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Abstract
In this paper we prove optimal error estimates for solutions with natural regularity of the

equations describing the unsteady motion of incompressible shear-thinning fluids. We

consider a full space-time semi-implicit scheme for the discretization. The main novelty,

with respect to previous results, is that we obtain the estimates directly without introducing

intermediate semi-discrete problems, which enables the treatment of homogeneous

Dirichlet boundary conditions.
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1 Introduction

In this paper we study a space-time discretization of the unsteady system describing the

motion of homogeneous (for simplicity the density q is set equal to 1), incompressible

shear-thinning fluids under homogeneous Dirichlet boundary conditions. We prove optimal

error estimates (cf. Sect. 2.4) for solutions possessing a natural regularity, extending the

results in [5] to the case of homogeneous Dirichlet boundary conditions. Our method

differs from most previous investigations in as much as we use no intermediate semi-

discrete problems to prove our result. We restrict ourselves to the three-dimensional set-

ting, however, all results can be easily adapted to the general setting in d-dimensions.
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More precisely, we consider for a bounded polyhedral domain X � R3 and a finite time

interval I :¼ ð0; TÞ, for some given T[ 0, the system

otu� div SðDuÞ þ ½ru�uþrq ¼ f in I � X;

div u ¼ 0 in I � X;

uð0Þ ¼ u0 in X;

ð1:1Þ

where the vector field u ¼ ðu1; u2; u3Þ> is the velocity, the scalar q is the kinematic pressure,

the vector f ¼ ðf1; f2; f3Þ> is the external body force and u0 is the initial velocity. We assume

that the extra stress tensor S has ðp; dÞ-structure for some p 2 ð1; 2�, and d 2 ½0;1Þ
(cf. Sect. 2.2). For the convective term we use the notation ð½ru�uÞi ¼

P3
j¼1 ujojui,

i ¼ 1; 2; 3, while Du :¼ 1
2
ðruþru>Þ denotes the symmetric part of the gradient ru. For

smooth enough solutions ðu; qÞ the variational formulation of (1.1) reads

ðotuðtÞ; vÞ þ ðSðDuðtÞÞ;DvÞ þ bðuðtÞ; uðtÞ; vÞ � ðqðtÞ; div vÞ ¼ ðfðtÞ; vÞ;
ð divuðtÞ; gÞ ¼ 0;

ðuð0Þ; vÞ ¼ ðu0; vÞ;
ð1:2Þ

for all v 2 V :¼ W1;p
0 ðXÞ3, g 2 Q :¼ Lp

0

0 ðXÞ and almost every t 2 I. We used the notation

bðu; v;wÞ :¼ 1

2

�
ð½rv�u;wÞ � ð½rw�u; vÞ

�
; ð1:3Þ

for the convective term to have a stable space-discretization. Note that bð�; �; �Þ is skew-

symmetric with respect to the last two arguments, i.e., bðu; v;wÞ¼�bðu;w; vÞ and that for

solenoidal functions it holds bðu; v;wÞ ¼ ð½rv�u;wÞ. We perform an error analysis for the

semi-implicit space-time discretization, which for given h[ 0 and M 2 N reads: for

u0h :¼ P div
h u0 find ðumh ; qmh Þ 2 Vh � Qh,m ¼ 1; . . .;M, such that for all vh 2 Vh, gh 2 Qh holds

ðdtumh ; vhÞþðSðDumh Þ;DvhÞþbðum�1
h ; umh ; vhÞ�ðqmh ; div vhÞ ¼ ðfðtmÞ; vhÞ;

ð div umh ; ghÞ ¼ 0;
ð1:4Þ

where dtu
m
h :¼ j�1ðumh � um�1

h Þ is the backward difference quotient with j :¼ T
M. Here

Vh � V , Qh � Q are appropriate stable finite element spaces with mesh size h[ 0. The

precise setup can be found in Sect. 2.3.

2 Preliminaries and main results

In this section we introduce the notation, the setup, and recall some technical results which

will be needed in the proof of the main result.

2.1 Function spaces

We use c, C to denote generic constants, which may change from line to line, but are not

depending on the crucial quantities. We write f � g if and only if there exist constants

c;C[ 0 such that c f � g�C f .
We will use the customary Lebesgue spaces ðLpðXÞ; k : kpÞ and Sobolev spaces

ðWk;pðXÞ; k : kk;pÞ, k 2 N.We do not distinguish between scalar, vector-valued or tensor-valued
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function spaces in the notation if there is no danger of confusion. However, we denote vector-

valued functions by small boldfaced letters and tensor-valued functions by capital boldfaced

letters. If a norm is considered on a setM different thanXwe indicate this in the respective norms

as k : kp;M ; k : kk;p;M .We equipW1;p
0 ðXÞwith the gradient norm kr : kp.We denote by jMj the 3-

dimensional Lebesgue measure of a measurable set M. The mean value of a locally integrable

function fover ameasurable setM � X is denotedby hf iM :¼ �
R

M

f dx ¼ 1
jMj

R
M f dx.ByLp0ðXÞwe

denote the space of functions f 2 LpðXÞ with hf iX ¼ 0. Moreover, we use the notation

ðf ; gÞ :¼
R
X fg dx, whenever the right-hand side is well-defined.

We use the following notation

X :¼
�
W1;pðXÞ

�3
; V :¼

�
W1;p

0 ðXÞ
�3
; V div :¼

�
v 2 V

�
� div v ¼ 0

�
; Y :¼ Lp

0 ðXÞ; Q :¼ Lp
0

0 ðXÞ;

for the most often used function spaces.

2.2 Basic properties of the extra stress tensor

For a tensor P 2 R3�3 we denote its symmetric part by

Psym :¼ 1
2
ðPþ P>Þ 2 R3�3

sym :¼ fA 2 R3�3 jP ¼ P>g. The scalar product between two

tensors P;Q is denoted by P �Q, and we use the notation jPj2 ¼ P � P. We assume that the

extra stress tensor S has ðp; dÞ-structure, which will be defined now. A detailed discussion

and full proofs of the following results can be found in [12, 21].

Assumption 2.1 We assume that S : R3�3 ! R3�3
sym belongs to C0ðR3�3;

R3�3
sym Þ \ C1ðR3�3nf0g;R3�3

sym Þ, satisfies SðPÞ ¼ S
�
Psym

�
and Sð0Þ ¼ 0. Moreover, we

assume that S has ðp; dÞ-structure, i.e., there exist p 2 ð1;1Þ, d 2 ½0;1Þ, and constants

C0;C1 [ 0 such that

X3

i;j;k;l¼1

oklSijðPÞQijQkl 	C0

�
dþ jPsymj

�p�2jQsymj2; ð2:1aÞ

�
�oklSijðPÞ

�
��C1

�
dþ jPsymj

�p�2
; ð2:1bÞ

are satisfied for all P;Q 2 R3�3 with Psym 6¼ 0 and all i; j; k; l ¼ 1; . . .; 3. The constants C0,

C1, and p are called the characteristics of S.

Remark 2.2 We would like to emphasize that, if not otherwise stated, the constants in the

paper depend only on the characteristics of S, but are independent of d	 0.

