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ABSTRACT Smart cities take advantage of recent Information and Communication Technology (ICT)
developments to provide added value to existing public services and improve quality of life for the citizens.
The Internet of Things (IoT) paradigm makes the Internet more pervasive where objects equipped with
computing, storage, and sensing capabilities are interconnected with communication technologies. Because
of the widespread diffusion of IoT devices, applying the IoT paradigm to smart cities is an excellent
solution to build sustainable ICT platforms. Having citizens involved in the process through mobile
crowdsensing (MCS) techniques augments capabilities of these ICT platforms without additional costs. For
proper operation, MCS systems require the contribution from a large number of participants. Simulations
are therefore a candidate tool to assess the performance of MCS systems. In this paper, we illustrate the
design of CrowdSenSim, a simulator for mobile crowdsensing. CrowdSenSim is designed specifically for
realistic urban environments and smart cities services.We demonstrate the effectiveness of CrowdSenSim for
the most popular MCS sensing paradigms (participatory and opportunistic), and we present its applicability
using a smart public street lighting scenario.

INDEX TERMS Mobile crowdsensing, simulations, smart cities.

I. INTRODUCTION
World population living in cities has experienced an unprece-
dented growth over the past century. While only 10% of the
population lived in cities during 1900, today this percentage
corresponds to 50% and it is projected to further increase
beyond such figure [1]. Sustainable development plays there-
fore a crucial role in city development. While only 2% of
the world’s surface is occupied by urban environments, cities
contribute to 80% of global gas emission, 75% of global
energy consumption [2] and 60% of residential water use [1].

Smart cities rely on Information and Communication
Technology (ICT) solutions to improve citizens’ quality of
life [3], [4]. The application of the Internet of Things (IoT)
paradigm to urban scenarios is of special interest to support
the smart city vision [4]–[6]. Indeed, IoT is envisioned

as a candidate building block to develop sustainable ICT
platforms. With IoT, everyday life objects become uniquely
identifiable and ‘‘smart’’, i.e., they are equippedwith comput-
ing, storage and sensing capabilities and can communicate
one with each other and with the users to enable pervasive
and ubiquitous computing [7]. Including citizens in the loop
with crowdsensing approaches augments the capabilities of
existing infrastructures without introducing additional costs
and has been proved to be a win-win strategy for smart city
applications [8]–[10].

Mobile crowdsensing (MCS) has emerged in the recent
years, becoming an appealing paradigm for sensing data [11].
In MCS, users contribute data generated from sensors
embedded in mobile devices, including smartphones, tablets
and IoT devices like wearables. Accelerometer, gyroscope,
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magnetometer, GPS, microphone and camera are just a
representative set of sensors which are nowadays employed to
operate a number of applications in many domains, including,
among the others, health care, environmental and traffic mon-
itoring and management [12], [13]. To illustrate with a simple
example, Google exploits crowd-sourced information about
smartphones locations to offer real-time view of congested
traffic on roads, or its recently released Science Journal,
which permits to collect and visualize data coming from
smartphone sensors [14].

The information acquired through MCS platforms is usu-
ally aggregated and delivered to a collector typically located
in the cloud (see Fig. 1). This enables the so-called Sensing
as a Service (S2aaS) model [5], which makes the collected
public data available to developers and end-users.With S2aaS
companies have no longer need to invest and acquire infras-
tructure to perform a sensing campaign. IoT and MCS are
key enablers in the S2aaS model. Efficiency of S2aaS models
is defined in terms of the revenues obtained from selling
data versus the costs of the sensing campaign, which include
costs of recruitment and compensation of the participants for
their involvement [15]. Also, the users sustain costs while
contributing data. These costs correspond to the energy spent
from the batteries for sensing and reporting data and, eventu-
ally, the data subscription plan if cellular connectivity is used
for reporting.

FIGURE 1. Cloud-based MCS system.

In MCS, data acquisition or collection, can be
participatory or opportunistic [12]. In opportunistic sensing
systems, the user involvement is minimal: sensing decisions
are application- or device-driven. In participatory sensing
systems, users are actively engaged in the sensing process.
The users, also called participants in the remainder of the
paper, are recruited by a central platform, which dispatches
sensing tasks. Users can then decide which request to accept
and, after accepting, they have to accomplish specified sens-
ing and data reporting tasks. On one side, opportunistic
sensing lowers the burden of user participation as devices
or applications are responsible to take sensing decisions.
Conversely, participatory sensing systems are tailored to
crowdsensing architectures with a ‘‘central platform’’, which
facilitates system control operations like task assignment,
user incentives and rewarding to compensate the participants
for their contribution.

