
 International Journal of 

Molecular Sciences

Article

Efficient Neuroprotective Rescue of Sacsin-Related Disease
Phenotypes in Zebrafish

Valentina Naef 1,*,† , Maria Marchese 1,*,† , Asahi Ogi 1, Gianluca Fichi 2, Daniele Galatolo 1 ,
Rosario Licitra 1 , Stefano Doccini 1 , Tiziano Verri 3 , Francesco Argenton 4 , Federica Morani 5

and Filippo M. Santorelli 1,*

����������
�������

Citation: Naef, V.; Marchese, M.; Ogi,

A.; Fichi, G.; Galatolo, D.; Licitra, R.;

Doccini, S.; Verri, T.; Argenton, F.;

Morani, F.; et al. Efficient

Neuroprotective Rescue of

Sacsin-Related Disease Phenotypes in

Zebrafish. Int. J. Mol. Sci. 2021, 22,

8401. https://doi.org/10.3390/

ijms22168401

Academic Editor: Hideaki Matsui

Received: 24 June 2021

Accepted: 30 July 2021

Published: 5 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy;
asahi.ogi@vet.unipi.it (A.O.); daniele.galatolo1408@gmail.com (D.G.); rosario.licitra@vet.unipi.it (R.L.);
stefanodoccini@gmail.com (S.D.)

2 Struttura Complessa Toscana Sud (Grosseto), Istituto Zooprofilattico Sperimentale del Lazio e Toscana M.
Aleandri, 58100 Grosseto, Italy; gianluca.fichi@gmail.com

3 Department of Biological and Environmental Sciences and Technologies, University of Salento,
73100 Lecce, Italy; tiziano.verri@unisalento.it

4 Department of Biology, University of Padua, 35131 Padua, Italy; francesco.argenton@unipd.it
5 Department of Biology, University of Pisa, 56124 Pisa, Italy; morani.federica@gmail.com
* Correspondence: valentina.naef@gmail.com (V.N.); maria.marchese2086@gmail.com (M.M.);

filippo3364@gmail.com (F.M.S.)
† These authors have contributed equally to this work.

Abstract: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a multisystem
hereditary ataxia associated with mutations in SACS, which encodes sacsin, a protein of still only
partially understood function. Although mouse models of ARSACS mimic largely the disease
progression seen in humans, their use in the validation of effective therapies has not yet been
proposed. Recently, the teleost Danio rerio has attracted increasing attention as a vertebrate model that
allows rapid and economical screening, of candidate molecules, and thus combines the advantages
of whole-organism phenotypic assays and in vitro high-throughput screening assays. Through
CRISPR/Cas9-based mutagenesis, we generated and characterized a zebrafish sacs-null mutant line
that replicates the main features of ARSACS. The sacs-null fish showed motor impairment, hindbrain
atrophy, mitochondrial dysfunction, and reactive oxygen species accumulation. As proof of principle
for using these mutant fish in high-throughput screening studies, we showed that both acetyl-DL-
leucine and tauroursodeoxycholic acid improved locomotor and biochemical phenotypes in sacs−/−

larvae treated with these neuroprotective agents, by mediating significant rescue of the molecular
functions altered by sacsin loss. Taken together, the evidence here reported shows the zebrafish to be
a valuable model organism for the identification of novel molecular mechanisms and for efficient
and rapid in vivo optimization and screening of potential therapeutic compounds. These findings
may pave the way for new interventions targeting the earliest phases of Purkinje cell degeneration
in ARSACS.

Keywords: ARSACS; ataxia; cerebellum; neurological disorders; zebrafish

1. Introduction

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare early-
onset neurodegenerative disease associated with mutations in the SACS gene, which
encodes sacsin, a 520 kDa multidomain protein [1]. Affected patients present spasticity,
paraparesis, early onset ataxia, and distal muscle wasting. Moreover, both previous [2] and
more recent [3] studies show that retinal fiber hypermyelination could be considered an
early marker of the disease [2]. Over 200 mutations in SACS have been identified, most
leading to complete loss of sacsin function [3]. Sacsin is one of the largest proteins encoded
by the human genome [4], and to date its multidomain secondary structure has been
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revealed only in part. From the N- to the C-terminal, sacsin is reported to be composed of
a ubiquitin-like domain that binds to the proteasome, three large sacsin repeats forming
a “sacsin repeating region” (SRR) that may have an Hsp90-like chaperone function [5], a
xeroderma pigmentosum complementation group C binding (XPCB) domain that binds to
the Ube3A ubiquitin protein ligase, a DnaJ domain binding Hsc70, and a higher eukaryotes
and prokaryotes nucleotide-binding (HEPN) domain mediating sacsin dimerization and
binding to nucleotides or their analogs [1,5,6]. Notably, the SRR has recently been found to
be part of a larger sacsin internal repeat (SIRPT) region [7]. The nature of these modules
and their architecture suggest that sacsin may be involved in protein quality control, and
thus play a role in neurodevelopment and neurodegeneration. Despite the identification
of the above-mentioned regions, the functional role of SACS and the pathophysiological
consequences of its dysfunction remain largely uncharacterized. Using cell lines (SH-SY5Y,
He-La, Cos-7), patient skin fibroblasts, primary neuron cultures, knock-out (KO) mouse
models, and organotypic murine brain slice cultures, it has been shown that sacsin is
expressed on the mitochondrial surface [8]. Of note, sacsin deficiency in cultured skin
fibroblasts from ARSACS patients leads to alterations in mitochondrial morphology and
function [8], while sacsin knockdown in primary hippocampal cultures causes clustering
of mitochondria, which accumulate in the soma and proximal dendrites [8]. In addition,
converging evidence from multiple studies points to sacsin involvement both in regulating
mitochondrial dynamics, and in the organization of intermediate filaments, functions
that are closely related, as indicated by the importance of mitochondrial network and
function regulation at the cytoskeletal level [9,10]. Deep phenotyping and neuropathologi-
cal studies in Sacs−/− transgenic mice have shown pathological changes in the synaptic
compartment, electric impairment of Purkinje cells (PCs) with significant neuronal cell
loss in the cerebellum, as well as motor deficits reminiscent of ataxia, all features that
replicate those seen in ARSACS patients [4,8,10,11]. By means of transcriptomic analysis,
we previously confirmed the presence of mitochondrial dysfunction associated with in-
creased oxidative stress in sacsin-depleted cells, providing the first demonstration of an
autophagic pathway impairment in these cells and suggesting that impaired autophagic
flux could be the element linking the chaperone-like function of sacsin with its role in
mitochondrial dynamics [12]. Even more recently, using an original proteomic approach in
neuronal-like cells, we identified significant dysregulation of biological processes related
to neuroinflammation, synaptogenesis, and engulfment of cells in ARSACS, these findings
further reinforcing the hypothesis of a role for sacsin in neurodevelopment [13]. ARSACS
remains an incurable disorder and there is an urgent need to define new therapies. In this
context, high-capacity in vivo screening of candidate drugs/compounds would be useful
both for optimizing compounds and for prioritizing their subsequent testing in mammalian
models. The teleost Danio rerio (zebrafish) has recently emerged as an attractive platform in
preclinical research of neurodevelopmental and neurodegenerative disorders [14–17] not
least because it complies with the 3R principles of animal research [18–20]. The zebrafish is
poised to be an important model in bridging the gap between in vitro assays and in vivo
studies in mammals [21,22]. It combines invertebrate-like genetics with vertebrate brain
structures, and its transparency during embryonic development has been exploited in
order to directly unveil, in vivo, the crucial structure–physiology–function relationships
in the vertebrate brain [23,24]. In addition, its high fecundity and rapid development are
also significant advantages, allowing rapid in vivo exploration of potential therapeutic
drugs [25]. Therefore, with the dual aim of increasing our firepower in the battle against
ARSACS and better characterizing biochemical alterations driven by the absence of sacsin,
we developed a new loss-of-function vertebrate model in order to shed further light on
the role of sacsin in early neurodevelopment, and evaluate the efficacy of the system in
drug screening. Using the CRISPR/Cas9 technology [26], we generated a zebrafish sacs−/−

