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Abstract

In this paper we prove optimal error estimates for solutions with natural regularity of the
equations describing the unsteady motion of incompressible shear-thinning fluids. We
consider a full space-time semi-implicit scheme for the discretization. The main novelty,
with respect to previous results, is that we obtain the estimates directly without introducing
intermediate semi-discrete problems, which enables the treatment of homogeneous
Dirichlet boundary conditions.
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1 Introduction

In this paper we study a space-time discretization of the unsteady system describing the
motion of homogeneous (for simplicity the density p is set equal to 1), incompressible
shear-thinning fluids under homogeneous Dirichlet boundary conditions. We prove optimal
error estimates (cf. Sect. 2.4) for solutions possessing a natural regularity, extending the
results in [5] to the case of homogeneous Dirichlet boundary conditions. Our method
differs from most previous investigations in as much as we use no intermediate semi-
discrete problems to prove our result. We restrict ourselves to the three-dimensional set-
ting, however, all results can be easily adapted to the general setting in d-dimensions.
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More precisely, we consider for a bounded polyhedral domain Q C R? and a finite time
interval I := (0, T), for some given T > 0, the system

ou — divS(Du) + [Vuju + Vg =f inlxQ,
diva =0 inl x Q, (L.1)
u(0)=uy in Q,

where the vector field u = (u, u, 143)T is the velocity, the scalar ¢ is the kinematic pressure,

the vector f = (f1, />, f3)T is the external body force and uy is the initial velocity. We assume
that the extra stress tensor S has (p,d)-structure for some p € (1,2], and 0 € [0, 00)

(cf. Sect. 2.2). For the convective term we use the notation ([Vulu), = Z?:l u;o;u;,

i =1,2,3, while Du:={(Vu+ Vu') denotes the symmetric part of the gradient Vu. For
smooth enough solutions (u, ¢) the variational formulation of (1.1) reads

(©u(r),v) + (S(Du(?)), Dv) + b(u(r),u(t), v) — (q(t), divv) = (£(z),v),
(divu(r),n) =0, (12)
(u(0),v) = (u,v),

forallve V:=W,"(Q), neQ:= L’él(Q) and almost every ¢ € I. We used the notation

v, w) =3 (5], w) — ([Vw]u,v)], (13)
for the convective term to have a stable space-discretization. Note that b(-, -, ) is skew-
symmetric with respect to the last two arguments, i.e., b(u, v, w) = —b(u, w, v) and that for
solenoidal functions it holds b(u, v, w) = ([Vv]u, w). We perform an error analysis for the
semi-implicit space-time discretization, which for given 2 >0 and M € N reads: for
u) = 1™ g find (0, ¢") € Vj x Qp,m = 1,...,M, such that for all v, € V;,, 5, € Oy holds

(dpwy, vi)+ (S(DWG), Dvy) +b(wy ™" wi', vio) = (g5, divvi) = (£(t), V),

(1.4)
(le “;ln’ nh) = 07

where duj’ ;= k™' () —u)"") is the backward difference quotient with x := L.

Vi, C V, Qn C Q are appropriate stable finite element spaces with mesh size & > 0. The
precise setup can be found in Sect. 2.3.

Here

2 Preliminaries and main results

In this section we introduce the notation, the setup, and recall some technical results which
will be needed in the proof of the main result.

2.1 Function spaces

We use ¢, C to denote generic constants, which may change from line to line, but are not
depending on the crucial quantities. We write f ~ g if and only if there exist constants
¢,C >0 suchthat cf <g<Cf.

We will use the customary Lebesgue spaces (L(2Q).||.[|,) and Sobolev spaces

(WEP(Q), ]| - k. »)-k € N. We do not distinguish between scalar, vector-valued or tensor-valued
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function spaces in the notation if there is no danger of confusion. However, we denote vector-
valued functions by small boldfaced letters and tensor-valued functions by capital boldfaced
letters. If a norm is considered on a set M different than Q2 we indicate this in the respective norms
as || Al a0 Il - [l p.0r- We equip W, " (Q) with the gradient norm ||V . [|,- We denote by |M] the 3-
dimensional Lebesgue measure of a measurable set M. The mean value of a locally integrable
function fover ameasurable setM C Qisdenotedby (f),, := ;{;f dx = MI/I_I Jis f dx. By L§ () we

denote the space of functions f € I7(Q) with (f), = 0. Moreover, we use the notation
(f.g) := [,/f2 dx, whenever the right-hand side is well-defined.

We use the following notation

3

X:=(W'PQ)°, vi=(W"(Q), Va ={veV|divv=0}, Y:=0/(2), 0:=1I15(2),

for the most often used function spaces.

2.2 Basic properties of the extra stress tensor

For a tensor P c R¥3 we denote its symmetric part by
PY = L(P+P") e R} :={A € R”*[P=P'}. The scalar product between two

tensors P, Q is denoted by P - Q, and we use the notation |P|2 = P - P. We assume that the
extra stress tensor S has (p, d)-structure, which will be defined now. A detailed discussion
and full proofs of the following results can be found in [12, 21].

Assumption 2.1 We assume that S:R™ — R} belongs to CO(R™;
Rya) N CHRA\{0}; RY:), satisfies S(P) = S(P¥™) and S(0) = 0. Morcover, we
assume that S has (p, §)-structure, i.e., there exist p € (1,00), é € [0,00), and constants
Co, C1 > 0 such that

3
Z 0uS;i(P)QyjQu > Co (6 + |Psym|)p72|stm|27 (2.1a)

ijhi=1

10uS; ()| < C1 (3 + [P¥™])" 2, (2.1b)

are satisfied for all P, Q € R¥>*® with P¥™ £ Q and all i,j, k,I = 1,. .., 3. The constants C,
Cy, and p are called the characteristics of S.

Remark 2.2 We would like to emphasize that, if not otherwise stated, the constants in the
paper depend only on the characteristics of S, but are independent of ¢ > 0.

