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Abstract

The heliocentric transfer of a solar sail-based spacecraft is usually studied from an optimal perspective, by looking
for the control law that minimizes the total flight time. The optimal control problem can be solved either with
an indirect approach, whose solution is difficult to obtain due to its sensitivity to an initial guess of the costates,
or with a direct method, which requires a good estimate of a feasible (guess) trajectory. This work presents
a procedure to generate an approximate optimal trajectory through a finite Fourier series. The minimum time
problem is solved using a nonlinear programming solver, in which the optimization parameters are the coefficients
of the Fourier series and the positions of the spacecraft along the initial and target orbits. Suitable constraints
are enforced on the direction and magnitude of the sail propulsive acceleration vector in order to obtain feasible
solutions. A comparison with the numerical results from an indirect approach shows that the proposed method
provides a good approximation of the optimal trajectory with a small computational effort.
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Nomenclature

a = propulsive acceleration vector, [ mm/s2]
{ar, aθ, aφ} = propulsive acceleration components in Ts, [ mm/s2]
a = semimajor axis, [ au]
ac = characteristic acceleration, [ mm/s2]
a⊕ = Sun’s gravitational acceleration at r = 1 au, [ mm/s2]
{a0, a1, a2} = auxiliary coefficients
{b1, b2, b3} = sail force coefficients
{bfn, cfn} = Fourier series coefficients
e = orbital eccentricity
{êr, êθ, êφ} = unit vectors of Ts reference frame
f = Fourier series expression
i = orbital inclination, [ deg]
Nc = number of Fourier series coefficients
Np = number of nodes
Nu = number of control variables
n̂ = normal unit vector
O = Sun’s center-of-mass
p = semilatus rectum, [ au]
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{q1, q2} = auxiliary coefficients
r = position vector, [ au]
r = Sun-spacecraft distance, [ au]
s = auxiliary variable
t = time, [ days]
tf = total time of flight, [ days]
Tε(O;xε, yε, zε) = heliocentric-ecliptic reference frame
Ts(O; r, θ, φ) = spherical reference frame
{vr, vθ, vφ} = velocity components in Ts, [ km/s]
{vεx, vεy, vεz} = velocity components in Tε, [ km/s]
w = auxiliary variable
α = sail cone angle, [ deg]
β = lightness number
δ = sail clock angle, [ deg]
θ = azimuth angle, [ deg]
µ� = Sun’s gravitational parameter, [ km3/s2]
ν = true anomaly, [ deg]
τ = dimensionless time
φ = elevation angle, [ deg]
Ω = right ascension of the ascending node, [ deg]
ω = argument of pericenter, [ deg]

Subscripts

0 = initial value, parking orbit
t = final value, target orbit

Superscripts

· = derivative with respect to time
′ = derivative with respect to τ
∼ = estimate

1. Introduction

Long mission times are usually necessary to complete a heliocentric transfer with a solar sail, due to the
small thrust level that may be got from such a propulsion system [12]. Not surprisingly, a solar sail trajectory
is therefore often studied within an optimal framework, by looking for the control law that minimizes the
total transfer time. In that context, optimization methods are mostly divided into two categories, either
indirect or direct methods [5]. The indirect approach uses the calculus of variations and the Pontryagin’s
maximum principle to formulate a two-point boundary value problem, whose solution gives the optimal
control law [27]. However, the high sensitivity of costates to their initial guess often prevents this method
from obtaining a feasible solution [11] . On the other hand, direct methods translate a continuous optimal
control problem into a nonlinear programming problem, which requires an initial guess of the optimal
trajectory to compute the minimum-time solution [2]. In any case, both approaches are usually expensive
in terms of computational costs [4], to such an extent that the simulation times are hardly manageable for
preliminary mission analyses and feasibility assessment.

For this reason, many methods exist to generate fast approximations of spacecraft trajectories. A largely
used technique is the so-called shape-based method, in which the shape of the trajectory is a priori described
by a given function [21, 32, 31]. In that case, a set of parameters must be tuned to get a feasible solution,
able to meet the boundary constraints. In this regard, [9] have developed a method based on the concept of
Bezier curve functions to design three-dimensional heliocentric trajectories of a spacecraft equipped with an
Electric Solar Wind Sail [10, 16]. [20] have proposed a shape-based approach to obtain an approximate solar
sail trajectory to be used as a first guess solution for a multiple-asteroid rendezvous optimization problem.
[28, 29] have used finite Fourier series to shape the position coordinates of a spacecraft with a low-thrust
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propulsion system, whose thrust vector can be freely oriented in the space. In particular, their approximated
trajectory was obtained by solving an optimization problem in which the cost function is the total velocity
variation.