Another important tool are shifted N-functions1 fuaga	 0, cf. [12, 13, 21]. Defining for

t	 0 a special N-function u by

uðtÞ :¼
Z t

0

u0ðsÞ ds with u0ðtÞ :¼ ðdþ tÞp�2t; ð2:2Þ

1 A function w : R	 0 ! R	 0 is called N-function if it is a continuous, convex function such that

limt!0
wðtÞ
t ¼ 0, limt!1

wðtÞ
t ¼ 1, and wðtÞ[ 0 for t[ 0.
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we can replace Ci

�
dþ jPsymj

�p�2
in the right-hand side of (2.1) by eCi u00�jPsymj

�
, with

some constants eCi [ 0, i ¼ 0; 1. Next, the shifted N-functions are defined for t	 0 by

uaðtÞ :¼
Z t

0

u0
aðsÞ ds with u0

aðtÞ :¼ u0ðaþ tÞ t

aþ t
: ð2:3Þ

Note that uaðtÞ� ðdþ aþ tÞp�2t2 and that the complementary function satisfies

ðuaÞ
ðtÞ� ððdþ aÞp�1 þ tÞp
0�2t2. Moreover, the N-functions ua and ðuaÞ
 satisfy the D2-

condition2 uniformly with respect to a	 0, i.e., D2ðuaÞ� c 2maxf2;pg and

D2ððuaÞ
Þ� c 2maxf2;p0g, respectively. We will use also Young’s inequality: for all e[ 0

there exists c� [ 0, such that for all s; t; a	 0 it holds

ts� �uaðtÞ þ c� ðuaÞ
ðsÞ;

tu0
aðsÞ þ u0

aðtÞ s� �uaðtÞ þ c� uaðsÞ:
ð2:4Þ

Closely related to the extra stress tensor S with ðp; dÞ-structure is the function F : R3�3 !
R3�3

sym defined through

FðPÞ :¼
�
dþ jPsymj

�p�2
2 Psym: ð2:5Þ

In the following lemma we recall several useful results, which will be frequently used in

the paper. The proofs of these results and more details can be found in [2, 12, 13, 21].

Proposition 2.3 Let S satisfy Assumption 2.1, let u be defined in (2.2), and let F be
defined in (2.5).

(i) For all P;Q 2 R3�3

�
SðPÞ � SðQÞ

�
�
�
P�Q

�
�
�
�FðPÞ � FðQÞ

�
�2;

�ujPsymjðjPsym �QsymjÞ;
�u00�jPsymj þ jQsymj

�
jPsym �Qsymj2;

SðQÞ �Q� jFðQÞj2 �uðjQsymjÞ;
jSðPÞ � SðQÞj �u0

jPsymj
�
jPsym �Qsymj

�
:

The constants depend only on the characteristics of S.
(ii) For all �[ 0, there exist a constant c� [ 0 (depending only on �[ 0 and on the

characteristics of S) such that for all u; v;w 2 X we have
�
SðDuÞ � SðDvÞ;Dw� Dv

�
� � kFðDuÞ � FðDvÞk22 þ c�kFðDwÞ � FðDvÞk22;

�
SðDuÞ � SðDvÞ;Dw� Dv

�
� � kFðDwÞ � FðDvÞk22 þ c�kFðDuÞ � FðDvÞk22;

and for all P;Q 2 R3�3
sym , t	 0 it holds

2 An N-function w satisfies the D2-condition if there exists a constant K such that wð2tÞ�K wðtÞ for all
t	 0. The smallest such constant is denoted by D2ðwÞ.
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ujQjðtÞ� ce ujPjðtÞ þ e jFðQÞ � FðPÞj2;
ðujQjÞ
ðtÞ� ce ðujPjÞ
ðtÞ þ e jFðQÞ � FðPÞj2:

(iii) For all H 2 LpðXÞ there holds
Z

X

jFðHÞ � hFðHÞiXj
2 dx�

Z

X

jFðHÞ � FðhHiXÞj
2 dx;

with constants depending only on p.

Let us recall the following result, taken from [16, Lemma 8], [4, Lemma 4.1], which is

valid for p� 2.

Lemma 2.4 Let S satisfy Assumption 2.1 with p 2 ð1; 2� and d 2 ½0;1Þ. Then, there exists
a constant c, depending only on the characteristics of S, such that for sufficiently smooth u,
v there holds

kFðDuÞ � FðDvÞk22 	 c
�
dþ kDukp þ kDu� Dvkp

�p�2 kDu� Dvk2p:

2.3 Discretizations

For the time-discretization, given T[ 0 and M 2 N, we define the time step size as

j :¼ T=M[ 0, with the corresponding net IM :¼ ftmgMm¼0, tm :¼ m j. We use the notation

Im :¼ ðtm�1; tm�, with m ¼ 1; . . .;M. For a given sequence fvmgMm¼0 we define the backward

differences quotient as

dtv
m :¼ vm � vm�1

j
; m ¼ 1; . . .;M:

The proof of the main result uses the following modification of Gronwall’s lemma.

Lemma 2.5 Let 1\p� 2 and T 2 ð0;1Þ. For M 2 N and h[ 0 let be given non-neg-

ative sequences famðhÞgMm¼0, fbmðhÞg
M
m¼0, frmðh; jÞg

M
m¼1, fsmðh; jÞg

M
m¼1, fqmðh; jÞg

M
m¼1

and frmðh; jÞgMm¼1, where j :¼ T
M. Assume that there exists l0; bj[ 0 such that for all

0\h\1=
ffiffiffiffiffi
l0

p
and all 0\j\bj there holds:

�
a0ðhÞ

�2 � l0 h
2;

�
b0ðhÞ

�2 �l0 h
2;

j
XM

m¼1

�
rmðh; jÞ

�2 � l0 h
2; j

XM

m¼1

�
smðh; jÞ

�2 � l0 h
2;

j
XM

m¼1

�
qmðh; jÞ

�2 � l0 j
2; j

XM

m¼1

�
rmðh; jÞ

�2 �l0 j
2:

ð2:6Þ

Further, let there exist constants l1; l2; l3 [ 0, K[ 0, and some 0\h� 1 such that for
some k 2 ½0;K� the following two inequalities are satisfied for all 0\h\1=

ffiffiffiffiffi
l0

p
, all

0\j\bj and all m ¼ 1; . . .;M:3

3 Here we use the convention that for k ¼ bm ¼ 0 we set ðkþ bmÞp�2b2m ¼ 0.
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dta
2
m þ l1ðkþ bmÞp�2b2m � bmrm þ bmqm þ l2bm�1bm þ s2m þ r2m; ð2:7Þ

dta
2
m þ l1ðkþ bmÞp�2b2m � bmrm þ bmqm þ l3bmb

1�h
m�1a

h
m�1 þ s2m þ r2m: ð2:8Þ

Then, there exist constants l0; j[ 0, and l4; l5 [ 0, independent of k, such that for all

j; h[ 0 satisfying j\j and h2\l0 j there holds

max
0�m�M

bm � 1; ð2:9Þ

max
0�m�M

a2m þ l1ð1þ KÞp�2j
XM

m¼0

b2m � l4
�
h2 þ j2

�
expð2l5jMÞ: ð2:10Þ

Proof This result is a small modification of the corresponding results in [3, 5], and can be

proved in the same way.

The following result will be used frequently in the sequel.

Lemma 2.6 Assume that

f ; otf 2 L2ðI;XÞ;

where ðX; k � kXÞ is a Banach space. Then, for all sm 2 Im, m ¼ 1; . . .;M, it holds

j
XM

m¼1

�
Z

Im

kf ðsÞ � f ðsmÞk2X ds�j2



otf




2
L2ðI;XÞ : ð2:11Þ

Proof The assertion is proved in [6, Lemma 3.1] in the special case sm ¼ tm,
m ¼ 1; . . .;M. The general case follows exactly in the same way.

For the spatial discretization we denote by T h a family of shape-regular triangulations,

consisting of 3-dimensional closed simplices K. We denote by hK the diameter of K and by

qK the supremum of the diameters of inscribed balls. We assume that T h is non-degen-

erate, i.e., there exists a constant c0 [ 0 such that maxK2T h

hK
qK

� c0. The global mesh-size h

is defined by h :¼ maxK2T h
hK . Let SK denote the neighborhood of K, i.e., SK is the union

of all simplices of T h intersecting K. By the assumptions we obtain that jSK j � jKj and that
the number of patches SK to which a simplex belongs are bounded uniformly in both h[ 0

and K 2 T h.

