending the MDM framework we find a new DM candidate, a Dirac
SU(2)L triplet, with a larger degree of compatibility with present bounds with respect to
the standard MDM quintuplet. However, the constraints are not necessarily relaxed for the
other candidates we propose, meaning that most of the scenarios we study explicitly can be
ideally probed by present or near-future experiments.

After critically reviewing the MDM setup and its assumptions in section 2, we explore
two main directions in section 3 and 4. In section 3 we abandon the assumption of DM
electric neutrality, thus allowing multiplets to get non-zero (although phenomenologically
small) hypercharge. These candidates feature a millicharged DM particle which is absolutely
stable due to electric charge conservation. This removes the need of a very high cutoff and
opens the possibility of large SU(2)L representations without having to worry about Landau
poles. We discuss the phenomenology of these candidates and compute the mass needed to
achieve thermal production for few of them. Interestingly, the millicharged SU(2)L fermionic
triplet is found not (yet) to suffer from the stringent gamma-ray line constraints afflicting
the standard fermionic quintuplet. In section 4 we explore the consequences of lowering the
cutoff from the Planck scale, so that the MDM fermionic quintuplet decays with observable
consequences in the gamma-ray sky. We compute in detail the photon flux (both continuum
and line-like features) from DM decays and constrain the cutoff Λ using Fermi data on the
diffuse isotropic flux and H.E.S.S. data on gamma-ray lines. Were a clear photon line from
this candidate’s annihilations to be soon detected, gamma-ray data could also be used to gain
insight on the scale of new physics Λ above the DM mass. We conclude in section 5. One
interesting technical aspect of our work concerns the presence (or absence) in the Lagrangian
of operators of the form X 3 or X 3H2, which cause the DM to decay quickly. We study the
issue with the method of Hilbert series in appendix A, while in appendix B we give analytic
expressions for the total and differential decay rates of the fermionic MDM quintuplet at
dimension 6 in the effective Lagrangian. Finally, we give an analytic treatment of the phase
space for 4-body decays into massless particles for our case of interest in appendix C.

2 Minimal Dark Matter, a critical review

As explained in the Introduction, the MDM setup features the addition of an extra multi-
plet X to the SM, with quantum numbers (c,n, Y ) under the SM gauge group SU(3)c ×
SU(2)L×U(1)Y . Further requirements characterizing the MDM framework [1], reported and
individually commented below, allow to reduce the number of suitable candidates to a few.
For the sake of restricting our discussion to the phenomenologically viable candidates, let us
anticipate here some consequences of the requirement that the DM candidate still be allowed
by DM searches, see point 4 below.

Given the stringent constraints on colored particles [2, 3] which seem to exclude the
parameter space of thermal relic DM [1], we restrict ourselves to color-neutral multiplets,
c = 1. n must be odd for X to contain a viable DM candidate, with no sizable tree-level
interactions with the Z boson and the photon which are excluded by direct DM searches.
We do not enforce electric neutrality for the DM at this point, so that Y is allowed to take
non-zero (but nevertheless very small, see section 3) values. Fermion multiplets are taken
to be vector-like so that they can be given an invariant mass term in the Lagrangian and
to cancel anomalies. Notice that the (1,n, Y ) representation with odd n is real for Y = 0,
while it is complex for Y 6= 0.

– 3 –



J
C
A
P
0
4
(
2
0
1
6
)
0
4
8

Barring Yukawa interactions of X with two SM fields, which are explicitly forbidden
(by gauge invariance) in the MDM setup to avoid DM decay, the renormalizable Lagrangian
of the model is

LY=0 = LSM +

{
1
2X i /DX + M

2 X
TC−1X for Majorana X ,

1
2(DµX )†(DµX )− M2

2 X
TX − V (X , H) for real scalar X ,

(2.1)

for Y = 0, and

LY 6=0 = LSM +

{
X (i /D −M)X for Dirac X ,
(DµX )†(DµX )−M2X †X − V (X , H) for complex scalar X ,

(2.2)

for Y 6= 0, where C is the charge conjugation matrix and V (X , H) denotes X ’s potential
plus possible X -H interaction operators. The lightest state contained in the X multiplet
(the DM candidate) is stable under a Z2 symmetry transforming X → −X for X in a real
representation (Y = 0), or a U(1) symmetry transforming X → eiθX for X in a complex
representation (Y 6= 0). n and Y are chosen so that no renormalizable and dimension-5
interactions exist, that spoil this symmetry thus inducing fast DM decays. This dictates the
absence of Yukawa interactions and restricts the operators entering V (X , H).

The MDM setup is characterized by the following requirements, that allow to further
reduce the number of suitable candidates [1]. After stating each requirement (written in bold-
face below), we critically review its implications and comment upon possible generalizations.

1. “The lightest component is automatically stable on cosmological time-scales”.
The easiest way to satisfy this condition is probably assuming a very light X , so that
the DM particle cannot decay to anything. However, such a multiplet would have been
already discovered if charged under strong or weak interactions. The only possibility
of having a light DM particle seems therefore for X to have quantum numbers (1,1, 0)
or (1,1, ε) with very small (but positive2) ε. The former, for a real scalar X , is the
well studied scalar singlet DM, deemed to be one of the simplest DM models (see e.g.
refs. [22, 23] and references therein). UV-complete models of fermionic singlet DM
usually also feature a scalar messenger connecting the dark and visible sectors, see e.g.
ref. [24], since there exist no renormalizable interactions of a fermionic singlet alone
with SM fields (the lowest-order interaction of this DM candidate is through the Higgs-
portal dimension-5 operator XXH†H, see e.g. refs. [23, 25] for recent references). The
(1,1, ε) candidate is the so-called millicharged DM. We defer a further examination of
this candidate to section 3.

For a heavy multiplet, the stability condition implies that the only acceptable quantum
numbers are those for which an accidental symmetry exists, protecting the DM from
decay. Assuming the cutoff Λ of the theory to be the Planck scale, as in the original
MDM setup, this symmetry must be respected both by renormalizable interactions and
by dimension-5 effective operators, in order to avoid fast decay of the DM candidate.
Decays induced by higher-dimensional operators violating the accidental symmetry
have a negligible impact on the DM phenomenology, but can become important if a
lower cutoff is assumed.

2Here and in the following we take ε to be a positive number. The case of negative hypercharge is trivially
related to that of positive hypercharge.

– 4 –
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While it is natural to assume a Planck-scale cutoff, new physics is required to explain
experimentally observed phenomena like neutrino oscillations or the matter-antimatter
asymmetry in the universe, that may occur at a much lower scale. With no further
assumption added to the MDM paradigm, one cannot prevent the new physics respon-
sible for these phenomena to break the accidental symmetry stabilizing the DM. It is
then natural to study the effect of higher-order symmetry breaking operators and the
phenomenology of decaying MDM as a function of the cutoff scale Λ. We will discuss
all this for the MDM fermionic quintuplet in section 4. The scalar eptaplet decays too
quickly, as discussed in the following, and it is therefore not a good MDM candidate.

When considering DM decays, the most obvious operators to consider are those that
are linear in the DM field, which break the accidental symmetry with the minimum
number of X fields. However, one should worry about all symmetry-breaking operators,
including those with a larger number of X fields. In particular, we show in appendix A
that for any SU(2)L n-plet X with integer weak isospin I = (n − 1)/2, three X can
be uniquely combined into an SU(2)L singlet for even I (i.e. n = 1, 5, 7, . . . ) or into a
triplet for odd I (i.e. n = 3, 9, . . . ). Therefore all scalar (1,n, 0) multiplets with odd n
allow for dimension-5 symmetry-breaking operators of the form X 3H2, with H2 either
a SU(2)L singlet or triplet (notice that the Z2 symmetry protecting scalar DM from
decay is already broken at dimension 3 by the operator X 3 for multiplets with even
I). Upon closing two of the three X legs in a loop (see e.g. figure 9 of ref. [4]), these
operators induce fast DM decays even assuming a Planck-scale cutoff.

The argument just presented is very general and can be also applied outside the MDM
framework. In fact, it concerns any model featuring a color and hypercharge-neutral
scalar multiplet containing a DM candidate, unless ad-hoc symmetries are introduced
to prevent DM from decaying. A possibility to bypass this drawback of scalar DM
could be to assign the scalar multiplet a tiny hypercharge. This generalization of the
MDM paradigm will be the subject of the next section.

A similar argument as above can be applied to fermion (1,n, 0) multiplets with odd
n, for which there exists always a dimension-7 symmetry-breaking operator of the type
X 3LH. Cosmological bounds on the DM lifetime, τDM > 150 Gyr ≈ 5× 1018 s [26, 27],
then fix a minimum cutoff scale that can be estimated using naive dimensional analysis:

1

τDM
' 1

16π2

M7

Λ6
, (2.3)

implying Λ & 1011 GeV for M ≈ 10 TeV. This bound in turn allows to fix an upper
limit on n with the requirement that the model has no Landau poles below this minimal
cutoff, n 6 5 (see footnote 1). As for the scalars, the existence of symmetry-breaking
operators relies on the multiplet having zero hypercharge as assumed in the original
MDM setup; in the next section we will relax this assumption and show that MDM
with Y 6= 0 can be phenomenologically viable.