In this paper we propose CrowdSenSim, a new tool for
simulating mobile crowdsensing activities in realistic urban
environments. CrowdSenSim is specifically designed to
perform analysis in large scale environments and supports
both participatory and opportunistic sensing paradigms.
CrowdSenSim allows scientists and engineers to inves-
tigate performance of the MCS systems, with a focus
on data generation and participant recruitment. The sim-
ulation platform can visualize the obtained results with
unprecedented precision, overlaying them on city maps.
In addition to data collection performance, the informa-
tion about energy spent by participants for both sens-
ing and reporting helps to perform fine-grained system
optimization.

The contribution synopsis of this paper is as follows:
• Proposal of CrowdSenSim, a simulation platform for
MCS systems deployed in realistic urban environments
and presentation of its design features.

• Validation of CrowdSenSim’s performance for oppor-
tunistic and participatory sensing systems.

• Application of CrowdSenSim in a public street lighting
scenario, an essential service in current and future smart
cities.

The paper is organized as follows. Section II illustrates the
existing tools for simulation of MCS activities. Section III
presents the design criteria of CrowdSenSim, highlighting
its objectives and scenarios of applicability. Section IV
details CrowdSenSim’s architecture. Section V presents per-
formance evaluation and Section VI illustrates the use of
CrowdSenSim for smart lighting. Finally, Section VII con-
cludes the work and outlines directions for future work on
the topic.

II. BACKGROUND ON CROWDSENSING
SIMULATION TOOLS
Currently, existing simulation tools for MCS aim either
at characterizing and modeling communication aspects or
define usage of spatial environment [16]. The following para-
graphs overview the main properties of each tool.

Tanas et al. propose to exploit Network Simulator 3 (NS-3)
for crowdsensing simulations [17]. The objective is to assess
performance of a crowdsensing network taking into account
the mobility properties of the nodes together with the wireless
interface in ad-hoc network mode. Furthermore, the authors
present a case study about how participants could report
incidents in the public rail transport. NS-3 provides highly
accurate estimations of network properties. However, having
detailed information on communication properties comes at
the expense of scalability. First, it is extremely difficult to
perform simulations with a number of users contributing
data in the order of tens of thousands. Second, the granu-
larity of the duration of NS-3 simulations is typically in the
order of minutes. It reflects the objective to capture insights
into the behavior of communication protocols such as TCP,
which becomes too detailed as typical duration of a sensing
campaign is in the order of hours or days.
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In [18], Farkas and Lendák present a simulation environ-
ment developed to investigate performance of crowdsensing
applications in an urban parking scenario. Although the appli-
cation domain is only parking-based, the proposed solution
can be applied to other crowdsensing scenarios. The simu-
lation scenario considers drivers as type of users that travel
from one parking spot to another one. The users are the
sensors that trigger parking events.

Mehdi et al. propose CupCarbon [19], which is a discrete-
event wireless sensor network (WSN) simulator for IoT and
smart cities. One of the major strengths is the possibility
to model and simulate WSN on realistic urban environ-
ments through OpenStreetMap. To set up the simulation, the
researchers are required to individually deploy on the map
the various sensors and the nodes such as mobile users, gas
and media sensors and base stations. Therefore, the approach
is suitable for experiments with scenarios comprising up to
hundreds of nodes.

III. CrowdSenSim: DESIGN PRINCIPLES
This section presents CrowdSenSim in a nutshell, highlight-
ing the principles of the design, its objectives and the sce-
narios of applicability. Performing simulations in complex
environments, such as modern cities, requires the simulation
platform to be scalable. In other words, it should not limit
the researcher in the choice of key parameters such as the
simulation period or the number of users.

A. SCALABILITY
For proper operation, MCS systems require a large num-
ber of contributors. Therefore, CrowdSenSim is designed
to take into account participants in the order of tens of
thousands that move in a wide realistic urban environment.
Each individual can potentially own several mobile and IoT
devices. The time dimension is also important. The dura-
tion of a sensing campaign can range from hours to days
and CrowdSenSim addresses this challenge efficiently. For
instance, let us consider 10 000 users producing data with
a duration of only 30 minutes per day. Using commonly
available sensors on the market like an accelerometer work-
ing at 50 Hz frequency with 12 bits long samples, the total
amount of generated data by each user would be 1.35 GiB.
Considering the prolonged duration of the user contribu-
tion and additional sensors would considerably augment this
figure.

