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ABSTRACT 

A theoretical model of the double cantilever beam tests with bending moments (DCB-UBM) is 
presented. The specimen is modelled as the assemblage of two laminated beams connected by a 
cohesive interface. It is assumed that the traction-separation laws – i.e. the relationships between the 
interfacial stresses and relative displacements – are described by bilinear discontinuous functions. An 
analytical solution for pure modes I and II is determined by solving the related differential problem. 
Furthermore, analysis based on the path-independent J integral is carried out. Formulas are given to 
determine the cohesive law parameters from experiments. Experimental tests have been conducted on 
glass fibre reinforced specimens under pure mode I and II loading conditions. The predictions of the 
theoretical model turn out to be in very good agreement with the experimental results. 
 
1 INTRODUCTION 

The double cantilever beam test with bending moments (DCB-UBM) is a test used to characterise 
the delamination toughness of fibre-reinforced composite laminates [1]. In comparison with the 
standard DCB test, where the specimen is loaded with forces [2], the DCB-UBM test has several 
advantages. Depending on the ratio between the applied moments, the whole range of crack opening 
displacements (from pure normal to pure tangential) can be obtained. Furthermore, crack propagation 
is always stable. Lastly, test results are independent of crack length and shear modulus. 

The DCB-UBM test can be modelled by using simple beam theory, which is however unable to 
describe the deformation at the fracture process zone. A model where the delaminating arms of the 
specimen are connected by an elastic interface [3] gives good prediction of the specimen’s response 
prior to crack propagation, but is unsatisfactory to describe the crack growth stage (in particular, under 
large-scale bridging). In this case, it is more appropriate to use cohesive laws, which furnish the local 
normal and shear stresses as functions of the corresponding relative displacements [4]. 

We have conducted experimental tests on glass fibre-reinforced specimens loaded under pure 
normal and near pure tangential crack opening displacements. Then, we have tried to reproduce the 
experimental results via a theoretical model, where the specimens is modelled as the assemblage of 
two laminated beams connected by a cohesive interface. We have tested many possible shapes for the 
cohesive laws (bilinear, rectangular, exponential, etc.). After some trial and error, we have ended up 
with the proposal of using bilinear discontinuous cohesive laws. Then, we have deduced an analytical 
solution for the differential problem that describes the model under pure modes I and II. Furthermore, 
we have carried out an analysis based on the path-independent J integral. The cohesive law parameters 
can be determined from the experimental results by means of practical formulas. The predictions of 
the theoretical model agree very well with the experimental results for the whole response of the 
specimen, from the initial linearly elastic stage to crack initiation and steady-state crack propagation. 
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2 THEORETICAL MODEL 

2.1 Specimen 

Fig. 1 shows a schematic of the double cantilever beam test with bending moments. The specimen 
is a laminated beam of length L, thickness H = 2 h and width B (not shown in the figure). A mid-plane 
delamination of length a is present at one end. We assume that the specimen has a symmetric (but not 
necessarily unidirectional) stacking sequence. Two independent bending moments, M1 and M2, are 
applied at the delaminated end of the specimen. The undelaminated end is restricted from rotation, but 
can move freely in the longitudinal direction. To describe our model, we fix a reference system Oxz 
with the origin at the delamination crack tip and the x- and z-axes respectively aligned with the 
specimen’s longitudinal and transverse directions. 

 

 

Figure 1: The double cantilever beam test with bending moments. 

The applied bending moments can be split into the sum of two symmetric moments 
Ms = (M1 + M2) / 2 and two antisymmetric moments Ma = (M1 – M2) / 2 (Fig. 2). In line with Linear 
Elastic Fracture Mechanics (LEFM), given the symmetry of the specimen with respect to its mid-
plane, the symmetric and antisymmetric load conditions respectively correspond to mode I (opening) 
and mode II (sliding) crack propagation. The adopted experimental setup enables to fix the ratio 
between the applied moments, M1 / M2, to obtain different values of mode mixity [1]. 

 

 

Figure 2: Mode I and II load conditions. 

The specimen is modelled as the assemblage of two laminated beams – the upper and lower 
sublaminates, respectively denoted as No. 1 and 2 – connected by a cohesive interface, which transfers 
normal and shear stresses, σ and τ (Fig. 3). We denote with uα and wα respectively the axial and 
transverse displacements of the sublaminates’ centrelines and with φα their cross sections’ rotations. 
Here and in the following, the subscript {1, 2}α ∈  refers to the sublaminate number. According to 
Timoshenko’s beam theory, we define the axial strain, shear strain, and curvature respectively as 

, , and .
du dw d

dx dx dx
α α α

α α α α
φε γ φ κ= = =+  (1) 
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Figure 3: Mechanical model. 