2. “The only renormalizable interactions of X to other SM particles are of gauge type,
such that new physics is determined by one new parameter: the tree-level mass M of
the Minimal Dark Matter (MDM) multiplet”.
In line with Gell-Mann’s Totalitarian Principle, this condition cannot be satisfied for
Lorentz scalars (as already noticed in ref. [1]). In fact, the dimension-4 operators

– 5 –
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X †XH†H and X †taXX H†taHH with ta the SU(2)L gauge group generators in the proper
representation, cannot be forbidden by any choice of X ’s quantum numbers. If taken
into account, these couplings can affect the annihilation cross section, which is relevant
for the computation of the relic abundance and thus for determining M . The operator
X †taXX H†taHH also affects the mass splitting between the different components of the
multiplet. The requirement that the splitting is determined only by loop corrections (see
next point) constrains its coefficient to be smaller than O(M/100 TeV) [1]. Moreover,
it was found in ref. [5] that the renormalization group evolution of quartic couplings in
V (X , H) generates a Landau pole below the Planck scale, and below the Landau pole
due to running of the gauge couplings [4], even if the coupling constants are set to zero
at the scale M . Although the presence of these operators spoils the minimality of the
model by introducing extra free parameters, their effect must be included in any truly
generic analysis of scalar MDM candidates.

3. “Quantum corrections generate a mass splitting ∆M such that the lightest component
of X is neutral. We compute the value of M for which the thermal relic abundance
equals the measured DM abundance”.
If condition 2 is met, then the splitting can only be radiative, and its size is fixed by
X ’s quantum numbers. In this case, as shown in ref. [1], the lightest component of X
is electrically neutral as long as Y = 0. Even letting the hypercharge take non-zero
values, although small enough to be allowed by DM searches as required by condition 4
below, the lightest state is a viable DM candidate albeit electrically charged. Therefore,
a lightest state with small |Y | is automatically obtained when conditions 2 and 4 are
enforced simultaneously.

4. “The DM candidate is still allowed by DM searches”.
As anticipated above, thermal-relic colored DM seems to be excluded by the stringent
constraints on strongly-interacting DM [1–3]. Moreover, constraints from direct DM
searches imply that interactions with the photon and the Z boson must be suppressed.
This only leaves open the possibility of (1,n, Y ) MDM with odd n and either Y = 0
or Y = ε with very small but positive ε.

Summarizing, we confirmed that, of the two MDM candidates which were so far consid-
ered to be viable, the scalar eptaplet is actually ruled out [4]. This singles out the fermionic
quintuplet as the only viable MDM candidate. We also proposed to extend the MDM frame-
work by separately dropping two of the original assumptions, namely the assumption of a
Planck-scale cutoff and the assumption of DM electric charge neutrality. The assumption of
a Planck-scale cutoff can be relaxed in favor of a generic cutoff, which then enters the model
as a new free parameter that can be probed by studying cosmic-ray signatures of DM decays.
We will do that in section 4. Finally, by lifting the hypothesis of electric neutrality of the
DM we established the existence a new class of MDM models featuring millicharged DM.
We explore this possibility in section 3.

3 Millicharged MDM: (1, n, ε) candidates

In this section we explore the possibility of MDM candidates with small hypercharge, (1,n, ε)
with ε 6= 0. As in the standard MDM scenario, n must be odd to avoid tree-level interac-
tions of the DM particle with the Z boson. Notice that DM-Higgs interactions can induce

– 6 –
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a mass splitting in the DM components that makes the DM-nucleus scattering at direct
detection experiments inelastic, thus drastically reducing the scattering rate. In this case
the stringent bounds from direct DM searches become ineffective and relatively large hyper-
charge assignments are possible, see refs. [28, 29]. We do not pursue this direction here, and
stick to small ε.

An important feature of these candidates is that the DM has electric charge equal to
ε (in units of e), and this makes it absolutely stable. In fact, its stability is protected to
all orders in the effective field theory expansion by electric charge conservation. What is
usually an unwanted feature in a DM candidate, i.e. electric charge, is here what stabilizes
the multiplet making it a potentially successful candidate!

Since the DM is stable to all orders, one does not need to worry any more about cutoffs.
In the original MDM setup, large multiplets were discarded because the presence of Landau
poles in the running of the electroweak gauge couplings could indicate new physics that may
spoil the accidental symmetry stabilizing the DM. Millicharged DM being absolutely stable
now allows to consider, in principle, even large n’s. In this case, a criterion for setting an
upper bound on n could be computability. For example we may require that the 1-loop
amplitude does not exceed the tree-level result: roughly speaking, (α2/4π)G < 1 with α2 the
SU(2)L fine structure constant and G a n-dependent group factor.

Although it may seem odd to consider a field with such a small hypercharge, there is no a
priori reason to exclude this possibility: in fact, this choice is allowed by gauge symmetry, and
gauge anomaly cancellation is unaffected as long as fermion DM candidates are vector-like.

From a GUT standpoint, one may object that small values of hypercharge are difficult
to accommodate in models of grand unification. While this is definitely true, we note that
the whole MDM framework is not particularly GUT friendly, since its large multiplets badly
modify the running of the SM gauge couplings and moreover they supposedly require a large
GUT representation to embed the X field,3 thus generating a severe doublet-triplet splitting-
like problem.

There is also a more theoretical advantage that is worth commenting. According to
the no-hair theorem [30, 31], gravitational effects break global but not local symmetries.
As we observed above, stability of millicharged DM is guaranteed by a local symmetry, the
unbroken U(1)EM. Remarkably, this is the only symmetry that could be used to completely
stabilize the DM without extending the gauge group of the SM model. This being said,
for phenomenological purposes it is enough for a global symmetry stabilizing the DM to be
accidentally preserved up to dimension 5 in an effective theory expansion: in fact, the effects
of breaking that symmetry at the Planck scale are small enough to guarantee the stability of
the DM on cosmological timescales.

In the following we first review the most stringent constraints on the DM electric charge
ε, and then discuss the possible millicharged MDM candidates (1,n, ε) and compute the mass
of few of them.

3.1 Constraints

Constraints on heavy millicharged particles are inferred from cosmological and astrophysical
observations as well as direct laboratory tests [32–34]. The most stringent upper bounds on
ε, summarized in the following, are shown in the right panel of figure 1 below. A conceivable
lower bound could be obtained by considering the weak gravity conjecture [35], which requires
ε > M/MPl.

3For example, in SU(5) GUT, the lowest-dimensional irreducible representation containing (1,5, 0) is 200.

– 7 –
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3.1.1 Bounds from CMB

Millicharged DM particles scatter off electrons and protons at the recombination epoch via
Rutherford-like interactions. It was shown that if millicharged particles couple tightly to
the baryon-photon plasma during the recombination epoch, they behave like baryons thus
affecting the CMB power spectrum in several ways. This kind of bounds were derived by
different groups [32, 33]. In particular, ref. [33] found that in order to avoid the tight-coupling
condition the DM millicharge must be

ε . 2.24× 10−4

(
M

1 TeV

)1/2

(3.1)

for a DM particle much heavier than the proton.

3.1.2 Direct searches

Millicharged DM scatters off nuclei via Rutherford-like interactions. In the non-relativistic
limit the differential cross section for DM scattering off a nuclear target T with mass mT and
electric charge eZT is given by [36, 37]

dσT
dER

(v, q2) = 8πmT
α2ε2

v2 q4
Z2
T F

2
T (q2) . (3.2)

Here ER is the nuclear recoil energy, related to the momentum transfer q by q2 = 2mTER,
and α is the electromagnetic fine structure constant. FT (q2) is the nuclear Helm form fac-
tor [38, 39], which takes into account the loss of coherence of the interaction at large q. Since
the interaction is spin-independent, the most stringent bound to date is set by the LUX ex-
periment [40]. We use the tools in ref. [41] to infer a 90% CL bound on ε from LUX. For
M & 100 GeV, only values

ε . 7.6× 10−10

(
M

1 TeV

)1/2

(3.3)

are allowed by LUX with 90% confidence. Notice this bound does not apply in the range

9× 10−9

(
M

1 TeV

)
. ε . 1.1× 10−2

(
M

1 TeV

)1/2

, (3.4)

because for these values millicharged particles have been evacuated from the galactic disk by
supernova explosion shock waves, and galactic magnetic fields prevent them from entering
back [32, 42]. For ε respecting eq. (3.1), we do not expect DM self-scattering to sufficiently
randomize the direction of motion of DM particles before they gyrate out of the disk [43].

These constraints, depicted in the right panel of figure 1, allow for relatively large
values of ε, which may give rise to interesting phenomenology of millicharged DM candidates.
However, for values below the LUX bound this parameter does not contribute to the DM
phenomenology and can be safely ignored, the only relevant effect being the doubling of the
number of X ’s degrees of freedom due to passing from a real to a complex representation of
the gauge group.

In the following we discuss the possible millicharged candidates and their phenomenol-
ogy. We first consider (1,1, ε) candidates, which do not have weak interactions, and then we
focus on (1,n, ε) with n > 3.

– 8 –



J
C
A
P
0
4
(
2
0
1
6
)
0
4
8

3.2 (1, 1, ε) Dirac fermion

This candidate has only electromagnetic interactions at the renormalizable level. Ref. [32]
showed that the parameter space where the DM can be produced thermally with the correct
relic abundance is ruled out by observations, most notably by the CMB bound commented
above. Therefore, without introducing non-renormalizable interaction, this candidate must
be non-thermally produced. Since the details of this production mechanism are highly model
dependent, we do not explore this possibility further. Another possibility is to assume a
low enough cutoff so that production of this candidate can occur through the dimension-5
Higgs-portal operator XXH†H. In this case, the assumption of thermal production fixes the
cutoff as a function of the DM mass, which remains as a free parameter. This candidate has
been widely studied in the literature (see e.g. refs. [23, 25] for recent references), therefore
we do not dwell further on this possibility.