B. REALISTIC URBAN ENVIRONMENT
CrowdSenSim relies on realistic urban environments, which
makes the simulator flexible and easy to be adopted in
any city. Furthermore, it allows to perform analysis that
provide meaningful insights to municipalities to understand
the feasibility and the potential of public services employing
MCS techniques. Simulations over a grid or a square area
as abstraction levels lower the complexity, but do not allow
taking into account important features such as movements
in real streets and physical obstacles such as buildings.

CrowdSenSim incorporates this feature allowing users to
include the layout of cities as input.

C. USER MOBILITY
Human mobility is defined as sequences of spatiotemporal
user movements. Understanding human mobility in an urban
environment is crucial to design mobility patterns that meet
social behaviors and scale to the requirements of modern
smart cities [20]. CrowdSenSim includes a number of human
mobility patterns designed for pedestrian mobility in urban
environments.

D. COSTS OF SENSING
The sensing activity impacts the energy budget of the par-
ticipants’ mobile devices. CrowdSenSim is able to capture
the energy directly spent for the sensing tasks as well as the
energy spent for communications. IoT andmobile devices are
equipped with several communication technologies, includ-
ing 3G/LTE,WiFi and Bluetooth. Battery usage of the mobile
devices differs with respect to the communication technology,
and can have associated costs (e.g., users have a limited
monthly plan) [21].

FIGURE 2. Main modules of CrowdSenSim.

IV. THE CrowdSenSim ARCHITECTURE
The architecture of CrowdSenSim follows the design spec-
ifications illustrated in Section III, implementing indepen-
dent modules to characterize the urban environment, the
user mobility, the communication and the crowdsensing
inputs, which depend on the application and specific sens-
ing paradigm utilized. Fig. 2 shows graphically the relations
between the modules, and Table 1 lists description of symbols
that are explained in detail hereafter.

A. CITY LAYOUT MODULE
The module in charge of defining the city layout allows the
researcher to input into the simulator the city where sim-
ulations will be performed. Specifically, the layout of the
city is defined in terms of a set of coordinates C containing
information on <latitude, longitude, altitude>. The set of
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FIGURE 3. Maps of cities obtained from DigiPoint. (a) Luxembourg. (b) Trento. (c) Madrid.

TABLE 1. Symbols list and description.

coordinates compose the streets of the city where the users
will move during simulation runtime and can be obtained
with online tools like OpenStreetMaps or DigiPoint. In this
version of the simulator, we rely on Digipoint, which is
a crowdsourced application providing free access to street-
level maps [22]. Fig. 3 shows the urban environments cur-
rently available for simulations, namely the city center of
Luxembourg (see Fig. 3(a)), Trento (see Fig. 3(b)) and
Madrid (see Fig. 3(c)). The center of Luxembourg city covers
an area of 1.11 km2 with a population of 110 499 inhabitants
as of the end of 2015 and is the home of many national and
international institutional buildings. The city center of Trento
occupies an area of 1.18 km2 and has a population of 117 317
inhabitants as of the beginning of 2016 and is the capital
of the homonym Province. The city center of Madrid covers
approximately an area of 5.23 km2 with a resident population
of 149 718 residing inhabitants.

The city layout module allows the researcher to define
the size of the city and the level of detail of the urban
environment. High resolution of the city layout, which cor-
responds to choose a higher number of coordinates, increases
the precision of user movements at the cost of longer and
more computationally expensive simulations. Viceversa, a
coarse resolution of the city layout makes the simulations to
run faster, but lowers the accuracy of users movements and
precision of the urban environment. The latter component is
important: having a high resolution of the urban environment
permits to characterize places, e.g., to identify among the
others bars, restaurants, schools or hospitals.

B. USER MOBILITY MODULE
The user mobility module defines the spatiotemporal
properties of user movements in the urban environment,

which compose the so-called list of events (see Fig. 2). We
define an event as ‘‘the arrival of an user in a given coordinate
at a given instant of time.’’

The module defines the following steps to determine the
spatiotemporal list of events:
• Initialization: it characterizes the location and time of
user arrival.

• Mobility: it characterizes the user movements after
arrival.