We denote by PkðT hÞ, with k 2 N0 :¼ N [ f0g, the space of scalar or vector-valued

functions, which are polynomials of degree at most k on each K 2 T h. Given a triangu-

lation T h of X with the above properties and given r0; r1; s0 2 N0, with r0 � r1, we define

Xh :¼ vh 2 X
�
� vh 2 P

� �
and Yh :¼ gh 2 Y

�
� gh 2 Ps0ðT hÞ

� �
;

with Pr0ðT hÞ � P � Pr1ðT hÞ. Note that there exists a constant c ¼ cðr1; c0Þ such that for

all vh 2 Xh, K 2 T h, j 2 N0, and all x 2 K holds

jrjvhðxÞj � c �
Z

K

jrjvhðyÞj dy: ð2:12Þ
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For the weak formulation of discrete problems we use the following function spaces

Vh :¼ V \ Xh; Qh :¼ Q \ Yh:

We also need some numerical interpolation operators. Rather than working with a specific

interpolation operator we make the following assumptions:

Assumption 2.7 We assume that r0 ¼ 1 and that there exists a linear projection operator

P div
h : X ! Xh which

(a) is locally W1;1-stable, i.e., for all w 2 X and K 2 T h there holds

�
Z

K

jP div
h wj dx� c�

Z

SK

jwj dxþ c�
Z

SK

hK jrwj dx ; ð2:13Þ

(b) preserves zero boundary values, i.e., P div
h ðVÞ � Vh;

(c) preserves divergence in the Y

h -sense, i.e., for all w 2 X and gh 2 Yh there holds

ð divw; ghÞ ¼ ð divP div
h w; ghÞ :

Assumption 2.8 We assume that Yh contains the constant functions, i.e. that R � Yh, and

that there exists a linear projection operator PY
h : Y ! Yh which is locally L1-stable, i.e.,

for all q 2 Y and K 2 T h there holds

�
Z

K

jPY
h qj dx� c �

Z

SK

jqj dx:

The existence of a projection operator P div
h as in Assumption 2.7 is known (among others)

for the Taylor–Hood, the Crouzeix–Raviart, and the MINI element in dimensions two and

three; the Clément interpolation operator satisfies Assumption 2.8. For a discussion and

consequences of these assumptions we refer to [2, Sec. 3.2], [6, Appendix], and [17,

Sec. 4,5]. We collect in the next two propositions the properties of the projection operators,

which are relevant for the present paper.

Proposition 2.9 Let P div
h satisfy Assumption 2.7.

(i) Let FðDvÞ 2 W1;2ðXÞ. Then, there exists a constant c ¼ cðp; r1; c0Þ such that

kFðDvÞ � FðDP div
h vÞk2 � c h krFðDvÞk2:

(ii) Let r 2 ð1;1Þ. Then, there exists a constant c ¼ cðr; r1; c0Þ such that for all

v 2 W1;rðXÞ and all w 2 W2;rðXÞ holds

kv�P div
h vkr þ h krP div

h vkr � c h krvkr;
krw�rP div

h wkr � c h kr2wkr:

(iii) Let r 2 ½1; 2� and let ‘ ¼ 1 or ‘ ¼ 2 be such that W‘;rðXÞ,!,!L2ðXÞ. Then, there
exists a constant c ¼ cðr; ‘; r1; c0Þ such that for all v 2 W‘;rðXÞ holds

kv�P div
h vk2 � c h‘þ3ð1

2
�1

rÞ kr‘vkr:
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(iv) Let FðDvÞ 2 W1;2ðXÞ and FðDwÞ 2 L2ðXÞ. Then, there exists a constant c ¼
cðp; r1; c0Þ such that
Z

X

ujDvj
��
�DP div

h v� DP div
h w

�
�
�
dx� c h2krFðDvÞk22 þ c kFðDvÞ � FðDwÞk22:

Proof The first two assertions are proved, e.g., in [2, 17]. The last two assertions are

proved in [6].

Proposition 2.10 Let PY
h satisfy Assumption 2.8. Let w be an N-function satisfying the D2-

condition. Then, there exists a constant c ¼ cðc0;D2ðwÞÞ such that for all sufficiently
smooth functions and all K 2 T h there holds

Z

K

wðjPY
h qjÞ dx� c

Z

SK

wðjqjÞ dx;

Z

K

wðjq�PY
h qjÞ dx� c

Z

SK

wðhK jrqjÞ dx:

Proof The assertions are proved in [17].

2.4 Main results

Before we formulate the main result, proving optimal convergence rates for the error

between the solution u of the continuous problem (1.1) and the discrete solution fumh g
M
m¼0

of the space-time discretization (1.4), we discuss the existence of solutions of (1.1) and

(1.4).

The existence of global weak solutions u 2 L1ðI; L2ðXÞÞ \ LpðI;V div Þ of (1.1) for large
data is proved in [18] for d	 0 and p[ 6

5
. The existence of a locally in time, unique strong

solution u 2 LrðI0;W2;rðXÞÞ \ LpðI0;V div Þ \W1;rðI0; LrðXÞÞ, q 2 LrðI0;W1;rðXÞÞ \
LrðI0; Lr0ðXÞÞ for any r 2 ð5;1Þ and some I0 :¼ ð0; T 0Þ with T 0 2 ð0; TÞ of (1.1) for large
data is proved in [8] for d[ 0 and p[ 1.

The existence of a unique discrete solution fumh g
M
m¼1; fqmh g

M
m¼1 can be inferred in the

following way. Setting Vhð0Þ :¼ fwh 2 Vh

�
� ð divwh; ghÞ ¼ 0 8 gh 2 Yhg, one uses

Brouwer’s fixed point theorem and the properties of the extra stress tensor S and the

convective term to show the existence of umh 2 Vhð0Þ satisfying (1.4)1 for all vh 2 Vhð0Þ
(cf. [20, Lemma 7.1]). This solution is unique due to the semi-implicit discretization of the

convective term and the monotonicity of S. Moreover, testing (1.4) with fumh g
M
m¼1 yields

the energy estimate

max
m¼1;...;M

kumh k
2
2 þ j

XM

m¼1

kFðDumh Þk
2
2 �Cðu0; fÞ:

The properties of the projection operators P div
h and PY

h ensure the validity of the discrete

inf-sup condition (cf. [2, Lemma 4.1]). Since the divergence is a closed, surjective, linear

operator from Vh onto Qh and since the gradient is the annihilator of the kernel of the
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divergence, these ensure the existence of a unique qmh 2 Qh such that fumh g
M
m¼1; fqmh g

M
m¼1

satisfy (1.4).

Now we can formulate our main result.

Theorem 2.11 Let the extra stress tensor S in (1.1) have ðp; dÞ-structure for some

p 2 ð6
5
; 2�, and some d 2 ½0;1Þ fixed but arbitrary. Let X � R3 be a bounded polyhedral

domain with Lipschitz continuous boundary, and I ¼ ð0; TÞ, T 2 ð0;1Þ, be a finite time

interval. Assume that f 2 W1;2ðI; L2ðXÞÞ, u0 2 W2;pðXÞ \ V div and that the solution ðu; qÞ
of (1.1) satisfies (1.2) and

FðDuÞ 2 W1;2ðI � XÞ and q 2 Lp
0 ðI; Lp

0

0 ðXÞ \W1;p0 ðXÞÞ: ð2:14Þ

Let the space Vh, h[ 0, be defined as above with r0 ¼ 1 and let fumh g
M
m¼1, fqmh g

M
m¼1 be the

unique solution of (1.4). Then, for p 2 ð8
5
; 2� there exists j0 2 ð0; 1� such that, for given

h 2 ð0; 1Þ and j 2 ð0; j0Þ satisfying

h4=p
0 �r0 j; ð2:15Þ

for some r0 [ 0, the following error estimate holds true

max
m¼1;...;M

kumh � uðtmÞk22 þ j
XM

m¼1

kFðDumh Þ � FðDuðtmÞÞk22 � c ðh2 þ j2Þ; ð2:16Þ

with a constant c depending only on the characteristics of S, kFðDuÞkW1;2ðI�XÞ,

kotfkL2ðI;L2ðXÞ, ku0k2;p, krqkLp0 ðI�XÞ, c0, r1, d, and r0.