3.3 (1, 1, ε) complex scalar

With no interactions other than electromagnetic, thermal production of this candidate is ruled
out on the same ground as the fermionic (1,1, ε) candidate. However, as already mentioned,
scalar DM can interact with the Higgs through the Higgs portal X †XH†H, which opens a
new window for thermal production. Given the strong bounds on ε, this candidate behaves
basically as a complex scalar field which is completely neutral under the SM. In the assump-
tion we can neglect the quartic self-coupling (X †X )2, the real and complex components of X
do not interact with each other (see below) and can be therefore treated independently as two
degenerate real scalar DM particles. Real scalar DM is considered one of the simplest models
of DM, and has been widely studied in the literature (see e.g. refs. [22, 23] and references
therein). The most stringent constraints on thermal relic DM come from the Higgs’s invisible
decay width [44], which excludes DM masses below ∼ 50 GeV, and the LUX bound [40], which
excludes masses from about 10 GeV to roughly 200 GeV [45], except for a very narrow (few
GeV wide) interval around half the Higgs boson mass (M ≈ 60 GeV) where the annihilation
cross section is resonantly enhanced. As shown in ref. [22], DM masses above 200 GeV will
be probed in the near future by both direct and indirect detection experiments, most notably
XENON1T [46, 47] and CTA [48].

3.4 (1, n, ε) with n > 3

For ε satisfying the bounds on millicharged DM presented above, DM particles interact
mainly with massive gauge bosons. Therefore, the phenomenology of a (1,n, ε) multiplet is
basically identical to that of (1,n, 0). The only difference, for odd n, is that (1,n, 0) is a real
representation of the gauge group while (1,n, ε) is complex. This implies a doubling of the
number of degrees of freedom with respect to the real case, which affects the computation of
the relic density and therefore the DM mass M . In the following we show that, under some
conditions, the relic density for (1,n, ε) can be obtained by simply scaling results for (1,n, 0)
appeared in the literature.

We start by expressing a complex scalar multiplet in terms of its real components,
and a Dirac fermion as two degenerate Majorana states with opposite parity under charge
conjugation:

X =
X1 + iX2√

2
for scalar X ,


X =

X1 + X2√
2

X c =
X1 −X2√

2

for fermion X . (3.5)
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In this new basis, and in the absence of quartic couplings in V (X , H) for scalar MDM, we
get two separate Lagrangians for X1 and X2 that are bilinear in these fields, and in fact we

can define a global Z(1)
2 × Z(2)

2 symmetry acting on (X1,X2) as

Z(1)
2 : (X1,X2)→ (−X1,X2) , Z(2)

2 : (X1,X2)→ (X1,−X2) . (3.6)

If we consider now the main annihilation mode of this candidate, i.e. 2→ 2 DM annihilations
into SM vectors V , this symmetry tells us that the only possibile annihilation channels are
X1X1 → V V and X2X2 → V V , since X1X2 → V V has initial and final states with different
parity. This means that, at tree level, the two sectors completely decouple.

This is not the whole story, however. As well known, Sommerfeld enhancement provides
an important non-perturbative correction relevant in the non-relativistic regime, and thus
must be included. Since all relevant diagrams are of ladder type, we have again that if
a process is initiated e.g. by XiXi then no Xj 6=i particles appear in the diagram. Therefore
Sommerfeld enhancement respects the complete factorization of X1 and X2. As a consequence,
the computation of the relic density of X1 is completely independent from the computation
of the relic density of X2. Moreover, these two states having same mass and same gauge
interactions, they must have the same relic density and therefore the relic density of X is
twice that of a single Xi.

Figure 1 shows the Sommerfeld-corrected DM relic density as a function of the DM mass
for a complex scalar triplet and eptaplet and a Dirac triplet and quintuplet (solid lines). These
functions are taken to be twice the value of the relic density of a real scalar triplet [49], a real
scalar eptaplet in the approximate SU(2)L-symmetric limit [11], and a Majorana triplet [49]
and quintuplet [6], respectively (the relic density of the Majorana quintuplet is also shown as
a dashed line). Since the real scalar quintuplet was found in ref. [49] to have the same mass
of the Majorana quintuplet, we assume the same holds also for the complex case for both
the quintuplet and the eptaplet. While candidates with larger n can be perfectly viable, we
only consider here SU(2)L triplets, quintuplets and eptaplets as careful computations of the
relic abundance are available in the literature only for these candidates. The horizontal red
strips in figure 1 show Planck’s measurement of DM density [50],

ΩDMh
2 = 0.1188± 0.0010 , (3.7)

at the 1σ (inner strip) and 2σ (outer strip) CL. The DM mass for each case is determined by
the crossing of the relevant solid line and the red strips (notice the relic density line for the
Dirac triplet crosses the DM abundance band twice, thus there are two allowed values for its
mass). This interval in DM masses is indicated with a vertical band whose width is given by
the 2σ uncertainty of Planck’s result. A larger uncertainty, of order 5% of the total result,
comes however from the theoretical determination of the cross sections [6]. This translates
into an uncertainty on the determination of the DM mass shown as a lighter vertical band
for each case. Considering the latter uncertainty the DM has mass

1.55± 0.08 TeV complex scalar triplet, (3.8)

2.00± 0.10 or 2.45± 0.12 TeV Dirac triplet, (3.9)

6.55± 0.33 TeV complex scalar and Dirac quintuplet, (3.10)

15.8± 0.79 TeV complex scalar and Dirac eptaplet. (3.11)

Also shown in figure 1 is the mass for a Majorana quintuplet (which is determined by its
relic density, shown as a dashed line). This information will be useful for our study of this
candidate in the next section.
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Figure 1. Left: thermal relic abundance of a complex scalar triplet and eptaplet and a Dirac triplet
and quintuplet, indicated as solid lines. Confrontation with the measurement by Planck, indicated
here as a double horizontal red band (inner for 1σ uncertainty, outer for 2σ), determines the DM
mass M in each case. Uncertainties on M are indicated by a double vertical band: the inner, darker
band reflects the 2σ uncertainty on Planck’s measurement, while the outer, lighter band shows the
theoretical uncertainty estimated as ±5% of the DM mass. The relic density line for the Dirac triplet
crosses the DM abundance band twice, thus there are two allowed values for its mass. We assume the
complex scalar quintuplet (eptaplet) has the same mass as the Dirac quintuplet (eptaplet), as happens
for real scalar and Majorana quintuplets. The thermal relic abundance of a Majorana quintuplet
(dashed line), together with its mass, is shown for use in the next section. Right: constraints on the
DM millicharge ε as a function of the DM mass. The LUX bound does not apply in the region of
parameter space where no DM particles populate the galactic disk.

For scalar X , quartic couplings such as X †taXX H†taHH can break the symmetry in
eq. (3.6) and thus affect the above scaling argument. In this case, the annihilation cross
section will be in general larger than that, discussed above, due solely to DM couplings to
gauge bosons. Therefore, in order to fit the observed DM abundance, the DM mass must be
larger with respect to the case of DM with only gauge interactions. The values of M given
above and shown in figure 1 can thus be thought of lower bounds on the true value of the
DM mass in presence of quartic couplings. See e.g. ref. [51] for a dedicated analysis on the
effect of these couplings.

Once the mass of the (1,n, ε) multiplet is known, the phenomenology of these candidates
is univocally determined (up to free terms in V (X , H) for scalar multiplets). In particular,
the most stringent constraints on electroweak multiplets come from indirect DM searches.
The bounds from gamma-ray line searches are particularly relevant due to the Sommerfeld-
enhanced annihilation cross section into gauge bosons.

The phenomenological advantage of millicharged MDM candidates is that, since the DM
particle and its antiparticle are distinct, the annihilation probability is half that of a self-
conjugated DM candidate with the same quantum numbers and mass. Therefore, all bounds
on the annihilation cross section are a factor of 2 less stringent. However, the DM mass for
these candidates is in general lower than for their self-conjugated version, and this may be a
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drawback for the following reason. Ideally, bounds on annihilation cross sections scale with
the inverse of the DM number density squared, and thus with (ρ/M)−2 with ρ the assumed
DM energy density. Therefore, lighter DM candidates are ideally more constrained. However,
realistic bounds depend on the experimental resolution, which is particularly relevant for
gamma-ray line searches given that the expected signal is a very narrow spectral feature.
A finite and energy-dependent resolution leads in general to an uneven sensitivity on the
DM mass. Moreover, the theoretical dependence of the annihilation cross section on M
may be very irregular, especially in presence of non-perturbative effects (see e.g. figure 7 of
ref. [6]). Therefore, it is difficult to predict whether a lighter DM particle is more or less
constrained than a somehow heavier particle. For this reason, constraints on millicharged
MDM candidates must be checked case by case.

Bounds on some of the candidates considered above can be determined by properly
rescaling existing bounds on self-conjugated multiplets with the same quantum numbers.
Constraints on a (supersymmetric Wino) Majorana triplet, on the MDM Majorana quin-
tuplet, and on the real scalar eptaplet can be found in refs. [6, 7, 49, 52–56], and [11],
respectively. We do not have enough information on the scalar triplet and fermion eptaplet
to determine bounds on these candidates.

Interestingly, the Dirac triplet with M = 2.00 TeV is allowed by gamma-ray searches
even with the most aggressive choices of DM profile made in figure 12 of ref. [52]. In the
assumption of a cuspy profile, forthcoming experiments like CTA [48] will be able to probe
this candidate. The situation of the Dirac triplet with M = 2.45 TeV is closer to (although
worse than) that of the Majorana triplet with mass 3.1 TeV [53], which is already excluded by
bounds assuming cuspy profiles while allowed when choosing a cored profile. The 6.55 TeV
Dirac quintuplet is in the same situation as the Majorana quintuplet, whose mass is given in
eq. (4.4), i.e. it is badly excluded with the choice of a cuspy profile, while it is still viable if
a cored profile is considered (see e.g. figure 7 of ref. [6]). The complex scalar eptaplet, while
excluded for a cuspy Einasto profile, may be either excluded or allowed for a cored Isothermal
profile, depending on the precise value of its mass within the 5% uncertainty reported above
and shown in figure 1; notice however that our calculation of mass and constraints for this
candidate rely on the computations carried out in ref. [11] in the approximate limit of exact
SU(2)L symmetry.