This paper proposes a procedure similar to the method developed by [29] to get an approximate optimal
trajectory for a solar sail-based spacecraft in a heliocentric mission scenario, but also takes into account
the physical constraints related to the fact that the sail thrust vector cannot be oriented toward the Sun.
The spacecraft position along its parking and target orbits is not fixed, but is an output of the optimization
process, in order to obtain an optimal orbit-to-orbit (heliocentric) transfer. The proposed method is validated
in both a two- and a three-dimensional Earth-Mars transfer, and also using a more complex case, in which
the sail is to be transferred to a near-Earth asteroid [35] . A comparison is eventually made with the
numerical results obtained using an indirect approach [14, 15, 34, 19, 17] .

2. Mathematical preliminaries

Consider a spacecraft propelled by a solar sail, which must be transferred from an initial heliocentric
parking orbit (subscript 0) of given characteristics {a0, e0, i0,Ω0, ω0}, to a target orbit (subscript t) with
parameters {at, et, it,Ωt, ωt}, where a is the semimajor axis, e is the eccentricity, i is the inclination, Ω is
the right ascension of the ascending node, and ω is the argument of pericenter. Assuming the spacecraft to
be subjected only to the Sun’s gravitational attraction and to the sail propulsive acceleration a, its equation
of motion is

r̈ = −µ�

r3
r + a (1)

where µ� is the Sun’s gravitational parameter, r is the Sun-spacecraft position vector, and r = ‖r‖ is the
solar distance. Introduce now an inertial heliocentric-ecliptic reference frame Tε(O;xε, yε, zε), whose origin
O coincides with the Sun’s center-of-mass, xε points toward the vernal equinox �, and zε is orthogonal to
the ecliptic plane. Consider also the spherical coordinate system Ts(O; r, θ, φ) illustrated in Fig. 1, where θ is
the angle between the xε-axis and the projection of r on the ecliptic, while φ is the angle between the ecliptic
and the spacecraft position vector r. Figure 1 also shows the unit vector êr along the radial direction, while
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Figure 1: Heliocentric-ecliptic Tε(O;xε, yε, zε), and spherical Ts(O; r, θ, φ) reference frame.

êθ and êφ are defined along the direction of the azimuth angle θ and the elevation angle φ, respectively.
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Equation (1) may equivalently be rewritten as a system of three scalar differential equations, that is

r̈ − r θ̇2 cos2 φ− r φ̇2 = −µ�

r2
+ ar (2)

2 ṙ θ̇ cosφ+ r θ̈ cosφ− 2 r θ̇ φ̇ sinφ = aθ (3)

2 ṙ φ̇+ r θ̇2 cosφ sinφ+ r φ̈ = aφ (4)

where ar, aθ, and aφ are the components of the propulsive acceleration vector a along êr, êθ, and êφ,
respectively. Assuming a flat sail model without degradation effects [7, 6], and using the optical force model
described by [33] and [13], the propulsive acceleration vector a may be written as

a =
β µ�

2 r2
(
n̂ · êr

)[
b1êr + (b2n̂ · êr + b3)n̂

]
(5)

where n̂ is the unit vector normal to the sail plane in the direction opposite to the Sun, {b1, b2, b3} are the
dimensionless force coefficients [14], and β is the sail lightness number, defined as

β =
2

b1 + b2 + b3

(
ac
a⊕

)
(6)

where a⊕ ' 5.93 mm/s2 is the Sun’s gravitational acceleration at the reference distance r = r⊕ , 1 au,
and ac is the spacecraft characteristic acceleration, that is, the propulsive acceleration magnitude ‖a‖ of a
Sun-facing sail when r = r⊕. According to [8], the values of the sail force coefficients used in the following
discussion are b1 = 0.1901, b2 = 1.6198 and b3 = 0.0299, based on recent experimental tests conducted on a
thin polymer sail (with a thickness of 2.5 micrometer), coated with 10 nanometers of aluminum on the front
side and with an uncoated back side.
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Figure 2: Cone (α) and clock (δ) angle.