mutant line and observed that the model displayed motor impairment, hindbrain atrophy,
mitochondrial dysfunction, and oxidative stress, mimicking features already seen in hu-
man cells and mouse models. We suggest that our sacs−/− KO strain may prove useful
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for the translation of potential therapies to ARSACS patients, as it decreased the need for
time-consuming and labor-intensive procedures.

2. Results
2.1. Generation of Sacs-Null Mutant Zebrafish

The zebrafish sacs gene (ENSDARG00000091042.4), which maps to chromosome 15,
consists of 9 coding exons, and encodes a 4578 amino acid molecular chaperone protein.
Previously, a bioinformatic analysis revealed that sacsin is conserved in vertebrates [7]. No-
tably, however, one homologous sequence of sacs can be found in zebrafish on chromosome
9 (predictive si:dkeyp-118h9.7: transcript ID ENSDART00000162761.2). This variant, which,
for simplicity, we will call sacs2, is probably the result of a whole genome duplication event
that occurred during teleost fish evolution, and it implies that in zebrafish, the specific
functions of sacsin could be divided between the two duplicated genes, or simply lost or
disrupted for one of them. Performing an in-silico analysis of the amino acid sequence of
sacsin in Danio rerio (both sacs and sacs2), Homo sapiens, and Mus musculus, we observed
high conservation of the human protein in the zebrafish sacs (70% conservation, 35% iden-
tity) but not in the sacs2 form (32% conservation, 24% identity) (Supplementary Materials
Figure S1), which suggests that sacs is actually the fish ortholog of the human protein.
Thus, by means of CRISPR/Cas9 editing, we engineered sacs-null mutants that generated
a 10-bp deletion mutation in exon 7 of the sacs gene leading to a frameshift mutation and
premature stop codon at residue 495 (R487Kfs*495) (Figure 1A), expected to disrupt the
structure of sacsin near the N-terminus. The homozygous sacs−/− F2 zebrafish mutant line
was raised to adulthood and its progeny (F3) were used to investigate the phenotype of
the mutant strain and determine whether it replicates the features of ARSACS. Due to the
lack of a reliable antibody for zebrafish, it was not possible to test the protein abundance in
the mutant zebrafish by Western blotting. However, qRT-PCR analysis showed a notable
decrease in the amount of sacs transcript [27] in mutants compared with control (wild-type)
siblings at 120 hpf (Figure 1B). The homozygous sacs mutant zebrafish larvae at 120 hpf
showed slight “microphthalmia” (Figure 1C–E).