Another important tool are shifted N-functions' {0.} a>00 cf. [12, 13, 21]. Defining for
t >0 a special N-function ¢ by
t
o(t) == / @'(s)ds with @' (t) :== (64 1)" 1, (2.2)
0

' A function /8 R=% — R2° is called N-function if it is a continuous, convex function such that
PO — 0, im0 Y2 = 00, and (t) > 0 for ¢ > 0.

lim;_o = uE
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we can replace C;(d + \Psym\)IFz in the right-hand side of (2.1) by C; @" (JP¥™|), with
some constants C ; >0, i=0,1. Next, the shifted N-functions are defined for >0 by
t

@, (1) = /(p;(s) ds with ¢ (t):=¢'(a+1)
0

t
a+t’

(2.3)

Note that ¢,(f)~ (3 +a+1)" > and that the complementary function satisfies
(@) (1) ~ ((8 + a)’~" + 1)’ 7212. Moreover, the N-functions ¢, and (¢,)" satisfy the 4,-
condition® uniformly ~with respect to a>0, ie., Ay(¢,) <c2™*{2} and
M:((p,)") < c2mx{2#'} | respectively. We will use also Young’s inequality: for all & > 0

there exists ¢, > 0, such that for all s,#,a >0 it holds
Is S € (Pa(t) + Ce ((pa)*(s)7

(2.4)
1@ (s) + @, (1) s S €, (1) + cc pu(s).

Closely related to the extra stress tensor S with (p, &)-structure is the function F : R¥** —
R3*3 defined through

sym
p=2
F(P) := (5 + [PY™[) T P, (25)

In the following lemma we recall several useful results, which will be frequently used in
the paper. The proofs of these results and more details can be found in [2, 12, 13, 21].

Proposition 2.3 Let S satisfy Assumption 2.1, let ¢ be defined in (2.2), and let F be
defined in (2.5).

(i) Forall P,Q e R¥3

2

(S(P) -S(Q)) - (P~ Q) ~[F(P) ~F(Q)|",
~ Qs ([P — Q¥™)),
~ ol (P74 Q) P - Qo
S(Q) - Q~ [F(Q)I* ~¢(IQ*"]).
S(P) — S(Q)] ~ @lpom (IP¥™ — Q™).
The constants depend only on the characteristics of S.

(ii)  For all € > 0, there exist a constant c. > 0 (depending only on € > 0 and on the
characteristics of S) such that for all u,v,w € X we have

(S(Du) — S(Dv), Dw — Dv) < ¢ ||[F(Du) — F(DV)|); + c.|[F(Dw) — F(Dv) |3,
(S(Du) — S(Dv), Dw — Dv) < ¢ ||[F(Dw) — F(DV)|[; + c.|[F(Du) — F(DV)|3,
and for all P,Q € R¥3 >0 it holds

sym*

2 An N-function y satisfies the A,-condition if there exists a constant K such that (2r) < K (z) for all
t>0. The smallest such constant is denoted by A, ().
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Piq|(1) <c.opy(t) +¢|F(Q) — F(P)]%,
(910) (1) <c: (@) (1) + £ [F(Q) — F(P)[.

(iii)  For all H € 17(Q) there holds

/m dw~/m (H) o) d,

with constants depending only on p.

Let us recall the following result, taken from [16, Lemma 8], [4, Lemma 4.1], which is
valid for p <2.

Lemma 2.4 Let S satisfy Assumption 2.1 with p € (1,2] and 6 € [0, 00). Then, there exists
a constant ¢, depending only on the characteristics of S, such that for sufficiently smooth u,
Vv there holds

2 -2 2
IF(Du) — F(DV)|[; > ¢ (6 + |[Dul|, + [Du — Dv||,)"" [Du —Dv] ;.

2.3 Discretizations

For the time-discretization, given 7 > 0 and M € N, we define the time step size as
K := T /M > 0, with the corresponding net /" := {tm}m o> tm 1= mx. We use the notation
Ly := (tm—1,tm), withm = 1,..., M. For a given sequence {V'"}Z:() we define the backward
differences quotient as

v — m—1

v =——— m=1,... M.
K

The proof of the main result uses the following modification of Gronwall’s lemma.

Lemma 2.5 Let 1<p<2and T € (0,00). For M € N and h > 0 let be given non-neg-
ative sequences {an(h)},_g {bu(h) o {rm(h ) Yoy Lsm(hy ) brs Lo (B}
and {o,(h, K)}m 1» where K := L. Assume that there exists o, K >0 such that for all
0<h<1/\/y and all 0 <Kk <% there holds:

(ao(h))” < o 1, (bo(h))* < o 2

(rm(ha’c))zﬁﬂohz» KZ(Sm(h7 K))Zﬁﬂ()h27

m=1
M

(pm(h,K)>2§ﬂ0 K27 KZ(Um(th))ZS.uO Kz'

1 m=1

K

= 21

K

=~

1

Further, let there exist constants [y, [, j3 > 0, A > 0, and some 0<0 <1 such that for
some A € [0,A] the following two inequalities are satisfied for all 0<h<1/,/i,, all
O<x<Randallm=1,... M’

3 Here we use the convention that for A = b,, = 0 we set (1 + b,,)" 2b% = 0.
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i}, + (A + b)) bpy < byt + bupy + fobm b + 55, + 0y, (2.7)

dfarzn + :ul()L + bm)p_zb; S bml’m + bmpm + :u3bmb;ln 01“3: 1 + Sm + O-m (28)

Then, there exist constants [y, x > 0, and u,, ts > 0, independent of A, such that for all
K, h > 0 satisfying k<% and h* <Tiy i there holds

<
Og}nai(Mb L (2.9)
) max a4 (14 AP~ 2K2)b2 < gy (R +12) exp(2usk M). (2.10)

Proof This result is a small modification of the corresponding results in [3, 5], and can be
proved in the same way.

The following result will be used frequently in the sequel.

Lemma 2.6 Assume that
f,0f € LX),

where (X, || - ||x) is a Banach space. Then, for all t,, € L,, m =1,...,M, it holds

][Hf Pl ds <3 [ |72 1 (2.11)
Proof The assertion is proved in [6, Lemma 3.1] in the special case 7t,, =1t,,
m=1,...,M. The general case follows exactly in the same way.