According to classical lamination theory [7], we denote with A1, B1, C1, and D1 respectively the 
extensional stiffness, bending-extension coupling stiffness, shear stiffness, and bending stiffness per 
unit width of the upper sublaminate. For homogeneous isotropic and unidirectional specimens, 
A1 = Ex h, B1 = 0, C1 = 5 Gzx h / 6, and D1 = Ex h3 / 12, where Ex and Gzx respectively are the Young’s 
modulus and shear modulus of the material in the xz-plane. Because of the assumed symmetry of the 
specimen, the stiffnesses of the lower sublaminate are A2 = A1, B2 = –B1, C2 = C1, and D2 = D1. 

To simplify subsequent calculations, we also define the compliances, 

2 2 2

1
, , , and .= = − = =

− − −
α α α

α α α α
α α α α α α α α α α

D B A
a b c d

A D B A D B C A D B
 (2) 

The axial force, shear force, and bending moment in the sublaminates respectively are 

( ) ( ), , and .N B Q B M Bα α α α α α α α α α α α αε κ γ ε κ= + = = +A B C B D  (3) 

Considering the sign convention for the distributed loads, the equilibrium equations for the two 
sublaminates turn out to be the following: 

( ) ( ) 1
1 0, 1 0, and 0.

2

dN dQ dM
B B Bh Q

dx dx dx

α αα α α
ατ σ τ− − = − − = + − =  (4) 

2.2 Cohesive laws 

Cohesive zone models assume that the interfacial stresses are functions of the relative 
displacements between the corresponding points on the separating crack faces. In particular, we define 
the sliding (tangential) and opening (normal) displacements respectively as 

( )2 1 1 2 2 1and .
2

h
u u u w w wφ φ∆ = − − + ∆ = −  (5) 

Under mixed-mode loading conditions, the normal stress, σ, and shear stress, τ, are functions of 
both ∆u and ∆w. However, under pure mode I, because of the symmetry conditions, ∆u = 0 and τ = 0. 
Likewise, under pure mode II, ∆w = 0 and σ = 0. In such cases, σ is a function of ∆w alone and τ is a 
function of ∆u alone [5]. Here, we assume the following piecewise linear traction-separation laws: 

0 0
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0, if ;
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and 
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0

1 0

, if 0 ;
( )

, if .

u
u u

uu

u u

τ
τ

τ

∆ ≤ ∆ < ∆ ∆∆ = 
 ∆ ≤ ∆

 (7) 

Eq. (6) holds for the pure mode I loading condition. In this case, the traction-separation law has an 
initial linear branch where the normal stress, σ, increases from zero to a maximum value, σ0, while the 
opening displacement, ∆w, goes from zero to ∆w0. A discontinuous linear branch follows, where the 
normal stress decreases from σ1 to zero, while the opening displacement goes from ∆w0 to ∆wu. The 
normal stress is zero for all the values of ∆w greater than ∆wu (Fig. 4a). On the other hand, Eq. (7) 
holds for the pure mode II loading condition. In this case, the traction-separation law has an initial 
linear branch where the shear stress, τ, increases from zero to a maximum value, τ0, while the sliding 
displacement, ∆u, goes from zero to ∆u0. A discontinuous horizontal branch follows, where the shear 
stress has the constant value τ1 (Fig. 4b). For both the normal and shear stresses, the initial linear 
branches represent initial stages, where the material behaves elastically. The subsequent discontinuous 
branches represent progressive damage of the material. For mode I, fracture occurs when ∆w ≥ ∆wu. 
For mode II, such a definite limit for fracture is not considered. This is consistent with previous 
findings about mode II delamination [6]. 

 

 

Figure 4: Traction-separation laws: a) normal stress vs. opening displacement; 
b) shear stress vs. sliding displacement. 

 
2.3 Solution for mode I 

The mechanical model based on the aforesaid assumptions can be mathematically described by a 
system of differential equations and boundary conditions. To this aim, Eqs. (1)–(7) are suitably 
combined to obtain differential equations for the normal and shear interfacial stresses, which play the 
role of principal unknowns. Then, an analytical solution has been determined for the cases of pure 
modes I and II. Here, for the sake of brevity, we present only the main results and postpone a detailed 
description of the mathematical derivation to a forthcoming extended paper. 