From Eq. (5), the components of the propulsive acceleration vector are

ar = a · êr =
β µ�

2 r2
(
b1 cosα+ b2 cos3 α+ b3 cos2 α

)
(7)

aθ = a · êθ =
β µ�

2 r2
(b2 cosα+ b3) cosα sinα cos δ (8)

aφ = a · êφ =
β µ�

2 r2
(b2 cosα+ b3) cosα sinα sin δ (9)
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where α ∈ [0, 90] deg is the sail cone angle, defined as the angle between the unit vectors êr and n̂, whereas
δ ∈ [−180, 180) deg is the clock angle, that is, the angle between êθ and the projection of n̂ on the plane
{êθ, êφ}; see Fig. 2.

The aim of this work is to compute the minimum-time trajectory necessary to transfer a spacecraft
between two given heliocentric orbits. The spacecraft position along the initial and the final orbit is not
fixed, but is an output of the optimization process. The initial (or final) spacecraft state may be expressed
as a function of the azimuth angle θ0 (or θt) at the initial (or final) time, while the true anomaly ν0 (or νt)
is obtained with the procedure discussed in the following section.

2.1. Boundary conditions
With reference to Fig. 3, consider the spherical triangle obtained by intersecting three unitary circles,

along the ecliptic plane, the meridian plane containing the sail and the orbital plane. Upon applying the
spherical law of cosines to the angles of such a triangle, it is found that

cos γ = sin i cos (θ − Ω) (10)

sin γ =
√

1− cos2 γ =

√
1− sin2 i cos2 (θ − Ω) (11)

cos i = sin γ cosφ. (12)
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Figure 3: Spherical triangle.

Moreover, using the sine rule
sinφ

sin i
=

sin(θ − Ω)

sin γ
= sin(ω + ν) (13)

from which sinφ and cosφ are obtained as

sinφ =
sin(θ − Ω) sin i√

1− sin2 i cos2 (θ − Ω)
, cosφ =

cos i√
1− sin2 i cos2 (θ − Ω)

. (14)

Finally, bearing in mind Eqs. (11) and (13) and using the cosine rule for the sides, we get

sin(ω + ν) =
sin(θ − Ω)√

1− sin2 i cos2 (θ − Ω)
, cos(ω + ν) =

cos(θ − Ω) cos i√
1− sin2 i cos2 (θ − Ω)

. (15)
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The latter two relations allow the true anomaly ν to be obtained as a function of the azimuth angle θ.
Note that, when the true anomalies ν0 and νt along the initial and final orbits are known, the initial and

final states of the spacecraft are fully defined. Indeed, according to [1], the components of the position and
velocity vectors in Tε may be obtained as functions of the orbital parameters. These same components may
also be expressed with respect to the spherical coordinate frame Ts as

r =
√
x2ε + y2ε + z2ε (16)

φ = arcsin

(
zε√

x2ε + y2ε + z2ε

)
(17)

vr = vεx
xε
r

+ vεy
yε
r

+ vεz
zε
r

(18)

vθ = −vεx
yε√

x2ε + y2ε
+ vεy

xε√
x2ε + y2ε

(19)

vφ = −vεx
xεzε

r
√
x2ε + y2ε

− vεy
yεzε

r
√
x2ε + y2ε

+ vεz

√
x2ε + y2ε
r

(20)

where {xε, yε, zε} (or {vεx, vεy, vεz}) are the components of the spacecraft position (or velocity) vector in the
heliocentric ecliptic reference frame, while {vr, vθ, vφ} are the velocity vector components in the spherical
reference frame.