For the spatial discretization we denote by 7, a family of shape-regular triangulations,
consisting of 3-dimensional closed simplices K. We denote by /g the diameter of K and by
px the supremum of the diameters of inscribed balls. We assume that 7, is non-degen-
erate, i.e., there exists a constant 7, > 0 such that maxth <7o. The global mesh-size h
is defined by & := maxgcT, hx. Let Sk denote the nelghborhood of K, i.e., Sk is the union
of all simplices of 7, intersecting K. By the assumptions we obtain that |Sk| ~ |K| and that
the number of patches Sk to which a simplex belongs are bounded uniformly in both # > 0
and K € T,
We denote by Py (7). with k € Ny := N U {0}, the space of scalar or vector-valued
functions, which are polynomials of degree at most k on each K € 7. Given a triangu-
lation 7, of Q with the above properties and given rg, r1,s9 € Ng, with ry <r, we define

X, = {vh EX’Vh S 73} and Y, = {nh IS Y|11h S 'PSO(T;,)},

with P, (7,) C P C P, (T1). Note that there exists a constant ¢ = ¢(ry,7,) such that for
all v, € X, K € Ty, j € Ny, and all x € K holds

Vi) <e 90 .12)
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For the weak formulation of discrete problems we use the following function spaces
Vi=VNX,, Qp:=0nNY,.

We also need some numerical interpolation operators. Rather than working with a specific
interpolation operator we make the following assumptions:
Assumption 2.7 We assume that 7y = 1 and that there exists a linear projection operator
o} : X — X, which
(a) is locally Whl-stable, i.e., for all w € X and K € 7, there holds

K Sk Sk

(b) preserves zero boundary values, i.e., [T3 (V) C Vj;
(c) preserves divergence in the Y;-sense, i.e., for all w € X and 5, € Y}, there holds

(divw,n,) = (divII™Yw,n,) .

Assumption 2.8 We assume that Y, contains the constant functions, i.e. that R C Y}, and

that there exists a linear projection operator H}: : Y — Y, which is locally L!-stable, i.e.,
for all ¢ € Y and K € T, there holds

][mzquy][mm»
Sk

K

The existence of a projection operator I1 ,‘,“V as in Assumption 2.7 is known (among others)
for the Taylor-Hood, the Crouzeix—Raviart, and the MINI element in dimensions two and
three; the Clément interpolation operator satisfies Assumption 2.8. For a discussion and
consequences of these assumptions we refer to [2, Sec. 3.2], [6, Appendix], and [17,
Sec. 4,5]. We collect in the next two propositions the properties of the projection operators,
which are relevant for the present paper.

Proposition 2.9 Let IT satisfy Assumption 2.7.

(i) Let F(Dv) € W''2(Q). Then, there exists a constant ¢ = c(p,r1,7,) such that
[F(Dv) — F(DIT; V)|, < ch [ VE(DV)],.

(ii) Let r € (1,00). Then, there exists a constant ¢ = c(r,r1,7y,) such that for all
v e WH(Q) and all w € W' (Q) holds

IV — I, + RV Y, < R ||V,
|Vw — VI W], < ch [ VPw],.

(iii) Letr € [1,2] and let £ = 1 or £ = 2 be such that W' (Q)—<L*(Q). Then, there
exists a constant ¢ = c(r,{,ry,7,) such that for all v.€ W5 (Q) holds

v — I v||, < c 36 | Wy,
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(iv) Let F(Dv) € W'*(Q) and F(Dw) € L*(Q). Then, there exists a constant ¢ =
c(p,r1,70) such that

/ Py (IDIIY v — DIT™ w|) dx < ¢ || VE(DV)|3 + ¢ |[F(Dv) — F(Dw)]|5.

Q

Proof The first two assertions are proved, e.g., in [2, 17]. The last two assertions are
proved in [6].

Proposition 2.10 Let IT,{ satisfy Assumption 2.8. Let \y be an N-function satisfying the A,-
condition. Then, there exists a constant ¢ = c(yy, 42(W)) such that for all sufficiently
smooth functions and all K € T}, there holds

/ WMl dx < c / w(lql) dx,
K Sk

/W(M*HZQDdXSC/lﬂ(hK|Vq|)dx.
K Sk

Proof The assertions are proved in [17].

2.4 Main results

Before we formulate the main result, proving optimal convergence rates for the error
between the solution u of the continuous problem (1.1) and the discrete solution {u} }Z:O
of the space-time discretization (1.4), we discuss the existence of solutions of (1.1) and
(1.4).

The existence of global weak solutions u € L>®(I; L*(Q)) N L(I; V4 ) of (1.1) for large
data is proved in [18] for 6 >0 and p > g. The existence of a locally in time, unique strong
solution — we L (I' W2 (Q)NLP(I's Ve ) NWY (L7 (Q), qe Ll (W ()N
L' (I'; Ly(RQ)) for any r € (5,00) and some I’ := (0,7") with T’ € (0,7T) of (1.1) for large
data is proved in [8] for 6 > 0 and p > 1.

The existence of a unique discrete solution {uZ’}f‘Ll,
following way. Setting V;,(0) := {w, € V| (divwy, ;) =0V, €Y}, one uses
Brouwer’s fixed point theorem and the properties of the extra stress tensor S and the
convective term to show the existence of uj € V,(0) satisfying (1.4), for all v, € V,(0)
(cf. [20, Lemma 7.1]). This solution is unique due to the semi-implicit discretization of the
convective term and the monotonicity of S. Moreover, testing (1.4) with {u’ Z:l yields
the energy estimate

{g/"}™_ can be inferred in the

M
2 2

" F(Du? < f).

mgf_‘fM”“thJFK § [F(Du)[[5 < C(uo, f)

m=1

The properties of the projection operators IT/" and IT} ensure the validity of the discrete
inf-sup condition (cf. [2, Lemma 4.1]). Since the divergence is a closed, surjective, linear
operator from Vj onto Qp and since the gradient is the annihilator of the kernel of the
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M
m=1

divergence, these ensure the existence of a unique ¢} € @y such that {u}"_ {g"}
satisfy (1.4).
Now we can formulate our main result.

