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ABSTRACT

A theoretical model of the double cantilever beasts with bending moments (DCB-UBM) is
presented. The specimen is modelled as the assganbfatwo laminated beams connected by a
cohesive interface. It is assumed that the tracteparation laws +e. the relationships between the
interfacial stresses and relative displacement®-dascribed by bilinear discontinuous functions. A
analytical solution for pure modes | and Il is detimed by solving the related differential problem.
Furthermore, analysis based on the path-indeperddiengral is carried out. Formulas are given to
determine the cohesive law parameters from expetsn&xperimental tests have been conducted on
glass fibre reinforced specimens under pure maatedlll loading conditions. The predictions of the
theoretical model turn out to be in very good agreet with the experimental results.

1 INTRODUCTION

The double cantilever beam test with bending mom@dCB-UBM) is a test used to characterise
the delamination toughness of fibre-reinforced cosme laminates [1]. In comparison with the
standard DCB test, where the specimen is loadeld fwoices [2], the DCB-UBM test has several
advantages. Depending on the ratio between théedpploments, the whole range of crack opening
displacements (from pure normal to pure tangentiat) be obtained. Furthermore, crack propagation
is always stable. Lastly, test results are independf crack length and shear modulus.

The DCB-UBM test can be modelled by using simplambegheory, which is however unable to
describe the deformation at the fracture proces®.z8 model where the delaminating arms of the
specimen are connected by an elastic interfacgij@s good prediction of the specimen’s response
prior to crack propagation, but is unsatisfactargéscribe the crack growth stage (in particuladen
large-scale bridging). In this case, it is morerappgate to use cohesive laws, which furnish trealo
normal and shear stresses as functions of thespaneling relative displacements [4].

We have conducted experimental tests on glass-ifdinéorced specimens loaded under pure
normal and near pure tangential crack opening aligphents. Then, we have tried to reproduce the
experimental results via a theoretical model, whbeespecimens is modelled as the assemblage of
two laminated beams connected by a cohesive ictrif/e have tested many possible shapes for the
cohesive laws (bilinear, rectangular, exponenétd,). After some trial and error, we have ended up
with the proposal of using bilinear discontinuoatesive laws. Then, we have deduced an analytical
solution for the differential problem that descslibe model under pure modes | and Il. Furthermore,
we have carried out an analysis based on the pd#péendeni integral. The cohesive law parameters
can be determined from the experimental resultsnbgns of practical formulas. The predictions of
the theoretical model agree very well with the expental results for the whole response of the
specimen, from the initial linearly elastic stagectack initiation and steady-state crack propagati



Paolo S. Valvo, Bent F. Sgrensen and Helmuth LteGafard

2 THEORETICAL MODEL
2.1 Specimen

Fig. 1 shows a schematic of the double cantileeanbtest with bending moments. The specimen
is a laminated beam of length thicknesH = 2h and widthB (not shown in the figure). A mid-plane
delamination of lengtl is present at one end. We assume that the spetiazea symmetric (but not
necessarily unidirectional) stacking sequence. Tiwdependent bending momentd; and M., are
applied at the delaminated end of the specimen.ufdelaminated end is restricted from rotation, but
can move freely in the longitudinal direction. Tesdribe our model, we fix a reference syst@rz
with the origin at the delamination crack tip arn k- and z-axes respectively aligned with the
specimen’s longitudinal and transverse directions.
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Figure 1: The double cantilever beam test with bepnchoments.

The applied bending moments can be split into tlen sof two symmetric moments
Ms= (M1 + M) /2 and two antisymmetric momentd = (M1 —M,) / 2 (Fig. 2). In line with Linear
Elastic Fracture Mechanics (LEFM), given the symmneif the specimen with respect to its mid-
plane, the symmetric and antisymmetric load coond#irespectively correspond to mode | (opening)
and mode Il (sliding) crack propagation. The addoptgperimental setup enables to fix the ratio
between the applied moment, / M., to obtain different values of mode mixity [1].
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Figure 2: Mode | and Il load conditions.