1) INITIALIZATION
This initial step is in charge of determining where and when
each user starts moving in the city. Each user arrival is
therefore characterized by a coordinate ca and time ta. In
the current version of the simulator, the location is randomly
determined among the set of coordinates C of the map. The
design choice builds on the assumption that each of the
coordinates has the same relevance, i.e., it does not exist
a difference between popularity of places. Future imple-
mentations will allow the researchers to choose between
random and popularity-driven assignment of user location.
The time of user arrival can be either randomized or based
on real-world traces, which are the results of a study on
pedestrian mobility and are public available on Crawdad
(ostermalm_dense_run2) [23]. Fig. 4 shows the probability
density function of the user arrival resulting from the study
of the traces. In practice, to obtain the results presented
later in Section V-A.2, the density computed in Fig. 4 was
adapted to an arrival time period between 8:00 AM - 1:40 PM
instead of 720 s and for 20 000 users. The probability density
function of user arrival is indeed determined by two global
simulation inputs: the total number of users in the system

FIGURE 4. User distribution of mobility trace ‘‘kth/walkers’’.
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and the simulation period. In random user arrival modes, the
default probability density function is uniform, i.e., during the
simulation period each minute has the same probability to be
chosen as arrival time for each user. The researcher can easily
modify the user arrival time by changing the probability
density function. In the case study presented in SectionVI, we
will present a modification of the probability density function
of user arrival suitable for the application of public street
lighting.

2) MOBILITY
In the default setting, each user moves over the set of coordi-
nates C for a predefined amount of time Tmove which is uni-
formly distributed between [10, 20] minutes with an average
speed Smove uniformly distributed between [1, 1.5] m/s. The
default setting can be easily modified. After the arrival in ca at
time ta, the next move makes the user to jump in cnext at time
tnext. The simulator chooses cnext to be physically in proxim-
ity of ca, i.e., CrowdSenSim chooses a coordinate among C
which is on the same street or square with distance below a
maximum radius. No obstacles are considered between the
move from one coordinate to another one. Once cnext has
been determined, the simulator computes tnext on the basis
of the physical distance between ca and cnext and the speed
of the user. The distance is computed by using the Haversine
formula [27] and, along with the speed of the movements,
permits to determine the amount of time it takes between the
two points ttravel. Then, tnext is determined as follows:

tnext = ta + ttravel, (1)

and the total amount of time the user is allowed to travel Tmove
is updated as follows:

Tmove = Tmove − ttravel. (2)

The user stops moving when Tmove ≤ 0. It is worth to high-
light that during each movement the speed of the movement
Smove changes. The new value is generated again uniformly
distributed between [1, 1.5] m/s to mimic the change of
velocity during walking.

In the current version, users move only once during the
simulation period, and it is not possible yet to define a
direction of movement for each user. We plan to extend the
simulator to take into account this possibility in the future
extension of this study.

C. CROWDSENSING INPUTS MODULE
This module defines the inputs specific to crowdsensing anal-
ysis. CrowdSenSim relies on two types of inputs. The first
set does not depend on the sensing paradigm employed and
comprises all the parameters related to sensing and commu-
nication operations. The second set includes parameters that
are specific to the participatory sensing paradigm. Unlike the
opportunistic sensing paradigm which does not have particu-
lar input parameters, in participatory systems it is necessary
to define the concept of task and how to assign tasks to users.

1) SENSING AND COMMUNICATION PARAMETERS
In CrowdSenSim, data generation takes into account sen-
sors commonly available in current IoT and mobile devices.
Table 2 presents the detailed information on sensors and
communication parameters. Specifically, CrowdSenSim gen-
erates sensing readings from the FXOS8700CQ 3axis linear
accelerometer from Freescale Semiconductor [24] and the
BMP280 from Bosch [25], which is a digital pressure and
temperature sensor. For a worst scenario analysis, in the
default settings the sensors keep generating data according
to their sampling frequency for the entire period of users
movements.

For communication purposes, the current version of the
simulator employs only WiFi technology. Based on the sam-
ple resolution of the sensors, data is first organized in packets
of 1 500 Bytes and delivered to the collector continuously
during users movements. Each user transmits data to the
closes WiFi Access Point (AP). The APs are characterized
by <latitude, longitude>, not necessarily from the set C. For
the city of Luxembourg, the precise location ofWiFi APs was
obtained from an online tool.1

1Online: https://www.hotcity.lu/en/laptop/www/About/Wi-Fi-coverage

TABLE 2. Sensor and communication equipment parameters used for performance evaluation. (a) Sensor equipment [24], [25]. (b) Communication
equipment [26].
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FIGURE 5. User recruitment for sensing tasks deployed in the city of Luxembourg. (a) SDRP policy. (b) DBRP policy.