2.2. Sacs−/− Mutant Zebrafish Displays Motor Impairment and Reduced “Cerebellar” Area

Impaired motor coordination is a clinical hallmark of ARSACS in children. The
transgenic Sacs−/− mouse model displays ataxia-like motor impairment as well as PC
death [10]. We analyzed the locomotor behavior of sacs-null (sacs−/−) mutant zebrafish
larvae. Zebrafish embryos develop rapidly and show their first spontaneous movement
(slow, alternating tail flicks) at approximately 17 hpf [28]. Analysis of tail flicks at 30 hpf
in sacs−/− embryos showed a significant decrease in burst activity (i.e., the percentage of
time an embryo is moving) compared with controls (Figure 2A). At 120 hpf, video tracking
data revealed significantly reduced locomotor activity of sacs−/− larvae compared with
control siblings, with the mutant larvae showing less movement in terms of both velocity
and distance covered (Figure 2B, Supplementary Materials Video S1). To explore the nature
of this motor deficit, we investigated the morphology of spinal motor neurons using the
motor axon marker syt2. Immunolabeling of spinal motor neuron axons in 48 hpf mutant
and control embryos showed no alterations in axon outgrowth or arborization, and no
reduction of axon length (Supplementary Materials Figure S1). Acetylated α-tubulin stain-
ing confirmed the absence of motor and sensory neuron abnormalities (Supplementary
Materials Figure S1). In addition, birefringence assay showed no muscle structure or com-
paction abnormality (Supplementary Materials Figure S1). A common feature of ARSACS
is the presence of upper cerebellar vermis atrophy evolving into cerebellar hemisphere
atrophy as the disease progresses, and it is observed on human brain imaging and post-
mortem studies, with accompanying increased PC death [29]. The vertebrate cerebellum is
responsible for coordinating body posture, balance, and locomotor control. The cytoarchi-
tecture and connectivity of cerebellar neurons are highly conserved between teleosts and
mammals [24], and several studies have shown that the “cerebellum” of zebrafish larvae
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plays a functional role relating to motor coordination, adaptation, and learning [30]. This
larval “cerebellum” lends itself to study of the physiology and function of PCs [24,31,32],
which in zebrafish develop fast, first emerging at 56 hpf, and then increasing in number
until 7 dpf [33]. To test PCs in sacs−/−, we created a null line in the genetic background
of a stable transgenic strain: Tg(tagRFP-T:PC:GCaMP5G). The latter, due to a PC-specific
enhancer element, makes it possible to visualize PCs in vivo [24]. At 120 hpf, sacs−/− larvae
displayed a significant reduction in the “cerebellar” area (Figure 2C,D); immunodetection
of the calcium (Ca2+) ion-binding protein pvalb7 produced a similar finding (Figure 2E),
i.e., suggesting a reduction in the number of PCs. In the cerebellum of adult mice, Pvalb is
expressed in PCs and molecular layer interneurons; instead, the zebrafish form, pvalb7, is
expressed in PC dendrites, soma, and axons [34], and used to monitor hindbrain and optic
tectum development accounting for cerebellar size and morphology.
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Figure 1. Generation of sacs-null mutant zebrafish. (A) Sequencing chromatographs of control and sacs-null mutant
(sacs−/−)specimens and alleles. The red rectangle define frameshift mutation in exon 7. The arrow indicates the area
of the induced deletion. (B) qRT-PCR analysis revealed a decrease in the level of sacs mRNA expression, normalized
to β-actin. Three independent RNA samples from sacs−/− mutant larvae at 120 hpf and from controls were analyzed.
* p ≤ 0.05, calculated by Student’s t-test. (C) Lateral view photographs of representative control and sacs−/− specimens.
(D) No dysmorphology and full length was noted at 120 hpf, but (E) homozygous larvae showed slight but significant
“microphthalmia”, **** p ≤ 0.00001, calculated by Mann-Whitney test. The values are expressed as mean ± standard
deviation (SD). Abbreviations: n, total number of evaluated embryos; error bars indicate standard errors of the means; ns,
not significant.

As observed in other forms of inherited ataxia in mammals, such as murine models of
SCA2 [35], impairment of Ca2+ signaling can lead to death of PCs [35]. Indeed, intracellular
Ca2+ is a key regulator of the neuronal life cycle and of Ca2+ homeostasis maintenance,
and not only supports normal brain physiology but also maintains neuronal integrity and
long-term cell survival [36]. Therefore, the use of the aforementioned sacs−/− larvae raised
on the transgenic line Tg(tagRFP-T:PC:GCaMP5G) allowed us also to monitor intracellular
Ca2+ dynamics in real time, and the distribution of the fluorescence fluctuations (∆F/F0)
of Ca2+ [37] through the Ca2+indicator (GCaMP5G) [24]. In our model, we observed a
significant increase in Ca2+ fluorescence fluctuations in the larval PCs, the region likely
corresponding to the human upper vermis (Figure 2F).
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Figure 2. sacs−/− mutant zebrafish display motor impairment and reduced cerebellar area. (A) Coiling frequency in
zebrafish embryos at 30 hpf is decreased in sacs−/− compared with control specimens (sacs−/− n = 113; controls n = 113, in
4 independent experiments). (B) Automated analysis of spontaneous motor activity revealed a reduction in swim distance
and velocity in sacs−/− larvae at 120 hpf compared with observations in control siblings (sacs−/− n = 256; controls n = 273, in
5 independent experiments). Statistical analysis (* p ≤ 0.05, *** p ≤ 0.001, **** p ≤ 0.0001) was performed using the Mann-
Whitney test. (C) “Cerebellar” morphology as assessed in vivo by RFP fluorescence in Tg(tagRFP-T:PC:GCaMP5G). The
“cerebellar” area was found to be significantly reduced in sacs−/− compared with control specimens at 120 hpf. (D) Statistical
analysis of the data shown in (C), **** p ≤ 0.00001, calculated by the Mann-Whitney test. The values are expressed as
mean ± standard deviation. (E) Dorsal views at 120 hpf of whole-mount larvae labeled with mAB pvalb7 (sacs−/− n = 20;
controls n = 20). (F) Pearson’s coefficient of skewness of the distribution of the fluorescence fluctuations, ∆F/F0. These
statistics are cumulated from 16 recordings in controls and sacs−/− mutants, respectively. (* p ≤ 0.05 was calculated using
the Mann-Whitney test). Abbreviations: n, number of evaluated embryos in total; error bars indicate standard errors of
the means.

2.3. Sacs−/− Mutant Zebrafish Manifest Mitochondrial and Autophagic Dysfunction and
ROS Accumulation

In previous [38] and more recent [12] experiments in ARSACS, we and others con-
firmed the presence of decreased mitochondrial function associated with increased ox-
idative stress, and also demonstrated a defective autophagic pathway in sacsin-depleted
cells [12]. Additionally, cellular and KO mouse models of ARSACS showed a reduced
oxygen consumption rate (OCR), impaired mitochondrial fission and networking, and
abnormal bundling of neurofilaments in many neuronal populations [8,10,11,39]. Similar
disorganization of intermediate filaments has been observed in skin fibroblasts derived
from ARSACS patients, and in KO HEK-293T and SH-SY5Y cells, all showing a collapsed
perinuclear vimentin network [9,12]. In OCR studies, we observed impaired mitochondrial
bioenergetics in sacs−/− compared with control larvae at the same stage of development,
as evidenced by significant reductions in baseline respiration, ATP production, maximal
respiration, proton leak, and spare respiratory capacity (Figure 3A). Furthermore, we
showed a 25% increase in ROS production in sacs−/− embryos (Figure 3B,C), as well as
a higher presence of apoptotic cells on acridine orange assay compared with the control
group (Figure 3D,E). Taken together, these features suggest an increment of oxidative stress
and activation of ROS-mediated apoptosis. Whilst the cross-species barrier prevented us
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from using human antibodies, qRT-PCR analysis in homozygous mutant zebrafish larvae
at 120 hpf allowed us to observe a significant increase in vim and a significant reduction in
calr mRNA expression compared with controls (Figure 3F,G), suggesting both potential
cytoskeletal damage and putative impairments of cellular protein quality control and Ca2+