The specimen is modelled as the assemblage of aminhted beams — the upper and lower
sublaminates, respectively denoted as No. 1 anddhrected by a cohesive interface, which transfers
normal and shear stressesand r (Fig. 3). We denote withi, andw, respectively theaxial and
transverse displacementd the sublaminates’ centrelines and wghtheir cross sections’ rotations
Here and in the following, the subscriptl{l, 2} refers to the sublaminate number. According to

Timoshenko’s beam theory, we define &xial strain shear strain andcurvaturerespectively as

:duﬂ, yazd—w’+qq7, and Ka=%.
dx dx

(1)

ba dx



20" International Conference on Composite Materials
Copenhagen, 19-#4July 2015

M Sublaminate 1: A1, Bi, C1, D1

a Sublaminate 2: Az, Bz, Cz, D2
L

Figure 3: Mechanical model.

According to classical lamination theory [7], wend& with A4, B1, C;, andDs respectively the
extensional stiffnesbending-extension coupling stiffneskear stiffnessandbending stiffnesper
unit width of the upper sublaminate. For homogese@otropic and unidirectional specimens,
A1 =Exh, B1=0,C1=5Gxh/6, andD: =Ex h®/ 12, whereEx and G respectively are the Young’s
modulus and shear modulus of the material inxhglane. Because of the assumed symmetry of the
specimen, the stiffnesses of the lower sublamiagé, = A,, B, = -B1, C, = C4, andD; = Ds.

To simplify subsequent calculations, we also defirecompliances

D, _ B, 1 A

a =—>"9a— ba - , C,=—, and da:—”
! AD, - Bj A.D, - Bj C, A.D, - Bs @)

Theaxial force shear forceandbending momerih the sublaminates respectively are
Na = B(Aa‘ga +BaKa)1 Q7 = BCaya’ and Ma = B(Ba‘ga +DaKa) ' (3)

Considering the sign convention for the distributedds, the equilibrium equations for the two
sublaminates turn out to be the following:

dN”——a = d_Q7 -1\ = dM” 1 - =
(-9 Br=o, (-)"Bo=0, and —r+=Bi-Q = C (4)

dx -
2.2 Cohesivelaws

Cohesive zone models assume that the interfaci@ssgts are functions of the relative
displacements between the corresponding pointh@sdparating crack faces. In particular, we define
thesliding (tangential) andpening(normal)displacementsespectively as

h
Au=uz—q—§(¢5+<oz) and Aw= w,— W. (5)

Under mixed-mode loading conditions, the normaéssiro, and shear stress, are functions of
both Au andAw. However, under pure mode |, because of the symmenditionsAu = 0 andr = 0.
Likewise, under pure mode Ww = 0 ando = 0. In such casegjis a function ofAw alone andris a
function ofAu alone [5]. Here, we assume the following piecewissar traction-separation laws:

o AW, if 0<Aw<Aw;
Aw,
Aw, - A .
o(Aw) = alH, if  Aw, < Aw<Aw; (6)
0, if  Aw, <Aw;




Paolo S. Valvo, Bent F. Sgrensen and Helmuth LteGafard

and

Toﬂ, if 0<Au<Auy;
r(Au) =1 ° Ay, (7)

I, if Au,<Au

Eq. (6) holds for the pure mode | loading conditibnthis case, the traction-separation law has an
initial linear branch where the normal stregsincreases from zero to a maximum valgg while the
opening displacemenf\w, goes from zero téw,. A discontinuous linear branch follows, where the
normal stress decreases framto zero, while the opening displacement goes ffam to Aw,. The
normal stress is zero for all the valuesf greater thaw, (Fig. 4a). On the other hand, Eq. (7)
holds for the pure mode Il loading condition. listlcase, the traction-separation law has an initial
linear branch where the shear strassncreases from zero to a maximum valag while the sliding
displacementAu, goes from zero tdu,. A discontinuous horizontal branch follows, whéne shear
stress has the constant valne(Fig. 4b). For both the normal and shear stregbesjnitial linear
branches represent initial stages, where the nhterhaves elastically. The subsequent discontsuou
branches represent progressive damage of the alatéor mode |, fracture occurs whaw > Aw,.