2.5 Comparison with previous results and observation on the requested
regularity

Here we compare the new result with previous ones on the discretization of generalized

non-Newtonian fluids (and general parabolic equations and systems). We also discuss

briefly the regularity we are assuming on the continuous solution.

Concerning previously proved error-estimates we can mainly recall the following facts:

(i) Problem (1.1), in the case of space periodic boundary conditions, has been treated in

[5, 14, 15, 20]. In [5] the same optimal error estimate as in Theorem 2.11 is proved under

slightly stronger assumptions on the regularity of the solution u of (1.1), for p 2 ð3
2
; 2�.

Problem (1.1) without the convective term ½ru�u, in the case of homogeneous Dirichlet

boundary conditions, has been treated in [19] for p 2 ð6
5
;1Þ. It is shown there that (2.16)

holds with the right-hand side replaced by c ðhminf2;4pg þ j2Þ. The proofs of these results are
based on intermediate semi-discrete problems, for which a certain regularity has to be

proved, to obtain the desired optimal convergence rates. This in fact limits the results in

[5, 14, 15, 20] to the case of space periodic boundary conditions. Here, we avoid such

(technical) problems by proving the error estimate directly without using intermediate

semi-discrete problems. The same perspective is also taken in the recent papers [6, 11]. In

[11] problem (1.1) is treated for a nonlinear operator S depending on the full gradient ru,
having ðpð�; �Þ; dÞ-structure, with a variable exponent pð�; �Þ, but without convective term

and without the solenoidality condition. In this situation the error estimate (2.16) with the
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right-hand side replaced by c ðh2ax þ j2at Þ is proved if the variable exponent belongs to

Cax;at ðI � XÞ for appropriate ax; at 2 ð0; 1� and an additional CFL-condition

jr � c infK2T hhk , with some r	 1þ2at
2ax

, is satisfied. In [6] problem (1.1) is treated without

convective term and without the solenoidality condition. There the error estimate (2.16) is

proved under the same conditions as in Theorem 2.11.

(ii) In the recent paper [9] a different approach is used to treat the unsteady p-Laplace
problem, i.e., problem (1.1) without convective term and without the solenoidality con-

straint. By using the L2-projection operator instead of the Scott–Zhang operator (cf. [22]),

satisfying Assumption 2.7, the error estimate

max
m¼1;...;M

kumh � �
Ztmþ1

tm�1

uðsÞ dsk22 þ j
XM

m¼1

Ztmþ1

tm�1

kFðDumh Þ � FðDuðsÞÞk22 ds� c h2as þ j2at
� �

;

ð2:17Þ

is proved in [9] without a coupling condition between h and j. The removal of the coupling

is due to the usage of the L2-projection which in the treatment of the time derivative does

not produce terms needing a coupling [cf. estimate (3.4)]. However, the treatment of the

nonlinear operator S is subtle and requires delicate estimates, which result in the different

error estimate (2.17) compared to the error estimate (2.16). The estimate (2.17) is proved

under the assumption that

FðruÞ 2 L2ðI;Nax;2ðXÞÞ \ Nat ;2ðI; L2ðXÞÞ

u 2 L2ðI;Nax;2ðXÞÞ

for 1
2
\at � 1 and 0\ax � 1, where Na;2 are appropriate Nikol’skiı̌ spaces with differen-

tiability a 2 ð0; 1� (cf. [9]). Even for ax ¼ at ¼ 1 estimate (2.17) differs from (2.16) since

it contains time averages of the error rather than a point-wise error. The usage of limited

regularity in the time-variable and time averaging of the error is motivated by a similar

analysis performed for stochastic parabolic equations in [10].

(iii) In [23, 24] the convergence of a fully implicit space-time discretization (without

convergence rate but also with no assumptions of smoothness of the limiting problem) of

the problem (1.1) in the case of homogeneous Dirichlet boundary conditions is proved for

p[ 11
5

and even for p[ 6
5
for a regularized problem. The convergence of the same

numerical scheme (1.4) towards a weak solution has been recently proved in [7] for

p[ 11
5
. In fact, in [7] the convergence of a general quasi non-conforming Rothe–Galerkin

scheme in the context of evolution problems with Bochner pseudo-monotone operators is

proved (cf. [1] for the treatment of a conforming Rothe–Galerkin scheme in the context of

evolution problems with Bochner pseudo-monotone operators).

Let us now discuss the natural regularity assumption (2.14). The assumption (2.14)1 is

natural in the sense that it is the one obtained from the extra stress tensor S if formally

tested with �Du and o2t u. The existence of solutions satisfying (2.14)1 is proved rigorously

for problem (1.1) in the case of periodic boundary conditions locally in time in [4, 16], for

p[ 7
5
and large data. The situation for Dirichlet boundary conditions is more complicated.

The existence of a locally in time unique strong solution
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u 2 LrðI0;W2;rðXÞÞ \ LpðI0;V div Þ \W1;rðI0; LrðXÞÞ;
q 2 LrðI0;W1;rðXÞÞ \ LrðI0; Lr0ðXÞÞ

for any r 2 ð5;1Þ and some I0 :¼ ð0; T 0Þ with T 0 2 ð0; TÞ is proved in [8] for large data.

This regularity implies, using parabolic embedding theory (cf. [16, Appendix]), that

FðDuÞ 2 L2ðI0;W1;2ðXÞÞ and that u;ru 2 CðI0 � XÞ. However, in [8] it is not proved that

this solution also satisfies otFðDuÞ 2 L2ðI0; L2ðXÞÞ. Nevertheless, one can show that the

solution from [8] also satisfies otFðDuÞ 2 L2ðI0; L2ðXÞÞ, using the following auxiliary

result.

Proposition 2.12 Let the extra stress tensor S in (1.1) have ðp; dÞ-structure for some

p 2 ð6
5
; 2�, and some d 2 ½0;1Þ. Let X � Rd , d	 2, be a bounded domain with Lipschitz

continuous boundary, and I ¼ ð0; TÞ, T 2 ð0;1Þ, be a finite time interval. Assume that

u0 2 V div satisfies div SðDu0Þ 2 L2ðXÞ, f 2 Lp
0 ðI; Lp0 ðXÞÞ \W1;2ðI; L2ðXÞÞ and

G 2 CðI;W1;2ðXÞÞ \W1;p0 ðI; Lp0 ðXÞÞ. Then, there exists a unique weak solution v 2
L1ðI; L2ðXÞÞ \ LpðI;V div Þ of

otv� div SðDvÞ þ rq ¼ f þ divG in I � X;

div v ¼ 0 in I � X;

vð0Þ ¼ u0 in X;

ð2:18Þ

satisfying additionally otv 2 L1ðI; L2ðXÞÞ and otFðDvÞ 2 L2ðI; L2ðXÞÞ.

Proof This result is proved using ideas from [4, 16]. Using the Galerkin method and the

theory of monotone operators one shows that there exists a unique weak solutions v 2
L1ðI; L2ðXÞÞ \ LpðI;V div Þ of (2.18). Moreover, the regularity of the data allows us to show

that we can take the time derivative of the Galerkin equations and test with the time

derivative of the Galerkin solution. Straightforward manipulations show that this produces

an estimate, showing after a limiting process in the Galerkin parameter, the additional

regularity stated above.

Next, by using Proposition 2.12 with G ¼ u� u (where u is the solution from [8]), the

monotonicity of S, and the above regularity for u imply that the solution from [8] satisfies

also otFðDuÞ 2 L2ðI0; L2ðXÞÞ. Consequently, the unique solution ðu; qÞ from [8] satisfies

(2.14) with I replaced by I0.