homeostasis. Notably, we have gathered preliminary proteomic data in KO SH-SY5Y cells
that indicate reduced expression of human CALR (manuscript in preparation), a check-
point in protein folding quality control. Finally, in line with previous data on a defective
autophagic pathway in sacsin-depleted cells [12,40], we showed an upward trend of LC3 as-
sociated with significantly decreased p62 (* p ≤ 0.05) levels in sacs mutant larvae compared
with control siblings (Figure 3H), also pointing to an impaired autophagic process [41,42].
Overall, these data are consistent with the features of ARSACS in sacs−/− mutant larvae
and support the validity of the model as a platform for testing molecules with potential
therapeutic effects.
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Figure 3. Sacs−/− mutant zebrafish manifest mitochondrial and autophagic dysfunction and ROS accumulation.
(A) Mitochondrial respiratory analysis of controls (n = 30) and sacs−/− mutant larvae (n = 37) at 120 hpf. * p ≤ 0.05,
** p ≤ 0.01, **** p ≤ 0.0001, calculated by the Mann-Whitney test. (B) Representative fluorescence images of ROS generation
in zebrafish larvae at 48 hpf. (C) Quantitative analysis of ROS generation. * p ≤ 0.05 was calculated by the Mann-Whitney
test. The values are expressed as mean ± standard deviation (SD). (D) Detection of apoptotic cells by acridine orange
staining at the level of the eye in controls and sacs−/− mutant embryos at 48 hpf (lateral views). Apoptotic cells were
counted in the area defined by the red circle. (E) Quantitative analysis of apoptotic cells. * p ≤ 0.05 was calculated by
the Mann-Whitney test. The values are expressed as mean ± standard deviation (SD). (F,G) qRT-PCR analysis revealed
increases in vim and calr expression, once the mRNA expression levels had been normalized to β-actin. Three independent
RNA samples from controls and sacs−/− mutant larvae at 120 hpf were analyzed. * p ≤ 0.05, calculated by Student’s t-test.
(H) Three independent larval homogenates from controls (n = 50) and sacs−/− larvae (n = 50) were tested by Western blotting
for the expression of p62 and LC3 proteins. The levels of the different proteins were normalized to β-tubulin. * p ≤ 0.05 was
calculated by Student’s t-test. Abbreviations: n, number of evaluated embryos in total; error bars indicate standard error of
the mean; ns, not significant; SRC, spare respiratory capacity; ROS, reactive oxygen species.
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2.4. Acetyl-DL-leucine and TUDCA Prevent Impairment of Locomotor Activity in Sacs−/− Larvae
and Enhance Responses to Light and Dark Transitions

In the absence of FDA-approved medications for the treatment of degenerative
ataxia [43], there are few options available to counteract the progressive degeneration
of PC functions seen in ARSACS and similar clinical conditions [44]. Repurposing of FDA-
approved drugs likely acting on multiple molecular targets seems a good avenue to explore
at a preclinical level. In a pilot trial, we explored the feasibility of using sacs−/− larvae in
drug screening, focusing on two potential targets. It has been speculated that stimulation
of intracellular glutamate metabolism by branched-chain amino acids may improve neuro-
transmission among cerebellar neurons [45] and that acetyl-DL-leucine (ADLL, Tanganil™),
a branched-chain amino acid used to treat the symptoms of acute vertigo, might have a
positive effect on ataxic symptoms in cerebellar disorders, moreover with a low risk/benefit
ratio, given the electrophysiological similarities and close interactions between vestibular
and cerebellar neurons [46]. Interestingly, in open-label studies in other forms of inherited
ataxia, ADLL has already been suggested to be efficacious [47], and it is also the subject of
an on-going randomized controlled phase III trial [48]; however, it has never been tested in
ARSACS. Similarly, TUDCA, a bile acid derivative with demonstrated beneficial neuropro-
tective effects in mouse models of neurodegeneration, including Parkinson’s disease [49],
Huntington’s disease, and amyotrophic lateral sclerosis [50], appears to be of benefit in
inherited ataxias [51]. TUDCA likely acts through attenuation of endoplasmic reticulum
(ER) stress-induced apoptosis, and by counteracting the unfolded protein response and
it is now entering a phase III clinical trial as an add-on therapy for ALS. Furthermore, it
is worth noting that treatment with TUDCA also exerted a phenotype reversal in worm
models of MJD/SCA3 (personal communication to FMS), a common form of dominant
ataxia, and ameliorates proinflammatory polarization of microglia in vitro in multiple
sclerosis in a dose-dependent manner [52]. TUDCA, too, has not been tested in ARSACS
(either in patients or in mouse models). In view of this background, we investigated the
potential of ADLL/Tanganil™ and TUDCA to counteract the phenotypes observed in
sacs−/− larvae. For each substance, 4 hpf embryos through to 120 hpf larvae were exposed
to five different concentrations in the range of 0.5 to 150 µM. We calculated the percentage
of mortality at 30 hpf and assessed morphological alterations. Thereafter, the highest dose
(150 µM) of each compound was used in the following experiments. We treated WT larvae
at 120 hpf with both drugs and performed video tracking to measure the distance moved
and velocity. The analysis did not show significant alteration or change in locomotor
activity in each group of control larvae treated (Figure S2A), confirming the safety dose
of these compounds. Then, we observed that 150 µM of ADLL/Tanganil™ or TUDCA
could rescue, at least in part, the locomotor impairment seen in 120 hpf sacs−/− mutants,
improving motor activity by 30% (Figure 4A,B). In addition, to evaluate the neuroactive
properties of the substances tested, we exposed larvae at 120 hpf to an alternating light-dark
locomotion test. This revealed changes in locomotor activity (Figure 4C,D) as described
by others [53]. Although the data were not statistically significant, sacs−/−-treated larvae
showed, on average, a tendency to an improvement in locomotor activity throughout the
light/dark period (Figure 4E,E’).
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Figure 4. Treatment of homozygous sacs−/− mutants with TUDCA and ADLL is able to rescue the locomotor impairment
seen in sacs−/− larvae. (A,B) Automated analysis of spontaneous motor activity of sacs−/− after drug treatments (untreated
sacs−/− n = 100; sacs−/− mutants treated with ADLL/Tanganil™ n = 150; sacs−/− mutants treated with TUDCA n = 150;
controls n = 167) in 4 independent experiments. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001were calculated by the
Mann-Whitney test. (C) Swimming pattern of sacs−/− after drug treatments (untreated sacs−/− n = 34; sacs−/− mutants
treated with ADLL/Tanganil™ n = 34; sacs−/− mutants treated with TUDCA n = 34; controls n = 34). Each point in the
graph represents the mean ± standard error of the mean of the distance moved by zebrafish larvae in 2-min time bins.
The shaded parts represent the dark and the unshaded parts the light periods. The total number of embryos used for each
group tested was 36. (D) Between-group differences in the average total activity were evaluated by comparing 1 min after
and 1 min before light-to-dark and dark-to-light transitions. Values are represented as means ± standard error of the
means. (E,E’) The average of the total activity of each group was measured during light on (E) and light off (E’) conditions.
* p ≤ 0.05, calculated by Dunnett’s multiple comparisons test. Abbreviations: n, number of evaluated embryos in total; ns,
not significant.

