
Abstract

Data processing pipelines normally use lockless Single Producer Single
Consumer (SPSC) queues to efficiently decouple their processing threads,
and achieve high throughput minimizing the cost of synchronization. SPSC
queues have been widely studied, mostly for applications such as streaming
data or network monitoring, where the main goal is maximizing through-
put. There are now many applications, such as VM-VM communication,
software-defined networking, message-based kernels, where low latency
is also important, and the tradeoffs between high-throughput and low-
latency algorithms have not been studied equally well. Furthermore, at
high or variable transaction rates, the effect of memory hierarchies and
cache coherence subsystems may be dominant and yield surprising results.
In this paper we make two contributions. First, we provide a comprehen-
sive study of the two main families of SPSC queues, namely “Lamport”
and “FastForward” queues, with a detailed analytical and experimental
characterization of their behavior in terms of operating regimes, through-
put, latency, and cache misses. Second, we propose two new queue vari-
ants, Improved FastForward (IFFQ) and Batched IFFQ, which have better
worst case behavior than other variants in terms of cache misses, an im-
portant feature for a number of applications. Together, these two contri-
butions provide practical guidelines to choose the best solution depending
on the application requirements.
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1 Introduction

The large number of CPUs available on modern computing systems makes
it possible to run complex parallel processing algorithms on a single ma-
chine. Beyond specialized High Performance Computing (HPC) plat-
forms, maximum CPU count is approaching 100 units even for commodity
shared-memory machines in data centers and IT departments [1, 2, 3].
With such a high degree of hardware parallelism, it is important to keep
the cost of inter-thread synchronization under control to actually benefit
from the increased CPU count and improve overall efficiency.

In particular, the use of locks for synchronization at high rates (i.e.,
a million operations per second or more) is notoriously inefficient [4, 5];
locking operations cause the threads to repeatedly issue relatively expen-
sive atomic instructions such as compare-and-swap [6], load-linked/store-
conditional [7], fetch-and-add [6], or memory fences [8] (barriers), and
above all the communicating threads suffer from continuous cache con-
flicts on the cache lines that store the lock variables. Locks do not scale
well: the average cost of lock operations increases quickly with the num-
ber of conflicting threads, and they cause significant performance loss
even when just two threads contend for the lock. As reported in our pre-
vious work [9], cache conflicts are particularly problematic on multi-socket
NUMA machines, where a single cache miss can cost up to 200 ns, severely
limiting the maximum data rate.

To overcome the inherent limitations of locks and other traditional syn-
chronization primitives (i.e., semaphores, monitors, etc.), several efficient
lockless and lock-free [10, 6, 11, 12] algorithms have been designed. These
algorithms are non-blocking and still rely on atomic operations on shared
memory variables, so they are still affected by cache conflicts issues. How-
ever, every access to a shared variable is an essential part of a lock-free
algorithm, and it is not hidden inside any synchronization primitive. As
a consequence, a carefully designed lock-free algorithm can achieve higher
efficiency by trying to minimize the time spent on synchronization, and
in particular minimize cache misses.

One of the most popular categories of lock-free data structures is the
class of Single Producer Single Consumer (SPSC) queues, where a (sin-
gle) producer thread sends a stream of data items to a (single) consumer
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thread. SPSCs queues are widely used in data processing pipelines, where
multiple threads perform a complex task by composition of simpler tasks.
Each thread receives one or more streams of data items from other threads,
performs some processing on the data and sends them to other threads
in the pipeline. These processing elements are interconnected using one-
to-one unidirectional links to form a directed graph; each unidirectional
link is implemented using an SPSC queue, to efficiently decouple the two
threads (producer and consumer) attached to the ends of the link. Such
processing pipelines are largely used in various forms of network packet
processing, including traffic monitoring, software switching and routing,
communication between virtual machines, and Network Function Virtu-
alization (NFV) [13]. All these applications have to deal with millions or
tens of millions of packets per second, quite often also with strict latency
requirements. Another interesting use-case is Software-based Redundant
Multi Threading (SRMT) fault tolerance [14], a technique to detect tran-
sient memory errors caused by bit flipping. The same application runs
both in a main thread and in a checker thread. The main thread also
sends to the checker thread all the data read or written from memory,
using an SPSC queue. The checker thread can compare the memory
transactions coming from the queue with the ones produced locally, and
detect a fault if they differ.

Although many efficient SPSC queue algorithms are available in the
literature, most of them are designed or analyzed for specific use cases. As
an example, several proposals [15, 16, 17, 14, 18, 19] assume a continuous
stream of messages from the producer, and use fixed, large batch sizes
to optimize throughput. This approach breaks or causes large delays if
the producer temporarily slows down or stops before a batch is complete.
Similarly, if data items cannot be embedded in the queue (as is the case
for many network applications, where items are variable size, possibly
large, packets), algorithms need further memory barriers to make sure
memory operations are properly serialized. This may impact performance
significantly, and possibly require to redesign the algorithm to adapt to
the different requirements.

The goal of this work is to provide a comprehensive and general study
on how to design practical and performant SPSC queues. Our contri-
butions are a detailed analysis of the two main families of SPSC queues
(Lamport and FastForward queues) in terms of their throughput, latency,
and cache behaviour, and the introduction of two queue variants (Im-
proved FastForward, or IFFQ, and Batched IFFQ) that have improved
worst case behavior over existing proposals. The result of our analysis
can be applied to network processing use cases, including Network Func-
tion Virtualization deployments, that often pose challenging problems in
the form of tradeoffs between throughput and latency.

We start from the basic implementations provided by Lamport [20]
and Giacomoni et al. [21], two complementary approaches that can be
compared—together with some of their variants—against different met-
rics, namely throughput and latency. We also study the impact of extend-
ing the queue API to let the producer and the consumer amortize queue
synchronization operations over a batch of messages. Depending on how
the queue is implemented, this may or may not have a significant impact

3



on performance. Moreover, we do not take for granted that a batching-
capable API can be easily integrated in a given data processing software;
this may be unfeasible in practice when the software itself is not designed
to operate in batch (as an example, this is the case for many parts of the
Linux kernel networking subsystem). Even if these software engineering
constraints are extraneous to the design of the SPSC queue itself, they
must be taken into account to make the optimal choice in spite of the
given limitation.

In detail, Section 2 defines the problem addressed, the assumptions
made and the metrics considered; Sections 3 and 4 provide a detailed
description of the SPSC algorithms under investigation, together with
an analysis of their best case and worst case cache behavior; in partic-
ular, Section 4.2 describes a new queue variant based on FastForward,
contributed by our work; Section 5 reports the experiments carried out
to validate the analysis in terms of cache misses, throughput and latency;
Section 6 presents an example application (a virtual Ethernet switch) that
makes use of many SPSC queues, and evaluates the performance impact of
choosing different SPSC queues; Section 7 discusses related work; finally,
Section 8 contains our conclusions.

2 Problem statement

An SPSC queue allows two threads to exchange data items through a
shared memory FIFO queue without using locks or other synchronization
primitives. One thread—the producer P—only enqueues data items; the
other thread—the consumer C—only dequeues items. We assume that
the number of slots in the queue is fixed. This is common practice in high
performance processing systems: the queue size is chosen so that it can
absorb short term speed mismatches between the stages of the pipeline.
The problem of dynamically growing an SPSC queue is substantially or-
thogonal to this study. Some general techniques (e.g. as described by
Aldinucci et al. [22]) are already available to efficiently chain fixed-size
queues, which act therefore as basic building blocks.

A queue can be implemented without locks or read-modify-write atomic
operations —such as compare-and-swap or test-and-set— only if there is
a single producer and a single consumer [20]. Some state-of-the-art SPSC
implementations [19, 15, 17, 14, 18, 16] can achieve extremely high data
rates—up to a billion items per second or more—but only if very large,
fixed size batches of items are exchanged in every transaction with the
queue. This approach works well when the producer generates a steady
stream of data without significant idle periods, or when latency is not
important. However, it is completely impractical for network processing
workloads, where the time between packets may vary by many orders of
magnitude, and large or fixed size batches would result in unacceptable
latency. Moreover, these SPSC queues also assume that data items fit
entirely in the slot of the queue (embedded payload), which simplifies se-
rialization of memory operations. For larger or variable size items, such as
network packets or disk operations, almost invariably the queue can only
store pointers to the actual data blocks (indirect payload), potentially re-
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questing further memory barriers to make sure that updates to indices,
slots and data blocks are seen in the correct order by the data consumer.
Adding those barriers has a performance impact that must be considered.

In this paper we aim at giving effective design guidelines for general
purpose SPSC queues, so we discuss strategies to optimize latency and not
just throughput, address the case of both streaming and non-streaming
producers, and those of embedded and indirect payload. Finally, we an-
alyze in detail the behavior of various algorithms in terms of memory
accesses.

2.1 The role of batching operations

The key strategy to improve throughput is to let P and C synchronize
in batch as much as possible. Although items are always enqueued and
dequeued one by one, some queue implementations allow P to publish
many new items to C with O(1) accesses to the shared synchronization
variables. Similarly, C can report many freed slots to P with O(1) ac-
cesses. In all the SPSC implementations we are aware of, the queue offers
a single-item enqueue/dequeue API, so that P and C insert or extract
entries one by one; any batching of synchronization operations is decided
and hidden inside the enqueue and dequeue functions. However, when
the time between two subsequent invocations of enqueue is not bounded,
this hidden batching must be disabled or it would produce unacceptable
latency. In these cases it is necessary to go beyond the single-item API
and let the queue offer an API with batching capabilities, as shown in Sec-
tions 3 and 4. This approach is especially effective when the processing
pipeline already operates in batches, and the extended API can be used
to communicate batch boundaries to the queue. As an example, this is
the case for frameworks like DPDK [23], netmap [24] and PF RING [25],
which natively support batched I/O from/to the network interface (NIC).

We should note, though, that retrofitting an existing data processing
pipeline to make use of batched I/O it is not always possible or easy.
An interesting example is the transmission path in the Linux kernel net-
work stack. The PSPAT high-performance network scheduler [9] uses the
dev queue xmit() function to pass host-generated packets to the sched-
uler through an SPSC queue. This function is invoked by the TCP/IP
protocol stack to send packets through a network interface, with a sepa-
rate function call for each packet; thus the intercept code does not have
the chance to enqueue more than one packet with a single operation. De-
laying the enqueue to artificially create a batch would require using a
timer, which would add artificial latency and add a cost comparable to
that of synchronization. In this example the only way to batch SPSC en-
queue operations without adding unbounded artificial latency would be to
completely refactor the Linux kernel network stack to expose a batching-
capable API all the way up to the userspace applications; whereas cer-
tainly feasible in theory, it would be a very intrusive and complex change
which is arguably not desirable for reasons unrelated to our analysis.
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2.2 SPSC queues

The most important difference among SPSC queue implementations is
about how producer and consumer synchronize with each other, that is
how the producer learns which slots are empty—i.e., ready to be used to
enqueue new entries—and how the consumer learns which ones contain
a produced item that can be dequeued. The final goal of our analysis
is to find the best synchronization strategy that meets the requirements
reported in Sec. 2, and the additional ones set by the user.

Synchronization happens through atomic control variables—e.g., 32 or
64 bit integers—that are stored in shared memory. The algorithms pre-
sented in this paper do not need to use the relatively expensive read-modify-update
atomic instructions (e.g., compare-and-swap or fetch-and-add). As a re-
sult, the main source of overhead comes from cache conflicts and misses,
that we need to minimize as much as possible to improve throughput and
latency. Read cache misses are due to load instructions, and are generally
more expensive than write misses (resulting from store instructions), as
we noted in our previous PSPAT work [9]. However, to keep the analysis
simpler, in Sections 3 and 4 we simply count the total number of cache
misses, without differentiating between the two types. This choice also
simplifies the experiments discussion in Section 5, as our machines do not
have separate CPU counters for load and store miss events.

Control variables and queue slots should be laid out in memory in
such a way to minimize cache conflicts, and in particular to avoid false
sharing [26] problems. False sharing causes cache thrashing, and can be
avoided by making sure that variables belonging to two different groups
among the following ones never reside in the same processor cache line:

(A) Variables written only by P and read by both P and C.

(B) Variables written only by C and read by both P and C.

(C) Read-only variables read by both P and C.

(D) Variables private to P (accessed only by P).