It is useful to formulate the consequences of the assumption FðDuÞ 2 W1;2ðI � XÞ in
terms of Bochner–Sobolev spaces. From [16, Thm. 33] and standard embedding results it

follows that

FðDuÞ 2 CðI; L3ðXÞÞ:

Using jDujp=2 þ d
p
2 � jFðDuÞj þ d

p
2 and the continuity of P7!F�1ðPÞ (cf. [4, Lemma 3.23])

we get

u 2 CðI;W1;3p=2ðXÞÞ: ð2:19Þ

In [4, Lemma 4.5] it is shown that for p� 2
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kr2uk26p
4þp

� c krFðDuÞk22ðdþ kruk3p=2Þ
2�p;




otru




2

6p
4þp

� c kotFðDuÞk22ðdþ kruk3p=2Þ
2�p:

Thus, we also get

u 2 L2ðI;W2; 6p
4þpðXÞÞ;

otu 2 L2ðI;W1; 6p
4þpðXÞÞ;

ð2:20Þ

where the bounds depend only on kFðDuÞkW1;2ðI�XÞ and d0.

Finally we would like to comment on the restriction p 2 ð8
5
; 2� in Theorem 2.11 com-

pared to the restriction p 2 ð3
2
; 2� in [5, Theorem 2.6]. Based on the results from [4] it is

assumed in [5] that, additionally to (2.14)1, the solution satisfies among other properties

FðDuÞ 2 L2
5p�6
2�p ðI;W1;2ðXÞÞ. This results in

u 2 CðI;W1;rðXÞÞ for any r 2 ½1; 6ðp� 1ÞÞ: ð2:21Þ

If we also assume that (2.21) holds, we can improve Theorem 2.11 to the range p 2 ð3
2
; 2�.

More precisely, we have:

Corollary 2.13 Assume that in the situation of Theorem 2.11 the solution u of (1.1) ad-

ditionally satisfies (2.21). Then, the error estimate (2.16) holds for p 2 ð3
2
; 2� with a con-

stant additionally depending on kukCðI;W1;rðXÞÞ, for some suitable r 2 ½1; 6ðp� 1ÞÞ.

3 Proof of the main result

In this section we prove the error estimates from Theorem 2.11. To this end we need to

derive an equation for the error and to use the discrete Gronwall Lemma 2.5 together with

approximation properties due to the regularity of the solution and the properties of the extra

stress tensor S.

In the error equation we want to use the test function umh �P div
h uðtmÞ, which belongs to the

space Vhð0Þ. Thus, it is enough to consider test functions vh from Vhð0Þ in (1.4). For such test

functions we can replace the discrete pressure qmh by an arbitrary function from Qh. Thus, it

follows from (1.4)1 that for all vh 2 Vhð0Þ, lh 2 Qh and m ¼ 1; . . .;M there holds

ðdtumh ; vhÞþðSðDumh Þ;DvhÞþbðum�1
h ; umh ; vhÞ�ðlh; div vhÞ ¼ ðfðtmÞ; vhÞ: ð3:1Þ

We can choose in (3.1), for each m ¼ 1; . . .;M,

lh ¼ lmh :¼ �
Z

Im

PY
h qðtÞ dt;

and since ð�
R

Im

PY
h qðtÞ dt; div vhÞ ¼ �

R

Im

ðPY
h qðtÞ; div vhÞ dt, we get for all vh 2 Vhð0Þ and

m ¼ 1; . . .;M, that there holds

ðdtumh ; vhÞ þ ðSðDumh Þ; vhÞ þ bðum�1
h ; umh ; vhÞ � �

Z

Im

ðPY
h qðtÞ; div vhÞ dt ¼ ðfðtmÞ; vhÞ;
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which we can re-write also as follows:

ðdtumh ; vhÞ þ �
Z

Im

ðSðDumh Þ; vhÞ dt þ�
Z

Im

bðum�1
h ; umh ; vhÞ dt ��

Z

Im

ðPY
h qðtÞ; div vhÞ dt

¼ �
Z

Im

ðfðtmÞ; vhÞ dt;

since we are averaging locally constant terms. We subtract from this equation the retarded

averages over Im of Eq. (1.2) and obtain the equation for the error

�
dt
�
umh � uðtmÞ

�
; vh

�
þ�
Z

Im

�
SðDumh Þ � SðDuðtÞÞ;Dvh

�
dt

þ�
Z

Im

bðum�1
h ; umh ; vhÞ � bðuðtÞ; uðtÞ; vhÞ dt ��

Z

Im

ðPY
h qðtÞ � qðtÞ; div vhÞ dt

¼ �
Z

Im

ðfðtmÞ � fðtÞ; vhÞ dt;

ð3:2Þ

valid for all m ¼ 1; . . .;M and all vh 2 Vhð0Þ.
Choosing now the legitimate test function vh ¼ umh �P div

h uðtmÞ 2 Vhð0Þ we finally get

for all m ¼ 1; . . .;M
�
dt
�
umh � uðtmÞ

�
; umh �P div

h uðtmÞ
�

þ�
Z

Im

�
SðDumh Þ � SðDuðtÞÞ;Dumh � DP div

h uðtmÞ
�
dt

þ�
Z

Im

bðum�1
h ; umh ; u

m
h �P div

h uðtmÞÞ � bðuðtÞ; uðtÞ; umh �P div
h uðtmÞÞ dt

��
Z

Im

�
PY

h qðtÞ � qðtÞ; divumh � divP div
h uðtmÞ

�
dt

¼ �
Z

Im

ðfðtmÞ � fðtÞ; umh �P div
h uðtmÞÞ dt:

ð3:3Þ

We now discuss and estimate the terms in (3.3) separately, to arrive finally to the

estimate (3.22).

First, note that the projection operator P div
h has the same properties as the operator Ph

considered in [6] and that the solution u of (1.2) and the solution treated in [6] possess

exactly the same regularity. Thus, the first two terms on the left-hand side can be treated

exactly as in [6]. Consequently, [6, Lemmas 3.7, 3.9] yield the following estimates:
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�
dtðumh � uðtmÞÞ; umh �P div

h uðtmÞ
�

	 1

2
dtkumh � uðtmÞk22 � c

h2þ4=p0

j
�
Z

Im

kr2uðtÞk26p
4þp

dt

� c
h4=p

0

j






ruðtmÞ � �

Z

Im

ruðtÞ dt






2

6p
4þp

;

ð3:4Þ

and

�
Z

Im

�
SðDumh Þ � SðDuðtÞÞ;Dumh � DP div

h uðtmÞ
�
dt

	kFðDumh Þ � FðDuðtmÞÞk22 � c h2 �
Z

Im

krFðDuðtÞÞk22 dt

� c�
Z

Im

kFðDuðtÞÞ � FðDuðtmÞÞk22 dt:

ð3:5Þ

The term with the external force is treated slightly differently compared to [6, Lemma

3.10]. This is due to the fact that to apply Gronwall’s Lemma 2.5 we need an estimate

involving the Lp-norm of the gradient of the error. To shorten the notation in the following

computations we denote the error for m ¼ 1; . . .;M by

emh :¼ umh � uðtmÞ:

Lemma 3.1 Under the hypotheses of Theorem 2.11 we have

�
�
� �
Z

Im

�
fðtmÞ � fðtÞ; umh �P div

h uðtmÞ
�
dt
�
�
�

� c �
Z

Im

kfðtmÞ � fðtÞk22 dt þ c kDemh kp �
Z

Im

kfðtmÞ � fðtÞk2 dt

þ c h2þ4=p0 �
Z

Im

kr2uðtÞk26p
pþ4

dt þ c h4=p
0 �
Z

Im

kruðtmÞ � ruðtÞk26p
4þp

dt:

Proof Using that

umh �P div
h uðtmÞ ¼ umh � uðtmÞ þ uðtmÞ �P div

h uðtmÞ ¼ emh þ uðtmÞ �P div
h uðtmÞ;

together with Hölder’s inequality, Young’s inequality and the embedding

W1;pðXÞ,!L2ðXÞ, valid for p	 6
5
, we get
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�
�
� �
Z

Im

�
fðtmÞ � fðtÞ; umh �P div

h uðtmÞ
�
dt
�
�
�

� c kDemh kp �
Z

Im

kfðtmÞ � fðtÞk2 dt

þ c �
Z

Im

kfðtmÞ � fðtÞk22 dt þ c kuðtmÞ �P div
h uðtmÞk22:

The last term was already treated in the proof of [6, Lemma 3.7], where it is proved that

kuðtmÞ �P div
h uðtmÞk22

� c h2þ4=p0 �
Z

Im

kr2uðtÞk26p
pþ4

dt þ c h4=p
0 �
Z

Im

kruðtmÞ � ruðtÞk26p
4þp

dt;

which yields the assertion.