3. Finite Fourier series approximation

An approximation of the optimal three-dimensional trajectory of a solar sail can be obtained by shaping
it with a classical finite Fourier series. To that end, the time variation of the generic spacecraft state variable
f ∈ {r, θ, φ} can be expressed as

f(τ) =
bf0
2

+

Nc∑
n=1

[bfn cos(nπτ) + cfn sin(nπτ)] (21)

where τ , t/tf ∈ [0, 1] is the dimensionless time (tf is the total flight time), and Nc ≥ 2 is the number of
Fourier coefficients {bfn, cfn}. In particular, the first and second derivatives of f with respect to τ are

f ′(τ) =

Nc∑
n=1

[−bfnnπ sin (nπτ) + cfnnπ cos (nπτ)] (22)

f ′′(τ) =

Nc∑
n=1

[
−bfn(nπ)2 cos (nπτ)− cfn(nπ)2 sin (nπτ)

]
. (23)
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Paralleling the procedure described by [29], some of the Fourier coefficients can be expressed as functions of
the initial (at τ = 0) and final (at τ = 1) conditions, viz.

bf1 =
f(0)− f(1)

2
+

Nc∑
n=3

[
(−1)n − 1

2

]
bfn (24)

bf2 =
f(0) + f(1)

2
− bf0

2
−

Nc∑
n=3

[
1 + (−1)n

2

]
bfn (25)

cf1 =
f ′(0)− f ′(1)

2π
+

Nc∑
n=3

n

[
(−1)n − 1

2

]
cfn (26)

cf2 =
f ′(0) + f ′(1)

4π
−

Nc∑
n=3

n

[
1 + (−1)n

4

]
cfn. (27)

Observing that the derivative with respect to τ can be written as

df

dτ
= tf

df

dt
(28)

then

r′ = tf ṙ = tfvr (29)

θ′ = tf θ̇ = tf
vθ

r cosφ
(30)

φ′ = tf φ̇ = tf
vφ
r
. (31)

Substituting Eqs. (24)–(27) into Eq. (21), the result is

f(τ) = Cf + Cbf0bf0 +

Nc∑
n=3

(Cbfnbfn + Ccfncfn) (32)

with

f ′(τ) = C ′f + C ′bf0bf0 +

Nc∑
n=3

(
C ′bfnbfn + C ′cfncfn

)
(33)

f ′′(τ) = C ′′f + C ′′bf0bf0 +

Nc∑
n=3

(
C ′′bfnbfn + C ′′cfncfn

)
(34)
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where

Cf =
f(0)− f(1)

2
cos(πτ) +

f(0) + f(1)

2
cos(2πτ)+

+
f ′(0)− f ′(1)

2π
sin(πτ) +

f ′(0) + f ′(1)

4π
sin(2πτ) (35)

Cbf0 =
1

2

[
1− cos(2πτ)

]
(36)

Cbfn =
(−1)n − 1

2
cos(πτ)− 1 + (−1)n

2
cos(2πτ) + cos(nπτ) (37)

Ccfn = n
(−1)n − 1

2
sin(πτ)− n1 + (−1)n

4
sin(2πτ) + sin(nπτ). (38)

It is now necessary to find the coefficients bf0, bfn and cfn that describe the optimal (minimum-time)
transfer trajectory.

4. Optimization procedure

The problem consists in determining the minimum-time trajectory that transfers a solar sail-based space-
craft from an initial parking orbit toward a final target orbit. Approximating the spacecraft position coor-
dinates with Eq. (32), the control parameters of the optimization problem are the coefficients {bf0, bfn, cfn}
of the finite Fourier series, the initial and final azimuth angles {θ0, θt}, and the flight time tf . Recall from
the previous discussion that, as long as Nc ≥ 2, the coefficients {bf1, bf2, cf1, cf2} are functions of the initial
and final conditions. Therefore, the total number of unknown parameters is Nu = 6Nc − 6.

The components of the propulsive acceleration vector may be related to the control variables through
Eqs. (2)–(4) and (32)–(34) as

ar =
1

t2f

[
r′′ − rθ′2 cos2 φ− rφ′2

]
+
µ�

r2
(39)

aθ =
1

t2f
[2r′θ′ cosφ+ rθ′′ cosφ− 2rθ′φ′ sinφ] (40)

aφ =
1

t2f

[
2r′φ′ + rθ′2 cosφ sinφ+ rφ′′

]
. (41)

Suitable constraints have to be enforced on the magnitude and direction of the solar sail acceleration vector
a. In fact, the radial component of a must be positive, that is

ar ≥ 0 (42)

while its magnitude must satisfy the following equation

‖a‖2 = a2r + a2θ + a2φ =

=

(
βµ

2r2

)2

[(b1 + b2 cos2 α+ b3 cosα)2 cos2 α+ (b2 cos2 α+ b3 cosα)2 sin2 α] (43)

where the right-hand side comes from Eqs. (7)–(9), whereas α is obtained from Eq. (7), which may be
rewritten as

cos3 α+ a2 cos2 α+ a1 cosα+ a0 = 0 (44)
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with

a0 , − 2r2ar
βµ�b2

, a1 ,
b1
b2

, a2 ,
b3
b2
. (45)