2) PARAMETERS FOR PARTICIPATORY SENSING PARADIGM
CrowdSenSim defines the following properties for tasks:
location, time of deployment, duration and coverage. With
the default settings, all the parameters are randomly selected
from the set of coordinates C, uniformly distributed within
the simulation period and as fraction of the simulation period
for location, time of deployment and duration respectively.
The task coverage defines the maximum radius where users
can actively contribute to the task and is fixed for all the tasks.
The researcher can also provide a file in input to the simulator
describing the aforementioned properties.

D. SIMULATOR AND RESULTS
During simulation CrowdSenSim computes runtime a num-
ber of statistics, including energy consumption and amount
of data generated and provides the researcher to a visual-
ization tool to display the results. For example, with the
help of Google Heatmap tool,2 CrowdSenSim draws on the
real maps the most populated tasks or most utilized WiFi
APs. To illustrate considering the former case as an example,
CrowdSenSim collects statistics about the number of users
recruited for each task. At the end of the simulation period,
it outputs these statistics along with the location of each task
in terms of latitude and longitude. The result obtained is then
employed as input of the Google Heatmap tool (see Fig. 5).

The energy E spent for communication purposes is com-
puted as follows. E is consumed during a transmission time
τtx and is defined as:

E =
∫ τtx

0
Ptxdt, (3)

where Ptx is the power consumed for transmissions of WiFi
packets generated at rate λg [26]:

Ptx = ρid + ρtx · τtx + γxg · λg. (4)

2Online: https://developers.google.com/maps/documentation/javascript/
examples/layer-heatmap

V. PERFORMANCE EVALUATION
This section provides performance analysis of CrowdSenSim.
First, the results obtained for participatory and opportunistic
sensing systems are illustrated, with a focus on participant
recruitment for the former sensing paradigm and energy con-
sumption and amount of data collected for the latter sensing
paradigm. Second, technical evaluation of the simulator is
shown, with a focus on CPU, processing time and memory
utilization.

For performance evaluation, the simulations are car-
ried out using a Linux workstation equipped with Ubuntu
14.10. Furthermore, the machine supports an Intel R© CoreTM

i3 2.27 GHz CPU and a system memory of 1916 MiB.

A. ANALYSIS OF PARTICIPATORY AND OPPORTUNISTIC
CROWDSENSING SCENARIOS
1) PARTICIPATORY SENSING SCENARIO
In the participatory sensing scenario, we employ Crowd-
SenSim in the context of participant recruitment and to
implement a policy defining user recruitment and task assign-
ment [15]. Devising proper recruitment policy is impor-
tant: on one hand, it allows the organizer to minimize the
expenditure, while on the other hand, it helps to choose
the users that will successfully carry out the sensing task.
For example, in the public safety context, it is essential to
select users to maximize the trustworthiness of collected
data [28]–[30]. Such policy can be employed using distance-
based recruitment mode (DBRM) or sociability-driven
recruitment mode (SDRM). In DBRM, the spatial distance
between the users and the sensing task is the discriminant
factor defining user eligibility. Users far from the sensing
task i more than Dmax are never considered as potential
contributors in that task. In SDRM, the user sociability,
defined as amount of data users consume or the time they
spend using mobile social network applications [31], is the
discriminant factor for the recruitment.

Table 3 lists the details of the simulation set-up.
We employ CrowdSenSim for demonstration purposes to
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TABLE 3. Simulation settings for analysis of participant recruitment
policy.

visualize the distribution of user recruitment and refer the
reader for further details on the results to [15]. Fig. 5 com-
pares the number of users recruited in SDRM and DBRM
for all the deployed 25 tasks in Luxembourg city center
using the Google Heatmaps tool. Tasks with higher number
of users recruited are marked with a bigger radius and with
brighter and more intense colors. Fig. 6 shows that SDRM
outperformsDBRMas the number of recruited users is higher
for all the deployed tasks. Moreover, for task with ID equal to
8, the SDRM is able to recruit users where the DBRM fails.

FIGURE 6. Number of recruited users using SDRM and DBRM.

2) OPPORTUNISTIC SENSING SCENARIO
In the opportunistic sensing scenario, users contribute con-
tinuously data even if they do not receive a specific task.
In this context, CrowdSenSim is employed for evaluation of
data generation with a fixed the number of participants set to
20 000. The objective of the experiment is to assess during the
simulation period from 8:00 AM to 2:00 PM the energy con-
sumption attributed to sensing and reporting operations and
the amount of generated data. The analysis is carried under
the two different user arrival patterns. Users move accord-
ing to the predefined settings illustrated in Section IV-B.
In the first user arrival pattern, the starting time of the walk
is uniformly distributed between 8:00 AM and 1:40 PM to
allow users starting moving towards the end of the period to
correctly end their journey at 2:00 PM. The second arrival
pattern is based on the data set with traces of pedestrian
mobility (ostermalm_dense_run2) [23].