2.5. ADLL and TUDCA Restore the Gene Expression Profile and Prevent Apoptosis in
Sacs−/− Larvae

To further validate the efficacy of ADLL/Tanganil™ and TUDCA in improving the
phenotypes observed in sacs-null mutant zebrafish larvae, we tested OCR parameters, as
well as vim and calr mRNA levels in controls, untreated sacs−/−, and treated sacs−/− larvae
at 120 hpf. Our findings showed a partial correction of the bioenergetic deficit (Figure 5A,B)
and the pattern of expression for both genes in treated sacs−/− larvae compared with
untreated siblings (Figure 5C,D). The specificity of the drug’s activity in improving the
phenotype in the sacs−/−model was further corroborated by trialing both ADLL/Tanganil™
and TUDCA in sapje larvae [54], a different model of motor impairment due to impaired
dystrophin. In that model, no impact was observed either on mRNA levels or on motor
performance (Supplementary Materials Figure S2). Finally, the pharmacological treatment
of sacs−/− mutant embryos with ADLL/Tanganil™ and TUDCA reduced the number of
apoptotic cells as shown by acridine orange staining at 24 hpf (Figure 5E,F) and appeared
to increase the size of the eyes in treated mutant larvae (Figure 5G).
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Figure 5. ADLL and TUDCA restore gene expression profile and prevent apoptosis in sacs−/− larvae. (A,B) Mitochondrial
respiratory analysis after drug treatments. For each experiment, we compared treated sacs−/− larvae (n = 18) and untreated
sacs−/− larvae (n = 18) and control (n = 18) at 120 hpf. * p≤ 0.05, ** p≤ 0.01, calculated by the non-parametric Kruskal-Wallis
test. (C,D) qRT-PCR analysis on sacs−/− larvae after drug treatments. Three independent RNA samples from each group
(controls, untreated sacs−/− and treated sacs−/−) were evaluated. * p ≤ 0.05, ** p ≤ 0.01, calculated by Dunnett’s multiple
comparisons test. Abbreviation: ns, not significant (E) Detection of dying cells by acridine orange staining of 24 hpf sacs−/−

embryos after drug treatments. The total number of embryos used per group tested (controls, untreated sacs−/− and
treated sacs−/−) was 15. (F) Apoptotic cells were counted in the area defined by the red circle. Quantitative analysis of
apoptotic cells. * p ≤ 0.05; ** p ≤ 0.01, calculated by the non-parametric Kruskal-Wallis test. The values are expressed as
mean ± standard deviation. (G) Evaluation of the eye area of sacs−/− after drug treatments (controls, untreated sacs−/−

and treated sacs−/−). * p ≤ 0.05, ** p ≤ 0.01, calculated by the non-parametric Kruskal-Wallis test. The values are expressed
as mean ± standard deviation. Abbreviations: n, total number of evaluated embryos; error bars indicate standard errors of
the means; ns, not significant.

3. Discussion

ARSACS is considered the second most common form of autosomal recessively-
inherited hereditary ataxia in Europe and Canada [55], and it remains an incurable condi-
tion, affecting a significant number of patients worldwide. Studies on the role of sacsin
in patients and in disease models, and more generally, on its function in neurodegener-
ation, remain challenging but might represent a prerequisite to the design of preclinical
treatments and pilot clinical trials in well-stratified groups of patients. Growing evidence
supports the potential of the zebrafish as an efficient model for drug discovery, translational
neuroscience, and disease modeling [14]. We employed CRISPR/Cas9-mediated gene edit-
ing to knock out the zebrafish sacs gene. SACS is a gene highly conserved throughout
evolution in vertebrates, as supported by evidence of similar expression patterns in mam-
mals [1,4]. In zebrafish, sacsin shows 35% identity with human protein [7]. We previously
showed that in 24 hpf embryos, sacs mRNA localized at the level of somites, in the head
mesoderm/neural crest, and in the midbrain regions, suggesting a higher expression in
metabolically active tissues, as also demonstrated by qRT-PCR analysis [7]. The duplicated
zebrafish sacs2 transcript (ID ENSDART00000162761.2) has a low degree of synteny with
the human one. Therefore, in the current research, we established and characterized a
stable sacs-null mutant zebrafish model. From post-mortem studies in ARSACS and KO
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mice, it appears clear that loss of sacsin results in pathological changes in the cerebel-
lum [29] associated with significant depletion of PCs, which together cause motor defects
and muscle atrophy [10]. The overall architecture and cell types of the cerebellum are
highly conserved from teleost fish to mammals [56,57]. In the zebrafish, the hindbrain
develops, differentiates, and reaches functional maturity through embryonic and larval
stages, during which these fish are almost transparent; this allows whole-brain analysis
and makes them a useful tool for in vivo bioimaging [57,58]. PCs are the main neuronal
population and the sole output of the cerebellum in zebrafish [34]. We generated our sacs
mutant zebrafish model in the genetic background of a PC reporter strain of zebrafish,
to exploit the absence of sacsin effects on PCs and the cerebellum. The sacs-null larvae
appeared morphologically normal but showed a slightly different phenotype, in that the
eye appeared smaller than in controls. Consistent with what has been observed in other
models, the “cerebellum” of sacs−/− larvae appeared smaller and thinner compared with
that of control larvae at 120 hpf, probably due to loss of PCs, which in our mutant was
related to the impairment of Ca2+ signaling in these cells, a potential key element leading
to cerebellar dysfunction. Real-time monitoring of intracellular Ca2+ dynamics in sacs−/−