Equation (44) is a cubic polynomial equation in cosα. It may be solved in closed form by introducing the
auxiliary variable s such that

cosα , s− a2
3
. (46)

In fact, substituting Eq. (46) into Eq. (44), the latter reduces to

s3 + q1s = q2 (47)

where

q1 ,
3a1 − a22

3
, q2 ,

9a1a2 − 27a0 − 2a32
27

. (48)

Note that, from Eq. (45), q1 can also be written as

q1 = a1 −
1

3
a22 ≡

b1
b2
− 1

3

(
b3
b2

)2

. (49)

Using the definition of sail force coefficients given by [14] and considering their typical values [8], it follows
that |b3| < b1 and b2 > 0. Therefore, the value of q1 is positive. For example, when b1 = 0.1901, b2 = 1.6198
and b3 = 0.0299, it follows that q1 ' 0.1172. Introduce now a second auxiliary variable w defined as

s , w − q1
3w

. (50)

Substituting Eq. (50) into Eq. (47), resulting sixth-order equation is

w6 − q2w3 − q31
27

= 0 (51)

which has two pairs of complex conjugate solutions and two real solutions given by

w1,2 =

[
1

2

(
q2 ±

√
q22 +

4

27
q31

)] 1
3

. (52)

It may be easily checked that the same value of s is obtained when either w1 or w2 is substituted into
Eq. (50). Such a value of s can be used in Eq. (46) to get the actual value of cosα.

To solve this optimization problem, the whole time domain is discretized into Np Legendre-Gauss nodes,
and a nonlinear programming solver is used to obtain the set of control variables that minimize the flight
time tf . In particular, the interior-point method implemented in the MATLAB built-in function fmincon

has been used. Note that an initial solution guess is required to run the interior-point algorithm. To that
end, using the procedure suggested by [29], the spacecraft states {r, θ, φ} can be approximated with a cubic
polynomial expression in the form

f̃(τ) = c0 + c1τ + c2τ
2 + c3τ

3 (53)

whose parameters {c0, c1, c2, c3} are obtained by enforcing the boundary conditions involving f(0), f(1),
f ′(0), and f ′(1). Equation (53) is then evaluated at the nodes, and the Fourier series coefficients are
calculated with a fitting procedure.

An estimate of the flight time t̃f may be found with the approximate analytical expression by [23],
which is valid for a circle-to-circle orbit raising (or lowering) when the solar sail characteristic acceleration
is sufficiently small. Otherwise, an initial guess of t̃f can be obtained as the ratio of the magnitude of the
angular momentum vector change to the torque induced by the solar sail propulsive acceleration [9], viz.

t̃f =

√
µ�(p0 + pt)− 2µ�

√
p0pt cos(it − i0)

r̃ (βµ�)/(2r̃2) (b2 cosαmax + b3) cosαmax sinαmax
(54)

where r̃ = (a0 + at)/2, p is the semilatus rectum, and αmax ' 35.2 deg is the sail cone angle that maximizes
the transverse component of the solar sail propulsive acceleration. Finally, the initial guesses of the two
azimuth angles {θ0, θt} are chosen by a trial and error procedure.
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5. Mission scenarios and numerical simulations

The procedure described in the previous sections is now applied to the optimization problem of an Earth-
Mars orbit-to-orbit transfer in a simplified two-dimensional case and in a more realistic three-dimensional
scenario. It is also applied to a transfer toward the near-Earth (potentially hazardous) asteroid 1620 Ge-
ographos. In all of the simulations, a solar sail with a canonical value [13] of characteristic acceleration
(ac = 1 mm/s2) is considered, while the number of Fourier coefficients is Nc = 10.

5.1. Two-dimensional simplified Earth-Mars transfer

Consider first a simplified, two-dimensional, Earth-Mars interplanetary transfer, in which the solar sail-
based spacecraft initially covers an orbit coinciding with that of the Earth (with orbital parameters a0 = 1 au,
e0 = 0.0167, i0 = 0, and Ω0 + ω0 = 102.95 deg), and must be transferred toward a target coplanar orbit
of parameters at = 1.524 au, et = 0.0934, it = 0, and Ωt + ωt = 336.04 deg. Note that the target orbit is
consistent with the Mars heliocentric orbit when its orbital inclination is set equal to zero.