a: ENERGY COST FOR SENSING AND REPORTING
Fig. 7 presents the distribution of users and their energy spent
for sensing with the uniform and traces-based user arrival
patterns. For demonstration purposes, we show the results
obtained for the sole city of Luxembourg. As expected, the
user arrival pattern does not influence the energy consump-
tion, which only depends on the amount of time the users
generate data. As the users contribute data for time periods
as low as 10 minutes up to time periods of a maximum of
20 minutes, the profiles of Fig. 7(b) and Fig. 7(a) follow a
normal distribution. Current drain of sensing operations is
on average 373.41 µAh and 368.80 µAh for uniform and
traces-based arrival patterns. In the worst case, few users
experience a cost that is nearly more than double with respect
to the average. Comparing to the battery capacity available in
modern smartphones, which is in the order of 2 000 mAh, it
is possible to conclude that the energy cost for sensing is neg-
ligible with respect to the energy spent for communications
(see Fig. 7(b)).

b: AMOUNT OF DATA COLLECTED
The amount of information reported by users devices is
unveiled in the following experiments, which evaluate the
amount of data generated per single sensor for the two dif-
ferent user arrival patterns and the distribution of the data
collected.

Fig. 8 shows the total amount of data collected along with
the simulation period for the two user arrival patterns. As
expected, the amount of data is proportional to the sampling
frequencies of the three considered sensors. Recalling that
each user contributes only during a short period of time (from
10 to 20 minutes), the amount of collected information is
considerable. For example, 20 000 users arriving according
to the uniform arrival pattern would generate 2.62 GiB,
12.71 GiB and 10.96 GiB for the accelerometer, temperature
and pressure sensors respectively. Fig. 8(a) shows the results
for the uniformly distributed arrival pattern. As expected,
the amount of contribution remains constant after the ini-
tial set up as the number of users arriving in a given time
window is constant along the simulation period. Fig. 8(b)
illustrates the results for the user arrival pattern based on
the data set. Unlike the previous case, the shape of the
curve follows the probability density function of the traces as
in Fig. 4.

Having the knowledge on the amount of data the users can
contribute is important, but for more precise evaluation it is
also fundamental to determine where and when these sam-
ples are generated. CrowdSenSim provides the researchers
the capability to graphically visualize the data generation
process. With a number of users set to 20 000, Fig. 9 shows
the geographical distribution of the amount of collected data
at the end of the simulation period for Luxembourg, Trento
andMadrid. To better analyze the data generation process, we
define a new performance metric, called Sample Distribution
Coefficient (SDC), which measures the amount of generated
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FIGURE 7. Energy spent for sensing and communication. (a) Sensing cost. (b) Communication cost.

FIGURE 8. Amount of data generated. (a) Arrival pattern with uniform distribution. (b) Arrival pattern based on traces.

FIGURE 9. Normalized distribution of amount of collected data for the different cities over the time period 8:00 AM - 2:00 PM.
(a) Luxembourg. (b) Trento. (c) Madrid.

samples per meter and is defined as follows:

SDC =
Nt
∆
, (5)

where ∆ is the average distance between samples and Nt is
the number of samples generated during the time period t .
The parameter ∆ is defined as follows:

∆ =

∑n
i,j
i≥j
d(i, j)

n(n− 1)
2

. (6)

The term d(i, j) is the distance (in meters) between the loca-
tion where the samples i and jwere generated and the denom-
inator accounts for the number of pairs of samples. SDC
can be computed at any temporal and spatial resolution. The
time granularity can be fine or coarse, e.g., minute, hour or
day whereas the spatial granularity can be at block-, district-
or even city-level. For example, SCD can be employed to
analyze the per-hour data generation process in a downtown
district vs suburban district.

Fig. 10 shows the distribution of SDC for Luxembourg,
Trento and Madrid for the entire simulation period.
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FIGURE 10. Sample Distribution Coefficient for the different cities over the time period 8:00 AM - 2:00 PM. (a) Luxembourg. (b) Trento. (c) Madrid.

FIGURE 11. GNOME system monitor.