PCs raised in the Tg(tagRFP-T:PC:GCaMP5G) background allowed us to detect an increase
in Ca2+ fluorescence fluctuations. An intracellular Ca2+ increase is associated with necrosis,
responsible for a derangement of cell integrity and function, and excitotoxicity, a state in
which glutamate-dependent hyperstimulation leads neurons to necrotic death [59]. Our
findings support the idea that PC dysfunction impairs early motor function in a manner
reminiscent of what occurs in ARSACS [60]. Muscle weakness and deficits in locomotor
activity are prominent symptoms in affected children, and mouse models, too, manifest
motor defects and muscle weakness [11]. Our mutant larvae showed strongly reduced
motor activity at 120 hpf, mimicking the motor deficit seen in murine models. Contrary to
Sacs-KO mice, which, from 120 days of age, exhibit progressive muscle weakness compared
with age-matched controls [10,11], in zebrafish, we did not observe any muscular degen-
eration (Supplementary Materials Figure S1) or abnormalities in axon branching, or any
reduction in axon length on syt2 immunostaining. Moreover, acetylated α-tubulin antibody
staining, employed to analyze sensory neuron development, showed no abnormalities
in sacs−/− mutants [61]. The analyses in zebrafish were carried out much earlier in their
development (larval stage) than in mice and we therefore cannot exclude the possibility of
a more severe motor neuron phenotype appearing in adult fish.

The sequence of events that leads to neuronal cell death in ARSACS is still unclear,
and several studies have pointed out that cytoskeletal disorganization could be an early
phenomenon [10]. Girard and colleagues provided evidence that sacsin localizes to mito-
chondria, and that targeted disruption of this protein causes alterations in mitochondrial
morphology and function [8]. It has been demonstrated that the absence of sacsin observed
in human dermal fibroblasts from ARSACS patients causes abnormal vimentin (a principal
constituent of the intermediate filament family of proteins) bundles accompanied by mor-
phological alterations in mitochondrial networks [9]. Gene expression analysis revealed
increased vim mRNA expression in sacs−/− mutant zebrafish larvae compared with con-
trols. Dysfunctional mitochondrial dynamics in ARSACS patients is also associated with
impairment of micro-oxygraphy parameters and increased oxidative stress [62]. Combined
with impaired expression of the ER-related protein calreticulin, and changes in markers of
the autophagic process, the bioenergetic defects seen in the null larvae further validate the
teleost as a new model of the human disease. Calreticulin is a chaperone playing multiple
roles in several cell processes, such as protein folding quality control and Ca2+ homeostasis,
and it is also an ER stress response indicator [63]. Salati and colleagues suggested that the
absence of calreticulin increased oxidative DNA damage [64]. In vivo detection of ROS on
sacs−/− larvae revealed higher ROS production in the mutant larvae. Besides disrupting
mitochondrial membrane integrity, membrane potential, and the respiratory chain, ROS
accumulation activates apoptosis in a caspase-dependent manner [65]. Whilst apoptosis
occurs naturally during nervous system development [66], we observed that sacs-null
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mutant embryos displayed an increase in apoptotic cells, which were found to be densely
distributed mainly in the eye area at 48 hpf, a finding likely associated with the slight
“microphthalmia” observed in mutants [66]. Altogether, the findings seen in zebrafish
lend further support to the hypothesis that absence of sacsin leads to defects in mitochon-
drial trafficking, and thus to accumulation of aberrant mitochondria in PCs, which, it is
suggested, disrupts Ca2+ homeostasis probably in distal dendrites of PCs, stimulating
ROS buildup and inducing autophagy processes to remove damaged mitochondria. The
zebrafish model we generated could help to further fine tune the chain of events associated
with sacsin depletion in the early and late stages of the disease and offer further insights
into the role of sacsin during brain development.

Given the availability of several cell models and two murine strains in which sacsin
is deficient, the need for a further tool might be questioned. However, the new model
herein described, by replicating the phenotype of ARSACS, addresses the urgent need to
find systematic approaches to facilitate drug discovery. Having the advantage of allowing
rapid assessment of morphological and behavioral readouts in live animals, the zebrafish is
indeed pivotal for in vivo high-throughput pharmacological screening [67]. Because of their
relatively lower costs and easy handling, zebrafish could be used for prioritization of drugs
and compounds before moving on to more expensive murine studies. To assess this, we
performed proof-of-principle studies investigating the potential role of ADLL/Tanganil™
and TUDCA. ADLL modulates glutamate neurotransmission in the cerebellum through
the branched-chain amino acid transferase, which is important both for glutamate release
during excitation and for the activation of metabotropic glutamate receptors required for
cerebellar plasticity [68]. TUDCA has neuroprotective effects [69], acting as a mitochondrial
stabilizer and antiapoptotic agent in several models of neurodegeneration [70]. It is able
to cross the blood–brain barrier in humans [71], and is now entering a phase III clinical
trial as an add-on therapy for ALS (ClinicalTrials.gov Identifier: NCT03800524). Our
treatments in sacs−/− fish recorded increased swim distance and velocity, partial restoration
of vim and calr mRNA expression levels, improved SRC and basal ATP levels, as well as
a significant reduction in apoptotic cells. These improvements appeared specific to our
model associated with reduced PC size as they did not occur in a different zebrafish strain
(sapje) presenting altered locomotor behavior due to muscle damage [54]. Hence, even
though these pilot drug treatments did not fully complement or “cure” the phenotypes
(locomotor or molecular) of mutant larvae, they demonstrated the potentialities of the
system for future high-throughput screening studies. In summary, this paper describes the
generation of a stable zebrafish sacs-null line, a further model of sacsinopathy. Although
“humanizing” fish data is always tricky, we obtained findings replicating the main “clinical”
and biological features seen in children with ARSACS. However, a potential weakness of
our study might arise from the differences in cerebellar cytoarchitecture between zebrafish
and mammals [24]. Even considering this limitation, these zebrafish larvae, expressing a
fluorescent reporter and offering the possibility of real-time monitoring of intracellular Ca2+

dynamics, provide a tool for in vivo analysis at high subcellular and temporal resolution
in the native context of the cerebellar circuitry. In addition, contrary to Sacs-null mice [10],
sacs−/− larvae proved useful for investigating earlier steps in locomotor impairment and
cerebellar area reduction. We believe that sacs-deficient zebrafish embryos might facilitate
study of the consequences of sacsin disruption on neurodevelopment. Even though further
research in adult fish will be necessary, sacs−/− larvae will likely help to pave the way for
drug discovery studies in vivo and allow preliminary testing of new treatment paths before
embarking on more costly studies in mice [72].