(E) Variables private to C (accessed only by C).

(F) The array of queue slots.

In practice, this is achieved by partitioning the queue internal variables
into the groups above, possibly adding some padding between them to
make sure that each group resides in a separate set of cache lines.

We study two families of SPSC queues: the first one comes from the
work originally proposed by Lamport [20], and is analyzed in Section 3;
the second one comes from FastForward [21], and is studied in Section 4.

For simplicity, and consistently with common implementation prac-
tices, in all algorithms we assume that the number N of slots in the queue
is some power of 2, N = 2W , and indices are represented by unsigned
integers on more than W bits. It follows that reductions modulo N are
only needed when accessing the slots and can be implemented with a bit-
wise AND operation. Index manipulations and comparisons can instead
be performed without reductions, taking advantage of the native integer
wraparound.
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If N times the slot size is a multiple of the system page size, a simple
virtual memory trick allows clients to access blocks of slots of arbitrary
size without worrying about wraparounds. This feature can be supported
by allocating the array of slots aligned to the page boundary, and mapping
(e.g., with mmap) the same array a second time in the virtual pages that
immediately follow the original array.

We denote with K the number of queue slots contained in each cache
line, assuming that K divides the cache line size. A typical value for K is
8, as slots often contain 64-bit pointers and cache line size is often 64 bytes.
For convenience, we also assume that the type Entry, which represents an
item stored in a queue slot, contains a distinguished NULL ELEM value that
denotes invalid items. This can be the NULL pointer for indirect payloads
and an agreed-upon special value for embedded payloads.

3 Lamport queues

It was Lamport [20] to propose the first lockless SPSC queue algorithm.
Assuming sequential consistency, he proved that locks are not required
when the queue is accessed concurrently by a single consumer and a single
consumer. Synchronization is achieved by using two control variables that
act as indices in the array of slots. The first index, write, belongs to group
A (as defined in Sec. 2.2) and points to the next slot to be used by P. The
other index, read, belongs to group B and points to the next slot to be
used by C (Figure 1).

3.1 Baseline Lamport Queue (LQ)

The baseline Lamport Queue is a modern implementation of the original
queue proposed by Lamport. The routines to enqueue and dequeue entries
are shown in Figure 2. Modern compilers and CPUs may reorder store and
load operations to speed up code execution. Such instruction reordering
has no visible effect on the CPU executing those instructions (to preserve
consistency), but it may have visible effects on other CPUs accessing the
same memory. Since P and C are normally running on different CPUs, it is
necessary to add memory barrier operations to prevent those reorderings
that can lead to synchronization errors. In lq enqueue, the store used to
fill the queue slot must not be reordered after the store that updates the
write index, otherwise C could observe a stale slot content. For the same
reason, the load used in lq dequeue to read from the queue slot must
not be reordered before the load that reads the write index. On x86
CPUs, store-release and load-acquire barriers resolve to NOPs due to the
strong memory ordering model of the x86 architecture. However, they can
still impact performance by acting as barriers for compiler optimizations;
this is especially true for SPSC enqueue and dequeue routines, which are
normally inlined with the rest of producer/consumer code and therefore
make more room for compiler optimizations.

Beside barriers, cache conflicts/misses are the main factor limiting per-
formance. Our data layout avoids cache conflicts due to false sharing, but
the following conflicts are unavoidable because synchronization between
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write

read

P

C

Figure 1: Lamport queue data structures. Each rectangle represents a cache
line. In the middle we have the read and write indices, with the slots[] array
between them. We assume K = 1 for simplicity. The gray triangles on the
left side of the cache lines denote possible cache misses for P: read misses if the
triangle points to P and write misses otherwise. The gray triangles on the right
have similar meaning for C.
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1 int lq_enqueue(LQ *q, Entry e) {

2 if (q->write - q->read == N)

3 return -1; /* no space */

4 q->slots[q->write & q->mask] = e;

5 /* store to q->slot must not be reordered after store to q->

write */

6 store_release_barrier ();

7 q->write ++;

8 return 0;

9 }

10

11 Entry lq_dequeue(LQ *q) {

12 Entry e;

13 if (q->read == q->write)

14 return NULL_ELEM; /* queue empty */

15 /* load from q->slot must not be reordered before load from q

->write */

16 load_acquire_barrier ();

17 e = q->slots[q->read & q->mask];

18 q->read ++;

19 return e;

20 }

21

Figure 2: Implementation of the basic Lamport queue (LQ). Synchronization
happens through the write and read indices in the circular array of slots. Mem-
ory barriers are necessary to prevent the compiler and the CPU from reordering
store/loads operations on slots and indices.
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P and C happens through read-write cache conflicts on each of the two
indices, one for each direction (see also Figure 1):

� P → C. When C loads the write variable to check if there are en-
tries to read from the queue, a read cache miss happens if P has
incremented the variable since the last time C loaded it. The cache
coherence subsystem will fetch the cache line containing write to get
the updated value. When P writes to the write variable to publish
new slots, a write cache miss happens if C has loaded the variable
since the previous time P updated it.

� C→ P. Specular cache misses happen on the read variable, with the
role of P and C inverted. P loads the variable to check for more free
queue slots, and C increments it to report more freed slots.

Additional cache misses are necessary to transfer the queue slots from P
to C. When C learns that more slots are available to be read, it loads the
next unread cache line from the slots array. If cache lines are 64 bytes
wide (as in our 64-bit Intel CPUs), they may store 16 32-bit integers or
8 64-bit pointers each. Queue slots may even be larger than 64 bytes, so
that more cache lines are necessary to store each item. In the common
case where a cache line contains more than one slot, in the best case P
will incur only one write miss for a cache line worth of slots, and C will
incur only one read miss for the same amount of slots.

The number of cache misses per item depends on the pattern of ac-
cesses to the queue. The best case happens (extremely unlikely) when P
and C alternate at processing the whole queue, and in such a way that
they never access the queue (slots array or control variables) at the same
time:

� While C is not active on the queue, P pays one read miss on read

and finds that the queue is completely empty. It completely fills the
queue, paying one write miss on the array every K items, because
once a cache line is brought in the L1 cache further writes to the same
cache line do not cause more write misses. It also pays a single write
miss on the write control variable, the first time it is incremented.
On average, P pays only 1

K
+ 1

N
misses per item.

� While P is not active on the queue, C pays one read miss on write

and finds that the queue is completely full. It then drains the queue
paying one read miss on the array every K slots; it also pays a
single write miss on the read control variable, the first time it is
incremented. Also C pays 1

K
+ 1

N
misses per item.

The worst case for the LQ algorithm causes 3 cache misses per item
for both P and C:

� C pays a read miss to read the updated value of write, and finds
that it was incremented by just one unit. It then pays another read
miss on the array to read the new slot, and a write miss to increment
read by one.

� P pays a read miss to read the updated value of read, and finds that
it was incremented by one. It then pays a write miss to fill a free
slot in the array, and one more write miss to increment write by
one.
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write

read

P

read shadow

C

write shadow

Figure 3: Lazy Lamport Queue data structures. W.r.t. Figure 1, now both P
and C own a private cache line which stores a shadow copy of the queue index
updated by the opposite party. The shadow copy is updated reading from the
shared variable only when necessary.

The worst case is actually very possible and occurs when the two parties
are very aggressive in accessing the queue in parallel: P never has the
chance to increment write more than once before C loads it, C never has
the chance to increment read more than once before P loads it, and the
queue occupancy oscillates between two consecutive values (often 0 and 1
or N − 1 and N). In practice, depending on the relative speed of P and
C and on how often they access the queue, the average number of cache
misses per item may vary between the best and the worst case.

3.2 Lazy Lamport Queue (LLQ)

It is possible to opportunistically reduce the number of read and write
misses of LQ, using lazy loading techniques [14, 15, 18]. The dequeue

function can be improved by loading the write variable only when no
more progress can be made. This optimization only requires an addi-
tional private index variable (write shadow in group E) that tracks the
latest known value of write, and is mostly useful when C is slower than
P (“Fast Producer”, according to the terminology we introduced in our
previous work [27]), where each time write is loaded it has advanced by
many positions. A specular optimization can be done in enqueue to lazy
load the read variable, using an additional read shadow variable in group
D. This helps when P is on average slower than C (“Fast Consumer”).
Both optimizations require no changes to the queue API, as shown in
Figure 4, and help reducing read-write conflicts on the read and write

control variables, by amortizing the read misses on more items (Figure 3).
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1 int llq_enqueue(LLQ *q, Entry e) {

2 if (q->write - q->read_shadow == N - K)

3 q->read_shadow = q->read; /* lazy load */

4 if (q->write - q->read_shadow == N - K)

5 return -1; /* no space */

6 q->slots[q->write & q->mask] = e;

7 store_release_barrier ();

8 q->write ++;

9 return 0;

10 }

11

12 Entry llq_dequeue(LLQ *q) {

13 Entry e;

14 if (q->read == q->write_shadow) {

15 q->write_shadow = q->write; /* lazy load */

16 load_acquire_barrier ();

17 }

18 if (q->read == q->write_shadow)

19 return NULL_ELEM; /* queue empty */

20 e = q->slots[q->read & q->mask];

21 q->read ++;

22 return e;

23 }

24

Figure 4: Lazy Lamport Queue (LLQ) improves the basic LQ by loading the
control indices write and read only when necessary, and leaving at least a cache
line worth of entries (K) empty to ensure P and C cannot work in the same cache
line when the queue is full.
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In addition to lazy loading, it is also convenient to leave K entries
unused in the queue (see function llq enqueue in Figure 4): in this way,
when the queue is full, P and C can never simultaneously read/write from
slots belonging to the same cache line. This improves cache behavior
whenever the queue is mostly full. A specular optimization is not possible
in case the queue is mostly empty, as P and C need to work on the same
cache line of the slots array, so that C can timely consume the new items.

The effect of these optimizations on cache misses is significant. While
a single llq enqueue or llq dequeue can still cause 3 cache misses as for
LQ, this cannot happen on a sustained basis. In case of Fast Consumer
(the worst case for LLQ) the queue is almost always empty. P will pay
a write miss on write and on the slot for each item, but the read miss
on read will occur only once every N −K items, to find out that N −K
slots are available. The amortized cost is therefore 2 + 1/(N −K) misses
per item. The cost for C is the same because every read (write) miss of
P corresponds to a write (read) miss for C.

In case of Fast Producer, the queue is almost always full: cache misses
on read occur on every item, and misses on write occur every N − K
items. Misses on queue slots occur only once every K items, because P
and C never work in parallel on the same cache line of the slots array.
The amortized cost for Fast Producer is therefore 1 + 1/K + 1/(N −K)
misses per item on both sides. The best case for LLQ is the same as for
LQ, with the only difference being that the maximum queue size for LLQ
is N −K.

3.3 Batched Lamport Queue (BLQ)

LLQ can amortize misses due to one peer reading the index incremented
by the other peer. However, there is no way to reduce the frequency of a
peer incrementing its index unless we introduce artificial latency [19, 18,
15, 17, 14] or change the queue API. Since the first choice is not a viable
option (see Sec.2), we need to enhance the queue API with the ability to
operate in batch; the goal is to allow P and C to advance the write and
read indices by many units at a time. The resulting BLQ algorithm is
illustrated in Figure 6 for the producer and Figure 7 for the consumer.
Figure 5 shows the data structures used by the algorithm.

The new workflow of P is as follows: (i) call blq enq space to get
the number b of available slots; (ii) enqueue up to b items without pub-
lishing them to C, by calling many times blq enq local; finally (iii) call
blq enq publish to publish the new items to C. In this way P can amor-
tize both the read misses on the read index (note that lazy loading is used
by blq enq space) and the write misses on the write index, without intro-
ducing unbounded latency: if just one or a few items are produced, they
are published immediately, even if the queue has space for more items.
Note that updating write less frequently is also beneficial for C, which
will have fewer chances to suffer from read misses. To support batched
updates, an additional variable write priv is necessary within group D.
This producer-local variable is used in place of write while filling unpub-
lished slots, so that write is updated only once. The needed argument of
blq enq space is used by the caller to control the lazy loading logic, i.e.
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read

writeP

read shadow

write priv

C

read priv

write shadow

Figure 5: Batched Lamport Queue data structures. Index updates are accumu-
lated in private copies (write priv and read priv) before being made visible
to the other party.