Theorem 2.11 Let the extra stress tensor S in (1.1) have (p,d)-structure for some
p € (£,2], and some & € [0,00) fixed but arbitrary. Let @ C R’ be a bounded polyhedral
domain with Lipschitz continuous boundary, and I = (0,T), T € (0,00), be a finite time
interval. Assume that £ € W'2(I;L*(Q)), ug € W>*(Q) N Vaiy and that the solution (u, q)
of (1.1) satisfies (1.2) and

F(Du) e W2(Ix Q) and g€ I’ (I;15(Q) N W' (Q)). (2.14)

Let the space Vy,, h > 0, be defined as above with ro = 1 and let {u;’f}%:], {qzl}M be the

m=1
unique solution of (1.4). Then, for p € (%,2] there exists ko € (0, 1] such that, for given
h€(0,1) and k € (0, ko) satisfying

R < o K, (2.15)

for some gy > 0, the following error estimate holds true

M
Cmax | = u(n)[3 + x Y[ FDu) ~FDu@)3<c( +x2),  (2.16)
m=1

with a constant ¢ depending only on the characteristics of S, |[[F(D)lly12yq),

IVally (1x0)» Yos 11, 0, and a.

HatfHLZ(I;LZ(Q)’ |“0H24p’

2.5 Comparison with previous results and observation on the requested
regularity

Here we compare the new result with previous ones on the discretization of generalized
non-Newtonian fluids (and general parabolic equations and systems). We also discuss
briefly the regularity we are assuming on the continuous solution.

Concerning previously proved error-estimates we can mainly recall the following facts:

(i) Problem (1.1), in the case of space periodic boundary conditions, has been treated in
[5, 14, 15, 20]. In [5] the same optimal error estimate as in Theorem 2.11 is proved under
slightly stronger assumptions on the regularity of the solution u of (1.1), for p € (% ,2].

Problem (1.1) without the convective term [Vu]u, in the case of homogeneous Dirichlet
boundary conditions, has been treated in [19] for p € (% ,00). It is shown there that (2.16)

holds with the right-hand side replaced by ¢ (hmin{z’l%} + k?2). The proofs of these results are
based on intermediate semi-discrete problems, for which a certain regularity has to be
proved, to obtain the desired optimal convergence rates. This in fact limits the results in
[5, 14, 15, 20] to the case of space periodic boundary conditions. Here, we avoid such
(technical) problems by proving the error estimate directly without using intermediate
semi-discrete problems. The same perspective is also taken in the recent papers [6, 11]. In
[11] problem (1.1) is treated for a nonlinear operator S depending on the full gradient Vu,
having (p(-, ), 0)-structure, with a variable exponent p(-,-), but without convective term
and without the solenoidality condition. In this situation the error estimate (2.16) with the
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right-hand side replaced by c (h** + k?*) is proved if the variable exponent belongs to
C*»*(] x Q) for appropriate o,,0, € (0,1] and an additional CFL-condition
lzi“’, is satisfied. In [6] problem (1.1) is treated without

k" <c infger,pn,, With some r>
convective term and without the solenoidality condition. There the error estimate (2.16) is
proved under the same conditions as in Theorem 2.11.

(ii) In the recent paper [9] a different approach is used to treat the unsteady p-Laplace
problem, i.e., problem (1.1) without convective term and without the solenoidality con-
straint. By using the L2-projection operator instead of the Scott—Zhang operator (cf. [22]),
satisfying Assumption 2.7, the error estimate

I Imy1

max uf ][ ds|\2+;<2/ (D) — F(Du(s))|2ds < (P + k™),

Im—-1 Im—1

(2.17)

is proved in [9] without a coupling condition between / and k. The removal of the coupling
is due to the usage of the L2-projection which in the treatment of the time derivative does
not produce terms needing a coupling [cf. estimate (3.4)]. However, the treatment of the
nonlinear operator S is subtle and requires delicate estimates, which result in the different
error estimate (2.17) compared to the error estimate (2.16). The estimate (2.17) is proved
under the assumption that

F(Vu) € L*(I; N*?(Q)) N N**(I; L*(Q))
u € L*(I; N**(Q))

for % <o, <1 and 0<o, < 1, where N*? are appropriate Nikol’skii spaces with differen-
tiability o € (0, 1] (cf. [9]). Even for o, = o, = 1 estimate (2.17) differs from (2.16) since
it contains time averages of the error rather than a point-wise error. The usage of limited
regularity in the time-variable and time averaging of the error is motivated by a similar
analysis performed for stochastic parabolic equations in [10].

(iii) In [23, 24] the convergence of a fully implicit space-time discretization (without
convergence rate but also with no assumptions of smoothness of the limiting problem) of
the problem (1.1) in the case of homogeneous Dirichlet boundary conditions is proved for
p > % and even for p > g for a regularized problem. The convergence of the same
numerical scheme (1.4) towards a weak solution has been recently proved in [7] for
p > = In fact, in [7] the convergence of a general quasi non-conforming Rothe—Galerkin
scheme in the context of evolution problems with Bochner pseudo-monotone operators is
proved (cf. [1] for the treatment of a conforming Rothe—Galerkin scheme in the context of
evolution problems with Bochner pseudo-monotone operators).

Let us now discuss the natural regularity assumption (2.14). The assumption (2.14); is
natural in the sense that it is the one obtained from the extra stress tensor S if formally
tested with —Au and 6tzu. The existence of solutions satisfying (2.14); is proved rigorously
for problem (1.1) in the case of periodic boundary conditions locally in time in [4, 16], for
p> % and large data. The situation for Dirichlet boundary conditions is more complicated.
The existence of a locally in time unique strong solution
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uecL'(I; W (@) NI Vay ) N W (I L7(Q)),
g e L'(I W (Q)) L/ (I'; Ly(Q))

for any r € (5,00) and some I’ := (0,7") with 7" € (0,T) is proved in [8] for large data.
This regularity implies, using parabolic embedding theory (cf. [16, Appendix]), that
F(Du) € L*(I'; W'2(Q)) and that u, Vu € C(I' x Q). However, in [8] it is not proved that
this solution also satisfies d,F(Du) € L(I'; L*(Q)). Nevertheless, one can show that the
solution from [8] also satisfies d,F(Du) € L*(I'; L*(Q)), using the following auxiliary
result.