4. Materials and Methods
4.1. Zebrafish Husbandry

Experiments were carried out using transgenic lines of the Tg(tagRFP-T:PC:GCaMP5G)
strain, kindly provided by Prof. Reinhard Köster (University of Braunschweig, Ger-
many) [24], and the sapje mutant strain (a validated model of Duchenne muscular dystro-
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phy), kindly provided by the laboratory of Prof. Simon Hughes (King’s College, London,
UK) [54]; we also used the wild-type AB strain. Adults were housed in tanks at a density of
no more than five zebrafish per liter at a constant temperature of 28 ◦C on a 14-h light/10-h
dark cycle. Zebrafish eggs and embryos were collected and raised at 28.5 ◦C in E3 medium
using established procedures and staged in hours post fertilization (hpf) or days post
fertilization (dpf) [73]. The generation of the CRISPR/cas9 mutant was carried out under
the ethical approval n◦ 338/2020-PR of the Italian Minister of Health, in accordance with
the European Union (EU) Directive 2010/63/EU on the protection of animals used for
scientific purposes, and under the supervision of the Institutional Animal Care and Use
Committee of the University of Pisa, and complied with the 3R principles [18].

4.2. Multiple Alignments of Sacsin Amino Acid Sequences

Multiple alignments of sacsin amino acid sequences were performed using Clustal
Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/, October 2018) for the following
organisms: Danio rerio sacs (ENSDARG00000091042.4); Danio rerio si:dkeyp-118h9.7 (ENS-
DART00000162761.2); Homo sapiens sacsin (ENSG00000151835.16) (HADY01011608.1); and
Mus musculus sacsin (ENSMUSG00000048279.19).

4.3. Establishing the Mutant Line

The selected sgRNA was chosen among the top targets identified by CHOPCHOP software
(www.chochop.rc.fas.harvard.edu/index.php, November 2018) set with NGG PAM sites and
zero predicted off-targets (fewer than three mismatches in the sacs-targeting 20-mer). The sgRNA
was designed against exon 7 of the sacs transcript (ENSDARG00000091042.4) and generated as
already described [74]. The sgRNA was transcribed using the Megascript T7 Transcription
kit (Invitrogen, Heidelberg, Germany). The optimized Cas9 mRNA, for genome editing
in zebrafish, was transcribed from linearized template plasmid pCS2-nCas9n using the
mMESSAGE mMACHINE™ SP6 Transcription kit (ThermoFisher Scientific, Waltham,
MA). RNA concentration was quantified using a NanoDrop spectrophotometer (Optosky,
Xiamen, China) and diluted to 500 ng/µL. About 100 ng of sacs-sgRNA and 500 ng of Cas9
mRNA were co-injected into 1-cell stage embryos, to ensure high-efficiency delivery of the
injected mRNA to the embryo. The injected volume was ~1 nL of solution. At least three
independent injection experiments were performed with spawns from different founder
fish to control for batch effect.

4.4. Genotyping

For mutation screening, sgRNA-injected F0 embryos were raised to adulthood and out-
crossed with Tg(tagRFP-T:PC:GCaMP5G) adults to obtain F1 heterozygous embryos. To identify
potential adults carrying mutations, PCR and fragment analysis using genomic DNA from
16 randomly selected F1 embryos were performed using the following primers: Forward 5′-
TTTGTTTTCTCCCTTTGCCACTT-3′; Reverse 5′- GATCAGGCCAGGCTCCATAAATA-3′. F1
heterozygous fish carrying a 10-bp deletion mutation in the targeted site were selected and
inter-crossed to generate the F2 homozygous sacs−/− line.

4.5. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

Total RNA was extracted from 30 embryos at 120 hpf using the Quick RNA Miniprep
kit (Zymo Research, Irvine, CA) according to the manufacturer’s instructions. cDNA and
qRT-PCR were performed as described elsewhere [75]. Relative expression levels of each
gene were calculated using the 2-∆∆Ct method [76]. The results obtained in at least three
independent experiments were normalized to the expression of the housekeeping gene,
β-actin (ENSDARG00000037746). The mean of the controls was set at one.

4.6. Immunohistochemistry Staining of Whole-Mount Zebrafish Embryos

To prevent the development of pigmentation, embryos were treated with 0.005%
phenylthiourea from 24 hpf. Whole-mount immunohistochemistry was performed in
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48 or 120 hpf embryos fixed in 4% PFA overnight at 4 ◦C and stored in methanol as de-
scribed in [56]. The antibodies used were mouse anti-Znp1 (ab113545, Abcam, Cambridge,
MA,1:200 dilution), mouse anti-acetylated-tubulin (018M4788V, Life Technology, Monza,
IT, 1:500 dilution), and mouse anti-Parvalbumin 7 (a kind gift from Hibi Lab, Nagoya
University, JP, 1:200 dilution) [77].

4.7. Analysis of Larval Morphology

Live zebrafish were mounted on glass depression slides with 3% agarose. Images were
obtained using a Leica M205FA stereomicroscope (Leica Microsystem, WetzlarGermany).
The body length and eye size of 120 hpf larvae were measured using ImageJ 64 software [78].
Images of the hindbrain area were acquired using the Tg(tagRFP-T:PC:GCaMP5G) stable
transgenic line, and the area in µm2 of the region of interest (ROI) was calculated using
ImageJ 64 software.