1 unsigned blq_enq_space(BLQ *q, unsigned int needed) {

2 unsigned space = (N - K) - (q->write_priv - q->read_shadow);

3 if (space >= needed)

4 return space;

5 q->read_shadow = q->read;

6 return (N - K) - (q->write_priv - q->read_shadow);

7 }

8

9 /* No boundary checks , to be called after blq_enq_space (). */

10 void blq_enq_local(BLQ *q, Entry e) {

11 q->slots[q->write_priv & q->mask] = e;

12 q->write_priv ++;

13 }

14

15 void blq_enq_publish(BLQ *q) {

16 store_release_barrier ();

17 q->write = q->write_priv;

18 }

19

Figure 6: Producer routines to access a Batched Lamport Queue (BLQ). The
producer can operate in batch, enqueuing one or many entries before advancing
write.
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1 unsigned blq_deq_space(BLQ *q, unsigned int needed) {

2 unsigned space = q->write_shadow - q->read_priv;

3 if (space >= needed)

4 return space;

5 q->write_shadow = q->write;

6 load_acquire_barrier ();

7 return q->write_shadow - q->read_priv;

8 }

9

10 /* No boundary checks , to be called after blq_deq_space (). */

11 Entry blq_deq_local(BLQ *q) {

12 Entry e = q->slots[q->read_priv & q->qmask];

13 q->read_priv ++;

14 return m;

15 }

16

17 void blq_deq_publish(BLQ *q) {

18 q->read = q->read_priv;

19 }

20

Figure 7: Consumer routines to access a Batched Lamport Queue. The con-
sumer can operate in batch, dequeuing one or many entries before advancing
read.

to force a (possible) read miss if the number of slots already available is
lower than needed.

Similarly, the new workflow for C is: (i) call blq deq space to learn
the number b of items that are currently available to be dequeued; (ii) call
blq deq local up to b times, in order to dequeue that many items without
returning any slot to P; and (iii) call blq deq publish to return—i.e.,
publish—the used items to P. As a result C can amortize read misses on
write by means of the lazy loading in blq deq space, and can amortize
write misses on read by publishing updates in batches. All of this is
achieved without adding unbounded latency. Batch updates on read are
enabled by a consumer-private variable read priv, which thus belongs to
group E.

To determine the cache miss count for Fast Consumer and Fast Pro-
ducer, let us assume that P can enqueue in batches of size B, and C is
willing to read B items at a time if available. In the Fast Consumer case,
C observes batches of size B, and the queue size oscillates between 0 and
B. In detail:

� P pays a read miss on read once every N −K items to learn that
there are N −K free slots, as K slots are left unused. It enqueues
B items at a time paying a write miss every K items, and finally
publishes the new slots with a single write miss on write. Since B
consecutive slots cover at most d(B − 1)/Ke + 1 cache lines1, the

total cost for P in the worst case is 1
N−K

+ d(B−1)/Ke+1
B

+ 1
B

misses

1The +1 and −1 terms are needed because the batch of B slots may not be aligned to a
cache line boundary.
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per item.

� C pays a read miss on write to learn that there are B items to
dequeue, and dequeues them paying a read miss every K items. It
then returns the used slots paying a write miss on read only once
every N −K items. The total cost is the same as for C.

The Fast Producer case is symmetrical, with the queue size oscillating
between N −K−B and N −K. C (P) pays a read (write) miss on write

once every N −K items, to discover (publish) the new items ready to be
processed, while misses on read happen once every B items. Differently
from Fast Consumer, misses on the queue slots happens exactly once every
K items, because P and C always work on different cache lines. The total
cost for both P and C is 1/(N −K) + 1/B + 1/K.

If B is large enough (e.g., 64 or more), the worst case cache misses
behavior of BLQ is dominated by the term 1/K and practically coincides
with the best case for Lamport-based queues (Sec. 3.1), which is indeed
the same for both LQ, LLQ and BLQ. Effectively, the use of large batches
by P triggers the alternate processing of the queue which results in the
best-case situation for LQ. The Fast Consumer operating regime is the
worst case also for BLQ.

An example of producer that can batch is mentioned in Sec. 2.1: a
packet processing application using netmap [24] or DPDK [23] may read
256 packets at a time from a network interface on a busy link, and push
them all in the first SPSC queue of a processing pipeline, where the batch
can be preserved across all the threads. Note that even if P cannot operate
in batch, C can still do it, and hopefully this will prevent P from having
too many cache misses on the read control variable. This means that
BLQ could still offer better performance than LLQ, although the worst
case would be the same as LLQ.

4 Queues based on Fast-Forward

Giacomoni et al. [21] proposed FastForward as an alternative approach
to the original lock-free queue proposed by Lamport. One of the main
characteristics of the class of Lamport queues is that control variables
used for synchronization—i.e., write and read—are decoupled from the
slots array. P and C can monitor the cache lines containing the control
variables to know how much work can be done, and access the queue
slots only to actually read or write items. The main advantage of this
approach is that operating in batch is easy and efficient: once C learns
that B items can be read, it can work on those B items without worrying
about what P is doing in the meanwhile, and in particular without the
need to keep looking at write. A similar reasoning applies to P. However,
this decoupling has two drawbacks. First, both P and C need to look at
up to three shared cache lines to process a single item: a cache line in
group A, one in group B and one in group F, incurring in up to three
cache misses per item as detailed in Sec. 3.1. Second, potentially expensive
memory barriers become necessary to guarantee that P and C see memory
operations on these cache lines in the same order.
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Figure 8: FastForward Queue data structures. The queue indices are held in
private cache lines because they are only needed locally. Both control and data
information is exchanged through the queue slots, which are the only cache lines
where the algorithm needs cache misses.

4.1 FastForward Queue (FFQ)

FastForward was designed to overcome the disadvantages of Lamport
queues by implicitly embedding the synchronization variables within the
slots, as shown in Figure 9 and illustrated in Figure 8. The write and
read indices are still present, and have the same meaning as in Lamport
queues, but they are private to P and C, respectively, and are only used
to keep track of the current slot to process. In particular, write is stored
in group D and read in group E. The indices are thus not used for inter-
thread synchronization, and accessing them does not normally cause any
cache miss. P and C learn which slots are ready to be processed by look-
ing at the contents of the slots themselves. A special NULL ELEM value is
used to mark empty slots; at initialization, all the slots contain NULL ELEM,
and both write and read are set to the same value (0 or any other valid
index). P enqueues new items in empty slots starting at position write;
C consumes items from non-empty slots starting at position read, over-
writing each used slot with the NULL ELEM marker, so that P can reuse
it.

The main property of FFQ is that only a single shared cache line
(containing K queue slots) is needed for P and C to exchange an item.
However, the queue slots are written by both P and C, because notifica-
tions must be bidirectional: P notifies C about new items, and C notifies
P about freed slots. Because updates and notifications are done with the
same write, FFQ does not need memory barriers in the queue routines.
The complete proof for this can be found in Giacomoni et al. [21], but a
simple example is sufficient to understand the main idea. Assume that
C is spinning on a NULL ELEM in slot i, and P issues a write to slot i and
then a write to slot i + 1. Even if these writes get reordered, so that the
write to i + 1 reaches C before the write on i, C will continue to spin on
i until it receives the older write, and only then will it proceed to look at
slot i+ 1. Essentially, C is forced to see P writes in order. A symmetrical
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1 int ffq_enqueue(FFQ *q, Entry e) {

2 unsigned wpos = q->write & q->mask;

3 if (q->slots[wpos] != NULL_ELEM)

4 return -1; /* no space */

5 q->slots[wpos] = e;

6 q->write ++;

7

8 return 0;

9 }

10

11 Entry ffq_dequeue(FFQ *q) {

12 unsigned rpos = q->read & q->mask;

13 e = q->slots[rpos];

14 if (e != NULL_ELEM) {

15 q->slots[rpos] = NULL_ELEM; /* clear */

16 q->read ++;

17 }

18

19 return e;

20 }

21

Figure 9: FastForward Queue couples data transfer with synchronization to
reduce worst case cache conflicts. Producer and consumer need to access only
a cache line to process a single item.

example can be constructed for P.
It is important to note that the producer may still need a memory

barrier before calling the enqueue routine, e.g., with indirect payload,
where the producer issues stores to the payload before enqueuing. In this
case P must issue a store-release barrier between the store to the payload
and the enqueue of the pointer, to make sure that payload is ready before
C is notified of its presence. C does not need a corresponding load-acquire
barrier, because the load from the payload has a data dependency on the
load from the slot pointer; no compiler or CPU reordering can happen
between these two loads, to preserve sequential consistency.

1 void producer(FFQ *q) {

2 for (;;) {

3 Packet *pkt = ...;

4 // ...

5 pkt ->x = y; /* store to the indirect payload */

6 store_release_barrier (); /* flush the store */

7 ret = ffq_enqueue(q, pkt); /* enqueue the pointer

*/

8 // ...

9 }

10 }

Another interesting property of the FFQ algorithm is that its worst
case cache behavior is better than the one of LQ. FFQ needs at most 2
cache misses per-item, while LQ may need up to 3. The worst case for
FFQ is similar to the one described for LQ in Sec. 3.1; it happens when
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the queue size oscillates between 0 and 1 or between N − 1 and N . In
detail:

� P pays a read miss on the slots array cache line pointed by write,
and learns that the next slot to use is free (as it contains NULL ELEM).
P then pays a write miss on the same cache line when writing the
new slot content, to upgrade the cache coherence protocol state from
shared to exclusive.

� C pays a read miss on the slots array cache line pointed by read

(whose state changes from exclusive to shared) and learns that the
next slot to be read has a new valid content. After consuming the
value, C pays a write miss on the same cache line to write back
the NULL ELEM marker, and the cache line state switches back to
exclusive.

The best case for FFQ happens when P and C never work on the same
cache line at the same time. This is true if the queue always contains at
least K items and not more than N −K items:

� P pays a read miss on the first slot of a cache line, and learns that
the slot is empty. P fills the slot paying a write miss to upgrade the
cache line from shared to exclusive state. The remaining K−1 slots
in the cache line are free, and can be read and filled without paying
any miss because the cache line is already present in the L1 cache.
On average P pays 2/K misses per item.

� C pays a read miss on the first slot of a cache line, and learns that
the slot has a valid content. After processing the item, C writes
NULL ELEM back to the slot, paying a write miss to bring the cache
line in exclusive state. The remaining K−1 slots are ready, and can
be read and written-back without further misses, because the cache
line is already present in cache. The average cost for C is thus also
2/K misses per item.

The best case is extremely difficult to achieve in practice, as it would re-
quire P and C to operate at the same average rate while never approaching
the boundaries of the queue, so that both P and C can operate in paral-
lel on different cache lines. In contrast to LQ and LLQ, the best case for
FFQ is desirable and more realistic to obtain, as the queue length can still
vary freely in the range [K,N −K]. The original FastForward paper [21]
indeed proposes a control algorithm to maintain this property, possibly
adding artificial delay in the processing of the producer or consumer; as
this technique breaks our requirements on bounded latency (Sec. 2), we
do not consider it here.

4.2 Improved FastForward Queue (IFFQ)

Similarly to what has been done for LQ, there is room to reduce FFQ
misses by limiting the situations where P and C may work in the same
cache line. In this section we present and discuss IFFQ, an improved
version of FFQ based on the mailbox data structure used by the PSPAT [9]
high performance network scheduler.
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Figure 10: Improved FastForward data structures. W.r.t Figure 8, the limit

and clear private indices are introduced to reduce the cases where P and C
access the same cache line at the same time; this happens when write and read

(or clear) point to the same cache line.

The FFQ producer pays one read miss to check whether a slot is avail-
able, and one write miss to fill it. Read misses for P can be reduced by a
factor of H by considering a slot available only if the first slot of the cache
line H slots ahead of write is NULL ELEM, as illustrated in Figure 10 and
in function iffq enqueue in Figure 11. The H parameter is a small mul-
tiple of K (e.g. H = 4K) and a divisor of N , so that we can consider the
queue as partitioned in groups of H/K consecutive cache lines. A private
variable limit (group D) tracks the first slot in a cacheline following the
write position, which is the first slot that P cannot use. P needs to check
the slot limit+H once every H insertions, causing 1

H
read misses per item.