For mode I, such a definite limit for fracture m®t considered. This is consistent with previous
findings about mode Il delamination [6].

o Mode I T Mode II
oo F=="7 T =7

| |

| |

| |

| o1 | 71 L

|

| |

\ Aw : Au
o Awo Awu o Auo

a) b)

Figure 4: Traction-separation laws: a) normal stres opening displacement;
b) shear stress vs. sliding displacement.

2.3 Solution for model

The mechanical model based on the aforesaid asgursptan be mathematically described by a
system of differential equations and boundary dioras. To this aim, Egs. (1)—(7) are suitably
combined to obtain differential equations for tlemal and shear interfacial stresses, which play th
role of principal unknowns. Then, an analyticalusiain has been determined for the cases of pure
modes | and Il. Here, for the sake of brevity, wesgnt only the main results and postpone a détaile
description of the mathematical derivation to afooming extended paper.

Under pure mode | loading, thanks to the symmetryddions, the analysis can be limited to the
upper half of the specimen (Fig. 5). During the,tasder increasing load, the opening displacements
in the cohesive zone increase monotonically aralmatheir maximum at the crack-tip cross section.
Three stages can be individualised in the specisn&sponse:

- Stage | — Linearly elastic behaviouks long as the opening displacement at the ciipckw(0), is
less thanAwy, the specimen’s response is linearly elastic. iéeitmaterial damage, nor crack
propagation occur during this stage;

- Stage Il — Progressive material damag¢hen the opening displacement at the crack taregtthe
value Awp, damage of the material begins. As the test pascdarther, a damaged zone of
increasing lengthd, develops ahead of the crack tip. Correspondintly,lengthg, of the zone
where the material is still linearly elastic deces
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- Stage lll — Crack propagationWhen the opening displacement at the crack tiglsdwv,, fracture
occurs. Then, the process goes on with the deldimmeength,a, that increases and the damaged
zone that moves along the specimen’s longitudiitattion. In practice, real specimens are so long
that we can simplify the modelling by assuming- «. In this case, after the crack begins to
propagate, it will continue propagating under syestdte conditions.

f@___f’ ________ - TT
e b i

L
Figure 5: Upper half of the specimen under moaading.

The normal interfacial stress turns out to havefdllewing expression:

o(x) = G, cos(u,x)+ G, sinf, x 3+ G, coshg,x¥ G, sinfg(,x ), if & x d 8
- F, exp[-A, (x—d)]+ F, exp[A, (x- d)], if d< x ®
where A, Ao, 1o, ande are roots of the characteristic equationsdoil heir expressions are given in

the appendix. Besidek;, F», Gi, Gy, Gs, andG, are integration constants, which are determined by
solving the following equation set, representing loundary conditions at= 0 andx = d:

F+F, =0,

R +i sm(,uld)_GZ cosy,d )+G3 sinhf,d )+G4 coshy,d )—-O;
A Hy My M, M,

F, F cos(ud singd coshy,d sinii,d

R P g ooskd), o sinkid) o cosd ) o singd ),
A A My Hy H; H;

FF F sin(,d cosf,d sinhf,d cosh(u,d
_::L))_'_ é Gl (lul ) 2 Q';l )+G3 512 )+G4 %[2 )=O, (9)
AA Iy 25 J2 1

G, cos(,d )+ G, sini,d G, coshw,d ¥ G, sinhf{,d Fo, ;

G, G4_0

MK

G _G _M,

oM B

Egs. (9) contain seven equations, but there agegimlunknown integration constants. Actually, an
additional unknown is the length of the damagedezah(or, alternatively, the applied bending
moment,Ms). In this regard, we note that during stagd is zero. During stage I varies between
zero and a maximum valud,. During stage lll, under steady-state crack pragag,d is constant
and equal tal.. In this case, Eq. (8) still describes the norstadss distribution, provided that the
origin O is suitably moved along the specimen to coincidh the new positions of the crack tip.