In this experiment, the users are located with the uniform
arrival pattern. It is interesting to notice that the lowest
values of SDC occur for the initial and final time intervals
(8:00 AM - 9:00 AM and 1:00 PM - 2:00 PM). During the
initial and final time intervals the number of participants
is lower than in the other intervals as the simulator locates
the users with a uniform distribution between 8:00 AM and
1:40 PM and they move for at maximum 20 minutes. Having
set the same number of users for the experiment, the relation
between the SDC coefficient and the size of the area consid-
ered is inversely proportional. The city center of Luxembourg
is smaller than Trento and Madrid. As a result, the obtained
SDC value for Luxembourg is higher.

B. PERFORMANCE OF THE SIMULATOR
This section provides a technical evaluation of the simulator
performance. The metrics evaluated concern processing time,
CPU and memory utilization.

Fig. 12 shows the profile of the CPU utilization expressed
in percentage obtainedwith thedstat tool.3 The experiment
analyzes the performance in a scenario with a huge number

3Available on: http://dag.wiee.rs/home-made/dstat/

FIGURE 12. CPU utilization for a simulation run with 100 000 users.

of users, 100 000, in the city of Luxembourg. The statistics
obtained have been filtered to spot the profile of the process
running the simulation. The resulting graph shows that the
CPU utilization can occupy as much as 25% of the available
resources and this happens at the beginning where most of the
computation occurs to process the events.

The next set of experiments aims at assessing the perfor-
mance of processing time and memory occupancy. Unlike the
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FIGURE 13. Analysis of a) processing time and b) memory with increasing number of users.

previous result, these experiments are carried out deploying
CrowdSenSim in a Virtual Machine (VM) running Ubuntu
14.10 with two different profile settings, namely 1024 MiB
and 2048 MiB of memory. The setting allows us to pro-
file the performance of the simulator perceived by the end
users. The VM is equipped with GNOME System Monitor
which permits to verify the system performance. Fig. 11
shows an example for a simulation with 20 000 partici-
pants in opportunistic sensing scenario. Fig. 13 shows the
results obtained. Both experiments were performed for the
city of Luxembourg, with both VMs configurations and
with an increasing number of participants from the set
{1 000, 5 000, 10 000, 20 000, 50 000, 70 000, 100 000}. The
maximum number of users was selected consistently with the
population of the city. Fig. 13(a) analyzes the processing time,
which remains almost constant for a number of participants
lower than 10 000 and then it increases exponentially for both
the configuration settings. Fig. 13(b) analyzes the memory
consumption with a focus on the Resident Set Size (RSS),
which defines the amount of memory the process occupies
in the RAM. For both configurations of the VM, the RSS
remains almost identical for a number of participants lower
than 20 000, then the process tends to occupy as much as
possible all the available resources.

VI. CASE STUDY: SMART LIGHTING
CrowdSenSim is a candidate tool for analysis of smart city
services. This section presents a case study where the simu-
lator is employed to assess the performance of public street
lighting. However, the capabilities of the simulator are not
restrained to this particular application scenario. We are cur-
rently working to extend the simulator capabilities to include
vehicles as contributors to the data collection process and to
analyze other important and challenging issues of modern
cities, e.g., waste management. Waste management involves
the whole process ofmonitoringwaste locations, truck routes,
collection phases and waste disposal.

A. THE PROBLEM OF SMART LIGHTING
IN MODERN SMART CITIES
Public lighting is a traditional city service provided by lamp-
posts widely distributed in streets and roads. Lighting causes

nearly 19% of worldwide use of electrical energy and entails
a 6% of global emissions of greenhouse gases. A decrease
of 40% of energy spent for lighting purposes is equivalent
to eliminate half of the emissions from the production of
electricity and heat generation of the US [32]. Specifically,
public street lightning, which is an essential community ser-
vice, impacts for around 40% on the cities’ energy budget.
Consequently, in preparation of the EU commitments, opti-
mizing the lighting service is a primary objective for the
municipalities [33].

The street lighting solutions currently implemented in
cities are not energy efficient. Typically, every lamp operates
at full intensity 12 hours a day on average: 8 hours during
summer and 14 hours during winter period [33]. As a result,
the costs the municipalities sustain are high [32]. A number
of different types of lamps are applicable for public street
lighting, including High Pressure Sodium (HPS), Metal-
halide (MH) lamps, Compact Fluorescent lamps (CFL) and
Light-emitting diode (LED). LEDs have an average lifetime 4
times longer than HPS lamps and 10 times longer if compared
toMH lamps. Installing LEDs is effective to reduce hardware,
installation and maintenance costs. Low wattage provides
significant energy savings and allows increasing the lamp
efficiency [34], [35]. The HPS lamps do not support dimming
and only LEDs can be employed to perform dimming prop-
erly. The use of LEDs is gradually gaining popularity due to
its photo metric characteristics, such as low weighted energy
consumption (kW/1000hrs), high luminous efficacy (lm /W),
high mechanical strength, long lifespan and reduction of light
pollution. LED lamps can dim the light intensity bymore than
50% modifying therefore the output level of light according
to the circumstances. For example, when traffic is low or in
rarely visited areas of the city, like the parks at night. The
city of Brittany in France, dims street lights by 60% between
11:00 PM and 5:00 AM to decrease waste energy [33].