We have only discussed here bounds from gamma-ray line searches, which are the most
constraining, as mentioned above, when a cuspy profile is chosen. Other bounds, that a
rough evaluation reveals not to exclude these candidates at present, may become relevant in
the near future (see e.g. refs. [6, 52, 57]). The most entertaining possibility is to probe MDM
with a future 100 TeV proton-proton collider [57], but the hope is to find other evidences for
it well before that.

4 Decaying quintuplet MDM

In this section we study the possibility that the MDM setup has a generic cutoff Λ. We
consider here the ‘standard’ MDM scenario with Y = 0, thus the only viable candidate (as
discussed above) is the fermionic SU(2)L quintuplet. The main effect of lowering the cutoff
from the Planck scale is that DM stability on cosmological timescales is spoiled. In fact,
dimension-6 operators can break the Z2 symmetry protecting DM from decay [58], so that
for a low-enough cutoff we can expect to observe the signature of DM decays in cosmic-ray
spectra. We thus perform a thorough analysis of the gamma-ray spectrum produced in DM
decays and use the Fermi [59] and H.E.S.S. [60] data to set bounds on Λ.
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4.1 Relevant Lagrangian and decay modes

We represent the fermionic SU(2)L quintuplet as a Dirac four-spinor X with only right-
handed components, so that PRX = X and PLX = 0, where PR and PL are the right and
left projectors, respectively. Notice that the quintuplet is a real representation of SU(2) and
therefore the neutral component of X is a Majorana fermion. DM decays are induced at
dimension 6 by the two operators XLHHH†, XσµνLWµνH, and their hermitian conjugates.
We are therefore interested in the following Lagrangian:

L = LSM + iX /DX +

(
−M

2
X cX +

ca1
Λ2
XLaHHH† +

ca2
Λ2
XσµνLaWµνH + h.c.

)
, (4.1)

where a = e, µ, τ is a lepton flavor index and σµν ≡ i
2 [γµ, γν ]. We neglect dimension-5 and

all other dimension-6 operators, since they do not contribute to DM decays. DM annihila-
tions are of course dominated by X ’s renormalizable gauge couplings, as the contribution of
non-renormalizable operators is suppressed by powers of M/Λ. To show how the multiplet
components of the various fields contract, we represent X as a rank-4 completely symmetric
tensor in the anti-fundamental representation of SU(2)L, X ijkl with i, j, k, l = 1, 2 (see e.g.
appendix B of ref. [4] for more details). The W -boson multiplet is also written as a sym-
metric rank-2 tensor, while the lepton doublet L and the Higgs doublet H are represented
by rank-1 tensors in the fundamental representation. Indices are raised and lowered with
the completely antisymmetric SU(2)L-invariant tensor ε, with ε12 = −ε12 = 1. Making the
SU(2)L indices explicit we get

L = LSM + iX ijkl /D
ijkl
i′j′k′l′X i

′j′k′l′ − M

2

(
X cijklX i′j′k′l′εii′εjj′εkk′εll′ + h.c.

)
+

(
ca1
Λ2
X ijklLai′Hj′Hk′H

†lεii
′
εjj

′
εkk

′
+
ca2
Λ2
X ijklσµνLai′W

µν
j′k′Hl′ε

ii′εjj
′
εkk

′
εll

′
+h.c.

)
. (4.2)

The fields can be rewritten as

X 1111 = X−2
R

X 1112 = 1√
4
X−1

R

X 1122 = 1√
6
X 0

R

X 1222 = 1√
4
X+1

R

X 2222 = X+2
R

W11 = + 1√
2
W+

W12 = −1
2W

3

W22 = − 1√
2
W−

H1 = φ+

H2 = 1√
2
(h+ v + iφ0)

L1 = νL

L2 = `L

(4.3)

where the X t3R are Dirac spinors with only right-handed components. The DM candidate
is the self-conjugated neutral component X 0

R, which from now on we will denote X 0 for
simplicity. As can be seen from figure 1, the DM mass is fixed by its relic abundance to be

M = 9.4± 0.47 TeV . (4.4)

We study the effect of the two dimension-6 operators separately. Detailed analytic
formulas for the matrix elements and the differential and total decay rates for the relevant
processes can be found in appendix B. Since the DM is much heavier than all SM particles
it decays to, we neglect all final state particle masses in the calculations.
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The first operator, XLHHH†, induces νL-X 0 mixing and the following 2, 3, and 4-body
DM decays:

X 0 → `W+
L , νZL, νh,

X 0 → `W+
L h, νW

+
L W

−
L , νZLZL, νZLh, νhh,

X 0 → `W+
L W

+
L W

−
L , `W

+
L ZLZL, `W

+
L hh,

νZLZLZL, νZLW
+
L W

−
L , νZLZLh, νW

+
L W

−
L h, νZLhh, νhhh,

(4.5)

where all gauge bosons are longitudinal and charged leptons and neutrinos are left-handed
(the polarization of final state particles is an important ingredient entering the code [61], that
we use to compute the gamma-ray flux from DM decays). Notice that the squared amplitude
for decays into final states with many Higgs fields are enhanced by powers of (M/v)2 ≈ 103:
in fact, adding a Higgs field to the final state removes a factor of v from the Lagrangian
coefficient, that is replaced in the decay amplitude by a factor of M . By the Equivalence
Theorem, the same holds for decays into many longitudinal gauge bosons as well. Therefore,
despite the phase-space suppression, decays into many particles can be favored over 2-body
decays. We check explicitly that this is the case by computing both X 0 → νh, νhh, and
νhhh decay rates. The remaining decay rates are computed with the Equivalence Theorem.
All our analytic results can be found in appendix B. Our analytic computation of the 4-body
phase space (approximating all final states as massless) is described in appendix C.

The second operator, XσµνLWµνH, induces the following 2 and 3-body decays:

X 0 → `W+
T , νZT, νγ,

X 0 → `W+
T ZL, `W

+
T h, `ZTW

+
L , `γW

+
L , νZTh, νZTZL, νγZL, νγh, νW

−
T W

+
L ,

(4.6)

where one gauge boson is always transverse, while the other, if present, is longitudinal, and
the charged lepton or neutrino is left-handed. Contrary to the previous case, 4-body decays
do not receive the (M/v)2 enhancement factor with respect to the 3-body modes, and thus
can be neglected. 2-body decays are also suppressed with respect to the 3-body channels,
but they deserve special attention since they produce very narrow features in the gamma-ray
spectrum. These peaks, appearing at the very end of the produced photon spectrum (i.e. at
energies equal to half the DM mass), are due to photons produced by the monochromatic
decay products of 2-body decays, and may be visible on top of the continuum produced by
3-body decays. In appendix B we compute explicitly the X 0 → `W, νZ, νγ, `Wh, νZh, νγh
decay rates, and apply the Equivalence Theorem to compute the remaining rates. To avoid
the shortcomings of the Theorem (see e.g. footnote 7 of [62]) we checked the result by also
performing the computation in the Equivalent gauge [62].

4.2 Gamma-ray fluxes from DM decay

The strongest limit on models of decaying DM is arguably set by observations of gamma rays.
For this reason we focus here on production of secondary gamma rays, and compare the model
expectation with Fermi data to obtain a bound on the relevant parameter ca1,2/Λ

2. Moreover,
the photon flux does not suffer from the same astrophysical (e.g. diffusive) uncertainties
as charged particles, thus our analysis is quite reliable and does not depend much on the
modeling of the cosmic environment. Other relevant constraints may be set for instance
by looking at the sum of electron and positron fluxes up to 1 TeV measured by Fermi and
more recently by AMS-02, and above that energy by H.E.S.S. and MAGIC, at the positron
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fraction and the antiproton flux measured by both AMS-02 and PAMELA, and at the neutrino
flux in ICECUBE and ANTARES. For a recent review of the status of indirect DM searches
see e.g. ref. [63].

4.2.1 Production rate of stable SM particles in DM decays

Upon decay of the DM particle, X 0 → f1 . . . fn, the primary decay products f undergo a
series of processes such as decay and radiative processes (hadronization, showering, . . .) which
generate a set of stable SM particles α = e±, p̄, γ, . . . . The production rate of each stable
state α at the source per single DM decay is

dRs
α

dEα
(Eα) =

∑
f

∫
dEf

dΓ

dEf
(Ef )

dNf
α

dEα
(Ef , Eα) , (4.7)

where dNf
α/dEα is the spectrum arising solely from the primary f with energy Ef , and

dΓ/dEf is the DM decay rate into f summed over all decay channels which include f in the
final state.

While propagating away from the source, these stable particles can interact with the
cosmic environment thus modifying their spectrum in a position-dependent way. For instance,
the photon flux at Earth gets a contribution from the prompt emission in eq. (4.7) with
α = γ, and a contribution from low-energy background photons (e.g. from the CMB or the
interstellar photon field) being up-scattered by e± from DM decays; in the latter case, the α =
e± rate at the source in eq. (4.7) must be convolved with the probability of undergoing inverse-
Compton (IC) processes with the inhomogeneous photon field (see e.g. refs. [64, 65]). The
so-modified rate, which we call dRα/dEα, depends e.g. on the distance r from the Galactic
Center (GC) for decays within our galaxy, or from the redshift z for extragalactic decays.
We compute dRα/dEα from the production rate at the source dRs

α/dEα following ref. [61].