It remains to treat the convective term and the pressure term, which were not present in [6]

and which require a precise estimation. Let us start with the former one.

Lemma 3.2 Under the hypotheses of Theorem 2.11 we have

�
�
� �
Z

Im

bðum�1
h ; umh ; u

m
h �P div

h uðtmÞÞ � bðuðtÞ; uðtÞ; umh �P div
h uðtmÞÞ dt

�
�
�

� c kDemh kpkDe
m�1
h k1�h

p kem�1
h kh2 þ c kDemh kp �

Z

Im

kruðtmÞ � ruðtÞk 6p
4þp

dt

þ c kDemh kp �
Z

Im

kruðtÞ � ruðtm�1Þk 6p
4þp

dt þ c kDemh kp h �
Z

Im




r2uðtÞ






6p
4þp

dt:

ð3:6Þ

Moreover, the estimate is also correct if the first term on the right-hand side is replaced by

c kDemh kpkDem�1
h kp.

Proof Since P div
h umh ¼ umh , we get umh �P div

h uðtmÞ ¼ P div
h emh . Thus, we can re-write the

integrand in the term to be estimated in (3.6) as follows

bðum�1
h ; umh ;P

div
h emh Þ � bðuðtÞ; uðtÞ;P div

h emh Þ:

To the latter we add and subtract, in the order, the terms bðum�1
h ;P div

h uðtmÞ;P div
h emh Þ,

bðuðtm�1Þ;P div
h uðtmÞ;P div

h emh Þ, bðuðtm�1Þ; uðtmÞ;P div
h emh Þ and bðuðtÞ; uðtmÞ;P div

h emh Þ, to

get for all m ¼ 1; . . .;M and a.e. t 2 Im

bðum�1
h ; umh ;P

div
h emh Þ � bðuðtÞ; uðtÞ;P div

h emh Þ ¼ bðum�1
h ; umh �P div

h uðtmÞ;P div
h emh Þ

þ bðum�1
h � uðtm�1Þ;P div

h uðtmÞ;P div
h emh Þ þ bðuðtm�1Þ;P div

h uðtmÞ � uðtmÞ;P div
h emh Þ

þ bðuðtm�1Þ � uðtÞ; uðtmÞ;P div
h emh Þ þ bðuðtÞ; uðtmÞ � uðtÞ;P div

h emh Þ

¼: Im1 ðtÞ þ Im2 ðtÞ þ Im3 ðtÞ þ Im4 ðtÞ þ Im5 ðtÞ: ð3:7Þ
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In view of the skew-symmetry of bð�; �; �Þ we have Im1 ðtÞ ¼ 0, for all m ¼ 1; . . .;M and

t 2 Im.
Using the definition of bð�; �; �Þ in (1.3), and partial integration we get for all m ¼

1; . . .;M and t 2 Im, also using Hölder’s inequality with ð3p
2
; 3p
4p�5

; 3p
3�pÞ and ðp; 3p

4p�5
; 3p
2�pÞ,

respectively, the embeddings W1;pðXÞ,!L
3p
3�pðXÞ, W1;3p

2 ðXÞ,!L
3p
2�pðXÞ, Korn’s inequality,

the interpolation of L
3p

4p�5ðXÞ between L2ðXÞ and W1;pðXÞ, which is possible for p 2 ð8
5
; 2�,

the continuity of P div
h (cf. Proposition 2.9 (ii)), and (2.19), that

jIm2 ðtÞj �
1

2

�
�ð½rP div

h uðtmÞ�em�1
h ;P div

h emh Þ
�
�þ 1

2

�
�ð½rP div

h emh �em�1
h ;P div

h uðtmÞÞ
�
�

� c krP div
h uðtmÞk3p

2
kem�1

h k 3p
4p�5

kDP div
h emh kp

� c kem�1
h kh2kDe

m�1
h k1�h

p kDemh kp;

ð3:8Þ

with h :¼ 10p�16
5p�6

2 ð0; 1� for p 2 ð8
5
; 2�. Using the embedding W1;pðXÞ,!L2ðXÞ in the last

line we also obtain

jIm2 ðtÞj � c kDem�1
h kpkDe

m
h kp: ð3:9Þ

Since uðtm�1Þ is solenoidal we get, also using Hölder’s inequality with ð 3p
5ðp�1Þ ;

3p
2�p ;

3p
3�pÞ,

the embeddings W1;pðXÞ,!L
3p
3�pðXÞ, W1;3p

2 ðXÞ,!L
3p
2�pðXÞ, L

6p
4þpðXÞ,!L

3p
5ðp�1ÞðXÞ, the continuity

of P div
h (cf. Proposition 2.9 (ii)), and (2.19), that

jIm3 ðtÞj ¼
�
�
�
½rP div

h uðtmÞ � ruðtmÞ�uðtm�1Þ;P div
h emh

��
�

� c krP div
h uðtmÞ � ruðtmÞk 3p

5ðp�1Þ
kruðtmÞk3p

2
kDP div

h emh kp

� c krP div
h uðtmÞ � ruðtmÞk 6p

4þp
kDemh kp:

ð3:10Þ

To treat krP div
h uðtmÞ � ruðtmÞk 6p

4þp
we add and subtract rP div

h

�
�
R

Im

uðrÞ dr
�
, use

P div
h

�
�
R

Im

uðrÞ dr
�
¼ �
R

Im

P div
h uðrÞ dr, add and subtract r�

R

Im

uðrÞ dr, use the continuity of

P div
h (cf. Proposition 2.9 (ii)), r�

R

Im

vðrÞ dr ¼ �
R

Im

rvðrÞ dr, Fubini’s theorem, the properties

of the Bochner integral, Proposition 2.9 (ii) and (2.20) to arrive at
krP div

h uðtmÞ � ruðtmÞÞk 6p
4þp

� c



rP div

h �
Z

Im

uðtmÞ � uðrÞ dr





6p
4þp

þ c



r�

Z

Im

P div
h uðrÞ � uðrÞ dr






6p
4þp

þ c



r�

Z

Im

uðrÞ � uðtmÞ dr





6p
4þp

� c



�
Z

Im

ruðtmÞ � ruðrÞ dr





6p
4þp

þ c



�
Z

Im

rP div
h uðrÞ � ruðrÞ dr






6p
4þp

� c �
Z

Im




ruðtmÞ � ruðrÞ






6p
4þp

drþ c �
Z

Im




rP div

h uðrÞ � ruðrÞ





6p
4þp

dr

� c �
Z

Im




ruðtmÞ � ruðrÞ






6p
4þp

drþ c h �
Z

Im




r2uðrÞ






6p
4þp

dr:

ð3:11Þ
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Combining (3.10) and (3.11) we showed that for all m ¼ 1; . . .;M and t 2 Im there holds

jIm3 ðtÞj � c kDemh kp �
Z

Im

kruðtmÞ � ruðrÞk 6p
4þp

dr

þ c kDemh kp h �
Z

Im




r2uðrÞ






6p
4þp

dr:

ð3:12Þ

Since uðtm�1Þ and uðtÞ are solenoidal we get for every m ¼ 1; . . .;M and t 2 Im, also using

Hölder’s inequality with ð3p
2
; 3p
4p�5

; 3p
3�pÞ, the embedding W1;pðXÞ,!L

3p
3�pðXÞ, Korn’s

inequality, the embedding W1; 6p
4þpðXÞ,!L

6p
4�pðXÞ,!L

3p
4p�5ðXÞ, the continuity of P div

h

(cf. Proposition 2.9 (ii)), and (2.19), that

jIm4 ðtÞj ¼
�
�
�
½ruðtmÞ�

�
uðtÞ � uðtm�1Þ

�
;P div

h emh
��
�

� c kruðtmÞk3p
2
kuðtÞ � uðtmÞk 3p

4p�5
kDP div

h emh kp

� c kruðtÞ � ruðtm�1Þk 6p
4þp
kDemh kp:

ð3:13Þ

SinceuðtÞ is solenoidal we get for everym ¼ 1; . . .;M and t 2 Im, also usingHölder’s inequality

with ð 6p
4þp ;

6p
7p�10

; 3p
3�pÞ, the embedding W1;pðXÞ,!L

3p
3�pðXÞ, Korn’s inequality, the embedding

W1;3p
2 ðXÞ,!L

3p
2�pðXÞ,!L

6p
7p�10ðXÞ, (2.19), and the continuity ofP div

h (cf. Proposition 2.9 (ii)), that

jIm5 ðtÞj ¼
�
�
�
½ruðtmÞ � ruðtÞ�uðtÞ;P div

h emh
��
�

� c kruðtmÞ � ruðtÞk 6p
4þp
kuðtÞk 6p

7p�10
kDP div

h emh kp

� c kruðtmÞ � ruðtÞk 6p
4þp
kDemh kp:

ð3:14Þ

The assertions follow from (3.8) and (3.9), resp., (3.12), (3.13) and (3.14).

Let us now discuss the last term, namely the one including the pressure.

Lemma 3.3 Under the hypotheses of Theorem 2.11 for every e[ 0 there exists ce [ 0

such that

�
�
��
Z

Im

�
PY

h qðtÞ � qðtÞ; div umh � divP div
h uðtmÞ

�
dt
�
�
�

� e kFðDumh Þ � FðDuðtmÞÞk22 þ ce �
Z

Im

kFðDuðtmÞÞ � FðDuðtÞÞk22 dt

þ ce �
Z

Im

kFðDuðtÞÞ � FðDP div
h uðtÞÞk22 dt þ ce h

2 �
Z

Im

krFðDuðtÞÞk22 dt

þ ce h
2 �
Z

Im

krqðtÞkp
0

p0 þ kFðDuðtÞÞk22 dt þ ce h
2 jXj dp0 :

ð3:15Þ
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Proof The point-wise application of Young’s inequality (2.4) with a ¼ jDuðtm; �Þj to the

integrand of the term on the left-hand side of (3.15) yields for all m ¼ 1; . . .;M, a.e. t 2 Im
and every e[ 0

�
�
�
PY

h qðtÞ � qðtÞ; divumh � divP div
h uðtmÞ

��
�

� e
c0

Z

X

ujDuðtmÞjðjDu
m
h �DP div

h uðtmÞjÞ dx

þ ce

Z

X

�
ujDuðtmÞj

�
ðjPY
h qðtÞ�qðtÞjÞ dx� e kFðDumh Þ � FðDuðtmÞÞk22 þ e kFðDuðtmÞÞ

�FðDP div
h uðtmÞÞk

2

2 þ ce

Z

X

�
ujDuðtmÞj

�
ðjPY
h qðtÞ � qðtÞjÞ dx

¼: e Jm1 ðtÞ þ e Jm2 ðtÞ þ ceJ
m
3 ðtÞ;

ð3:16Þ

where in the last estimate we added and subtracted DuðtmÞ and used that for all P;Q 2
R3�3

sym there holds ujPjðjP�QjÞ � c0
�
�FðPÞ � FðQÞ

�
�2 (cf. Proposition 2.3 (i)). To treat Jm2 ðtÞ

we add and subtract FðDuðtÞÞ and FðDP div
h uðtÞÞ

jJm2 ðtÞj � c kFðDuðtmÞÞ � FðDuðtÞÞk22 þ kFðDuðtÞÞ � FðDP div
h uðtÞÞk22

þ kFðDP div
h uðtÞÞ � FðDP div

h uðtmÞÞk
2

2:
ð3:17Þ

To treat the last term on the right-hand side of (3.17) we use Proposition 2.3 and Propo-

sition 2.9 (iv) to get

kFðDP div
h uðtÞÞ � FðDP div

h uðtmÞÞk
2

2

� c

Z

X

ujDP div
h uðtÞjðjDP div

h uðtÞ � DP div
h uðtmÞjÞ dx

� c

Z

X

ujDuðtÞjðjDP div
h uðtÞ � DP div

h uðtmÞjÞ dxþ c kFðDP div
h uðtÞÞ � FðDuðtÞÞk22

� c h2 krFðDuðtÞÞk22 þ c kFðDuðtÞÞ � FðDuðtmÞÞk22
þ c kFðDP div

h uðtÞÞ � FðDuðtÞÞk22:

ð3:18Þ

To treat the term Jm3 ðtÞ we note that X ¼
S

K2T h
K, use Proposition 2.3 (ii), (iii) and

K � SK to arrive at

jJm3 ðtÞj � c
X

K2T h

Z

K

�
ujhDuðtmÞiSK j

�
ðjPY
h qðtÞ � qðtÞjÞ dx

þ c
X

K2T h

Z

SK

jFðDuðtmÞÞ � hFðDuðtmÞÞiSK j
2 dx

¼: c
X

K2T h

Am
KðtÞ þ c

X

K2T h

Bm
KðtÞ:

ð3:19Þ
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Using Proposition 2.10, again Proposition 2.3 (ii), (iii) and
�
ujDuðtÞj

�
ðhjrjÞ � c h2
�
jrjp

0
þ dp

0 þ jFðDuðtÞÞj2
�
, valid for p� 2, and hK � h yields

jAm
KðtÞj �

Z

SK

�
ujhDuðtmÞiSK j

�
ðhK jrqðtÞjÞ dx

� c

Z

SK

�
ujDuðtmÞj

�
ðhK jrqðtÞjÞ dxþ c Bm
KðtÞ

� c

Z

SK

�
ujDuðtÞj

�
ðhK jrqðtÞjÞ dx

þ
Z

SK

jFðDuðtmÞÞ � FðDuðtÞÞj2 dxþ c Bm
KðtÞ:

� c h2
Z

SK

jrqðtÞjp
0
þ dp

0 þ c jFðDuðtÞÞj2 dx

þ
Z

SK

jFðDuðtmÞÞ � FðDuðtÞÞj2 dxþ c Bm
KðtÞ:

ð3:20Þ

Adding and subtracting appropriate terms, using Proposition 2.3 (iii), the properties of the

mean value, jSK j � jKj and Poincaré’s inequality we get

jBm
KðtÞj � c

Z

SK

jFðDuðtmÞÞ � FðDuðtÞÞj2 dxþ c

Z

SK

jFðDuðtÞÞ � hFðDuðtÞÞiSK j
2 dx

þ c

Z

SK

jhFðDuðtÞÞiSK � hFðDuðtmÞÞiSK j
2 dx

� c

Z

SK

jFðDuðtmÞÞ � FðDuðtÞÞj2 dxþ c h2
Z

SK

jrFðDuðtÞÞj2 dx:

ð3:21Þ

The assertion follows from (3.16)–(3.21) and the properties of the triangulation.

Collecting all estimates, we are ready to prove the main result of this paper.