Proposition 2.12 Let the extra stress tensor S in (1.1) have (p,d)-structure for some
p € (£,2], and some § € [0,00). Let  C R?, d >2, be a bounded domain with Lipschitz
continuous boundary, and I = (0,T), T € (0,00), be a finite time interval. Assume that
u € Vg satisfies  divS(Dug) € L2(Q), eI (L7 (Q)NWY(I;LX(Q) and
G € C(I;W(Q) N W' (I, 17 (Q)). Then, there exists a unique weak solution v €
L*(LL2(Q) NLP(I; Vaw) of

ov—divS(Dv) +Vg=f+divG inlxQ,
divv =0 inIxQ, (2.18)
v(0) = ug in Q

satisfying additionally d,v € L>(I; L*(Q)) and d,F(Dv) € L*(I; L*(Q)).

Proof This result is proved using ideas from [4, 16]. Using the Galerkin method and the
theory of monotone operators one shows that there exists a unique weak solutions v €
L®(I; L2(Q)) N L2 (I; V gy ) of (2.18). Moreover, the regularity of the data allows us to show
that we can take the time derivative of the Galerkin equations and test with the time
derivative of the Galerkin solution. Straightforward manipulations show that this produces
an estimate, showing after a limiting process in the Galerkin parameter, the additional
regularity stated above.

Next, by using Proposition 2.12 with G = u ® u (where u is the solution from [8]), the
monotonicity of S, and the above regularity for u imply that the solution from [8] satisfies
also 0,F(Du) € L*(I'; L*(Q)). Consequently, the unique solution (u,g) from [8] satisfies
(2.14) with I replaced by I'.

It is useful to formulate the consequences of the assumption F(Du) € W!'2(I x Q) in
terms of Bochner—Sobolev spaces. From [16, Thm. 33] and standard embedding results it
follows that

F(Du) € C(I;L}(Q)).

Using [Du”/? + & ~ |F(Du)| 4 6% and the continuity of P—F~' (P) (cf. [4, Lemma 3.23])
we get

ue W2 (@), (2.19)

In [4, Lemma 4.5] it is shown that for p <2
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IIVZUHf% < ¢ |[VFDu)[53(5 + || Vull3, )"
|0Vl

2 _
@ <c [0 F(Du)[5(3 + |Vl ,)* "
Thus, we also get

u e LA(I; W5 (Q)),
. (2.20)
o € L(I, W' (Q)),

where the bounds depend only on [[F(Du)||y:2(,0) and do.
Finally we would like to comment on the restriction p € (% ,2] in Theorem 2.11 com-

pared to the restriction p € (% ,2] in [5, Theorem 2.6]. Based on the results from [4] it is
assumed in [5] that, additionally to (2.14),, the solution satisfies among other properties

F(Du) € L”

2/:’5(1; W'2(Q)). This results in
ue C(LWY(Q) for any r € [1,6(p — 1)). (2.21)

If we also assume that (2.21) holds, we can improve Theorem 2.11 to the range p € (% ,2].
More precisely, we have:

Corollary 2.13  Assume that in the situation of Theorem 2.11 the solution u of (1.1) ad-
ditionally satisfies (2.21). Then, the error estimate (2.16) holds for p € (%,2] with a con-
stant additionally depending on Hu||c(;;wl,,.(g)>,f0r some suitable r € [1,6(p — 1)).

3 Proof of the main result

In this section we prove the error estimates from Theorem 2.11. To this end we need to
derive an equation for the error and to use the discrete Gronwall Lemma 2.5 together with
approximation properties due to the regularity of the solution and the properties of the extra
stress tensor S.

In the error equation we want to use the test function w;’ — 11, 4V u(z,,), which belongs to the
space V;,(0). Thus, it is enough to consider test functions v, from V5,(0) in (1.4). For such test
functions we can replace the discrete pressure ¢’ by an arbitrary function from Qj. Thus, it
follows from (1.4); that for all v, € V,(0), u, € Qp and m = 1,..., M there holds

(d, vi)+(S(Du), Dvy) +b(u) " wl, vi) — (wy, divvy) = (£(t), V). (3.1)

We can choose in (3.1), foreachm =1,..., M,

=W, = ][H

and since (FH q(t)dt, divv,) = f~(IT) q(t), divv,) dt, we get for all v, € V,(0) and
In

m=1,.. .,M, that there holds

(dtu57vh) + (S(Dug)v Vh) + b(uznilvu;fvvh) _][ (H]{q(t)u diVVh) dr = (f(tn’L)7Vh)7

In
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which we can re-write also as follows:

(du, Vi) + ][ (S(DU), v, dr + ][ b(ul ' u vy) df — ][ (I (1), divvy) dt
I,

I Iy m
_ ][ (E(tn), V) d,
I,

since we are averaging locally constant terms. We subtract from this equation the retarded
averages over [,, of Eq. (1.2) and obtain the equation for the error

(d; (w) —u(tm)), Vi) +][ (S(Duj') — S(Du(r)),Dvy,) dt

In

+ ][ b1 w,vi) — b(u(), u(e), vi) dt — ][ (11}q(0) ~ q(0). divwi)di (3.
:][(f(tm) (1), vy) dt,

valid for all m = 1,...,M and all v;, € V,(0).
Choosing now the legitimate test function v, = u} — I1/" u(t,,) € V;(0) we finally get
foralm=1,....M

(d (w) —u(t,)), vy — I u(t,))
+][ (S(Du}") — S(Du(t)), Du} — DI ™ u(t,,)) dt

In

T ][ b ! — TV u(s,)) — b(u(r), u(t), ! — I3 u(t,)) dr
I (3.3)

- ][ (I q() — q(1), divuy — div TV u(t,,)) dt

I,
_ ][ (F(tn) — £(6), 0" — T8 u (1)) d.
I,

We now discuss and estimate the terms in (3.3) separately, to arrive finally to the
estimate (3.22).

First, note that the projection operator IT/" has the same properties as the operator P,
considered in [6] and that the solution u of (1.2) and the solution treated in [6] possess
exactly the same regularity. Thus, the first two terms on the left-hand side can be treated
exactly as in [6]. Consequently, [6, Lemmas 3.7, 3.9] yield the following estimates:
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(e (wy = w(t)), wy — 1T u(t,,))

1 l’l2 +4/p' )
2 5 dijuy — u(tn)[5 —c [V u || o df
T (34)

—c @ .Vu(tm) —][ Vu(t) dt ’

6p )
T
In

and

][ (S(Du}') — S(Du(r)), D’ — DI u(t,)) dr

I

> ||[F(Duy!) — F(Du(t))3 - Chz][ IVF (Du(0)))[3 dr (3.5)

In

- ¢ f IF(Du(e) - FDu(s,)[ dr.