In a two-dimensional case, the constraints on the elevation angle and its derivatives with respect to τ are

φ = 0 , φ′ = 0 , φ′′ = 0 (55)

and the Fourier coefficients {bφ0, bφn, cφn} are

bφ0 = 0 , bφn = 0 , cφn = 0. (56)

Substituting Eq. (55) into Eqs. (39)–(41), the components of the sail propulsive acceleration become

ar =
1

t2f

[
r′′ − rθ′2

]
+
µ�

r2
(57)

aθ =
1

t2f
[2r′θ′ + rθ′′] (58)

aφ = 0. (59)

The unknown parameters are the Fourier coefficients {br0, brn, crn, bθ0, bθn, cθn}, the azimuth angles {θ0, θt},
and the flight time tf . The time domain is discretized into Np = 20 Legendre-Gauss nodes, and the
optimization procedure gives a flight time tf ' 379.9 days. The corresponding transfer trajectory is shown
in Fig. 4. In this case, the initial and final azimuth angles are θ0 ' 234.9 deg and θt ' 472.4 deg. Figure 5
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Figure 4: Earth-Mars optimal two-dimensional transfer trajectory when ac = 1 mm/s2, with Np = 20 and Nc = 10.
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illustrates the optimal control law α = α(τ), while δ(τ) = 0 because the problem is two-dimensional.
Figures 4-5 also show the position of the nodes (represented by circles) at which the constraints given by
Eqs. (42)-(43) are enforced.
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Figure 5: Optimal control law α = α(τ) for an Earth-Mars two-dimensional transfer when ac = 1 mm/s2, with Np = 20 and
Nc = 10.

5.2. Three-dimensional Earth-Mars transfer

A three-dimensional case is now investigated. The Earth’s (parking) orbital parameters are a0 = 1 au,
e0 = 0.0167, i0 = 0, Ω0 = 348.74 deg, ω0 = 114.21 deg, while those of Mars are at = 1.524 au, et = 0.0934,
it = 1.85 deg, Ωt = 49.58 deg, ωt = 286.46 deg.

The values of θ0, θt and tf obtained in the two-dimensional scenario are used as initial guesses to solve the
three-dimensional case. The minimum flight time tf and the optimal values of the azimuth angles {θ0, θt}
are shown in Tab. 1 as a function of the number of nodes Np = {20, 25, 30, 35}, when Nc = 10. The optimal
solution computed with an indirect approach gives a minimum flight time of about 382 days

Np tf (days) θ0 (deg) θt (deg)

20 383.30 229.20 469.79
25 383.23 229.89 470.42
30 383.18 229.99 470.47
35 383.12 230.43 470.89

Table 1: Minimum flight time tf , optimal values of θ0 and θt as a function of the number Np of nodes, for an Earth-Mars
transfer with ac = 1 mm/s2, when Nc = 10.

The minimum-time trajectory, computed using Np = 30 nodes, is characterized by a total flight time
tf ' 383.18 days, and is shown in Fig. 6. The optimal values of the initial and final azimuth angles are
θ0 ' 230 deg and θt ' 470.5 deg. The optimal control laws α = α(τ) and δ = δ(τ), obtained with the Fourier
series method with Np = 30 nodes, are shown in Figs. 7(a)-7(b) with red solid line, and are compared to the
optimal control laws obtained with an indirect approach [3, 14], reported with dashed black line. Figures
7(a) and 7(b) show that the Fourier series method is able to provide a good approximation of the actual
optimal control laws.
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Figure 6: Earth-Mars three-dimensional optimal transfer trajectory with ac = 1 mm/s2, when Np = 30 and Nc = 10.

5.3. Transfer from Earth to asteroid 1620 Geographos

A more involved problem is represented by a transfer toward the near-Earth asteroid 1620 Geographos.
Such an asteroid has been extensively observed [18] and studied in the past literature because of its collision
possibility with the Earth, and to improve our knowledge about asteroid rotational motion and meteor
stream generation [24, 25, 26, 30]. It has also been proposed as a potential candidate for a multi-asteroid
tour mission [22].