The FFQ consumer needs one read miss to fetch a new item, and one
write miss to clear the slot. Write misses can be reduced by a factor
of K if C postpones the clear operation and frees at least K items at
a time. To implement such a lazy clear strategy, C keeps an additional
consumer-private index variable (group E) called clear, which points to
the next slot to be cleared, as illustrated in Figure 10. The invariant to
guarantee is that both write and read are always in a different cache line
than clear, so that P can monitor the first slot of the cache line pointed
by clear without interfering with C reading from read.

To maintain the invariant, C returns all the H slots in the i-th partition
only when both the i-th and the (i+1)-th partitions have been completely
processed, and C is already reading from the (i+ 2)-th partition. As soon
as C clears the first slot of partition i, P can immediately start to use the
partition i−1, so that C keeps clearing the rest of the slots in i concurrently
with P filling the slots in i−1. The drawback of this approach is that it is
necessary to leave 2H slots unused, so that the effective maximum queue
occupation becomes N − 2H.

For the algorithm to maintain its invariants (and work properly),
clear is initialized to 0, write and read are initialized to H, and limit to
2H. Slots are initialized to NULL ELEM, except for the ones between clear
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1 int iffq_enqueue(IFFQ *q, Entry e) {

2 if (q->write == q->limit) {

3 /* Check if the next queue partition is free. */

4 unsigned next_limit = q->limit + H;

5 if (q->slots[next_limit & q->mask] != NULL_ELEM)

6 return -1; /* no space */

7 q->limit = next_limit; /* Free partition , advance

producer limit. */

8 }

9 q->slots[q->write & q->mask] = e;

10 q->write ++;

11 return 0; /* OK */

12 }

13

14 Entry iffq_trydeq_local(IFFQ *q) {

15 Entry e = q->slots[q->read & q->mask];

16 if (e != NULL_ELEM)

17 q->read ++;

18 return e;

19 }

20

21 /* Opportunistically clear slots , making sure that q->read is at

least H slots

22 * ahead of q->clear , and that q->clear stops at the beginning of

a queue partition. */

23 void iffq_deq_publish(IFFQ *q) {

24 unsigned next_clear = (q->read & ~(H-1)) - H;

25

26 while (q->clear != next_clear) {

27 q->slots[q->clear & q->mask] = NULL_ELEM;

28 q->clear ++;

29 }

30 }

31

Figure 11: The Improved FastForward Queue ensures that producer and con-
sumer never access the same cache line in parallel when the queue is almost full,
achieving optimal performance in this operating regime.
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(included) and read (excluded), which must be initialized with some dif-
ferent value, to prevent P from quickly filling the queue and use them.

Similarly to BLQ, IFFQ supports batch operation on the consumer
side, providing a consumer API different from a simple dequeue. As
illustrated in Figure 11, C operates as follows.

� Call iffq trydeq local many times to read the available items, un-
til there are no more items and the function returns NULL ELEM.

� Call iffq deq publish, which opportunistically clears slots and ad-
vances clear until it reaches the first slot of the partition immedi-
ately preceding read.

Note that C delays the clear operation with no impact on latency. If the
queue is almost full, the latency experienced by an item is in only due
to the time needed by C to process all the the items that were enqueued
before; postponing the enqueue of further items (because of C clearing
slots less frequently) does not worsen latency. If the queue is almost
empty, P can go ahead without noticing the delayed clear.

The worst case for IFFQ is the same as FFQ, and it happens when the
queue size oscillates between 0 and 1, with write and read always in the
same cache line and limit+H and clear always in different cache lines.
In this Fast Consumer scenario, P and C pay a miss on writing/reading
each item. Once every H items, P pays an additional read miss on the
slot pointed by limit+H, learning that H new slots are free to be used,
for a total amortized cost of 1 + 1/H. C pays an additional write miss
every K items when clearing the first slot of a previously read cache line.
The amortized cost for C is therefore 1 + 1/K.

In the Fast Producer case the queue is almost full, write and read are
guaranteed to point at different cache lines, and limit+H coincides with
clear most of the time. The system evolves as follows:

� P pays a read miss on the slot pointed by limit+H to learn that H
new items are available, and a write miss when filling the first slot
of a new cache line. Writing to the other K − 1 slots does not cause
further misses because the cache line is already in exclusive state.
The total amortized cost for P is 1/H + 1/K per item.

� C pays a read miss every K slots to read new items. When clearing
H slots, a write miss occurs on the first slot of each returned cache
line, which transitions to the exclusive state. However, P normally
reads back the first slot of the first cache line (while checking for
more space on limit+H) before C has the chance to clear the re-
maining K − 1 slots. This cache line becomes shared, and C pays
an additional cache miss to bring it back to the exclusive state. The
total amortized cost for C is therefore 1

K
+ 2+H/K−1

H
= 2

K
+ 1

H
misses

per item.

The best case for IFFQ happens when limit+H, clear, read and write

always point at four different cache lines. The amortized cost in this case
is 1/K + 1/H for P and 2/K for C. Although its best case is unlikely, a
major advantage of IFFQ is that its cache miss behavior is very close to
be optimal in the Fast Producer scenario, which is quite common.
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Figure 12: Batched Improved FastForward Queue. The producer accumulates
new items in a private buffer, then tries to write them into the shared queue
slots as fast as possible, to reduce the chance of conflict with the consumer when
the queue is almost empty.

4.3 Batched IFFQ (BIFFQ)

IFFQ needs very few cache misses in most regimes except for Fast Con-
sumer, when the queue is almost-empty most of the time. This regime is
problematic for all the queues under study. For Lamport’s queues, adding
a batching API on the producer side allowed us to atomically publish
multiple entries at once and amortize cache misses when reading new en-
tries (Sec. 3.3). It is therefore desirable to extend IFFQ in such a way
to provide an API to enqueue in batch (batching is already supported on
the consumer side).

Unfortunately, in FastForward queues it is impossible to atomically
publish an update involving multiple slots, because the synchronization
information is implicitly embedded in the slots array, and P can only sub-
mit slots one by one. However, once P fills the first slot of a cache line,
this transitions to the exclusive state, and a quick burst of back-to-back
writes to the same cache line has a high probability to proceed without
further write misses (or just an additional one if C was actively monitor-
ing the same cacheline). The core idea for a Batched IFFQ (BIFFQ) is
therefore to accumulate new items in a temporary buffer, as illustrated in
Figure 12, and copy them to the shared queue in a tight loop only at the
end of the batch. The resulting producer-side routines for Batched IFFQ
(BIFFQ) are shown in Figure 13. Consumer-side routines are not shown,
as they are the same illustrated in Figure 11.

The new workflow for a batching producer is similar to the one de-
scribed for BLQ (Sec. 3.3):

� Call biffq wspace to learn the number b of available slots. The
needed argument is used by the caller to force the increment of
limit by H if the number of slots already available is lower than
needed.

� Call biffq enq local to enqueue up to b items without publishing
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1 void biffq_wspace(BIFFQ *q, unsigned int needed) {

2 unsigned int space = q->limit - q->write;

3 unsigned int next_limit;

4

5 if (space >= needed) {

6 return space;

7 }

8

9 next_limit = q->limit + H;

10 if (q->slots[next_limit & q->qmask] != NULL_ELEM)

11 return space;

12 q->limit = next_limit;

13

14 return next_limit - q->write;

15 }

16

17 /* Store items in a producer -local buffer. */

18 void biffq_enq_local(BIFFQ *q, Entry e) {

19 q->buf[q->buffered ++] = e;

20 }

21

22 /* Copy the buffer into the queue slots as fast as possible

23 * to minimize possible interference with the consumer. */

24 void biffq_enq_publish(BIFFQ *q) {

25 for (unsigned i = 0; i < q->buffered; i++, q->write ++)

26 q->slots[q->write & q->mask] = q->buf[i];

27 q->buffered = 0;

28 }

29

Figure 13: Producer routines for the the batched version of IFFQ (BIFFQ),
enabling batched operation for P. Publication of many items with a single atomic
write is not possible with FastForward queues: BIFFQ optimistically relies on
a race condition to try to achieve the same effect.
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them. The items are stored in a producer-private buffer. The buffer
(buf) and the corresponding counter variable (buffered) are stored
in group D.

� Call biffq enq publish to publish the buffered items. A tight loop
is used perform the burst of writes to the slots array, with the goal
of minimizing the likelihood of cache conflicts with the consumer.

Essentially, BIFFQ relies on a race condition to improve over IFFQ in
Fast Consumer regimes, but its theoretical worst case is not different from
IFFQ. The Fast Producer and best case analysis is also the same as for
IFFQ. Experiments in Sections 5 and 6 show how this best-effort opti-
mization can be effective in practice, confirming that the race condition
happens frequently enough to improve performance.

To analyze the probabilistic cache miss behaviour for Fast Consumer,
let’s assume that P produces B items at a time. On the first write of a
burst, P pays a write miss to bring the cache line pointed by write in
exclusive state. Since C was monitoring the same slot, C incurs a read
miss and brings the cache line in shared state. If the written slot was not
the last of the cache line (worst case), the following write in the burst
causes an additional write miss for P and later an additional read miss
for C. The remaining writes only cause a miss every K items for both P
and C (with very high likelihood), because C is busy with the first item
in the batch and does not interfere immediately. Since B items can cover
at most d(B − 1)/Ke + 1 cache lines, it follows that the total cost for

P is 2+d(B−1)/Ke
B

+ 1
H

, taking into account the read misses on limit+H.
Similarly, considering the write misses on clear, the amortized cost for C
is 2+d(B−1)/Ke

B
+ 1

K
per item.

5 Experimental validation

The analysis in Sections 3 and 4 identifies strengths and drawbacks of
some promising SPSC queue implementations, with a focus on the cache
miss behavior under various circumstances. Table 2 summarizes the re-
sult of this analysis, reporting for each queue the average number of cache
misses per item in the best and worst cases, together with the common
situations in which P is on average faster than C (Fast Producer) or the
other way around (Fast Consumer). In this Section we validate the anal-
ysis, and perform some throughput and latency experiments, to verify
our findings and study how the queues behave in practice on modern ma-
chines. With the goal of isolating the effects of those cache misses that
are due to queue synchronization, it is extremely important to carefully
design the validation experiment in such a way to minimize or remove all
the possible sources of noise that could hide or affect the phenomenon un-
der observation. The precautions taken for this purpose, such as avoiding
cache misses not pertaining to queue synchronization, and disabling or
deceiving cache line prefetching, are detailed in the following sections.

For the experiments we use two different machines, called I7 and
XEON40. I7 is a single-socket machine with an i7 processor, while XEON40
is a dual socket machine with Xeon processors. Their specifications are
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Table 1: *
Average number of cache misses per item per side (P, C) for

different access patterns

Queue Worst case
Fast

Consumer
worst case

Fast Producer
worst case

Best case

LQ 3 3 3 1
K + 2

N

LLQ 2 + 1
N 2 + 1

N 1 + 1
K + 1

N
1
K + 2

N

BLQ 2 + 1
N

2+dB−1
K e

B + 1
N

1
K + 1

B + 1
N

1
K + 2

N

FFQ 2 2 2 2
K

IFFQ, BIFFQ
(P)

1 + 1
H 1 + 1

H
1
K + 1

H
1
K + 1

H

IFFQ, BIFFQ
(C)

1 + 1
K 1 + 1

K
2
K + 1

H
2
K

Table 2: Average number of cache misses per item that P and C must pay in
the worst case. N is the queue size (in items), B the number of items in the
producer and consumer batch, K the number of items that fit in a single cache
line, and H is the partition size for IFFQ and BIFFQ. It is common to have
N � K, so 1

N−K terms have been replaced with 1
N to improve readability. Also,

components with denominator N can usually be neglected. The ideal optimal
number of cache misses per item is 1

K .
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Table 3: *
Test machines specifications

I7 XEON40

CPU model name i7-3770K XEON E5-2640

CPU frequency 3.5 GHz 2.4 GHz

Number of sockets 1 2

Number of CPUs 4 cores, 8 threads 20 cores, 40 threads

Memory speed and type 1.33 GHz DDR3 2.133 GHz DDR4

Kernel Linux 4.15 Linux 3.10

L1 data cache 32 KB private per-core 32 KB private per-core

L2 cache 256 KB private per-core 256 KB private per-core

L3 cache 8 MB shared 25 MB shared per-socket

DTLB for 2 MB pages 32 entries per-core 32 entries per-core

DTLB for 4 KB pages 64 entries per-core 64 entries per-core

Table 4: Specifications of the machines used in the experiments. I7 and XEON40
have similar sizes and configuration for both data caches and data TLB. L1 data
cache, L2 cache and data TLB are private to each core, while the L3 cache is
shared by all the cores on the same socket.
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Table 5: *
Summary of validation experiments