The term with the external force is treated slightly differently compared to [6, Lemma
3.10]. This is due to the fact that to apply Gronwall’s Lemma 2.5 we need an estimate
involving the [7-norm of the gradient of the error. To shorten the notation in the following
computations we denote the error for m = 1,...,M by

e ==u) —u(t,).

Lemma 3.1 Under the hypotheses of Theorem 2.11 we have

‘][ (E(tw) — £(1), 0 — TV u(t,,)) d,‘

I

2
<c ][\|f<zm>—f<r>|\2dr+c|\ne I, ][Hf ) —E0)[l>di
Iy

e ][ IV2u(0) |3 dr + e h*/P ][ IV7u(t) = Vu(0)|f dr.
pia 4+p
1, In

Proof Using that
u) — H;ljivu(tm) =u) —u(t,) +u(t,) — H;fi"u(tm) =e) +u(ty,) — H;fi"u(tm),

together with Holder’s inequality, Young’s inequality and the embedding
WP (Q)—L*(Q), valid for p > &, we get
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lf?ﬁum)ffOLqufﬂf”u@ﬁ)d4
1,
<c e, £ 116() ~ £) |,
+e ][ #(0) — £ 12 dt + ¢ [(t,) — T8 u(,) |2

The last term was already treated in the proof of [6, Lemma 3.7], where it is proved that
i 2
[u(tn) — 1Y u(tn) |3

<RV ][ IV2u(0) | dt + c P ][ IVu(t) — V(o) | di,
Pia Tp

In L

which yields the assertion.

It remains to treat the convective term and the pressure term, which were not present in [6]
and which require a precise estimation. Let us start with the former one.

Lemma 3.2 Under the hypotheses of Theorem 2.11 we have

| ][ o — 8 () — b(u(r), u(0), of — 15 u(t)) df|

me1 110
<c|/Dey||,[Dej (|, " leh™ 'H2+C||DeZ’H ][IIVu tn) — V(1) o di (3.6)

+p

+c|Dey|, ][HVU = Vu(ty-1)|| dt—&—cHDe I, h][||V2 - dt.

Moreover, the estimate is also correct if the first term on the right-hand side is replaced by
¢ [Dej], [De; .

Proof Since TV u' = u}, we get w' — [TV u(t,) = I1"V €. Thus, we can re-write the
integrand in the term to be estimated in (3.6) as follows
—1 di di
by wit, 1™ €)f) — b(u(r),u(2), 11" €ff).

To the latter we add and subtract, in the order, the terms b(w)' 1MV u(z,), [T}V e}),
ba(ty1), ™ u(t), 1T €7), b((tn-1),u(t), 11" €') and b(u (), u(t), 11" '), to
getforallm=1,...,M and a.e. t € [,

by w, T €)= b{u(), u(e), T8 €)= b~ w15 u(s,), T3 €))
b = w1 T8 W), T ) + (1), T8 () — w(t), T &)
o bu(tn-1) = u(e), u(t), T8 &) + b(u(r), u(tn) — u(r), 7™ €})

= IM(0) + I (0) + () + 1(0) + 17 (1), (3.7)
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In view of the skew-symmetry of b(-,-,-) we have I}*(r) =0, for all m=1,...,M and
tel,.

Using the definition of b(-,-,-) in (1.3), and partial integration we get for all m =
1,...,M and ¢ € I,,, also using Holder’s inequality with (32, °2< 22 and (p,4p =550 p)

2 74p 503
respectively, the embeddings Wlﬁp(Q)%Lﬂ(Q) Wiz
the interpolation of L%(Q) between L*(2) and W'?(Q), which is possible for p € (§,2],
the continuity of IT ,‘lﬁv (cf. Proposition 2.9 (ii)), and (2.19), that

3p

(Q)‘—>LH(Q), Korn’s inequality,

iv m— iv m 1 iv m iv
B0 < 3 I([VHd u(ty)le; ™! I )| + S (VI efe ™ T u(sn))|

<cHVHd'Vu zm)||3l||e'"* ||DHd‘Ve;;’|| (3.8)

<cller3lDe ], I\Deh s

with 0 := ”;’;—:éf’ € (0,1] for p € (2,2]. Using the embedding W'”(Q)—L?(Q) in the last

line we also obtain

13'(1)| < c [|Def [, [ Def’ |- (3.9)
Since u(#,—1) is solenoidal we get, also using Holder’s inequality with (5(1] ),23j’p ,;Tpp),

the embeddings Wl'l’(Q)%Lfv(Q), W177(Q)f—>LiTP(Q), LW(Q)%LW(Q), the continuity
of IT™ (cf. Proposition 2.9 (ii)), and (2.19), that
115 (0] = [([VIY u(tn) — Va(t,)lat,-1), 1" &) |
<[V u(t,) - V(s )II I\Vll(tm)lls:JHDHd‘v e ll, (3.10)
<c|VIMu(t,) - VU(tm)II%HDeZII,,-

To treat ||VII/™u(t )—Vu(tm)Hsp we add and subtract VIT" (Jﬁu(o' do), use

In

i ( Ifu(a ) JLH 9vu(g) do, add and subtract V Jﬁu )do, use the continuity of

Y (cf. Proposmon 2.9 (i), V fv(0) do = §Vv(o) do, Fubini’s theorem, the properties
In I

of the Bochner integral, Proposition 2.9 (ii) and (2.20) to arrive at
andn (tm) - vu(bﬂ))”i

gcuvngiv][ (1n) — 0(0) dof| . +C||V][Hd“’u(a) () do|e
T

+c HV]Z u(o) —u(ty,) do'”%,p
<c H ]l Vu(fm) - Vu(o‘) (10’”4(% +c H][ vn;liivu(g> _ Vl.l(o’) dO'”% (311)

<c 7[ [IVu(t,) — Vu( J)Hh, do + ¢ 7[HV17‘1“’ (o )7Vu(J)H%dJ

Sc][ [IVu(t,) — Vu((r)Hfida + ch][ HVzu((r)Hdea.
Iy In
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Combining (3.10) and (3.11) we showed that for all m = 1,...,M and ¢ € I, there holds