Under pure mode I loading, thanks to the symmetry conditions, the analysis can be limited to the 
upper half of the specimen (Fig. 5). During the test, under increasing load, the opening displacements 
in the cohesive zone increase monotonically and attain their maximum at the crack-tip cross section. 
Three stages can be individualised in the specimen’s response: 
- Stage I – Linearly elastic behaviour. As long as the opening displacement at the crack tip, ∆w(0), is 

less than ∆w0, the specimen’s response is linearly elastic. Neither material damage, nor crack 
propagation occur during this stage; 

- Stage II – Progressive material damage. When the opening displacement at the crack tip attains the 
value ∆w0, damage of the material begins. As the test proceeds further, a damaged zone of 
increasing length, d, develops ahead of the crack tip. Correspondingly, the length, e, of the zone 
where the material is still linearly elastic decreases; 
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- Stage III – Crack propagation. When the opening displacement at the crack tip equals ∆wu, fracture 
occurs. Then, the process goes on with the delamination length, a, that increases and the damaged 
zone that moves along the specimen’s longitudinal direction. In practice, real specimens are so long 
that we can simplify the modelling by assuming L → ∞. In this case, after the crack begins to 
propagate, it will continue propagating under steady state conditions. 
 

 

Figure 5: Upper half of the specimen under mode I loading. 

The normal interfacial stress turns out to have the following expression: 

1 1 2 1 3 2 4 2

1 1 2 2

cos( ) sin( ) cosh( ) sinh( ), if 0 ;
( )

exp[ ( )] exp[ ( )], if ;

G x G x G x G x x d
x

F x d F x d d x

µ µ µ µ
σ

λ λ
+ + + ≤ <
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 (8) 

where λ1, λ2, µ1, and µ2 are roots of the characteristic equations for σ. Their expressions are given in 
the appendix. Besides, F1, F2, G1, G2, G3, and G4 are integration constants, which are determined by 
solving the following equation set, representing the boundary conditions at x = 0 and x = d: 
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Eqs. (9) contain seven equations, but there are only six unknown integration constants. Actually, an 
additional unknown is the length of the damaged zone, d (or, alternatively, the applied bending 
moment, Ms). In this regard, we note that during stage I, d is zero. During stage II, d varies between 
zero and a maximum value, du. During stage III, under steady-state crack propagation, d is constant 
and equal to du. In this case, Eq. (8) still describes the normal stress distribution, provided that the 
origin O is suitably moved along the specimen to coincide with the new positions of the crack tip. 

By substituting d = 0 into Eqs. (9), we calculate the applied bending moment at the end of stage I, 

0 0 0

1

.
2s

w
M B

∆
=

σ
d

 (10) 

Furthermore, by adding the condition that ∆w = ∆wu at the crack tip, from Eqs. (9) we determine 
the equation for du: 
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21 0

cos( )cosh( ) cos( )sinh( ) sin( )cosh( )

sin( )sinh( ) 0,
u u u u u ucc cs sc

s us u

d d d d d d

d d
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γ µ µ γ
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+ + =

 (11) 

where the coefficients γcc, γcs,  γsc, γss, and γ0 have lengthy expressions, that are omitted here for the 
sake of brevity. Eq. (11) can be solved numerically to obtain du as its smallest positive root. The 
specimen’s response during stage II can then be obtained by letting d vary between 0 and du. For each 
value of the length of the damaged zone, Eqs. (9) can be solved to get Ms. For d = du, the constant 
bending moment of stage III, Ms

u, is obtained. Alternatively, as will explained in the following, the 
specimen’s response can be obtained more simply by using the path-independent J integral. 

 
2.4 Solution for mode II 

Under pure mode II loading, the specimen is subjected to antisymmetric loads with respect to its 
mid-plane. As for the pure mode I case, the analysis can be limited to the upper half of the specimen 
(Fig. 6). During the test, under increasing load, the sliding displacements in the cohesive zone increase 
monotonically and attain their maximum at the crack-tip cross section. Two stages can be 
individualised in the specimen’s response: 
- Stage I – Linearly elastic behaviour. As long as the sliding displacement at the crack tip, ∆u(0), is 

less than ∆u0, the specimen’s response is linearly elastic. Neither material damage, nor crack 
propagation occur during this stage; 

- Stage II – Progressive material damage. When the sliding displacement at the crack tip attains the 
value ∆u0, damage of the material begins. As the test proceeds further, a damaged zone of 
increasing length, d, develops ahead of the crack tip. Correspondingly, the length, e, of the zone 
where the material is still linearly elastic decreases. 
As a difference with the mode I case, the assumed cohesive law for pure mode II, Eq. (7), does not 

have a definite limit for material fracture. Therefore, the theoretical model does not predict a crack 
propagation stage for this loading case. 