We devise a smart lighting method for smart cities which
dims the light of lampposts in proportion to the number of
users in the vicinity. To detect the presence of users nearby
the lampposts a presence sensor like the SE-10 PIR motion
sensor is assumed to be installed on site [36]. With presence
sensors, every lamppost is able to recognize the presence of
citizens within a certain radius R like illustrated in Fig. 14.
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FIGURE 14. Coverage radius R. The presence of sensors at the lampposts
enables recognition of citizens within a radius of R.

Similarly to the solution adopted in Brittany, i.e., the mini-
mum light intensity level is 60% if no users are within the
coverage radius R and increases or decreases proportionally
on the basis of the passage of the users. In more details, if
the number of users is increasing, then the light intensity
increases or remains at 100%, while if the number of users
reduces from previous status, then the light intensity dimin-
ishes until it reaches the minimum level.

B. EVALUATING SMART LIGHTING SOLUTIONS
WITH CrowdSenSim
To evaluate the proposed smart lighting solution with
CrowdSenSim, a set of 537 lampposts has been deployed
according to their physical location in the streets and squares
of Luxembourg City. Fig. 15 details the position of each
lamppost given in terms of coordinates <latitude, longitude,
altitude>. We compare two cases. In the proposed smart
lighting solution each lamp is equipped with LED technol-
ogy and at full light intensity consumes 82.7 kW/1000hrs.
In current implementation, each lamp is equipped with
HPS technology consuming 172.7 kW/1000hrs at full light
intensity.

FIGURE 15. Position of lampposts in Luxembourg city center.

The number of users moving in the city is set to 5 000.
Each of them walks for a period of time that is uniformly dis-
tributed in [10, 20] minutes with an average speed uniformly
distributed between [1, 1.5] m/s. The users begin walking
according to a specific arrival pattern. During the evaluation

FIGURE 16. Probability density function of user mobility during the
evaluation period. Probability of a user to change their location is higher
in early morning or late evening hours.

period, set between 9:00 PM and 7:00 AM, each user has a
probability to start traveling that is defined by the probability
density function (PDF) illustrated in Fig. 16. In more details,
during 9:00 PM and 10:00 PM nearly one third of the total
number of users starts walking and at 7:00 AM all 5 000 users
end traveling.

FIGURE 17. Heatmap of lampposts activity (values in kWh).
(a) Lampposts activity with LEDs. (b) Lampposts activity with
current technology method.

Fig. 17 shows the results of the lamppost activity obtained
through CrowdSenSim. On average, the smart lighting solu-
tion with LED technology and light dimming saves nearly
68% of energy consumption with respect to the current
adopted solution. Indeed, the set of lampposts consumes on
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average 298.5 kWh per day with dimming and a fix amount
of energy of 927.4 kWh per day with current implementation.

VII. CONCLUSION
In this paper we presented CrowdSenSim, a simulation plat-
form for MCS systems. CrowdSenSim is tailored to assess
sensing activities in large-scale realistic urban environments
and is designed to output results on participant recruitment,
data generation and the cost sustained for sensing and report-
ing from the users point of view. We also demonstrated the
suitability of the simulator for analysis of smart city services
with a case study on public street lighting. CrowdSenSim is
distributed as public available software.4

For future work, we plan to validate simulation results
CrowdSenSim generates with experimental data obtained
from existing crowdsensing platforms. Future development
directions are twofold. First, we plan to implement a more
sophisticated and accurate communication model to analyze
in more details the networking aspects of MCS systems.
Second, we plan to develop a function to allow researchers
to define directions of user movements on individual basis.
Future research directions will exploit CrowdSenSim to
investigate other important city services such as smart waste
management and extend the simulator to operate in vehicular
environment, where vehicles contribute to the process of data
generation in addition to mobile devices. The current trend
sees automotive companies to increase on-board equipment
of vehicles with storage, computing capabilities and a grow-
ing set of sensors. Data collected by these sensors is not only
beneficial for the operation of the vehicles and monitoring of
their status, but is projected to become a precious source of
information for municipalities as well.
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