Experiment Sections/Figures Main results

# cache misses embedded payload: Sec. 5.2.1, Fig. 14;
indirect payload: Sec. 5.2.2, Fig. 17

highly dependent on regime (Fast Pro-
ducer/consumer); FF-based queues are
generally better; batched queues are
equally optimal, but BIFFQ degrades
better

throughput embedded payload: Sec. 5.2.1, Fig. 15
(I7) and 16 (XEON40); indirect pay-
load: Sec. 5.2.2, Fig. 18 (I7) and 19
(XEON40)

no clear winner and FFQ can be worse
than LQ; IFFQ is a reasonable choice

latency embedded and indirect payload:
Sec. 5.3, Fig. 20 (I7) and 21 (XEON40)

IFFQ wins; batched queues can be
detrimental

Table 6: We performed three kind of measurements: number of cache misses,
throughput and latency, with either embedded or indirect payload. The number
of cache misses are reported only for I7, as the ones for XEON40 are similar.

reported in Table 4. Dual socket machines are particularly interesting
for SPSC measurements, because cache interactions between two threads
running on different sockets are more expensive with respect to the case
where threads run on the same socket. The cache line is 64 bytes in both
machines, and the size of a pointer is 8 bytes. As a result, each cache line
can contain up to 8 pointers, so we have K = 8. The need for running P
and C on separate sockets may arise in real applications like PSPAT [9],
where the arbiter thread consumes packets generated by several producers
(e.g., Virtual Machines) running on potentially every single free core on
the machine, both on the local and the remote socket. More generally,
any HPC application that uses all or most of the cores of a multi-socket
machine may need two cores on different sockets to communicate through
an SPSC queue.

Table 6 gives a summary of the experiments we have run, with pointers
to the Sections and Figures where they are discussed and a brief summary
of the main results.

5.1 Validation methodology

To reduce measurement noise and increase experiment reproducibility,
some general precautions have been adopted:

� Each producer or consumer thread used in any experiment is pinned
to a separate dedicated physical core to avoid interference due to
hyperthreading.
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� On the XEON40 machine, the producer and consumer threads are
pinned to two cores belonging to different CPU sockets, in order to
highlight how cache misses affect performance in the worst case.

� CPU dynamic frequency scaling is disabled, with frequency pinned
to the maximum supported one.

� The test machine is not used for additional jobs during the tests;
it only runs producer and consumer threads and basic operating
system services.

� When measuring cache misses, hardware data prefetching is kept
disabled through the machine firmware, to remove the associated
noise.

� Cache misses on data structures that are not part of the queue syn-
chronization algorithm are avoided or minimized as much as possible,
in order to better isolate the cache behaviour to be attributed to the
algorithm itself.

� Memory for SPSC queues and buffers is allocated using Linux hugepages,
in order to reduce the pressure on the Translation Lookaside Buffer
(TLB). On our test machines each hugepage is 2 MB in size. We
are able to perform all our experiments using less than 4 hugepages,
which can be always resident in the data TLB.

For throughput measurements we use a single SPSC queue with N = 256
slots, a producer thread (P) and a consumer thread (C). P produces items
as fast as possible and C greedily consumes them, using either embedded
or indirect payload. With embedded payload, items are 64 bits integers
generated by P and read by C. With indirect payload, items are pointers
to preallocated buffers, and each buffer contains a 32 bit integer field
accessed by both P and C, while the other bytes in the buffer are never
accessed. P and C are able to work with a configurable (maximum) batch
limit B, which is meaningful only if the SPSC queue exposes batching
capabilities (like BLQ and BIFFQ). In that case P publishes at most
BP items at once and C frees at most BC slots at once. P (C) may
publish (free) less than its batch limit when the queue has not enough
free slots (available items). For queues without batching capabilities, it
can be assumed that BP = BC = 1. Finally, IFFQ and BIFFQ use
H = 4K = 32.

Buffers pool implementation The pool of preallocated buffers is
used for experiments with indirect payload. It is a circular array of 2N
buffers—with N being the size of the SPSC queue—so that P can never
run out of buffers. Storing the buffers in contiguous virtual memory helps
reducing the pressure on the TLB, since the whole array can be contained
in a single 2MB page, and thus occupy a single entry in the TLB. P
keeps an index to track the buffer in the pool to be used next. The reason
why the pool contains more than N entries is subtle. Since we want to
validate the cache behaviour due to queue synchronization, we do not want
P and C to conflict on the pool nor on the buffers, as this would cause
many additional cache misses that are not part of our model. This issue is
avoided because the pool is not a real buffer allocator: the pool is accessed
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only by P, buffers are lent to C through the SPSC queue, but there is no
way for C to return a buffer to the pool—the buffer actually never moves
from the pool. C simply stops using a buffer when it is done consuming it.
However, a very fast P keeps the queue constantly full; C may extract the
first out of N pending buffers from the queue (thus immediately releasing
a slot) and start accessing it, while in parallel P gets and accesses the same
buffer to fill in the slot just freed. This situation causes undesired conflicts
between P and C, and it is easily solved if the pool contains more than
N buffers; we chose 2N because N is a power of two, to simplify modulo
operations. Note that the problem here described does not affect the
algorithms that leave empty cache lines to reduce conflicts.

To produce an item, P takes the next buffer from the pool, writes a
sequence number in the integer field inside the payload and enqueues the
pointer, operating in batch if the queue offers such a capability. As ex-
plained in Sec. 4.1, with FastForward variants P must issue a store-release
memory barrier between the write access to the payload and the enqueue;
such a memory barrier is not needed with Lamport queues, because it is
already included inside the enqueue routine. To consume items, C reads
the sequence numbers from the pointed buffers and sums them up.

It is important to notice that with indirect payload both P and C al-
ways pay a cache miss per-item on the pointed buffer, which adds to the
cache misses due to SPSC synchronization reported in Table 2. This nor-
mally causes a substantial throughput drop w.r.t. the embedded payload
case, but is also a necessary cost to pay, for instance in packet processing
systems. Each buffer in the pool is 4096 bytes large (the size of a physical
page on our test platforms), even if P and C only access 4 bytes of it.
As the CPU prefetcher does not cross page boundaries (according to the
processor manual [28]), it cannot guess the (regular) access pattern within
the circular array and possibly speed up P and C. This is intentional, be-
cause we want to avoid those cache misses that are due to the prefetcher;
also, we want to emulate a real system where buffers are scattered across
memory and the prefetcher cannot be very effective.

Load emulation Both P and C are instrumented to emulate addi-
tional per-item computations. Emulation is achieved by wasting CPU
time with a tight loop that spins for a configurable amount of time; time
sampling is quite efficient as it is based on the timestamp counter (TSC)
register available on our x86 platforms. The amount of wasted time can
be chosen separately for P and C. Load emulation for P happens before
getting the next embedded value or indirect buffer pointer (and writing
into the indirect buffer); this models a situation in which P performs
some work to prepare the data, and then writes the resulting data into
the queue. Symmetrically, load emulation for C happens after reading
the embedded value or the indirect buffer pointer from the queue (and
after reading from the indirect buffer); this models a situation in which
C performs some work to consume the data read from the queue. It is
important to make sure there is a data dependency between the emu-
lated work and the value written/read to/from the queue slot, as it would
happen for a real application. If this were not the case, the emulated
work could hide the latency caused by a cache miss in the enqueue/d-
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equeue routines, thanks to the out-of-order execution capabilities of the
CPU; this would invalidate the meaningfulness of our measurements. To
achieve data dependency, each iteration in the emulation loop increments
a trash variable that has a data dependency on the following enqueue or
the preceding dequeue operation. A suitable compiler barrier is added to
make sure the compiler cannot optimize the increment by aggregation. C
increments the trash variable right after the dequeue operation, before
the load emulation loop, and the value of the increment depends on the
dequeued item. In case of indirect payload, P uses the value of the trash

variable after the emulation loop to fill the 32 bit field in the buffer right
before enqueuing. With embedded payload, P uses the value of the trash

variable to fill the payload itself. Emulating load for P and C is useful
to bring any SPSC queue in a given Fast Consumer or Fast Producer
operating regime, and observe how the queue behaves in that case. In
the following, emulated load is represented by the LP variable for the
producer and by the LC variable for the consumer.

Measurement methodology A single test run is executed by run-
ning the spscq program, which is freely available online [29]. The program
spawns a thread for P and a thread for C, and both start working on an
SPSC queue as greedily as possible. A third control thread is used to
measure execution time and stop P and C when the test time duration
has elapsed. To minimize the interference caused by the control thread,
P and C stop when the control thread sets a global variable that P and
C periodically read; this only causes an additional cache miss for P and
C at the end of the experiment, which does not affect the tests. For each
configuration, each test run lasts for 10 seconds and is repeated 10 times
in order to allow computation of average values and standard deviations.

Both P and C count the number of items processed and the number
of perceived batches of items. A batch of items is defined as the number
of items processed without stopping because the queue is full (for P)
or empty (for C). To count the number of batches we simply count the
number of times the enqueue or dequeue fail (without counting repeated
failures). If for instance P is significantly faster than C, the batch count
for P will be very low, while the C one will be high and close to the item
count. The ratio between item count and batch count is the perceived
average batch. The average batch of P and C is an interesting indicator
of the operating regime, as explained in our previous works [30, 27]. If P’s
batch is very low (e.g. close to BP ), and C’s batch is much higher than BC ,
we can conclude that the system is operating in a Fast Producer regime
(FP). Symmetrically, the system is Fast Consumer (FC) if C’s average
batch is very short and P’s one is large. Ideally, if P and C have exactly
same speed their perceived batch is infinite; more realistically, P and C
may have similar speed and interact in such a way that they both perceive
a large batch.

Finally, to validate the behavior of P and C in terms of cache interac-
tions, the Linux perf tool is used to read from the CPU hardware counters
that count L1 cache misses due to load and stores. Our machines do not
have separate counters for store and load misses, but have an aggregate
metric. This is not an issue, as the analysis does not distinguish them.
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Cache miss counters are sampled separately for the two cores where P and
C run. With these counters it is possible to compute the average number
of cache misses per item, and validate the results reported in Table 2.

5.2 Throughput experiments

To validate the analysis of Sections 3 and 4 under different workloads and
constraints, we carry our throughput experiments using both embedded
and indirect payload. For both cases, and for each of the six queues under
test we measure throughput, perceived batch and cache misses per item
as described in Section 5.1. To explore different operating regimes, we use
emulated loads on both P and C, with different combinations: for both
P and C, we let load vary between 0 and 90 nanoseconds in steps of 10
nanoseconds, so that we have 100 different combinations for each queue.
Loads larger than 90 nanoseconds are less interesting, as the impact of
cache misses on throughput becomes smaller when P and/or C spend most
of their time in the emulation tight loop; this aspect will be confirmed by
the results presented in the following. For the queues that can operate in
batch (BLQ and BIFFQ) we first set the batch size to BP = BC = 32
items; secondly, we set BP = BC = 1 to measure how their performance
degrades.

5.2.1 Embedded payload

Cache behavior Figure 14 shows the average number of cache misses
per item on I7 in case of embedded payload. Unless where explicitly noted,
the values reported are only the ones measured for P; the values measured
for C are practically identical most of the times.

Each matrix reports results for a different queue type, with each cell
indicating average cache misses per item for a given combination of emu-
lated loads of P and C (from 0 to 90 ns, as indicated on the axes). Fast
Producer (FP) regimes are in the top left region of each matrix, while Fast
Consumer (FC) are in the bottom right region. Brighter cells indicate
fewer cache misses (better). Measured values range from approximately
1/8 to 3, as predicted by Table 2.