 

 

Figure 6: Upper half of the specimen under mode II loading. 

The shear interfacial stress turns out to have the following expression: 

1

5 5

, if 0 ;
( )

exp[ ( )], if ;

x d
x
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where λ5 is a root of the characteristic equation for τ, whose expression is given in the appendix, and 
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5 52
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2
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4
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is an integration constant, determined by imposing the boundary conditions at x = 0 and x = d. 
In Eqs. (12) and (13), it must be considered that during stage I, d = 0. In this case, by imposing 

τ(0) = τ0 and solving for Ma, we obtain the value of the applied bending moment at the end of stage I, 

2
1 1 1

5 1 1

0
0.

4 4

2 2a

hB

h
M

h τ
λ

+ +
+

=
a b d

b d
 (14) 

During stage II, by imposing τ(d) = τ0 and solving for Ma, we obtain 
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According to Eq. (15), the applied bending moment should increase unboundedly as the length of 
the damaged zone, d, increases. In practice, a limit will be given by the finite length of the specimen. 

 
2.5 J integral analysis 

Besides directly solving the differential problem, as explained in the previous sections, the 
proposed mechanical model can be analysed by using the path-independent integral [1, 8], 

,x z

u w
J dz t t d

x x
ω

Γ

∂ ∂  = − + Γ  ∂ ∂  
∫�  (16) 

where ω is the strain energy density, tx and tz are the components of the stress vector acting on the path 
element dΓ, and Γ is an arbitrary contour encircling the crack tip. As proposed in [5], we consider an 
external contour, Γext, and an internal or local contour, Γloc, surrounding the cohesive interface (Fig. 7). 

 

 

Figure 7: J integral analysis. 

Evaluation of the J integral along the external contour gives 

( ) ( )
2
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1 1 1
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2
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(17) 

which under pure mode I and II loadings respectively becomes 

2 22 2 2
ext ext 1 1 1 1
I 1 II2 2 2

1 1 1

4 4
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B h h B
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On the other hand, evaluation of the J integral along the internal contour gives 

(0) (0)loc loc
I II0 0

( ) and ( ) .
w u

J w d w J u d uσ τ
∆ ∆

= ∆ ∆ = ∆ ∆∫ ∫  (19) 

Because of the path independence, the quantities computed via Eqs. (18) and (19) must coincide. 
Hence, we obtain relationships between the values of the opening and sliding displacements at the 
crack tip, ∆w(0) and ∆u(0), and the applied bending moments, 

2
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1 11

4 4
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w u
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We note that Eqs. (20) hold in general, regardless of the specific cohesive laws that are adopted. 
But, if we substitute the presently assumed cohesive laws, Eqs. (6) and (7), into (20), we can explicitly 
write the load-displacement relationships for mode I, 

[ ]
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0 0
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and mode II, 
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By substituting ∆w(0) = ∆w0 and ∆u(0) = ∆u0 into Eqs. (21) and (22), respectively, the values of the 
applied bending moment at the end of the linearly elastic stages are obtained, 

2
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2 2 2s a
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which coincide with the values given by Eqs. (10) and (14), respectively. For homogeneous isotropic 
and unidirectional laminated specimens, Eqs. (23) simplify to 

3 3
0 00 0 0 0and .

12 2 9 2
x x

s a

E h w E h u
M B M B

∆ ∆= =σ τ
 (24) 

Lastly, we note that the value of Ms given by Eq. (21) for ∆w(0) ≥ ∆wu is that corresponding to the 
steady state crack propagation stage, Ms

u. 
 

3 EXPERIMENTAL TESTS 

DCB-UBM tests [1] were performed on glass fibre reinforced, unidirectional laminated specimens. 
The thickness of the specimens was approximately 19 mm, the width was approximately 30 mm. A 
mid-plane delamination was initiated by a 12.5 µm thick slip foil (70 mm long) placed at the loaded 
end of the specimen. The elastic moduli have been determined as follows: Ex = 41.2 GPa, Ez = 12.8 
GPa, and Gzx = 4.6 GPa. The tests were conducted at a displacement rate of 10 mm/min for the lower 
beam of the test machine [5], and the load was measured by two load cells. 

A single mode I test was performed on a specimen of 330 mm length. The moments were applied 
as forces acting on transverse arms attached to the end of the specimen with moment arms 86.5 mm on 
both arms (moment ratio M1 / M2 = –1). The normal opening was measured with an extensometer. 