We adapt the spectra per single primary dNf
α/dEα from ref. [61], with the following cau-

tions. The primary spectra given in ref. [61] are meant for DM decays to particle-antiparticle
pairs X 0 → ff , so that the primary energies Ef are not parameters that can be varied but
are instead fixed to half the input DM mass, call it MPPPC. The latter is a parameter whose
value is possible to vary, and therefore in using the primary spectra from ref. [61] we adopt
the prescription MPPPC → 2Ef . One has also to take into account the fact that the primary
spectra given in ref. [61] include the spectrum generated by the primary antiparticle f , be-
sides that due to f . However, in the assumption of CP invariance, the rate for the decay
X 0 → f1 . . . fn equals the rate for X 0 → f1 . . . fn (notice that X 0 is a Majorana fermion).
Therefore, when summing the two rates (as part of the sum over all decay channels), we will

have in eq. (4.7) dNf
α/dEα + dNf

α/dEα. We use the spectra of ref. [61] in place of this sum.
Consequently, the only channels that remain to be summed are those that are non mutually
conjugated. In practice eq. (4.7) can be operatively written as

dRs
α

dEα
(Eα) =

∑
c

∑
f

∫
dEf

dΓc
dEf

(Ef )

[
dNf

α

dEα
+

dNf
α

dEα

]
︸ ︷︷ ︸

dNPPPC,ff
α

dEα

∣∣∣∣∣
MPPPC=2Ef

, (4.8)

where c enumerates all non mutually-conjugated decay channels.
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4.2.2 Continuum photon emission

The residual isotropic gamma-ray flux observed by Fermi [59] extends from 100 MeV up to
820 GeV. The origin of this isotropic emissions is not well understood and can be due to
different phenomena such as unresolved sources or truly diffusive processes.

DM decays can contribute to this isotropic flux, with two components: i) galactic (Gal)
residual flux due to DM decays within the Milky Way halo, and ii) extragalactic (ExGal)
flux due to cosmological DM decays integrated over redshift. The latter is of course isotropic,
while the former is not, however its minimum constitutes an irreducible contribution to the
isotropic flux. Therefore, the isotropic diffuse gamma-ray flux as measured by Fermi is

dΦisotropic

dEγ
=

dΦExGal

dEγ
+ 4πmin

Ω

dΦGal

dEγ dΩ
. (4.9)

Here we make the reasonable approximation that the minimum of the angular flux in the
galaxy is found at the anti-GC, as in refs. [66–68]. This approximation is well justified be-
cause, for the decay channels relevant in our analysis, the prompt flux (which is the dominant
contribution) follows the angular distribution of DM density, which is of course minimum
at the anti-GC. For reasonable sizes of the diffusive halo, moreover, we expect also the IC
contribution to approximately follow the angular DM distribution.

The flux from the galactic halo, observed from a given direction and within a solid angle
dΩ, is in general given by

dΦGal

dEγ dΩ
=
r�
4π

ρ�
M

∫
l.o.s.

ds

r�

ρhalo(r(s, ψ))

ρ�

dRγ
dEγ

(r(s, ψ), Eγ) , (4.10)

where r� = 8.33 kpc is the Sun’s distance from the Galactic Center, ρ� = 0.3 GeV/cm3

is the local DM energy density, and r(s, ψ) =
√
r2
� + s2 − 2r�s cosψ is the distance of the

annihilation site from the GC, with s parametrizing the distance along the line of sight
(l.o.s.) and ψ the angle between the direction of observation and the GC. For the galactic
distribution of DM we assume a Navarro-Frenk-White (NFW) profile [69]

ρhalo(r) = ρs
rs

r

(
1 +

r

rs

)−2

, (4.11)

with parameters ρs = 0.184 GeV/cm3 and rs = 24.42 kpc. In any case, given the linear
dependence of the photon flux on the DM density for decaying DM (as opposed to the
quadratic dependence for annihilating DM), and the fact that we are mainly interested in
the anti-GC where all profiles are similar, the final result will bear little dependence on this
choice of profile and parameters.

The galactic gamma-ray flux has two main components: i) the prompt gamma rays
originating from the fragmentation of the primary products of decay, whose spectrum can
be obtained by taking α = γ in eq. (4.7) for all decay channels given above; and ii) IC
gamma rays, produced by the up-scattering of low-energy photons of CMB, infrared light,
and starlight, by energetic e± produced by DM decays. To obtain the IC spectrum we
integrate the α = e± rate in eq. (4.7) with the IC halo functions given in refs. [61, 70].

The extragalactic flux, integrated over the redshift at emission z, is given by

dΦExGal

dEγ
=

1

H0

ρc,0 ΩDM

M

∫ ∞
0

dz
e−τ(z,Eγ)√

(1 + z)3ΩM + ΩΛ

dRγ
dE′γ

(z, E′γ) , (4.12)
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where H0 is today’s Hubble expansion rate and ΩM, ΩDM, ΩΛ are respectively the matter,
DM, and cosmological constant energy density in terms of today’s critical density ρc,0. E′γ =
(1 + z)Eγ is the photon energy at emission redshift z so that the same photon is detected
on Earth with energy Eγ . The factor e−τ(z,Eγ) accounts for the absorption of DM-produced
gamma rays due to scattering off low-energy background photons, which results in production
of energetic e± pairs. The converted energy is in turn redistributed to lower-energy gamma
rays via IC scattering off CMB photons. We take into account this effect in our analysis, which
is sizable for channels with a pronounced prompt emission (the most relevant cases being
X 0 → νγ, eW+, µW+). We take the optical depth of the Universe τ(z, Eγ) from ref. [61].

As for the galactic flux, the extragalactic spectrum is again the sum of the prompt and IC
contributions. The z dependence of the prompt flux is obtained by simply “redshifting” Eγ ,

dRP
γ

dE′γ
(z, E′γ) =

dRP
γ

dEγ
(0, (1 + z)Eγ) , (4.13)

while the IC contribution due to e± scattering off the warmer CMB photons at z > 0
scales as [66]

dRIC
γ

dE′γ
(z, E′γ) =

1

1 + z

dRIC
γ

dEγ
(0, Eγ) . (4.14)

figures 2, 3, 4 show the isotropic gamma-ray flux from decaying quintuplet MDM, compared
with the flux measured by Fermi [59] (brown data points, taken from table 3 of ref. [59];
see also the data table at [71]). Each figure shows the result of our analysis assuming X 0

decays only to a specific lepton flavor (figure 2 for a = e, figure 3 for a = µ, and figure 4
for a = τ). The left panel of each figure shows the flux expected from decays induced

solely by the
ca1
Λ2XLHHH† operator, while the right panel shows the flux due to decays

from
ca2
Λ2XσµνLWµνH. In each plot the photon flux is broken into contributions from 2, 3

and (only for the first operator) 4-body decays, respectively in red, green, and blue. Each
contribution is in turn separated into its extra-galactic (dashed lines) and galactic (dotted
lines) components, with the solid line of same color showing the sum of the two. The thin
black lines (again dashed for the extra-galactic component, dotted for the galactic component,
and solid for the total), then show the sum of 2, 3 and (only for the first operator) 4-body
fluxes. Finally, the solid thick black line shows the sum of the total photon flux from DM
decays with the astrophysical background, indicated with a solid gray line.

Clearly the DM signal does not agree in shape with the data, which are instead well
fitted by a simple power law with an exponential cutoff. We therefore use this functional form
to model the background, adopting the best-fit parameter values from table 4 of ref. [59] and
the Fermi baseline diffuse galactic emission model (model A of ref. [59]). Each plot reports
the value of

Λai ≡
Λ√
|cai |

, i = 1, 2, a = e, µ, τ, (4.15)

used to normalize the photon flux from DM decays, which has been determined in each case
by performing a minimum-χ2 analysis of model + background against the Fermi data.

As apparent from a comparison of the three figures for each operator, the total DM
signal for each operator bears little sensitivity to the lepton flavor a, the most noticeable
difference being the size of the broad bump peaking between 10 and 100 GeV. Since this
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Figure 2. Isotropic gamma-ray flux due to DM decays induced by the operators (Λa1)−2XLaHHH†
(left) and (Λa2)−2XσµνLaWµνH (right), assuming DM coupling to electrons and electron neutrinos
(a = e). Fluxes from 2, 3 and 4-body decays are separately shown in red, green, and blue, respectively,
while the total flux is in black. Dashed lines indicate the extra-galactic component of the flux, dotted
lines the galactic flux, and solid lines their sum. Fermi data on the diffuse isotropic gamma-ray flux
are shown in brown, and the astrophysical background is displayed as a gray line. The thick black
line indicates the sum of the total flux from DM decays and the background. The best-fitting value
of Λa1,2, adopted here to normalize the fluxes, is reported in the upper part of the plots.
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Figure 3. Same as in figure 2 but for DM coupling to muons and muon neutrinos (a = µ).

bump is due to IC processes that populate the high-energy gamma-ray spectrum at the
expense of high-energy e±, DM decays generating more e± are expected to make it larger.
For this reason, the bump is largest for DM coupling to a = e, somehow smaller for a = µ,
and smallest for a = τ since τ ’s mainly decay into hadrons.
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Figure 4. Same as in figure 2 but for DM coupling to tau leptons and tau neutrinos (a = τ).

The main difference between the photon fluxes of the two operators is the narrow feature
at the very high-energy end of the spectrum for XσµνLWµνH, which is absent for the other
operator. This is due to the prompt photon emission, especially from the 2-body X 0 → νγ
decay which generates a gamma-ray line at Eγ = M/2. 3-body decays with γ’s in their final
states also contribute to the peak, although with a broader spectrum. We will analyze this
feature in more detail in the next section, where we derive a complementary bound coming
from line-like searches with the H.E.S.S. telescope.

In deriving a bound on the maximum allowed DM signal, i.e. on the minimum value of
Λai allowed by data, we adopt two methods.