1I5'(1)] < c [|Degtf], ][ IVu(tn) = Vu(o)|| e do
I,

m

(3.12)
+eDel, b f [Vou(o)] 5 do

In

Since u(t,,—1) and u(¢) are solenoidal we get for every m = 1,...,M and ¢ € I,,, also using

Hoélder’s inequality with (37"’“‘;—{5,3%), the embedding leP(Q)HL;Tpp(Q), Korn’s

inequality, the embedding WI%(Q)@L%(Q)%L%(Q), the continuity of T}
(cf. Proposition 2.9 (ii)), and (2.19), that

(0] = [([Vu(ta)] () = u(t-), T e)) |

<cl[Vu(on)llgllu(r) = u(en)l| DI €], (3.13)

<c[Vu(r) = Vu(ty-1)l| o [Dey]],-
;

Since u(z) is solenoidal we get foreverym = 1,...,M and 7 € I,,, also using Holder’s inequality

with (%,7:71’10,337’;), the embedding Wl‘f’(Q)<—>L33+;)(Q), Korn’s inequality, the embedding

Wl%(Q)%L%(Q)%L%(Q), (2.19), and the continuity of IT" (cf. Proposition 2.9 (ii)), that

(1)) = | ([Vu(tn) — Va(n)u(), 1" &) |
<cl[Vu(tn) = Vu(o)l| e [lu(0)]_e_[IDIT™ €], (3.14)
scllVu(tn) = Vu(@)| o [Dej]l,.
The assertions follow from (3.8) and (3.9), resp., (3.12), (3.13) and (3.14).

Let us now discuss the last term, namely the one including the pressure.

Lemma 3.3 Under the hypotheses of Theorem 2.11 for every & > O there exists ¢, > 0
such that

’ ][ (I (1) — q(1), diva — div T u(z,,)) dz‘
I,

<¢|F(Duj’) — F(Du(t))[; +c; ][ |IF(Du(t,)) — F(Du(1))|3 dt

d

(3.15)
+e 7[ IF(Du(z)) — F(DIT u(o)) |3 dt + c, hz][ IVF(Du(7))]5 dt

n In

be, hz][ Va1, + [[FDu() |2 de + c, 1712 &
1,

m
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Proof The point-wise application of Young’s inequality (2.4) with a = [Du(,, ‘)| to the
integrand of the term on the left-hand side of (3.15) yields forallm =1,...,M, a.e. t € I,
and every ¢ > 0

|(TT}q(r) — q(0), divey — div 1™ u(s,,)) |

& . .
< a/fl)\nu([mn(\])“h —DIT™ u(ty,)|) dx
Q

+ Cc/(fpmum,)\)*(\ﬂzftI(t)—61(t)|) dx < ¢||F(Duj) — F(Du(t,,))[l5 + ¢ [F(Du(1,))
Q

FOIP ) e [ (o) (1al0) ~ alo)) d
Q
=:eJ{'(1) + eJ5 (1) + cJ5 (1),
(3.16)
where in the last estimate we added and subtracted Du(z,) and used that for all P,Q €
R3*3 there holds op(P-Qf) < co|F(P) —F(Q) ’2 (cf. Proposition 2.3 (1)). To treat J5'(t)

sym

we add and subtract F(Du(¢)) and F(DIT ™V u(z))

13'(8)| < ¢ | F(Du(t,)) — F(Du(r)) |3 + [F(Du(s)) - FDI™ u(0))]; )
+ [F(DI™ u(r)) — F(DIT™ u(t,,)) |-

To treat the last term on the right-hand side of (3.17) we use Proposition 2.3 and Propo-
sition 2.9 (iv) to get

IF(DIT u(r) = BT ()5

<c [ ownsue (DI u(t) - DI u(s,))) s
Q

<c / @it (DI u(r) — DI u(1,,)]) dx + ¢ [FDIS u(s)) — FDu ()3 318)
Q
<ci? [VEDu(n)| + ¢ [F(Du(r)) — F(Du(s,))|3

+ ¢ [F(DI{ u(r) — F(Du(1)|.

To treat the term J5'(f) we note that Q = [Jg.7, K, use Proposition 2.3 (ii), (iii) and
K C Sk to arrive at

e |<c2/qomu<, yo.)) (Ta() = q(0)]) d

KETh
+tey / [F(Du(t,,)) — (F(Du(t,,)))s,|” dx (3.19)
KeT, S'K
=c > AR +c Y BR()
KeT, KeT),
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Using Proposition 2.10, again Proposition 2.3 (ii), (>iii) and
(@pute)) (hla]) < ch?(jo]” + & + [F(Du(z))[?), valid for p <2, and hg <h yields

Az(n)| < / (01w, ) ([ Va(t)) ds

Sk

<c / (Pputy)) (I Va()]) dx + ¢ B(1)

Sk

(3.20)
+ / [F(Du(z,,)) — F(Du())|* dx + ¢ BI(1).
Sk

Schz/ IVg(t)l” + & + ¢ [F(Du(r))|* dx

+ / [F(Du(t,,)) — F(Du(r))|* dx + ¢ B2 (1).
Sk

Adding and subtracting appropriate terms, using Proposition 2.3 (iii), the properties of the
mean value, and Poincaré’s inequality we get

B0 < / [F(Du(s,)) ~ F(Du(n) v+ ¢ / F(Du(r) - (F(Du(n),  do
+e / [(F(Du(r)))s, — (F(Du(z,)))s,|* dx (3.21)
<c/|F (Du(z,)) — F(Du(r))? dx+ch2/|VF (Du(r))|* dx.

The assertion follows from (3.16)—(3.21) and the properties of the triangulation.
Collecting all estimates, we are ready to prove the main result of this paper.