4.8. Locomotor Behavior

Coiling behavior was measured in 30 hpf embryos using Danioscope software (Noldus©,
The Netherlands). We also analyzed locomotion in 120 hpf larvae in each experimental
group. The larvae were transferred into 96-well plates containing 300 µL of egg water per
well. Each plate was placed in the DanioVision® device (Noldus© Information Technolo-
gies, Wageningen, The Netherlands) and the larval activity was recorded for 30 min and
analyzed using EthoVision XT® software (Noldus© Information Technologies, Wageningen,
The Netherlands) [79]. Statistical analysis was performed considering five independent
biological replicate experiments and the data were plotted as the mean ± standard error
of the mean.

4.9. Mitochondrial Respiratory Analysis

Mitochondrial respiration was analyzed in untreated and treated homozygous sacs−/−

larvae at 120 hpf using the XF24 extracellular flux analyzer (Seahorse Bioscience, North
Billerica, MA.). The dual analyte sensor cartridges were soaked in XF calibrator solution
(Seahorse Bioscience) in 24-cell culture overnight at 28 ◦C to hydrate. About 30 min
before the trial period, the appropriate injection cartridges were reloaded. The following
chemicals were used for this experiment: oligomycin at a concentration of 25 µM, FCCP at
a concentration of 5 µM, and rotenone plus antimycin A at a concentration of 5 µM. The
120 hpf larvae were staged and placed in 20 of the 24 wells of an islet microplate. The
islet plate acquisition screens were placed on the measurement area to hold the larvae in
place. Four wells were left empty as a control. Each well was filled with 500 µL of egg
water (pH 7.4). Basal respiration, ATP production, maximal respiration rate, and spare
respiratory capacity were measured using a standard approach [33].

4.10. Calcium Imaging

Zebrafish larvae at 120 hpf were restrained in low melting point agar and a Nikon FN1
microscope (Nikon, Tokyo, JP) was used for video recording; the image acquisitions were
obtained using a Prime sCMOS camera (Teledyne Photometrics, Tucson, AZ.)) supplied
with Metafluor software (Molecular Devices, San Jose, CA), applying a time-lapse interval
of 150 ms and acquiring 3860 frames per video. The distribution of fluorescence fluctuations
(∆F/F0) in the hindbrain area was evaluated in a pre-defined ROI using ImageJ 64 software.
Data were normalized to background fluorescence and were quantified by the Pearson’s
coefficient of skewness defined as: δ = (3(M–m))/σ, where M is the mean, m is the median,
and σ is the standard deviation of the distribution as described elsewhere [37].

4.11. Oxidative Stress Measurement

Reactive oxygen species (ROS) levels were determined using an in vivo carboxy-
H2DCFDA fluorescent probe (#8206004, Abcam, Cambridge, MA). Zebrafish embryos at
48 hpf were incubated with 30 µM of this probe for 40 min in the dark and then washed
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three times with E3 medium. A lateral image of each larva was acquired using a fluores-
cence microscope, and the fluorescence intensity in the selected ROI was quantified using
ImageJ 64 software. Data were normalized to background fluorescence.

4.12. Western Blotting

Embryos collected at 48 hpf were dechorionated, deyolked, and lysed in radioim-
munoprecipitation assay buffer (RIPA buffer) supplemented with 1 mM PMSF, 1 mM
sodium fluoride, and 1 mM sodium vanadate (Na3VO4). Equal amounts of embryo protein
(50 µg) were electrophoresed in 10% SDS-PAGE gel and transferred to nitrocellulose mem-
branes. Western blotting was performed as previously described [80,81], and the primary
antibodies used were: rabbit anti-β-tubulin (#2146, Cell Signaling Technology, Danvers,
MA, 1:1000), rabbit anti-LC3 (L7543, Sigma-Aldrich, MI, IT, 1:1000), and rabbit anti-p62
(GTX100685, GeneTex, Irvine, CA, 1:500). The p-value was calculated using GraphPad
Prism 6 software (San Diego, CA, USA).

4.13. Detection of Apoptotic Cells

In each group, apoptotic cells from larvae at 24 and 48 hpf were detected by staining
with acridine orange (#235474, Sigma-Aldrich, St. Louis, MO ). Zebrafish embryos were
incubated with 10 µg/mL acridine orange solution for 15 min in the dark; the larvae were
then washed three times with E3 medium. At 48 hpf, we counted acridine orange-positive
cells within a pre-defined area and a quantitative analysis was performed as described
elsewhere [78,82].

4.14. Pharmacological Treatments

Normally developing embryos were selected under a stereomicroscope at 4 hpf and
randomly placed in 60 mm × 15 mm petri dishes at a density of 50 per dish, each dish
containing one of two specific drugs diluted in egg water. Stock solutions of taurour-
sodeoxycholic acid (TUDCA), sodium salt (#14605-22-2, Calbiochem, San Diego,), and
N-acetyl-L-leucine (#MKCK6900, Sigma-Aldrich, St. Louis, MO) were prepared in Milli-Q
water (Merck-Millipore, Milan, Italy) and diluted in egg water to the final administered
concentrations. To select the appropriate working dilution for each substance, a prelimi-
nary dose-dependence test was performed using wild-type embryos. Four to five different
concentrations in the range of 0.5 to 150 µM were tested for each substance. The highest
concentration (150 µM) of each compound was chosen as the working dilution for all phar-
macological experiments. To verify the efficacy of the molecules tested, we performed the
aforementioned locomotor behavior assay. After 30 min of adaptation, larval locomotion
was analyzed for 40 min, through 4 cycles of alternating light and dark periods [53,83]. For
each experiment, at least three independent assays were performed.

4.15. Birefringence Assay

Muscle birefringence, linked to myofibril organization, was analyzed by placing
anesthetized embryos on a glass polarizing filter, covering them with a second polarizing
filter, and recording them under a Leica M205FA microscope as described elsewhere [84,85].
Embryos were photographed in a bright field.

4.16. Statistics

All data in the manuscript represent three or more independent experiments giving
similar results. We performed the statistical analysis using GraphPad Prism 6 software.
The significance between groups was determined using Dunnett’s multiple comparisons
test or the non-parametric one-tailed Mann-Whitney rank sum test, as indicated in each
figure legend. Statistical analysis for qRT-PCR experiments was performed using the two-
tailed paired Student’s t-test. Statistical significance is reported as: * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001, or **** p ≤ 0.0001.
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