Two tests were performed on 500 mm long specimens in a mode mixity close to mode II (pure 
mode II would give too much friction between the sublaminates). Moment arms of 161.5 mm and 
156.5 mm were used (moment ratio M1 / M2 = 0.97). The normal opening was measured with an 
extensometer, and the sliding opening was measured with two LVDTs (linear variable displacement 
transducers). 
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4 RESULTS AND DISCUSSION 

4.1 Determination of the cohesive law parameters 

In order to use the theoretical model to reproduce the experimental results, the parameters that 
define the cohesive laws, Eqs. (6) and (7), have to be determined. This can be done partly based on 
theoretical considerations, partly by using some experimental results from the tests themselves. 

The initial linear branches of the traction-separation laws correspond to the response of a linear 
elastic interface, 

and ,z xk w k uσ τ= ∆ = ∆  (25) 

where kz and kx are the elastic constants of a continuous distribution of normal and tangential springs, 
respectively. Based on energy equivalence [9], the values of the elastic constants can be determined as 

35 15
and ,

13 2 2 2
zxz

z x

GE
k k

h h
= =  (26) 

where Ez is the Young’s modulus of the material in the transverse direction. 
By substituting Eqs. (25) into (24) and solving with respect to the displacements, we obtain 
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0 03 3

2 36 2
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w u

B k E h B k E h
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Once Ms
0 and Ma

0 are determined from the experimental tests, Eqs. (27) yield the crack-tip opening 
and sliding displacements at the end of the linearly elastic stage. Then, Eqs. (25) furnish the 
corresponding normal and shear stresses, σ0 and τ0. 

The experimental tests for mode I also furnish the values of displacement, ∆wu, and bending 
moment, Ms

u, at the beginning of the steady state crack propagation stage. Then, the normal stress σ1 is 
obtained by inverting the last expression in Eq. (21). For homogeneous isotropic and unidirectional 
laminated specimens, we obtain 
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(28) 

For the mode II tests, from the experiments the maximum applied load, Ma
u, and the corresponding 

sliding displacement, ∆uu, can be determined. Such values are inserted into Eq. (22), which is then 
solved for the stress τ1. For homogeneous isotropic and unidirectional laminated specimens, we obtain 
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(29) 

From the performed experimental tests, the values listed in Table 1 were determined. 
 

Mode I tests Mode II tests 
Ms

0 22.0 Nm Ma
0   80.0 Nm 

Ms
u 40.0 Nm Ma

u 140.0 Nm 
∆wu    1.1 mm ∆uu     3.5 mm 

 
Table 1: Quantities determined from experimental tests. 
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Then, by using Eqs. (25)–(29) the quantities listed in Table 2 were calculated. 
 

Mode I tests Mode II tests 
kz 1813.8 N/mm3 kx 1815.8 N/mm3 

∆w0 0.014 mm ∆u0 0.045 mm 
σ0    25.7 MPa τ0    81.1 MPa 
σ1      0.8 MPa τ1    1.1 MPa 

 
Table 2: Quantities calculated via the theoretical model. 

 
4.2 Experimental results and theoretical predictions 

Figure 8a shows the trend of the applied bending moment, Ms, vs. the crack opening displacement, 
∆w, for the mode I test. Likewise, figure 8b shows the trend of the applied bending moment, Ma, vs. 
the crack sliding displacement, ∆u, for the mode II tests. 

The green curves represent the experimental results, while the red curves correspond to the 
theoretical predictions of the developed model. For both modes I and II, a very good agreement is 
obtained between the experimental results and theoretical predictions. 

 

a) 

 

b) 

Figure 8: Applied bending moment vs. crack opening: a) mode I test; b) mode II test. 

5 CONCLUSIONS 

A theoretical model of the double cantilever beam tests with bending moments (DCB-UBM) has 
been presented. The model is based on the assumption of bilinear discontinuous cohesive laws. An 
analytical solution has been determined and practical formulas for the cohesive law parameters have 
been given. Experimental tests have been conducted on glass fibre reinforced specimens under pure 
mode I and II loading conditions. The predictions of the theoretical model turn out to be in very good 
agreement with the experimental results. 

Future work involves the development of an analytical solution for mixed mode I/II loading 
conditions. Actually, this solution cannot be obtained simply by superposition of the solutions for 
modes I and II because of the nonlinear material behaviour. 
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APPENDIX 

The roots of the characteristic equations have the following expressions: 
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