Proof of Theorem 2.11 From estimates (3.4) and (3.5), Lemmas 3.1, 3.2, and 3.3 we get,
choosing ¢ > 0 sufficiently small to absorb the term ¢ ||[F(Du}') — F(Du(z,,)) |§, and using
the properties of the retarded time averages, that for allm =1,...,M and 0<x <1
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dil[u? — u(ty,)||; + ¢ |[F(Du}) — F(Du(s)|l3

R : ;
<ci f VRO Bar+ o f [T B dr-+ e f [9a() 1 ar
T T T
2 nv 2
+ c7[ |[E(Du(t)) — F(Du(t,))||5dt + ¢ - [Vua(t,) — Vu(t)Hf_p dt
T T ’

+ 0][ [F(Du(t)) — FDIT ()| dr + ch2][ |F(Du(0))|2 de

In

(3.22)

+en|Q Y + c][ 18(n) — £(0)|2di + ¢ [De], ][ 1E(t) — £()1], dt
I Iy
1-0

+c||De [, [IDel "],

10 "
llep "l +¢ HDeZ’Hp][ IVu(tn) = Vu(r)lo dt
Iy

+CHDeZ’th][ Hvzu(z)\\%dmcune;*up][\|Vu(:) = Vu(ty)|| g dr.

In I

-0
',

Moreover, the estimate (3.22) is also correct if ¢ | Dej) [ [ Dej; [|en—t Hg is replaced by

c ||DeZal||De;L"’1 [|,- To use Lemma 2.5 we observe that by Lemma 2.4 and (2.19) we have
with 2 := 0 + [[Dul|¢7.1(q))

|IF(Du;’) — F(Du(t,))[; = ¢ (4 + [Duj’ — Du(z,)[|,)” |Duj’ — Dus,);
=c(2+|Dey],)" " ey
Thus, the left-hand side of (3.22) is larger or equal than
i€ 3 + ¢ (2+ [Defl], )" [Defl];,

and (3.22) is now written in the form needed for the application of Lemma 2.5. To do so,
we set

an() = € ) = D6l 7t = f [V
1,

1) = = f [90(02) = V(o) + f [Vte) = Tty 1) s

In In

+f 186e) = 1)t

B2

(5n(h))” = 7 f I9EDu() B+ f IPu(0)l
y 1,

In i

iv 2 4
+ f [F(Du(r)) — F(DII u(t))|[; dr + f [Vq()|[%) de
I 1
+ 0 7[ [F(Du(0)3de + (@] &,

T

i -
(o) =" f () = Tu() s ar + f 186,) - 60 Bt

K
In In

+ ][ IF(Du(1)) — F(Du(1,)) 2 d.

In
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Let us verify that these quantities fulfil assumption (2.6). First, we observe that, by using
the regularity (2.20) on the velocity u, it holds

T
M
3 72 (%) gchz/ IV2u(2)|%, dr < c i (3.23)
m=1 e
0

Second, by using the regularity (2.14), the condition (2.15) and the regularity (2.20),
Proposition 2.3 (i) and the regularity (2.14), and again the regularity (2.14), we obtain

T T
M 4/p'
h
k> 2 (ho) < ch? / IR Du(0)]3dr + 12— / V20| dr
4+p
m=1 0 0

7 T (3.24)
+h2/||vq(r)||g,dr+h2/\|F(Du(z))||§dz+h2\g\5p

0 0
<ch’.

Third, using Holder’s inequality, several times Lemma 2.6, the regularity (2.20), and the
assumption on the regularity of f we get (since p <2)

M z ’
€ <o [ovu(,di+ e [ ot ar
2 J j / (3.25)

gc;cz.

Next, by using Lemma 2.6, the condition (2.15), the regularity (2.20), as well as the
regularity (2.20), and the assumption on the regularity of f we have

Az 2 2]14/17, I 2 2 r 2
€3 ) S o [V des e [ lat)a
m= 0 0

/T i (3.26)
+cx* [ ||o;F(Du(r))]; dt

/ 2

2

<ck-.

Finally, since uf) = I1{"V uy, the regularity of uy and Proposition 2.9 yield

ag(h) = [[uo — 1™ woll, < ch [ Vug|l, <ch,
bo(h) = |[Dug — DI wo|, < ch |[VPu, <ch.

Consequently Lemma 2.5 yields for sufficiently small x and & that

M
m||2 —2 m||2 2 2
]$a£M||eh||2+?l(l +A)p KmZ:OHDeh Hpéc(h + K ):

m
<l1.
| ax || De;’[], <1
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Using this, the estimates (3.23)~(3.26) and Hef*‘||ZHDeZ’*1||;:9||De;”HpSc
12
[Dej |, + ¢ [|Dej

bounded, after multiplication by x and summation over m = 1,...,M, by ¢ (h* + x?).
Thus, we proved

[27, one easily checks that all terms on the right-hand side of (3.22) are

M
Jmax [ = us,) 3+ > [F(Du) — FDu(s,) 3 <c (2 + 1),

m=1

which is the assertion of Theorem 2.11.

Proof of Corollary 2.13 This corollary is proved in the same way as Theorem 2.11 with the
only difference that in all places where (2.19) is used we use (2.21) instead.

Let us illustrate that on the estimate of I7'(¢) in (3.8). Using the definition of b(-,-,-) in
(1.3), and partial integration we get for all m = 1,...,M and ¢ € I,,, also using Holder’s

inequality with (r,#,%) and (p,p 7,00) for r € (3,6(p — 1)), respectively, the
embeddings WI’I’(Q)(—>L3%(Q), W (Q)—L>(Q), Korn’s inequality, the embedding
[77(Q)— L7 %55(Q), the interpolation of LiT(Q) between L2(Q) and W'”(Q), which is
possible for p € (2 , 5] the continuity of 11, div(¢f. Proposition 2.9 (ii)), and (2.21)

|Im |<_| VHdw (m)]em 1 H;lhv ’+—} delV m]e ,H;lﬁvll(tm))|

<9I w(o) |, (e + eI ) [P €,
10 _1y1-0
<c g I5mey 1, Ipegl,.

with 0 := 8p6 € (0,1] for p € (3,]. Using the embedding W'”(Q)—L*(Q) in the last line
we also obtain

|15 (1)] < c | Dej ||, [ De ],

Similar adaptations apply to the treatment of the other terms stemming from the convective
term. This proves the assertion.

Due to the presence of the term ‘([VH v emler=!, 1" u(t,))| an extension of the validity
of the error estimate for p < % with the present technique is impossible, even with further
regularity assumptions on u.
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