By substitutingd = 0 into Egs. (9), we calculate the applied begdimoment at the end of stage I,

g, Aw,
M?=B 2. 10
s 2d, (10)

Furthermore, by adding the condition tidat = Aw, at the crack tip, from Eqgs. (9) we determine
the equation fody:
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ycccos(yldu )COShyzdu )-ycs CO%du )Sinmdu +)ysc Slp:(du )Com(% +
+ysin(d,)sinhg,d, ¥y, = 0,

where the coefficientg., ks Ko ks and ) have lengthy expressions, that are omitted har¢hio
sake of brevity. Eq. (11) can be solved numerictdlyobtaind, as its smallest positive root. The
specimen’s response during stage Il can then kzeraat by lettingd vary between 0 andl.. For each
value of the length of the damaged zone, Egs. 48) e solved to géils. Ford =d,, the constant
bending moment of stage 1M, is obtained. Alternatively, as will explained time following, the
specimen’s response can be obtained more simplgiog the path-independehintegral.

(11)

2.4 Solution for model |

Under pure mode Il loading, the specimen is subfetd antisymmetric loads with respect to its
mid-plane. As for the pure mode | case, the amalgan be limited to the upper half of the specimen
(Fig. 6). During the test, under increasing loae, ¢liding displacements in the cohesive zone asae
monotonically and attain their maximum at the crdpkcross section. Two stages can be
individualised in the specimen’s response:

- Stage | — Linearly elastic behaviouks long as the sliding displacement at the craggkMu(0), is
less thanAu,, the specimen’s response is linearly elastic. iéeitmaterial damage, nor crack
propagation occur during this stage;

- Stage Il — Progressive material damagéhen the sliding displacement at the crack tipiast the
value Aup, damage of the material begins. As the test paxdarther, a damaged zone of
increasing lengthd, develops ahead of the crack tip. Correspondirtily,lengthe, of the zone
where the material is still linearly elastic deces
As a difference with the mode | case, the assurobdsive law for pure mode I, Eq. (7), does not

have a definite limit for material fracture. Theyed, the theoretical model does not predict a crack

propagation stage for this loading case.

Figure 6: Upper half of the specimen under modedding.

The shear interfacial stress turns out to havédif@ving expression:

7, if 0sx<d;
7(x) =

Fexpl-A;(x—d)], if d<x (12)

where/s is a root of the characteristic equation fowhose expression is given in the appendix, and

F=2 2b, +d;h : Asﬂ—ﬂsﬁd (13)
4a, +4bh+dh B

IS an integration constant, determined by imposnegboundary conditions &t= 0 andx = d.
In Egs. (12) and (13), it must be considered thaing stage Id = 0. In this case, by imposing
1(0) = 1o and solving foiMa, we obtain the value of the applied bending morna¢the end of stage |,
B 4a, +4bh+dh?

MO =— T,.
® 2k Zb,+dh ° (14)

During stage I, by imposingd) = 1o and solving foiM,, we obtain
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B 4a, +4bh+d,h
M, =— L L (r,+Ard).
a 2/‘5 %l‘i'dlh (0 5%1 ) (15)

According to Eg. (15), the applied bending momdrdutd increase unboundedly as the length of
the damaged zond, increases. In practice, a limit will be giventbg finite length of the specimen.

25 Jintegral analysis

Besides directly solving the differential problems explained in the previous sections, the
proposed mechanical model can be analysed by ttsengath-independent integral [1, 8],

J:(ﬁr[a)dz—(;%+g%vj d'} (16)

wherewis the strain energy density,andt; are the components of the stress vector actirntg@path
elementdl’, andrl is an arbitrary contour encircling the crack #s. proposed in [5], we consider an
external contourl; ex, and an internal or local contolifec, surrounding the cohesive interface (Fig. 7).

External path Text

m ( F,—_,—_—L_—_:_.—;__—.__—_,z_,—_,—__—,__—_:_.—:—__—,__—,lzﬂ
'ic:i Vo b

Local path I'ioc J/l* 5 Mi+M:
o

ﬁrTTTTTT

Figure 7:J integral analysis.