• DM signal only. This method, which yields a very conservative limit, consists in de-
manding that the gamma-ray flux from DM decays alone, i.e. assuming no background,
does not exceed any one of the Fermi data points by more than a given significance,
which we take to be 3σ. This option is largely conservative for two main reasons.
First, it is quite clear from figures 2, 3, 4, that allowing the flux to exceed one data
point would result in excesses in nearby data points as well, and therefore the global
significance of the exclusion is in principle higher than the chosen significance in one
single bin. This is due to the smooth nature of the DM signal (and of the data) in
the Fermi energy window. Second, the assumption of a negligible background is clearly
physically untenable. In fact, the spectral shape of the signal is so different from the
data that background is needed in order to obtain a good fit.

• DM signal + background. A more realistic method consists in demanding that the sum
of astrophysical background and DM signal does not exceed a chosen level of global
significance, which we take to be 3σ.

The values of Λai allowed by Fermi data as computed with both methods are summarized
in table 1, together with the respective bounds on the DM lifetime τDM. The constraints
on τDM can be compared for a reference with the bounds obtained in refs. [67, 72] from an
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earlier Fermi data release. The enhanced constraining power of the new data set is apparent.
One also needs to bear in mind that, compared to the phenomenological analysis carried out
in ref. [67], where only one decay mode is present at a time, the DM candidate considered
here features several decay modes some of which contributing negligibly to the gamma-ray
emission. For this reason, our bounds on τDM may appear less strong than naively expected.

4.2.3 Gamma-ray lines

As commented above, the gamma-ray flux from DM decays induced by the XσµνLWµνH op-
erator displays a sharp feature at energies close to M/2 (see right panels of figures 2, 3, and 4).
This is due to the presence of decay channels with prompt photon emission, most notably the
X 0 → νγ decay which generates a gamma-ray line at Eγ = M/2 ≈ 5 TeV. This feature is not
constrained by Fermi measurements, which only reach up to 820 GeV. Therefore we compute
here a bound from H.E.S.S. gamma-ray line searches [60], which extend up to 25 TeV.

The H.E.S.S. Collaboration performed two separate searches for line-like features in the
gamma-ray flux in two sky regions of interest, namely the extragalactic sky and the central
galactic halo (CGH) region, the latter defined as a circle of 1◦ radius around the GC, where
the Galactic plane is excluded by requiring |b| > 0.3◦. We compare our gamma-ray flux with
H.E.S.S. limits in both sky regions, thus producing two sets of bounds. To take into account
the finite experimental resolution we convolve the photon flux with a Gaussian G(Eγ , E)
centered around Eγ , where E denotes the energy detected by the instrument. We take the
Gaussian function to have resolution 15% of Eγ [60, 73]. We then integrate the signal over
each bin in detected energy, ∫

bin
dE

∫
dEγ

dΦ

dEγ dΩ
G(Eγ , E) , (4.16)

and compare the result with the 95% CL limits on the gamma-ray flux in both sky regions
shown in figure 2 of ref. [60]. We neglect IC processes as they only contribute to the continuum
gamma-ray spectrum, not to line-like features, thus we compute the photon flux only using the
position-independent prompt emission in eq. (4.7) with α = γ. Contrary to the extragalactic
flux, the flux in the CGH region is sensitive to the assumed DM density profile due to the
pronounced differences between cored and cuspy profiles close to the GC. For this reason we
use the H.E.S.S. bound in the CGH region to set a profile-independent bound on Λai /J̄

1/4 with

J̄ ≡
(∫

CGH
dbd`

)−1 ∫
CGH

dbd`

∫
l.o.s.

ds

r�

ρhalo(r(s, ψ(b, `)))

ρ�
(4.17)

the angular-averaged J factor in the sky region of interest. Notice that this bound is truly
profile-independent as long as position-dependent processes such as IC can be neglected. For
reference, the value of J̄ for a cuspy profile like NFW [69] and a cored profile like Burkert [74]
computed with the functions in ref. [61] is

J̄NFW ≈ 17.38 , J̄Burkert ≈ 4.47 . (4.18)

Our 95% CL bounds on Λa2 are summarized in table 1, together with the respective limits on
the DM lifetime τDM derived by considering all relevant decay rates.

The Fermi limits from the continuum gamma-ray flux prove to be stronger than the
H.E.S.S. bounds from gamma-ray lines (as also found by ref. [73]), up to a factor of 8.7 for
the limit on τDM almost independently on the DM profile in the galaxy. While H.E.S.S.’s
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XLHHH† XσµνLWµνH

a Min Λa1 [×1016 GeV] Min τDM [×1027 s] Min Λa2 [×1016 GeV] Min τDM [×1027 s]

Fermi continuum, DM
signal only (3σ)

e 1.05 1.95 5.64 2.15

µ 1.03 1.82 5.56 2.03

τ 1.17 2.97 6.16 3.06

Fermi continuum, DM
signal + background
(3σ)

e 1.59 10.1 8.19 9.55

µ 1.50 8.05 7.78 7.78

τ 1.52 8.55 7.88 8.18

H.E.S.S. gamma-ray
line, CGH region
(95% CL)

e − − 2.20× J̄1/4 0.05× J̄
µ − − 2.20× J̄1/4 0.05× J̄
τ − − 2.20× J̄1/4 0.05× J̄

H.E.S.S. gamma-ray
line, extragalactic
(95% CL)

e − − 4.78 1.10

µ − − 4.78 1.10

τ − − 4.78 1.10

Table 1. Gamma-ray bounds on the new-physics scale Λa1,2 defined in eq. (4.15) and on the DM

lifetime τDM, separately for the two operators (Λa1)−2XLaHHH† and (Λa2)−2XσµνLaWµνH and
for each lepton flavor a = e, µ, τ . Both operators are constrained by the Fermi measurement of the
isotropic diffuse gamma-ray flux, which is used here to derive a conservative bound considering the DM
signal alone, and a realistic bound considering DM signal + background. The dipole operator induces
a gamma-ray line-like feature in the photon spectrum, and thus is also constrained by H.E.S.S. searches
of gamma-ray lines in the CGH and extragalactic regions. The DM-profile dependence of the bounds
from the CGH region is factored in the J̄ factor, values for which are given in eq. (4.18) for two
example density profiles. All other bounds are reasonably independent of the DM profile in the halo.

current sensitivity on the partial decay width into channels with prompt photons is at the
level of Γ−1

γ ∼ 1028 s [73], our bounds on τDM & 1027 s are less stringent due to the fact we
include all relevant decay channels. In other words, we constrain the full DM decay width
rather than the partial width into channels with prompt photons, by also taking into account
the important contribution of other decay modes.

The bounds shown in table 1 were derived separately for the two operators XLHHH†
and XσµνLWµνH, assuming only one was turned on at a time. However, in general, both
operators are expected to arise in the effective theory description, and, if they are generated
by the same physics at the scale Λ, we also expect their coefficients ca1 and ca2 to be somehow
related. Since the dipole operator XσµνLWµνH is certainly generated at loop level, while
XLHHH† can conceivably originate at tree level, we can guess that ca2 ≈ (α2/4π)ca1 with
α2 ≈ 1/25 as expected from the renormalization group evolution of the weak coupling if
the new physics in the loop is at the GUT scale. Therefore, the prospects of detecting the
gamma-ray line-like feature originating from the dipole operator are much worse than naively
expected from the study of the operator alone. Figure 5 shows the gamma-ray flux due to DM
decays induced by the operators 1

Λ2XLHHH† (red line) and α2
4πΛ2XσµνLWµνH (green line),

and their sum (black line). It is clear that the resulting line-like feature is much less visible
against the continuum of photons than in our previous analysis considering just one operator.
This result shows that analyses of gamma-ray line-like signatures of specific operators within
an effective theory description should be accompanied by an assessment of the contribution
to the continuum photon flux of all other operators that are expected in the effective theory.
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Figure 5. Isotropic gamma-ray flux due to DM decays induced by the operators (Λa)−2XLaHHH†
(red line) and (α2/4π)(Λa)−2XσµνLaWµνH (green line), and their sum (black line). The suppression
factor for the dipole coupling is expected from a radiative nature of the operator and causes the
gamma-ray line-like signal to be dwarfed by the continuum photon flux. The three plots assume DM
coupling to a = e (left), a = µ (center), and a = τ (right). The best-fitting value of Λa, adopted here
to normalize the fluxes, is reported in the upper part of each plot.

5 Conclusions

Minimal Dark Matter (MDM) [1] is a theoretical framework highly appreciated for its min-
imality and yet its predictivity. Contrary to many models where DM stability is imposed
by hand through a global symmetry, MDM candidates are made stable on cosmological
timescales by accidental symmetries occurring through a careful selection of the DM quan-
tum numbers. When the cutoff of the model is taken to be the Planck scale, internal consis-
tency conditions (the absence of Landau poles below the cutoff scale) and phenomenological
constraints single out a fermionic SU(2)L quintuplet and a scalar eptaplet as the only viable
MDM candidates.

Recently, the MDM model was endangered by the discovery that the eptaplet decays
quickly due to a previously overlooked dimension-5 operator [4], and thus it is not a viable
candidate; and by stringent gamma-ray line constraints in the Galactic Center, which do
or almost do rule out the quintuplet, depending on the assumed DM density profile in the
halo [6, 7]. In the light of these recent results, a critical reanalysis of MDM aiming at
generalizing and extending this framework was in order.

This is the purpose of the present paper. After reviewing the MDM setup and its
assumptions, we proposed two possible generalizations and studied their phenomenological
implications. First, we found that MDM multiplets with a small enough hypercharge provide
viable DM candidates, which possess small electric charges (the so-called millicharged DM)
and are therefore absolutely stable. We discussed the case of millicharged singlet DM, and
determined the thermal relic of triplets, quintuplets and eptaplets thus obtaining their mass.
Interestingly, we found that a Dirac triplet is not constrained by the gamma-ray line searches
that, for a cuspy DM halo profile, rule out a Wino (Majorana triplet) and the original MDM
quintuplet.