In this case, the spacecraft is assumed to initially cover a parking orbit coinciding with that of the Earth,
whereas the orbital parameters of the target asteroid are at = 1.2453 au, et = 0.3354, it = 13.3373 deg,
Ωt = 337.19539 deg, ωt = 276.91504 deg. The optimal value of tf , θ0 and θt are shown in Tab. 2 as a
function of the number of nodes Np.

The optimal trajectory, calculated with Np = 20 and shown in Fig. 8, requires a total flight time of about
394 days. The minimum-time solution computed with an indirect approach is characterized by a value of tf
equal to 393 days. Figure 9 shows a comparison between the optimal control laws obtained with the Fourier
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Figure 7: Time variation of the optimal control law for an Earth-Mars three-dimensional transfer when ac = 1 mm/s2, computed
with Fourier series method with Np = 30 and Nc = 10 (solid red line), and with an indirect approach (dashed black line).

Np tf (days) θ0 (deg) θt (deg)

20 393.56 338.39 721.69
25 393.23 336.99 720.67
30 393.13 334.13 718.45
35 393.01 335.40 720.59

Table 2: Minimum flight time tf , optimal values of θ0 and θt as a function of the number Np of nodes, for an Earth-Geographos
transfer with ac = 1 mm/s2, when Nc = 10.

13



0

0.3

1.8 11.2
0.6 0

0
-1-0.6

-1.2

Geographos’
orbit

Earth’s
orbit

transfer
trajectory

(a) Three-dimensional trajectory.

-1.5 -1 -0.5 0 0.5 1 1.5

-1.2

-0.9

-0.6

-0.3

0

0.3

0.6

0.9

1.2

1.5

1.8

Sun

arrival

start

Earth’s
orbit

Geographos’
orbit transfer

trajectory

(b) Ecliptic projection.

Figure 8: Earth-Geographos optimal transfer trajectory when ac = 1 mm/s2, with Np = 20 and Nc = 10.

series method (solid red line) and an indirect approach (dashed black line). Notably, the time-variations
of the two control angles derived from the proposed approach are nearly coincident with the truly optimal
solution that comes from an indirect method.

Note that, for the sake of conciseness, this section reports the results obtained with Nc = 10 only. In fact,
this case gives the solutions closer to that obtained with an indirect approach. Further numerical simulations
have shown that when either Nc < 8 or the number of nodes Np is smaller than 20, the proposed method
converges towards a solution with a longer flight time or to unfeasible points. These numbers are however
not universal, since the best range of values of Nc and Np may depend on the mission type considered in
the study.

Due to its capability to produce an accurate approximation of the optimal trajectory with small compu-
tational efforts, the method presented in this paper may also be used to produce initial guess solutions for a
more precise direct optimization method. In this context, it would be interesting to compare the performance
of the Fourier series method with the procedure developed by [20] for generating an initial estimate for a
direct approach. Extensive numerical simulations would be required to take into account different possible
transfer scenarios and sail performance. An analysis of this problem is left to future research.
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Figure 9: Time variation of the optimal control law for an Earth-Geographos transfer when ac = 1 mm/s2, computed with
Fourier series method with Np = 20 and Nc = 10 (solid red line), and with an indirect approach (dashed black line).

6. Conclusions

This paper has presented a method to obtain an approximate minimum-time trajectory for a solar sail-
based spacecraft in a three-dimensional, heliocentric, mission scenario. The time variation of the generic
spacecraft state is approximated by a finite Fourier series, and a suitable set of constraints are enforced on
the magnitude and direction of the sail propulsive acceleration vector at the control points. The trajectory
optimization problem consists in calculating the Fourier series coefficients that define the shape of the transfer
trajectory.

The proposed method has been validated on two-dimensional and three-dimensional orbit-to-orbit trans-
fer cases. The numerical results, when compared to those obtained using an indirect approach, show that
the Fourier series-based method is able to provide a good approximation of the optimal trajectory and of
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the minimum flight time, with a small computational effort. Due to its simplicity and effectiveness, the
proposed procedure may be used either for a fast preliminary mission analysis or to provide an initial guess
for a more refined direct optimization approach, in order to obtain an accurate solution of the minimum-time
trajectory.
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