Evaluation of thel integral along the external contour gives

d(MzemZ)-2 ALy Ly
B 1 1 2 4a1+4b1h+d1h2 1 2 (17)
‘Jext - 282 !
which under pure mode | and 1l loadings respedfibelcomes
2 2 212 2
Jext - d s and ‘]|?Xt - 4b1 + 4b1dlh +d1h Ma . (18)
4a, +4bh+d,¥ B
On the other hand, evaluation of thimtegral along the internal contour gives
3 =["oawdaw and I =[""r@auau (19)

Because of the path independence, the quantitiepuied via Eqgs. (18) and (19) must coincide.
Hence, we obtain relationships between the valfigheo opening and sliding displacements at the
crack tip,Aw(0) andAu(0), and the applied bending moments,

" ab,h+d, e
:i\/f ? o(aw)daw  and |\/|a:|3‘/4a1+ S rewau (20
Ja; Vo 2b, +d;h
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We note that Egs. (20) hold in general, regardiédtie specific cohesive laws that are adopted.
But, if we substitute the presently assumed coledaivs, Egs. (6) and (7), into (20), we can exgici
write the load-displacement relationships for mhde

Aw(0), if 0<Aw(0)<Aw;

\/’2A

B [o,Aw, g, AWMO0)-Aw, .
M, = o041 01 2Aw, —AwW(0)-Aw |, if Aw, < AWO0)<Aw; 21
. \/d_l\/Z ZAWU—AWO[ L~ AwW(0)-Aw], if Aw < AW0)<Aw;  (21)
\/_\/UOAWO +=L(Aw, - Aw), if Aw, < AwWO0);
and mode II,
+4bh+d,h
g4t bh+di’ [z, AU(0), if 0< AU0)<AY;
2b, +d,h 2Au,
M, = (22)

B\/4a1+4bh+d b
2b, +d;h

By substitutingAw(0) =Aw, andAu(0) =Aug into Egs. (21) and (22), respectively, the valuehe
applied bending moment at the end of the lineddsptie stages are obtained,

T AW, Aw,

and MO =B J4a, +4oh+d, [r.Au, 23)
J_ : 2b, +d,h 2

which coincide with the values given by Eqgs. (10) &i4), respectively. For homogeneous isotropic
and unidirectional laminated specimens, Egs. (28pkiy to

3
I\/I§=B1/—E1X; /—Uog"“’ and M= 4/—E‘9ﬁ4/—T°A2l“. (24)

Lastly, we note that the value b given by Eq. (21) foAw(0) > Aw, is that corresponding to the
steady state crack propagation stadé,

3 EXPERIMENTAL TESTS

DCB-UBM tests [1] were performed on glass fibreafeiced, unidirectional laminated specimens.
The thickness of the specimens was approximatelynd® the width was approximately 30 mm. A
mid-plane delamination was initiated by a 12.5 ik slip foil (70 mm long) placed at the loaded
end of the specimen. The elastic moduli have begerhined as followsEx = 41.2 GPaFE; = 12.8
GPa, andG,x = 4.6 GPa. The tests were conducted at a dispktterate of 10 mm/min for the lower
beam of the test machine [5], and the load was uneddy two load cells.

A single mode | test was performed on a specime336fmm length. The moments were applied
as forces acting on transverse arms attached nithef the specimen with moment arms 86.5 mm on
both arms (moment ratid; / M, = —1). The normal opening was measured with amegteeter.

Two tests were performed on 500 mm long specimeres mode mixity close to mode Il (pure
mode Il would give too much friction between théblsuminates). Moment arms of 161.5 mm and
156.5 mm were used (moment raty / M2 = 0.97). The normal opening was measured with an
extensometer, and the sliding opening was measumitadiwo LVDTSs (linear variable displacement
transducers).
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4 RESULTSAND DISCUSSION
4.1 Determination of the cohesive law parameters

In order to use the theoretical model to reprodilnee experimental results, the parameters that
define the cohesive laws, Egs. (6) and (7), haveetaletermined. This can be done partly based on
theoretical considerations, partly by using sonmeeexnental results from the tests themselves.