Results confirm that LQ is clearly worse than any of the other queues,
for any combination of emulated loads. LQ suffers from many unnecessary
synchronization operations, and this is particularly evident for FC or FP
regimes, where both P and Q often end up paying 3 cache misses per item,
which is the worst case. The small optimizations introduced by LLQ are
already very effective at reducing cache misses, especially for FP regimes
where we measured approximately 1.1 misses per item, while FC regimes
report about 2 cache misses per item. These measurements perfectly agree
with Table 2. For both FC and FP, the faster thread measured an average
batch close to 1, while the slower thread measured a large batch. Along
the main diagonal, P and C have very similar speed and the number of
cache misses is lower; this happens because both P and C perceive a large
batch, and therefore manage to amortize the cost of cache misses over
many items. This phenomenon is not visible in LQ, because LQ has no
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Figure 14: Average cache misses per item suffered by P during throughput
experiments on I7 with embedded payload. Emulated load for both P and C
ranges between 0 and 90 ns. Brighter colors correspond to a more favourable
behaviour, with less cache misses per item.
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logic to suppress synchronization operations, so a larger perceived batch
does not necessarily lead to better performance.

Results for BLQ are significantly better because of the large batch
size in use (BP = 32). As a consequence, any synchronization cost due
to accessing the write or read variable is always amortized on at least
32 items. Depending on the combination of emulated loads, the operat-
ing regime can still be FP or FC, so that the slower thread will perceive
a much larger batch size. According to Table 2 we should expect be-
tween a theoretical minimum of 2/256 + 1/8 ≈ 0.13 and a maximum of
2+d(32−1)/8e

32
+ 1

256
≈ 0.19 cache misses per item. Measurements report

values between 0.16 and 0.17, consistent with the observation that the
best case is extremely unlikely in LQ variants.

The measurements also confirm that FFQ is clearly a better solution
than LQ, as suggested by the original FastForward work [21]. The FFQ
worst case of 2 cache misses per item is observed in the FP and FC
combinations, i.e. the cells farther from the main diagonal. As described
in Section 4.1, this is due to P and C always working in the same cache
line. The situation improves for cells near the main diagonal, as P and
C have less chances to work in the same cache line; the observed number
of cache misses per item here is close to 1 or less. We do not go much
below 1 or approach the theoretical minimum (2/8) because our FFQ
implementation does not have a control algorithm to artificially keep P
and C away from each other; thus, especially with a relatively short queue,
P and C end up working on the same cache line quite often.

IFFQ improves FFQ for all the combinations of loads, and this is
expected because IFFQ has a better worst case behaviour. Measurements
never show more than 1.1 cache misses per item, with a predicted worst
case value of 1 + 1

8
≈ 1.13 (Table 2). FP regimes have very few cache

misses, with the measured values matching the theory, which predicts at
most 1

8
+ 1

32
≈ 0.16 misses for P and 2

8
+ 1

32
≈ 0.28 for C. This confirms that

when P and C operate on slots more than one cache line apart, IFFQ shows
optimal behaviour irrespective of their distance. Finally, measurements
confirm that BIFFQ has practically optimal and flat cache miss rates in
all regimes (similarly to BLQ), because the batching on the producer side
is effective and removes the extra cache miss per slot in FC regimes. The
batch perceived by C is indeed at least 32, as P always manages to issue a
quick burst of 32 writes without conflicting with C. The measured cache
miss rate is about 0.26, which is slightly better than the predicted worst
case for FC regimes, i.e., 2+d(32−1)/8e

32
+ 1

8
≈ 0.31, according to Sec. 4.3.

Effect on throughput The matrices in Figure 14 show that average
cache misses per item vary by a large factor, identifying three classes of
behaviors, namely Fast Producer, Fast Consumer and the mixed regime
observed when P and C both manage to perceive large batches. The im-
pact of cache misses on the performance of a queue type depends on their
actual cost compared to the other parts of the producer and consumer
loop. Hence we selected two specific combinations of emulated loads that
are representative of FP and FC regimes, where all the queues experience

34



FP FC
0

10

20

30

40

LQ LQ

LLQ

LLQ

BLQ

BLQ
FFQ

FFQ

IFFQ

IFFQ

BIFFQ

BIFFQ

M
il

li
o
n

s
o
f

it
em

s
p

er
se

co
n

d
Throughput on I7 (embedded payload, batching permitted)

Figure 15: FP indicates a Fast Producer operating regime corresponding to
the emulated loads (LP = 0, LC = 10) (in nanoseconds). FC indicates a Fast
Consumer operating regime with (LP = 20, LC = 10).
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(LP = 0, LC = 10) (in nanoseconds), while FC is a Fast Consumer regime with
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throughput than on I7.
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FP or FC, respectively2. For these workloads we measured the through-
put (items per second) achieved on our two platforms, I7 and XEON40,
with largely different cache miss cost.

Figure 15 shows how the incremental optimizations to LQ and FFQ
affect throughput on I7. In this experiment, FP uses LP = 0, LC = 10 ns,
while in FC we have LP = 20 ns, LC = 10 ns. Since P and C are on the
same socket, L1 cache misses are served very quickly by L2 or L3. Hence,
even though fewer misses give higher throughput, the difference between
the various queue types is relatively small (10–30% across all cases). For
processing times higher than 50 ns the differences are almost negligible
(not shown here). Note how, in the FC case, BIFFQ is slightly slower than
IFFQ, because the perceived batch is already larger than 32 for both, and
the extra data copy makes the BIFFQ producer slower.

Figure 16 shows the throughput measured in the same FP and FC
configurations on XEON40 (same values of LP and LC as for I7). Here
P and C are on different sockets, resulting in much more expensive cache
misses. The difference has a remarkable effect on throughput, making the
improved versions of the algorithms (LLQ, IFFQ) run at 170–290% the
speed of their basic counterparts. Here too we note that in the FC regime
BIFFQ is slightly worse than IFFQ, for the same reasons.

Disabling batched operation The two matrices in the third col-
umn of Figure 14 show the average number of cache misses with embedded
payload when batching operation is disabled. In contrast to the other six
cases, here neither P or C can publish/return items in batch; this con-
straint may arise because of architectural limitations of the software that
uses the SPSC queues, as explained in Section 2.1. This implies that the
perceived batch for BLQ and BIFFQ—i.e. the queues that expose batch-
ing capabilities—can be as small as 1 in the worst case. Note that the
internal implementation of the queues can still batch their synchroniza-
tion operations and thus improve performance. Both BLQ and BIFFQ
show the same cache behavior as their corresponding non-batching ver-
sions (LLQ and IFFQ, respectively), as expected. Regarding the effect
on throughput, using an API capable of batching with a batch limit set
to 1 is less efficient than using the simpler enqueue/dequeue; this effect
is illustrated in Sec. 5.3. In any case, BLQ and BIFFQ should never be
used when batching is not permitted.

5.2.2 Indirect payload

Cache behavior A queue with indirect payload requires an extra
memory access per item on both P and C, which results in an extra cache
miss on both sides. This is perfectly reflected by our experiments, which
result in a range of measured cache misses between 1.1 and 4 per item
instead of 0.1 and 3 in the case of embedded payload. The average num-
bers of cache misses per item for indirect payload experiments on I7 are
shown in Figure 17 with a color range [1, 4]. Apart from the extra cache

2Because of the differences in how the queues are implemented, it may happen that the
same combination of emulated loads leads to different regimes for different queues.
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Figure 17: Average cache misses per item suffered by P during throughput
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Figure 18: FP indicates a Fast Producer regime with (LP = 0, LC = 10) (in
nanoseconds). Batched operation (BLQ, BIFFQ) is not very useful as IFFQ
and LLQ are already able to generate a large perceived batch.

miss, they resemble the results for embedded payload (Figure 14, color
range [0, 3]). One interesting difference between the two Figures is that
the boundary between FP and FC regions in Figure 17 is slightly concave,
and the FP region is larger. This happens because on the consumer side
the extra read miss must wait for the slot read to complete, slowing down
C more than the extra write miss slows down P. The effect is more visible
for small values of LC and LP : for larger values the emulated loads domi-
nate the cache miss cost, and the boundary between FP and FC becomes
again aligned to the main diagonal.

In any case, the interesting aspect confirmed by this experiment is that
adding “external” cache misses unrelated to queue synchronization does
not have an impact on how the SPSC queue under study behave; such
cost simply adds up to the rest of the workload (the emulated load in this
case).

If batched operation is disabled, we obtain the results shown in the two
matrices in the third column of Figure 17. Similarly to what explained in
Section 5.2.1, the cache behavior for BLQ and BIFFQ regresses to their
corresponding non batching version (LLQ and IFFQ).

Effect on throughput Figure 18 illustrates the throughput measured
with indirect payload for a particular combination of emulated loads that
results into an FP operating regime for all the queues. Similarly to what
already shown in Figure 15, LLQ/BLQ improve LQ and IFFQ/BIFFQ
improve FFQ. However, BIFFQ cannot improve IFFQ that much because
it is already optimal in FP regimes. Also BLQ is only a small improvement
over LLQ, because the batch perceived by P is already close to BP = 32
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Figure 19: FP indicates a Fast Producer regime with (LP = 0, LC = 10) (in
nanoseconds). The NOLOAD label refers to an experiment with no emulated
loads, where all the queues happen to operate in a Fast Consumer regime.
Batched operation for BLQ/BIFFQ is effective whenever it guarantees a mini-
mum batch larger than the one perceived by LLQ/IFFQ.

for LLQ.
The same FP experiment on XEON40 is shown in Figure 19 and leads

to similar observations, with a better relative throughput increment over
the baseline LQ/FFQ queues (due to the higher cost of cache misses on
XEON40). Figure 19 also shows an additional experiment, marked as
NOLOAD because no emulated load is used. In such a configuration, all
the queues experience a sharp FC regime, with C perceiving the mini-
mum batch—BP = 32 for BLQ/BIFFQ, 1 for the others. In accordance
with Table 2, throughput for BLQ and BIFFQ is significantly larger than
LLQ and IFFQ, respectively. LLQ and LQ show similar throughputs,
because the LLQ producer is amortizing the load of the read variable on
a small average batch (about 5 items). In this particular case the IFFQ
consumer experiences a slightly smaller perceived batch (3 items) than
FFQ (4 items), and thus also a marginally worse throughput. On I7 we
are not able to observe a sharp FC regime unless we use a large producer
load (e.g., LP = 70 and LC = 0). However, such a relatively large load
dominates the cost of cache misses, so that the throughput differences
between the queues become negligible; for this reason we do not show an
FC combination in Figure 18.

5.3 Latency evaluation

The throughput experiments described in Section 5.2 are useful to vali-
date the cache behavior of the SPSC queues under various configurations,
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resulting in different operating regimes. In all those configurations, P is
always acting as a streaming producer, trying to achieve the maximum
possible throughput. We now complete our experimental evaluation by
measuring the worst case latency introduced by the queue synchroniza-
tion operations. We use two threads P1 and P2 connected by two SPSC
queues in opposite directions. In each iteration, P1 writes an item (i.e., a
request) into the request queue, which P2 reads from. P2 reads the item
and immediately enqueues it back to the response queue, where P1 reads
it. P1 always waits for a pending response before enqueuing the next
request; symmetrically, P2 always responds to a pending request before
dequeuing the next request. In other words, P1 and P2 carry out a simple
request-response (ping-pong) test in a loop, where P1 acts as a client and
P2 as a server. This transactions-based workload is inspired to the TCP RR

test of the popular netperf benchmark tool [31], which is commonly used
to measure network latency. The round-trip latency due to queue syn-
chronization is the inverse of the transaction rate, since P1 and P2 do not
perform significant operations other than enqueuing and dequeuing (ex-
cept for accessing the packet payload once in the indirect payload case).
Note that with this workload there is no possibility to batch, as both
queues always store at most one item. P1 and P2 are forced to synchro-
nize on each exchanged item on both the request and response queue. As
a consequence, the regime experienced by any queue variant in these la-
tency experiments must be exactly the same. This is in contrast with the
throughput experiments of Section 5.2: even if two different queues are
both experiencing an FP (or FC) operating regime, it is practically im-
possible that they observe the exact same evolution of queue occupation
over time, and thus the exact same sequence of perceived batches.