Second, we proposed the possibility of lowering the Planck-scale cutoff for the original
model of MDM quintuplet with zero hypercharge. As a consequence, the DM can decay by
means of two dimension-6 operators which break the accidental symmetry and we can observe
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the signature of these decays in the gamma-ray sky. We found the cutoff to be constrained
by Fermi data on the diffuse isotropic gamma-ray flux at about the GUT scale. We also
discussed the constraints set by H.E.S.S. on the gamma-ray line-like feature produced by the
dipole operator, finding that the Fermi data set a stronger bound for a 10 TeV DM. We also
found that, when the dipole operator is assumed to be generated by loop processes, this line-
like feature is completely dwarfed by the photon continuum induced by the other operator.
Were a clear photon line from this candidate’s annihilations to be soon detected, gamma-ray
data could also be used to gain insight on the scale of new physics above the DM mass.
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A Trilinear couplings

With the method of Hilbert series it is possible to prove that, combining three instances of
the same irreducible SU(2) representation,

1. A unique invariant can be constructed for even isospin, and no invariant can be con-
structed for odd isospin.

2. A unique isospin triplet can be constructed for odd isospin, and no triplet can be
constructed for even isospin.

We only quote here the relevant steps, referring the reader to ref. [75] for further details.
The character function of an irreducible SU(2) representation of isospin I is given by

χI(z) =

+I∑
k=−I

z2k =
z2I+1 − z−2I−1

z − z−1
. (A.1)

From this expression we can construct the plethystic exponential

P (X) = exp

(
+∞∑
r=1

XrχI(z
r)

r

)
, (A.2)

whereX is the object transforming under the desired irreducible representation with isospin I.
In the following manipulations, X should be thought of as a complex number with |X| < 1.
We are interested in the trilinear couplings of X, thus we Taylor-expand P (X) at third
order in X:

P (X) = 1+χI(z)X+
1

2

(
χ2
I(z)+χI(z

2)
)
X2+

1

6

(
χ3
I(z)+3χI(z)χI(z

2) + 2χI(z
3)
)
X3+O(X4).

(A.3)
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The number of invariants (d0) and of triplets (d1) is given respectively by

d0 =
1

12πi

∮
dz

z
(1− z2)

(
χ3
I(z) + 3χI(z)χI(z

2) + 2χI(z
3)
)
, (A.4)

d1 =
1

12πi

∮
dz

z
(1− z2)χ1(z)

(
χ3
I(z) + 3χI(z)χI(z

2) + 2χI(z
3)
)
, (A.5)

where the line integrals are to be taken along a closed line arbitrarily close to the origin. The
only relevant pole is at z = 0 for both integrals, and evaluating the residues yields

d0 =
1

(6I)!
lim
z→0

d1+6I

dz1+6I

(
1− z12(1+I) − z2−4I − z4+4I + z6+8I + z8+8I + z10+8I

1− z4 − z6 + z10

)
, (A.6)

d1 =
1

(2 + 6I)!
lim
z→0

d3+6I

dz3+6I

(
1− z12(1+I)−z2−4I−z4+4I+z6+8I+z8+8I+z10+8I

1− z2 − z4 + z6

)
. (A.7)

We verified that this results in

d0 =

{
1 for even I,

0 for odd I,
d1 =

{
0 for even I,

1 for odd I,
(A.8)

for I 6 400.

B MDM quintuplet decay rates

B.1 XLHHH†

As explained in section 4, this operator induces the DM decay modes listed in eq. (4.5).
We give here detailed analytic expressions for these decay rates. We compute explicitly the
X 0 → νh, νhh, νhhh decay rates and then derive all other rates by applying the Equivalence
Theorem.

Our analytic computation of the 4-body phase space (approximating all final states as
massless) is described in appendix C. When computing decay rates into final states with
n identical particles, we consider the n! identical diagrams contributing to the scattering
amplitude, and the 1/n! phase space reduction factor to prevent double-counting identical
configurations.

DM decays into a neutrino plus Higgses are given by

ca1
Λ2
XLaHHH† + h.c. ⊃ − ca1

4
√

3Λ2
X 0νaL(v + h)3 + h.c.

⊃ − 3ca1v
2

4
√

3Λ2
X 0νaLh−

3ca1v

4
√

3Λ2
X 0νaLhh−

ca1
4
√

3Λ2
X 0νaLhhh+ h.c. (B.1)

with v = 246 GeV. The relevant polarization sum entering the spin-averaged squared matrix
element is

1

2

∑
s,r

|ūs(pν)PRu
r(pX )|2 = pν · pX = MEν , (B.2)

where in the last equality we set ourselves in the rest frame of the decaying particle.
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B.1.1 X 0 → νh

dΓ
(
X 0 → νah

)
dEν dEh

=
3 |ca1|

2 v4

256πΛ4
Eν δ

(
Eν −

M

2

)
δ

(
Eh −

M

2

)
(B.3)

Γ
(
X 0 → νah

)
=

3 |ca1|
2 v4

512πΛ4
M (B.4)

B.1.2 X 0 → νhh

dΓ
(
X 0 → νahh

)
dEν dEh

=
3 |ca1|

2 v2

512π3Λ4
Eν ,

M

2
6 Eν + Eh, Eν 6

M

2
, Eh 6

M

2
(B.5)

dΓ
(
X 0 → νahh

)
dEν

=
3 |ca1|

2 v2

512π3Λ4
E2
ν , Eν 6

M

2
(B.6)

dΓ
(
X 0 → νahh

)
dEh

=
3 |ca1|

2 v2

1024π3Λ4
Eh(M − Eh) , Eh 6

M

2
(B.7)

Γ
(
X 0 → νahh

)
=
|ca1|

2 v2

4096π3Λ4
M3 (B.8)

B.1.3 X 0 → νhhh

dΓ
(
X 0→νahhh

)
dEν dEh

=
|ca1|

2

8192π5Λ4
×

{
4E2

νEh Eν+Eh6
M
2 , Eν6

M
2 , Eh6

M
2

Eν(M−2Eν)(M−2Eh) Eν+Eh>
M
2 , Eν6

M
2 , Eh6

M
2

(B.9)

dΓ
(
X 0→νahhh

)
dEν

=
|ca1|

2

16384π5Λ4
ME2

ν(M − 2Eν) , Eν 6
M

2
(B.10)

dΓ
(
X 0→νahhh

)
dEh

=
|ca1|

2

49152π5Λ4
MEh(M − Eh)(M − 2Eh) , Eh 6

M

2
(B.11)

Γ
(
X 0→νahhh

)
=

|ca1|
2

1572864π5Λ4
M5 (B.12)

B.1.4 Other channels

Decay rates into final states with a (left-handed) fermion f = `, ν and longitudinal gauge
bosons V = ZL,W

±
L are computed using the Equivalence Theorem. The following propor-

tionality relations are found with channels with one neutrino and n Higgs bosons in the
final state:

dΓ (mode)

dEf dEV
= gn(mode)

dΓ
(
X 0 → νhn

)
dEν dEh

∣∣∣∣∣Eν=Ef
Eh=EV

, (B.13)

with

g1

(
X 0 → νZL

)
= 1/9 , g1

(
X 0 → `WL

)
= 8/9 , (B.14)

g2

(
X 0 → νZLZL

)
= 1/9 , g2

(
X 0 → νZLh

)
= 2/9 , (B.15)

g2

(
X 0 → νW+

L W
−
L

)
= 8/9 , g2

(
X 0 → `W+

L h
)

= 16/9 , (B.16)

g3

(
X 0 → νZLZLZL

)
= 1 , g3

(
X 0 → νZLW

+
L W

−
L

)
= 8/3 , (B.17)

g3

(
X 0 → νZLZLh

)
= 1/3 , g3

(
X 0 → νW+

L W
−
L h
)

= 8/3 , (B.18)

g3

(
X 0 → νZLhh

)
= 1/3 , g3

(
X 0 → `ZLZLW

+
L

)
= 8/3 , (B.19)

g3

(
X 0 → `W+

L W
+
L W

−
L

)
= 8/3 , g3

(
X 0 → `W+

L hh
)

= 8/3 . (B.20)
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These values take into account the appropriate n! factors in the decay rate due to the pres-
ence of indistinguishable particles in the final state, both on the left and right-hand side
of eq. (B.13). As per assumptions of the Equivalence Theorem, these relations hold in the
high-energy limit where the DM particle is much heavier than its decay products, which is
true in this case given eq. (4.4). Only longitudinal gauge bosons contribute significantly to
the rate in this limit.

B.2 XσµνLWµνH

From the second operator we get two terms inducing X 0 decay:

ca2
Λ2
XσµνLaWµνH + h.c. ⊃ − ca2

2
√

6Λ2

(
2X 0σµν`aLW

3
µνφ

+ +
√

2X 0σµννaLW
−
µνφ

+ (B.21)

−X 0σµν`aLW
+
µν(h+v+iφ0)+

√
2X 0σµννaLW

3
µν(h+v+iφ0)

)
+h.c.