The initial linear branches of the traction-sedarataws correspond to the response of a linear
elastic interface,

og=kAw and 7=KAu, (25)

wherek, andky are the elastic constants of a continuous digtdbwof normal and tangential springs,
respectively. Based on energy equivalence [9]véhees of the elastic constants can be determised a
k=B ang ik =398 (26)
13 2h 2 X
whereE; is the Young's modulus of the material in the sna@rse direction.
By substituting Egs. (25) into (24) and solvinghwiespect to the displacements, we obtain

_2M; | 6 Ml [ 2
Aw, = 5 kZEXf? and Au, = 5 Kﬁﬁ' 27)

OnceMs? andM,? are determined from the experimental tests, E2f.\(ield the crack-tip opening
and sliding displacements at the end of the liyeathstic stage. Then, Egs. (25) furnish the
corresponding normal and shear stresagand ro.

The experimental tests for mode | also furnish ¥atues of displacemenfiw,, and bending
momentMs", at the beginning of the steady state crack praj@ystage. Then, the normal stresss
obtained by inverting the last expression in Ed.)(For homogeneous isotropic and unidirectional
laminated specimens, we obtain

2
24 (M
E 17 (Bj B

Aw, — Aw,

(28)

1

For the mode Il tests, from the experiments theimam applied loadM.", and the corresponding
sliding displacementju,, can be determined. Such values are insertedEqtq22), which is then
solved for the stress. For homogeneous isotropic and unidirectional teatgd specimens, we obtain

9 (MY 7,0y,
Ehl B 2 (29)
Au, - Au, '

r,=

From the performed experimental tests, the vaise=dlin Table 1 were determined.

Mode | tests Mode Il tests
M 22.0 Nm M_0 80.0 Nm
M 40.0 Nm My" 140.0 Nm
Awy 1.1 mm Auy 3.5mm

Table 1: Quantities determined from experimentstiste
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Then, by using Egs. (25)—(29) the quantities liste@lable 2 were calculated.

Mode | tests Mode Il tests
k; 1813.8 N/mm Kx 1815.8 N/mm
AW 0.014 mm Al 0.045 mm
Oo 25.7 MPa To 81.1 MPa
o 0.8 MPa n 1.1 MPa

Table 2: Quantities calculated via the theoreticatlel.

4.2 Experimental results and theoretical predictions

Figure 8a shows the trend of the applied bendinmemt, Ms, vs. the crack opening displacement,
Aw, for the mode | test. Likewise, figure 8b shows tkend of the applied bending momewt, vs.
the crack sliding displacemeuity, for the mode Il tests.

The green curves represent the experimental resuhige the red curves correspond to the
theoretical predictions of the developed model. Both modes | and II, a very good agreement is
obtained between the experimental results and etieal predictions.

Mode I Mode II

50 150

40 120
Z 30 Z 90
= 20 — Specimen = 6D —— Specimen #1
2 &l 2 Specimen #2
g 10 —Mode g 30 —Model
1 B
g
5 0 g 0
5 5
A-10 =30

-02 00 02 04 06 08 1.0 12 14 16 05 00 05 10 15 20 25 30 35 4.0
Crack opening displacement, Aw (mm) Crack sliding displacement, Au (mm)
a) b)

Figure 8: Applied bending moment vs. crack open&gnode | test; b) mode Il test.

5 CONCLUSIONS

A theoretical model of the double cantilever beastd with bending moments (DCB-UBM) has
been presented. The model is based on the assungdtiolinear discontinuous cohesive laws. An
analytical solution has been determined and prcticmulas for the cohesive law parameters have
been given. Experimental tests have been conducteglass fibre reinforced specimens under pure
mode | and Il loading conditions. The predictiofishe theoretical model turn out to be in very good
agreement with the experimental results.

Future work involves the development of an anadytisolution for mixed mode I/l loading
conditions. Actually, this solution cannot be ob&d simply by superposition of the solutions for
modes | and Il because of the nonlinear materiahbeur.
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APPENDI X

The roots of the characteristic equations havddi@wving expressions:

Alz\/AUO (cl+ fcf—2d1%j, /12:\/00 Lcl— c§—2d1AW°J,
W, g, Aw, g,

(A1)
A = i(zai +2bh +1dlh2j;
Au, 2
= 2 C + C12'i'2dlAWu — 2% -
Aw, —Aw, o,
(A2)

M, = L _C1+ C12+2d1M .
Aw, — Aw, o,
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