Although it is not possible for P1 and P2 to perceive a batch larger
than one, we still include BLQ and BIFFQ in the experiments. This is
useful to assess the overhead of using a batching API when batching is
not possible. The same experiment infrastructure and methodology de-
scribed in Section 5 (e.g., 10 test runs of 10 seconds each, etc.) are also
used here. Latency experiments use both embedded and indirect payload,
and the latter mostly for the sake of completeness: because of how the
experiment is designed, the additional cycles due to accessing the indirect
payload simply add up to the baseline synchronization cost paid in the
case of embedded payload. For similar reasons, emulated loads are not
used. In more detail, P1 writes to the 32-bit integer field in the indirect
payload before enqueuing to the request queue, and P2 reads the same
32-bit field after dequeuing from the request queue, but before enqueuing
the item to the response queue. P1 does not perform more accesses to
the indirect payload of the returned item. As a result, both P1 and P2
pay an additional cache miss per item with respect to the embedded pay-
load scenario. Similarly to the netperf TCP RR benchmark, rather than
measuring latency directly we count the number of request-response trans-
actions that P1 and P2 manage to do with a given queue, and compute an
average rate. The transaction rate is inversely proportional to the queue
latency, so the higher the better, like in throughput experiments.

Transaction rates on I7 are shown in Figure 20. Values range from 6.5
millions transactions per second (Mtps) to 11.5 Mtps, corresponding to
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Figure 20: On I7 IFFQ achieves a lower average latency as it pays less cache
misses per item. Queues exposing a batching API (BLQ and BIFFQ) are inef-
ficient because there are no batching opportunities.

latencies going from 87 ns to 154 ns per item. LQ has the worst perfor-
mance overall, as this experiment deterministically triggers its worst case.
Both P1 and P2 act as a producer and a consumer for each item, and
thus each of them must pay 3 cache misses on each enqueue or dequeue
operation; this is confirmed by our measurements, which show an average
of exactly 6 cache misses per item for both P1 and P2 with embedded pay-
load, and 7 with indirect payload. LLQ reduces the cache misses to about
2 per operation, because the queue is always almost empty and therefore
the test triggers the LLQ FC worst case (Table 2). LLQ measurements
with embedded payload report 4.02 cache misses per item (both P1 and
P2), with a transaction rate increase of 22% over LQ; indirect payload
needs 5.09 cache misses per item. BLQ achieves a substantially lower
throughput than LLQ (22% less with indirect payload), even if the mea-
sured cache miss rates are identical (as expected). This is an interesting
outcome, and it can be explained with the higher number of instructions
that both P1 and P2 must pay (twice) to use the BLQ batching API with
a single element. Latency tests on FFQ report about 4.8 cache misses
per item with embedded payload (5.9 with indirect payload), and thus a
transaction rate lower than LLQ. Unfortunately, this result slightly dis-
agrees with our analysis, which predicts 2 misses per item in the worst
case, and then at most 4 misses for two operations. We believe this dis-
crepancy is due to some quirk of the I7 machine, because the same does
not happen on XEON40. Note that the FFQ cache behaviour for the Fast
Consumer throughput experiments of Figure 14 perfectly agrees with the
analysis, reporting an average of 2 misses or less; the discrepancy seems
to affect only these latency tests. Nevertheless, IFFQ achieves the overall
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Figure 21: On XEON40 queues based on FastForward always achieve better
average latencies. BLQ and BIFFQ perform poorly because of a lack of batching
opportunities.

best performance, with an average of 2.16 misses per item with embedded
payload, in line with the FC worst case predicted by the analysis. Sim-
ilarly to BLQ, BIFFQ reports a lower throughput than IFFQ (12% less
with indirect payload), because the additional overhead of the producer-
side batching API is not amortized over a proper batch. The performance
drop for BIFFQ is lower than it is for BLQ because the additional cost is
lower, and it is paid on the producer side only. In summary, on I7 IFFQ
is the best solution, with a latency 33% lower than LQ with embedded
payload, and 26% lower with indirect payload.

The corresponding latency numbers measured on XEON40 are illus-
trated in Figure 21. Cache misses are more expensive on the dual socket
machine, where P1 and P2 are pinned to different CPU sockets. As a
consequence, transaction rates are lower, ranging from ˜1.1 Mtps to ˜2.1
Mtps, corresponding to latencies between 476ns and 909 ns. Nevertheless,
the same discussion of I7 results is also mostly valid here. LQ has the worst
performance in any case, whereas IFFQ performs best. Differently from
I7, FFQ measurements here agree with the analysis, reporting about 3.9
cache misses per item with embedded payload and 5 with indirect payload.
As a consequence, FFQ performs better than LLQ on XEON40. BLQ and
BIFFQ have worse latency than LLQ and IFFQ, respectively. Overall, on
XEON40 IFFQ latency is 43% lower than LQ with embedded payload and
31% lower with indirect payload. In conclusion, the results illustrated in
this section meet the expectations of the analysis presented in Section 4.2:
IFFQ is the optimal solution for latency-sensitive workloads.

42



...

...

pull

push

vswitchclient 1

client 2

client NC

...

Figure 22: The vswitch example application. A dedicated thread pulls Ethernet
packets from the clients’ transmit queues and pushes them to the destination
receive queues.

6 An example application

The results presented in Section 5 are sufficient to validate our analysis
(summarized in Table 2), but they do not evaluate the impact of choosing
a particular SPSC queue in a real application. In particular, an applica-
tion may need tens or hundreds of queues, and therefore the benefit of
using less cache misses is expected to grow with the number of queues.
For this reason we implemented an example application, vswitch, which
uses a variable number of SPSC queues. The vswitch program is a virtual
switch that performs software Ethernet switching among a set of NC in-
terconnected local client processes. Virtual switches are commonly used
to interconnect Virtual Machines and implement datacenter networking.
Each port of the virtual switch consists of two SPSC queues: a transmit
queue for a process to transmit network packets, and a receive queue to
be used for packet reception.

The design of our switch is partially inspired by VALE [32], as it is
able to operate in batch. The virtual switching logic runs in a dedicated
thread, similarly to Open vSwitch [33] accelerated by DPDK [23], or to
Snabb [34]. Using a single dedicated thread comes with some advantages;
locking is not necessary to forward packets between ports, and it is feasible
to busy-wait on the receive queues—as opposed to using a notification
scheme—in order to minimize the worst-case forwarding latency. VALE
follows a different approach, where the switching logic runs in the context
of all the transmitting clients. This may enable better throughput (more
than one CPU can be used for forwarding), but it requires locking and
offers much less batching opportunities.

The vswitch application is implemented as an infinite loop that in
each iteration executes a pull phase followed by a push phase, as depicted
in Figure 22. In the pull phase the switch scans the transmit queues of

43



all the ports, and dequeues up to BV > 0 packets from each one. If less
than BV packets are available on a transmit queue, the switch dequeues
them all and moves forward to the next queue. The destination port for
each packet is computed by looking up the destination MAC address in
the switch forwarding table. Packets are grouped by destination port,
using a separate list for each port. These lists are private to the switch
thread, and are built using the next pointer field available in the packet
metadata3. In the push phase the per-port lists are drained by enqueuing
the packets to the corresponding receive queues. Note that limiting the
number of dequeue operations in the pull phase is useful to provide some
degree of fairness to the interconnected clients, and avoid aggressive clients
to monopolize the vswitch thread. Moreover, the limitation is required to
control the worst-case queue servicing latency, which would be otherwise
unbounded. A smaller BV corresponds to a smaller latency upper bound
and a better fairness. At the same time it is convenient to choose BV large
enough, in such a way that the virtual switch can benefit from the batching
capabilities of queues like BLQ, IFFQ and BIFFQ. Batching operation is
possible both when dequeuing from transmit queues and when enqueuing
to receive queues, since packets to be enqueued to the same receive queues
are collected in the same list. Note that VALE [32] can only operate in
batch with packets that come from the same source port, which means that
batching will only happen if the client transmits several packets at once.
In contrast, vswitch can build batches by aggregating packets originating
from different source ports and directed towards the same destination
port, which does not require the clients to transmit in batches. The
switch does not perform packet copy when forwarding, which implies the
use of indirect payload, as defined in Section 2. Network packets, including
metadata, are dynamically allocated and deallocated by the clients. When
a packet is enqueued to a transmit queue, the packet ownership is passed
to the switch, which will normally pass the ownership to the destination
receive queue. Packets are dropped (deallocated) by the switch itself if the
receive queues are full. Being a zero-copy switch, its performance is not
dependent on packet size. The forwarding code only needs to access the
the packet metadata and the Ethernet header, which both fit in the first
cache line (64 bytes) of the indirect payload. The experiments presented
in Sections 6.2 and 6.3 use minimum sized Ethernet packets (60 bytes) to
enable faster packet initialization and therefore more aggressive clients,
with the goal of stressing the switching thread as much as possible.

For the sake of simplicity, the forwarding table in the current vswitch
prototype is prepared in advance and it is never changed. In a real de-
ployment, a protocol such as OpenFlow could be used to dynamically
update the forwarding table. However, under the (common) assump-
tion that updates are extremely infrequent w.r.t look-ups, updates can
be easily implemented in such a way as not to affect the forwarding per-
formance in a measurable way. An optimized synchronization mechanism
like RCU [5]—or even a custom strategy such as checking for updates once

3Packet metadata are commonly used by network stack implementations to store informa-
tion such as packet length, a pointer to the current network header, and a pointer to the next
packet in a list. Examples are the FreeBSD struct mbuf and Linux struct sk buff.
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every second—would add negligible or non-measurable look-up overhead.
The source code of the vswitch program is available online [29].

6.1 Experiment methodology

Sections 6.2 and 6.3 report the measured forwarding rate of vswitch under
two different workloads, different SPSC queues and a variable number of
clients. For these experiments we use a less constrained execution environ-
ment than the one described in Section 5.1 for validation experiments. In
particular we do not disable (nor try to deceive) the hardware prefetcher,
and we reserve a physical core only for the vswitch thread (one of the two
hyperthreads is left idle). Client threads run on both hyperthreads of the
remaining available cores. These constraints have been removed because
they are not appropriate for a real deployment. Nevertheless, the other
measures described in Section 5.1 are desirable (and commonly used) in
those deployments that need performance to be as deterministic as pos-
sible to meet Service Level Objectives (SLOs). This is for instance the
case of cloud computing providers that may want to provide guarantees
on network latency and bandwidth to their customers. As a side effect,
these precautions are beneficial for the reproducibility of our experiments.

The vswitch experiments are run only on XEON40, which has enough
CPUs (40) to observe how the switch scales with an increasing number of
clients. Each client is pinned to a different available CPU, and at most 38
clients are created. Preliminary experiments have shown that more clients
sharing the same CPU result in lower aggregate throughput, because of
the context switch overhead.

The measurement methodology is also very similar to the one described
in Section 5.1. A global variable is used to stop the virtual switch and the
client threads, and each test run—for a given combination of NC , SPSC
queue and workload—lasts 10 seconds and it is repeated 10 times. The
metric measured in these experiments is the total switch forwarding rate,
which only requires the switch to keep an aggregate counter of packets
pulled from the transmit queues. Note that it is important to use enough
clients to saturate the CPU running the vswitch thread, so that more
efficient SPSC queues can show increased forwarding rate.

6.2 Flooding experiments

In the first set of experiments, each client transmits as many packets as
possible to all the other clients (flooding). A client is implemented as an
infinite loop that in each iteration performs a receive phase followed by a
transmit phase. During the receive phase a client drains its receive queue
consuming (deallocating) all the available packets. In the transmit phase
a client allocates and enqueues BC > 0 packets to its transmit queue,
with BC being the client batch. The destination MAC address for each
allocated packet is selected in a round-robin fashion among all the possible
clients. Packets allocated but not enqueued because the transmit queue
is full are recycled for the next iteration in order to save CPU cycles.