The most relevant decays induced by this operator are X 0 → `W, νZ, νγ, `Wh, νZh, νγh
(see section 4). The relevant polarization sum entering the spin-averaged squared matrix
element of the processes X 0 → fV (h) (with f a fermion and V a vector boson) is

1

2

∑
q

∑
s,r

∣∣ūs(pf )σµνPRu
r(pX )pµV ε

ν∗
q (pV )

∣∣2 = 4(pX · pV )(pf · pV ) . (B.22)

B.2.1 X 0 → `W

|M (X 0 → `aW )|2 =
v2 |ca2|

2

3Λ4
M3EW (B.23)

dΓ
(
X 0 → `aW

)
dE` dEW

=
v2 |ca2|

2

48πΛ4
M2EW δ

(
E` −

M

2

)
δ

(
EW −

M

2

)
(B.24)

Γ
(
X 0 → `aW

)
=
v2 |ca2|

2

96πΛ4
M3 (B.25)

B.2.2 X 0 → νZ

|M (X 0 → νaZ)|2 =
2v2 |ca2|

2 cos2 θW

3Λ4
M3EZ (B.26)

dΓ
(
X 0 → νaZ

)
dEν dEZ

=
v2 |ca2|

2 cos2 θW

24πΛ4
M2EZ δ

(
Eν −

M

2

)
δ

(
EZ −

M

2

)
(B.27)

Γ
(
X 0 → νaZ

)
=
v2 |ca2|

2 cos2 θW

48πΛ4
M3 (B.28)

B.2.3 X 0 → νγ

|M (X 0 → νaγ)|2 =
2v2 |ca2|

2 sin2 θW

3Λ4
M3Eγ (B.29)

dΓ
(
X 0 → νaγ

)
dEν dEZ

=
v2 |ca2|

2 sin2 θW

24πΛ4
M2Eγ δ

(
Eν −

M

2

)
δ

(
Eγ −

M

2

)
(B.30)

Γ
(
X 0 → νaγ

)
=
v2 |ca2|

2 sin2 θW

48πΛ4
M3 (B.31)
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B.2.4 X 0 → `Wh

|M (X 0 → `aWh)|2 =
|ca2|

2

3Λ4
M2EW (M − 2Eh) (B.32)

dΓ
(
X 0 → `aWh

)
dE` dEW dEh

=
|ca2|

2

192π3Λ4
MEW (M − 2Eh) δ(E` + EW + Eh −M) (B.33)

dΓ
(
X 0 → `aWh

)
dE`

=
|ca2|

2

1152π3Λ4
ME2

` (3M − 2E`) (B.34)

dΓ
(
X 0 → `aWh

)
dEW

=
|ca2|

2

192π3Λ4
ME3

W (B.35)

dΓ
(
X 0 → `aWh

)
dEh

=
|ca2|

2

384π3Λ4
MEh(M − Eh)(M − 2Eh) (B.36)

Γ
(
X 0 → `aWh

)
=

|ca2|
2

12288π3Λ4
M5 (B.37)

B.2.5 X 0 → νZh

|M (X 0 → νaZh)|2 =
2 |ca2|

2 cos2 θW

3Λ4
M2EZ(M − 2Eh) (B.38)

dΓ
(
X 0 → νaZh

)
dEν dEZ dEh

=
|ca2|

2 cos2 θW

96Λ4
MEZ(M − 2Eh) δ(Eν + EZ + Eh −M) (B.39)

dΓ
(
X 0 → νaZh

)
dEν

=
|ca2|

2 cos2 θW

576Λ4
ME2

ν(3M − 2Eν) (B.40)

dΓ
(
X 0 → νaZh

)
dEW

=
|ca2|

2 cos2 θW

96Λ4
ME3

Z (B.41)

dΓ
(
X 0 → νaZh

)
dEh

=
|ca2|

2 cos2 θW

192Λ4
MEh(M − Eh)(M − 2Eh) (B.42)

Γ
(
X 0 → νaZh

)
=
|ca2|

2 cos2 θW

6144π3Λ4
M5 (B.43)

B.2.6 X 0 → νγh

|M (X 0 → νaγh)|2 =
2 |ca2|

2 sin2 θW

3Λ4
M2Eγ(M − 2Eh) (B.44)

dΓ
(
X 0 → νaγh

)
dEν dEγ dEh

=
|ca2|

2 sin2 θW

96Λ4
MEγ(M − 2Eh) δ(Eν + Eγ + Eh −M) (B.45)

dΓ
(
X 0 → νaγh

)
dEν

=
|ca2|

2 sin2 θW

576Λ4
ME2

ν(3M − 2Eν) (B.46)

dΓ
(
X 0 → νaγh

)
dEγ

=
|ca2|

2 sin2 θW

96Λ4
ME3

γ (B.47)

dΓ
(
X 0 → νaγh

)
dEh

=
|ca2|

2 sin2 θW

192Λ4
MEh(M − Eh)(M − 2Eh) (B.48)

Γ
(
X 0 → νaγh

)
=
|ca2|

2 sin2 θW

6144π3Λ4
M5 (B.49)
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B.2.7 Other channels

Decay rates into final states with gauge bosons V = Z,W± are computed using the Equiva-
lence Theorem. To avoid the shortcomings of the Theorem we check the computation in the
Equivalent gauge [62]. The following proportionality relations are found with channels with
only Higgs bosons in the final state:

dΓ
(
X 0 → `aZW+

L

)
= 2 dΓ

(
X 0 → νaZh

)
, (B.50)

dΓ
(
X 0 → `aγW+

L

)
= 2 dΓ

(
X 0 → νaγh

)
, (B.51)

dΓ
(
X 0 → νaW−W+

L

)
= 2 dΓ

(
X 0 → `aW+h

)
, (B.52)

dΓ
(
X 0 → `aW+ZL

)
= dΓ

(
X 0 → `aW+h

)
, (B.53)

dΓ
(
X 0 → νaZZL

)
= dΓ

(
X 0 → νaZh

)
, (B.54)

dΓ
(
X 0 → νaγZL

)
= dΓ

(
X 0 → νaγh

)
. (B.55)

These values take into account the appropriate n! factors in the decay rate due to the presence
of indistinguishable particles in the final state. Eq. (B.50) holds in the high-energy limit
with the DM particle much heavier than its decay products, which is true for MDM. Only
longitudinal gauge bosons contribute significantly to the rate in this limit.

C Four-body phase space for decaying MDM

Here we compute the phase space for a decay process into four massless particles in the
assumption the scattering matrix element depends on up to two final momenta.

The phase space for four final particles with momenta p1, p2, p3, and p4 is

dΦ(4) = (2π)4δ(4)(Pµ − pµ1 − p
µ
2 − p

µ
3 − p

µ
4 )

d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)42E4
, (C.1)

with Pµ the initial momentum, Ei ≡ |pi| for i = 1, 2, 3, 4, and the customary relativistic state
normalization 〈p′|p〉 = 2Ei (2π)3δ(3)(p− p′) for momentum eigenstates of massless particles
is adopted. We can now insert the identity in the form

1 =

∫
ds

2π
(2π)δ(s− q2)

∫
d4q

(2π)4
(2π)4δ(4)(qµ − pµ3 − p

µ
4 )θ(q0)

=

∫
ds

2π

∫
d3q

(2π)32Eq
(2π)4δ(4)(qµ − pµ3 − p

µ
4 ) ,

(C.2)

where in the second line we integrated over q0 and defined Eq ≡
√
s+ q2. Thus we have

dΦ(4) =
ds

2π
dΦ(3)(P ; p1, p2, q) dΦ(2)(q; p3, p4) , (C.3)

where

dΦ(3)(P ; p1, p2, q) = (2π)4δ(4)(Pµ − pµ1 − p
µ
2 − q

µ)
d3p1

(2π)32E1

d3p2

(2π)32E2

d3q

(2π)32Eq
, (C.4)

dΦ(2)(q; p3, p4) = (2π)4δ(4)(qµ − pµ3 − p
µ
4 )

d3p3

(2π)32E3

d3p4

(2π)42E4
. (C.5)
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If the integrand does not depend on p3 and p4, the Lorentz-invariant two-body phase space
can be integrated in the reference frame where q = 0 thus yielding the well known result∫

dΦ(2)(q; p3, p4) = 1/(8π) for massless particles.
The remaining three-body phase space can be reduced in the following way. First we

integrate away the three-momentum conservation delta function by performing the integral
in d3q:

dΦ(3) = (2π)δ(E − E1 − E2 − Eq)
p2

1 dp1 d cos θ1 dϕ1

(2π)32E1

p2
2 dp2 d cos θ2 dϕ2

(2π)32E2

1

2Eq
, (C.6)

where E is the DM energy. For decay of a scalar or unpolarized (spin-averaged) state, the
distribution of the final state particles is isotropic and therefore we may integrate over two
angles parametrizing rotations of the system as a whole, say θ1 and φ1. We define the polar
angle θ2 relative to the direction of p1, so that the azimuthal angle ϕ2 describes overall
rotations of the system about p1 and therefore it can be trivially integrated over. We thus
have

dΦ(3) =
1

4(2π)3
δ(E − E1 − E2 − Eq)

p2
1 dp1

E1

p2
2 dp2 d cos θ2

E2

1

Eq
. (C.7)

Remembering now that δ(f(x)) =
∑

i δ(x − xi)/|f ′(xi)| where xi are the zeroes of f(x), we
can integrate away the delta function by performing the integral on cos θ2 in the DM rest
frame, where q = p1 + p2 and E = M :∫ +1

−1
d cos θ2 δ

(
M − E1 − E2 −

√
s+ E2

1 + E2
2 + E1E2 cos θ2

)
=

Eq
E1E2

∫ +1

−1
d cos θ2 δ

(
cos θ2 −

(M − E1 − E2)2 − (s+ E2
1 + E2

2)

2E1E2

)
=

Eq
E1E2

θ
(
(M − 2E1)(M − 2E2)− s

)
θ
(
s−M(M − 2(E1 + E2))

)
. (C.8)

The two theta functions appearing in the last line are the result of integrating the delta
function and ensure that its argument lies within the integration support or otherwise the
integral vanishes. Finally we can perform the integral over s,

dΦ(4) =
dE1 dE2

512π5

∫ ∞
0

ds θ
(
(M − 2E1)(M − 2E2)− s

)
θ
(
s−M(M − 2(E1 + E2))

)
=

dE1 dE2

512π5
×

{
(M − 2E1)(M − 2E2) E1 + E2 >M/2

4E1E2 E1 + E2 6M/2
(C.9)

where E1 and E2 are bound to be smaller than M/2.
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