Proof of Theorem 2.11 From estimates (3.4) and (3.5), Lemmas 3.1, 3.2, and 3.3 we get,

choosing e[ 0 sufficiently small to absorb the term e kFðDumh Þ � FðDuðtmÞÞk22, and using

the properties of the retarded time averages, that for all m ¼ 1; . . .;M and 0\j� 1
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dtkumh � uðtmÞk22 þ c kFðDumh Þ � FðDuðtmÞÞk22

� c h2 �
Z

Im

krFðDuðtÞÞk22 dt þ c
h2þ4=p0

j
�
Z

Im

kr2uðtÞk26p
4þp

dt þ c h2 �
Z

Im

krqðtÞkp
0

p0 dt

þ c�
Z

Im

kFðDuðtÞÞ � FðDuðtmÞÞk22 dt þ c
h4=p

0

j
�
Z

Im

kruðtmÞ � ruðtÞk26p
4þp

dt

þ c �
Z

Im

kFðDuðtÞÞ � FðDP div
h uðtÞÞk22 dt þ c h2 �

Z

Im

kFðDuðtÞÞk22 dt

þ c h2 jXj dp0 þ c �
Z

Im

kfðtmÞ � fðtÞk22 dt þ c kDemh kp �
Z

Im

kfðtmÞ � fðtÞk2 dt

þ c kDemh kpkDem�1
h k1�h

p kem�1
h kh2 þ c kDemh kp �

Z

Im

kruðtmÞ � ruðtÞk 6p
4þp

dt

þ c kDemh kp h �
Z

Im




r2uðtÞ






6p
4þp

dt þ c kDemh kp �
Z

Im

kruðtÞ � ruðtm�1Þk 6p
4þp

dt:

ð3:22Þ

Moreover, the estimate (3.22) is also correct if c kDemh kpkDem�1
h k1�h

p kem�1
h kh2 is replaced by

c kDemh kpkDem�1
h kp. To use Lemma 2.5 we observe that by Lemma 2.4 and (2.19) we have

with k :¼ dþ kDukCðI;LpðXÞÞ

kFðDumh Þ � FðDuðtmÞÞk22 	 c
�
kþ kDumh � DuðtmÞkp

�p�2 kDumh � DuðtmÞk2p
¼ c

�
kþ kDemh kp

�p�2 kDemh k
2
p:

Thus, the left-hand side of (3.22) is larger or equal than

dtkemh k
2
2 þ c

�
kþ kDemh kp

�p�2 kDemh k
2
p;

and (3.22) is now written in the form needed for the application of Lemma 2.5. To do so,

we set

amðhÞ :¼ kemh k2; bmðhÞ :¼ kDemh kp; rmðh; jÞ :¼ h �
Z

Im




r2uðtÞ






6p
4þp

dt;

qmðh; jÞ ¼ qm :¼ �
Z

Im

kruðtmÞ � ruðtÞk 6p
4þp

dt þ�
Z

Im

kruðtÞ � ruðtm�1Þk 6p
4þp

dt

þ�
Z

Im

kfðtmÞ � fðtÞk2 dt;

�
smðh;jÞ

�2
:¼ h2 �

Z

Im

krFðDuðtÞÞk22 dt þ
h2þ4=p0

j
�
Z

Im

kr2uðtÞk26p
4þp

dt

þ�
Z

Im

kFðDuðtÞÞ � FðDP div
h uðtÞÞk22 dt þ h2 �

Z

Im

krqðtÞkp
0

p0 dt

þ h2 �
Z

Im

kFðDuðtÞÞk22 dt þ h2 jXj dp0 ;

�
rmðh;jÞ

�2
:¼ h4=p

0

j
�
Z

Im

kruðtmÞ � ruðtÞk26p
4þp

dt þ�
Z

Im

kfðtmÞ � fðtÞk22 dt

þ�
Z

Im

kFðDuðtÞÞ � FðDuðtmÞÞk22 dt:
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Let us verify that these quantities fulfil assumption (2.6). First, we observe that, by using

the regularity (2.20) on the velocity u, it holds

j
XM

m¼1

r2mðh; jÞ� c h2
ZT

0

kr2uðtÞk26p
pþ4

dt� c h2 : ð3:23Þ

Second, by using the regularity (2.14), the condition (2.15) and the regularity (2.20),

Proposition 2.3 (i) and the regularity (2.14), and again the regularity (2.14), we obtain

j
XM

m¼1

s2mðh; jÞ� c h2
ZT

0

krFðDuðtÞÞk22 dt þ h2
h4=p

0

j

ZT

0

kr2uðtÞk26p
4þp

dt

þ h2
ZT

0

krqðtÞkp
0

p0 dt þ h2
ZT

0

kFðDuðtÞÞk22 dt þ h2 jXj dp0

� c h2:

ð3:24Þ

Third, using Hölder’s inequality, several times Lemma 2.6, the regularity (2.20), and the

assumption on the regularity of f we get (since p� 2Þ

j
XM

m¼1

q2m � c j2
ZT

0

kotruðtÞk26p
pþ4

dt þ c j2
ZT

0

kotfðtÞk22 dt

� c j2:

ð3:25Þ

Next, by using Lemma 2.6, the condition (2.15), the regularity (2.20), as well as the

regularity (2.20), and the assumption on the regularity of f we have

j
XM

m¼1

r2mðh; jÞ� c j2
h4=p

0

j

ZT

0

kotruðtÞk26p
4þp

dt þ cj2
ZT

0

kotfðtÞk22 dt

þ c j2
ZT

0

kotFðDuðtÞÞk22 dt

� c j2:

ð3:26Þ

Finally, since u0h ¼ P div
h u0, the regularity of u0 and Proposition 2.9 yield

a0ðhÞ ¼ ku0 �P div
h u0k2 � c h kru0k2 � c h;

b0ðhÞ ¼ kDu0 � DP div
h u0kp � c h kr2u0kp � c h:

Consequently Lemma 2.5 yields for sufficiently small j and h that

max
1�m�M

kemh k
2
2 þ c1ð1þ KÞp�2j

XM

m¼0

kDemh k
2
p � c

�
h2 þ j2

�
;

max
1�m�M

kDemh kp � 1:
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Using this, the estimates (3.23)–(3.26) and kem�1
h kh2kDem�1

h k1�h
p kDemh kp � c

kDem�1
h k2p þ c kDemh k

2
p, one easily checks that all terms on the right-hand side of (3.22) are

bounded, after multiplication by j and summation over m ¼ 1; . . .;M, by c ðh2 þ j2Þ.
Thus, we proved

max
m¼1;...;M

kumh � uðtmÞk22 þ j
XM

m¼1

kFðDumh Þ � FðDuðtmÞÞk22 � c ðh2 þ j2Þ;

which is the assertion of Theorem 2.11.

Proof of Corollary 2.13 This corollary is proved in the same way as Theorem 2.11 with the

only difference that in all places where (2.19) is used we use (2.21) instead.

Let us illustrate that on the estimate of Im2 ðtÞ in (3.8). Using the definition of bð�; �; �Þ in
(1.3), and partial integration we get for all m ¼ 1; . . .;M and t 2 Im, also using Hölder’s

inequality with ðr; 3pr
3pr�2p�3

; 3p
3�pÞ and ðp; p

p�1
;1Þ for r 2 ð3; 6ðp� 1ÞÞ, respectively, the

embeddings W1;pðXÞ,!L
3p
3�pðXÞ, W1;rðXÞ,!L1ðXÞ, Korn’s inequality, the embedding

L
p

p�1ðXÞ,!L
3pr

3pr�2p�3ðXÞ, the interpolation of L
p

p�1ðXÞ between L2ðXÞ and W1;pðXÞ, which is

possible for p 2 ð3
2
; 8
5
�, the continuity of P div

h (cf. Proposition 2.9 (ii)), and (2.21)

jIm2 ðtÞj �
1

2

�
�ð½rP div

h uðtmÞ�em�1
h ;P div

h emh Þ
�
�þ 1

2

�
�ð½rP div

h emh �em�1
h ;P div

h uðtmÞÞ
�
�

� c krP div
h uðtmÞkr

�
kem�1

h k 3pr
3pr�2p�3

þ kem�1
h k p

p�1

�
kDP div

h emh kp

� c kem�1
h kh2kDe

m�1
h k1�h

p kDemh kp;

with h :¼ 8p
5p�6

2 ð0; 1� for p 2 ð3
2
; 8
5
�. Using the embedding W1;pðXÞ,!L2ðXÞ in the last line

we also obtain

jIm2 ðtÞj � c kDem�1
h kpkDe

m
h kp:

Similar adaptations apply to the treatment of the other terms stemming from the convective

term. This proves the assertion.

Due to the presence of the term
�
�ð½rP div

h emh �em�1
h ;P div

h uðtmÞÞ
�
� an extension of the validity

of the error estimate for p� 3
2
with the present technique is impossible, even with further

regularity assumptions on u.
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