Figure 23 (left) reports the aggregate forwarding rate of vswitch for
BV = 8 and BC = 1. Since clients transmit a single packet in each it-
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Figure 23: Throughput of the virtual switch when flooded by clients, with
BV = 8 and either non-batching clients (BC = 1, left plot) or batching clients
(BC = 8, right plot). IFFQ and BIFFQ provide the highest throughput when
the switch is in saturation.

eration, they cannot enqueue in batch to the transmit queue. However,
there are other batching opportunities: clients can dequeue in batch from
the receive queues and the switch can both dequeue and enqueue in batch
from the transmit and receive queues, respectively. The switch through-
put increases up to 8 clients in a similar way for all the queues. For more
clients, the throughput starts to saturate at different values for different
queues. Fluctuations depend on how much the clients and the switch
are able to batch for the given input workload, on the amount of packet
drops, and on the combination of operating regimes of the many queues
involved. The switch in saturation acts as a bottleneck: transmit queues
tend to operate in a Fast Producer regime (queues generally full) and re-
ceive queues tend to operate in a Fast Consumer regime (queues generally
empty). The plot shows that IFFQ and BIFFQ have a consistently higher
throughput than the other ones. This is expected because they are opti-
mal in the Fast Producer case and the efficiency of the dequeue operations
is less affected by batching than it is for BLQ and LLQ. The effectiveness
of the BIFFQ optimization for enqueue operations is also visible, and it
explains the throughput improvement over IFFQ. The BLQ throughput
is consistently higher than LQ and LLQ, which confirms that switch and
clients are able to operate in batch. The right of Figure 23 shows the
measured forwarding rate with BV = BC = 8. The plot is very similar to
the one on the left, with the values being generally higher for LLQ, BLQ,
IFFQ and BIFFQ because of the additional batching opportunities.
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6.3 Request-response experiments

The second set of experiments stresses vswitch with a request-response
workload. A client is implemented as an infinite loop that in each it-
eration executes a request phase followed by a response phase. In the
request phase a client transmits BC requests to the other clients, selected
in a round-robin fashion. During the response phase the client waits for
the corresponding BC responses to arrive (in any order), by busy waiting
on its receive queue. Note that this workload is relevant to how scalable
network services are designed: a frontend server may receive a request
from a remote client machine and issue N sub-requests (outcast) to back-
end servers. Once the corresponding sub-responses arrive (incast), the
frontend server can reply to the remote client. Batching opportunities are
the same as the ones described in Section 6.2. However, note that here
there is a form of flow control, because a client waits for the responses to
come before proceeding with the next requests. In particular, the receive
queue of any client will never contain more than NC × dBC/NCe items,
that is at most dBC/NCe packets from each requestor. This is actually
a worst case: receive queues are expected to contain at most BC packets
most of the time. In our experiments BC ≤ 8 and NC ≤ 38, which means
that receive queues will never overflow if the queue length is N = 256,
and therefore vswitch will never drop packets.

Figure 24 (left) illustrates the aggregate forwarding rate of the virtual
switch for BV = 8 and BC = 1. The batching opportunities in this case
are very limited, with all the queues containing zero or one packet most
of the time. It follows that this particular experiment is very similar to
the one described in Section 5.3, although with many queues. Queues
based on FastForward achieve significantly higher throughput (˜6 Mpps
in saturation) than the ones derived from Lamport’s work (˜4 Mpps),
because of the lower amount of cache misses in the worst case. BIFFQ
performs slightly worse than IFFQ because of the additional overhead of
the producer-side buffering. It is not surprising that FFQ is very com-
petitive in this particular experiment, especially with higher numbers of
clients: FFQ enqueue and dequeue routines contain very few instruc-
tions, and neither IFFQ nor BIFFQ—both requiring more instructions
per operation—can leverage batching. For similar reasons, BLQ performs
worse than LLQ and LQ because of the higher overhead of its batch-
ing API. Note that the BLQ throughput gap increases as the number of
clients increases. As expected, these results agree with the ones shown in
Figures 21 and 20, confirming that the two experiments are of a similar
nature. The right of Figure 24 shows the aggregated vswitch through-
put for BV = 8 and BC = 8. In this case the chances for batching are
slightly higher, and therefore the throughputs in saturation are higher,
ranging from ˜8 Mpps to ˜12 Mpps. IFFQ, BIFFQ and FFQ provide
higher forwarding rates than LQ, LLQ and BLQ also in this case. As NC

increases, FFQ becomes worse than its variants because it cannot benefit
from batching. Note that as NC increases, BLQ becomes more efficient
than LLQ and LQ because of the higher chances of batching operation.

47



0 10 20 30 40
0

2

4

6

8

10

12

number of clients (NC)

th
ro

u
gh

p
u

t
(T

)
[M

p
p

s]

no client batching (BC = 1)

0 10 20 30 40

number of clients (NC)

client batching (BC = 8)

BIFFQ
IFFQ
LLQ
LQ

FFQ
BLQ

Figure 24: Throughput of the virtual switch under a request-response workload,
BV = 8, and either non-batching clients (BC = 1, left plot) or batching clients
(BC = 8, right plot). On switch saturation, queues based on FastForward
provide an higher throughput than LQ, LLQ and BLQ. BLQ provides the
poorest performance when there are no chances for batching.
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7 Related work

Lamport [20] was the first to propose a Concurrent Lock Free (CLF)
queue, in order to efficiently decouple a single producer thread from a
single consumer thread without resorting to locks. The LQ algorithm de-
scribed in Section 3.1 is a modern implementation of the original CLF
queue. Although Lamport proved the correctness of the queue only un-
der the sequential consistency memory model [35], the addition of proper
memory barriers makes it correct for any memory model. Moreover, the
queue slots and control variables can be laid out in separate cache lines
to avoid cache thrashing, as already suggested by many authors [21, 15,
16, 17, 18, 19]. LQ is therefore the natural baseline for the evaluation
of the other SPSC algorithms presented in Sections 3 and 4. The lazy
loading optimization introduced in Section 3.2 is also used by DBLS [14],
MCRingBuffer[15] and Liberty [18]. FastForward [21] showed that it is
possible to tackle the same problem addressed by Lamport with reduced
cache misses, by embedding the synchronization information within the
queue slots. The FFQ algorithm presented in Section 4.1 is an imple-
mentation of the baseline FastForward queue. Moreover, FastForward
addresses the indirect payload case, and proposes an adaptive temporal
slipping algorithm to make sure that producer and consumer never work
on the same cache line. We do not include this technique in our FFQ as
it would break the assumptions of Section 2.

More recent works try to go beyond FastForward and boost the queue
throughput at the cost of unbounded latency. For this purpose, in addition
to the lazy loading optimization, the Lamport queue can be modified to
publish or return items in batches of fixed size, regardless of the relative
speed between producer and consumer. For instance, a producer could
update the write control variable once every 64 enqueue operations or
more. Adopting the terminology introduced by Lynx [19], these optimiza-
tions define the concept of multi section queue (MSQ), where the array of
slots is partitioned in multiple sections of equal size, and synchronization
between P and C only happens at section boundaries. These batching
techniques are used for instance by MCRingBuffer [15], BatchQueue [16],
Zhang’s queue [17], DBLS [14] and Liberty [18]. The fixed batch size gives
strong guarantees on the maximum cache misses per item, and without
the need to expose batch capabilities in the API, but it is acceptable only
assuming a streaming producer. Our Batched Lamport Queue, presented
in Section 3.3, does not make such an assumption in order to keep latency
under control, but it is able to deliver comparable throughput at least
while the producer is actually streaming and can operate in batch. More-
over, these MSQ algorithms assume to deal with embedded payloads, and
do not take into consideration the issues related to indirect payloads (e.g.,
the need for memory barriers). Liberty [18] also uses non-temporal writes
to bypass the cache subsystem and thus avoid the overheads due to cache
coherence. However, performing some preliminary experiments with non-
temporal writes for our use cases we have observed that they reduce both
throughput and latency (as data need to go through central memory),
and they are therefore not suited for the very high rates that we target.
Lynx [19] further specializes the MSQ approach by completely removing
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most of the CPU instructions from the critical path of the enqueue and
dequeue implementation, namely the mask operation (needed to rotate
the write or read index), the comparison and jump instructions to check
if the index reached the boundary of a section, together with the synchro-
nization code itself. Leveraging CPU exceptions and operating system
support, Lynx executes the removed operations in the context of a signal
handler triggered by a CPU exception; the exception is triggered whenever
the enqueue or dequeue code reaches a section boundary, which is marked
non-accessible in the process page tables. These extreme optimizations
allow for huge rates, peaking to 2 billions items per second, according to
the authors. Drawbacks include a higher worst case latency—because of
the CPU exception and signal handler overhead—and limitations on the
queue size (e.g., sections must be at least two memory pages).

Aldinucci et al. [22] propose dynamically growing and shrinking unbounded
SPSC queues, which are useful to avoid deadlocks with complex process-
ing graphs. Their strategy is to combine multiple array-based queues in
a linked list, in order to avoid a fixed size queue while still preserving
the optimal performance of array-based queues. These techniques are or-
thogonal to our study and can be applied to any queue described in this
paper.

Several lock-free and wait-free algorithms have been designed to ad-
dress the more general problem of Multiple Producer Multiple Consumer
(MPMC) queues. The seminal work of Michael and Scott [36] presents a
simple concurrent and lock-free MPMC queue based on the the compare-
and-swap (CAS) instruction. CAS atomic operations are used to atomi-
cally update the head and tail pointers of the queue, which is implemented
as a linked list. Since CAS can fail, however, progress is not guaranteed
for all the competing threads in a finite amount of steps (i.e., the queue
is not wait-free), and high contention on the head and tail pointers can
cause severe performance degradation. Later proposals try to outperform
Michael and Scott’s basic queue by reducing or amortizing the CAS con-
tention in several ways [37, 38, 39, 40, 17, 41]. As an alternative approach,
the more recently available fetch-and-add (FAA) instruction can also be
used to handle contention on the queue insertion and extraction points,
as showed by Morrison and Afek [42]. Differently from CAS, FAA is
guaranteed to progress for all the competing threads; this property leads
to improved performance over CAS-based solutions. A recent work from
Yang and Mellor-Crummey [41] extends the Morrison and Afek’s lock-free
queue to provide wait-free guarantees. However, the performance of these
MPMC queues in case there is a single producer and a single consumer is
significantly lower compared to the ones presented in our work. This is
not surprising, as MPMC implementations need to be more sophisticated
to address significantly harder problems, such as ABA[36], scaling to hun-
dreds of threads, or guaranteeing wait-freedom [41]. As a consequence of
their requirements, all the above-mentioned MPMC queues use dynami-
cally allocated memory, linked list data structures (sometimes combined
with arrays of slots), and/or fast-path-slow-path techniques [43]. When
compared to SPSC queues, such a sparse memory layout and the need for
memory reclamation schemes often lead to worse worst case behaviour in
terms of cache misses and per-operation overhead.
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Finally, an alternative approach to operate in batch is to use futures,
as proposed by Kogan and Herlihy [44] and later by Milman et al. [45], in
the context of MPMC queues. A thread accessing the queue can accumu-
late enqueue and dequeue operations locally (in a private data structure),
and force their actual evaluation on the queue only at a later point, or
when it is really necessary. By relaxing the operation ordering guarantees
perceived by the interacting threads, some locally pending operations can
be eliminated (e.g., a pending dequeue can cancel a previous pending en-
queue) or combined with each other to access the shared data structure
less frequently, hence reducing contention. Although futures are useful to
increase the degree of parallelism in case of MPMC queues, the additional
cost involved in maintaining the future objects makes them inconvenient
for our SPSC workloads.

8 Conclusion

In this study we have described and analyzed six general purpose high
speed Single Producer Single Consumer lock-free queues, each one coming
with a different degree of optimization. Three of them are based on the
original Lamport’s concurrent lock-free queue. The other three queues are
based on FastForward, with the improved versions—IFFQ and BIFFQ—
detailed in this paper. Each queue has different properties in terms of
cache misses, showing different behaviors under different conditions. The
experiments carried out on both single socket and dual socket machines
have validated the behaviors predicted by the theoretical analysis. We
have also developed a virtual switch example to evaluate the efficiency of
the different SPSC queues in a real application.

Minimizing the cache misses related to producer/consumer synchro-
nization is important to increase throughput and reduce latency, espe-
cially when a queue needs to process millions of items per second or more.
Our investigation has shown how the ability to operate in batch or at
least to amortize synchronization-related cache misses over many items
is key to achieve large throughput improvements. The Batched Lamport
Queue (BLQ) achieves the lowest number of cache misses and the highest
throughput in case producer and consumer can operate in large batches,
as it provides strict guarantees on the minimum batch perceived by pro-
ducers and consumers. The Batched FastForward Queue (BIFFQ) may
need slightly more cache misses and therefore provide a lower throughput
than BLQ, but it behaves very well in applications with many queues and
limited batching opportunities. On the other hand, the Improved FastFor-
ward Queue (IFFQ) delivers the lowest latency, because embedding the
control information within the array of slots reduces the per-item cache
misses needed in the worst case. Finally, if the producer or consumer can-
not operate in batch, IFFQ provides the best worst case cache behavior,
and achieves the highest throughput in our experiments.
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