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Chapter 1

Deep learning techniques for modelling human
manipulation and its translation for autonomous

robotic grasping with soft end-effectors
Visar Arapi1, Yujie Zhang1,2, Giuseppe Averta1,2,3,

Cosimo Della Santina4, and Matteo Bianchi1,2

One of the key enablers for the extraordinary dexterity of human hands is their
compliance and capability to purposefully adapt with the environment, to multiply
their manipulation possibilities. This observation has also produced a significant
paradigm shift for the design of robotic hands, leading to the avenue of soft end-
effectors that embed elastic and deformable elements directly in their mechanical
architecture. This shift has also determined a perspective change for the control
and planning of the grasping phases, with respect to the classical approach used
with rigid grippers. Indeed, instead of targeting an accurate analysis of the contact
points on the object, an approximated estimation of the relative hand-object pose is
sufficient to generate successful grasps, exploiting the intrinsic adaptability of the
robotic systems to overcome local uncertainties. This chapter reports on deep learn-
ing techniques used to model human manipulation and to successfully translate these
modelling outcomes for enabling soft artificial hands to autonomous grasp objects
with the environment.

1.1 Introduction

Achieving stable and purposeful grasps with robotic hands is a challenging problem,
especially under the framework of autonomous operations. Classical approaches for
grasp planning and execution targeted the exact definition of the contact points on
the object (object-centric approach) [1]. These approaches defined a set of avail-
able contact points and then identified point locations and contact forces, relying on
the knowledge of object properties. These methods were proven to work well with
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rigid robotic hands, but can be hardly applied to a new generation of end-effectors,
which can deform and interact with the environment. The latter category of robotic
end-effectors, which can be continuously deformable [2] or soft-articulated [3], envi-
sions the purposeful introduction of elastic elements in their mechanical structure to
allow the adaptation around different objects and with the environment, the increase
of the device robustness and the reduction of the control burden (often capitalizing
upon under-actuation schemes). The motivation for the design of these soft hands is
the human example: every-day human hands purposefully leverage on their softness
to exploit the environmental constraints [4] for multiplying grasping opportunities
and degrees of freedom, while reducing the computational complexity needed for
task execution. Lifting a coin from a table, pivoting the object around one or more
fingers interacting with the surface, represent some exemplary cases of this abil-
ity. Under a robotic point of view, soft manipulators have also produced a perspec-
tive shift in grasp planning problems, requiring only an approximated estimation of
the relative hand-object pose is sufficient, letting the elasticity of the end-effectors
and the interaction with the environment doing the rest [5]. It is hence clear that
this paradigm shift also requires new mathematical tools, to model human behavior
(which represents the golden standard for artificial manipulation) and to translate it in
well-defined control laws for autonomous manipulators. Under this regard, machine-
learning (ML) and, especially, deep-learning (DL) [6], have emerged as promising
techniques to tackle the aforementioned twofold goal. Indeed, ML and DL allow
to overcome the modelling challenges that arise when dealing with soft bodies and
their interaction with the external environment, targeting solutions close enough to
the desired ones, rather than exact, leveraging on the adaptation capabilities of the
soft hands to overcome local uncertainties.

However, so far only few works in literature have applied learning methods for
(i) studying human hands in every-day grasps with the environment, and (ii) control-
ling soft hands, by suitably translating human observation outcomes on the robotic
side. Regarding (i), pioneer work on convolutional neural network (CNN) appli-
cations to hand gesture recognition dates back to 90s. Among the more recent ex-
amples it is worth mentioning the EgoHands [7], a CNN based framework trained
on 15.000 segmented hands (obtained through a manually pixel-level process on
4800 egocentric video frames − first person videos of people playing four game
board activities). EgoHands detects accurately one or more hands from each video
frame, with very robust performance with respect to (w.r.t.) changes in environ-
ment conditions, particularly during Environmental Constraint Exploitation (ECE)
[4] for grasping. Regarding (ii), in [8] authors introduced a mixed approach com-
bining learning by demonstration with reinforcement learning to transfer grasping
capabilities of known objects from a human operator to the robotic system. In [9],
GRNN (generalized regression neural networks) and autoencoders were adopted to
learn from human demonstration examples how to manipulate previously unseen thin
objects with a soft gripper. In [5] a library of reactive strategies was collected from
a subject operating a soft hand, and successfully translated for robotic grasping of
new items, in a human-robot handover scenario. In [10] a 3D convolutional neural
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network was trained with tens of thousands of labeled images. The network output
provides the control input for the hand approaching direction.

All these papers are extremely promising, especially for the integration of deep
learning with the intrinsic compliance of soft end-effectors, i.e. their embodied in-
telligence. However, they failed in terms of result generalization and in effectively
grasping the full potentiality that the human example and the environment exploita-
tion could represent for achieving autonomous grasps with softhands.

In this chapter, we report on two successful applications of deep learning to the
study of human hands and its translation for autonomous grasping with soft grippers.
We will discuss the results and finally comment on future avenues and possibilities
of these approaches.

1.2 Investigation of the human example

Everyday, humans purposefully take advantage from the interaction with the en-
vironment, to accomplish successful manipulation actions, relying on the intrinsic
compliance of their hands. This is one of the key enablers for human extraordi-
nary manipulation capabilities, which have not been yet matched on the robotic side.
For these reasons, the observation and modelling of the human example could pro-
vide useful insights for the control of soft robotic hands, which can take advantage
from the exploitation of the environmental constraints, similarly to human hands.
In [11] authors modelled human grasping behavior introducing transition probabili-
ties for the identification of the conditions leading to the decision between one path
of action with respect to another one. The outcomes of this investigation resulted
in different action sequences with respect to different object shapes. Translation of
these results for the control of soft robotic end-effectors could allow the robots to
effectively evaluate the transition conditions, relying on suitable sensors and com-
putational tools. Towards this goal, the first mandatory step is the recognition of
human gestures, which is usually accomplished through wearable [12, 13] or remote
devices. Regarding remote systems, the most commonly used strategy is represented
by video recordings. In literature there have been important examples for the extrac-
tion of features describing human gestures in video sources, which include methods
based on k-means classification or Hidden Markov models [12, 13].

At the same time, deep learning approaches have emerged as a promising tool
for feature extraction, e.g. image classification [14], object detection [15], hand ges-
ture recognition in video sources. Regarding the latter point, it is worth mentioning
EgoHands [7], where four actions were recognized by a Convolutional Neural Net-
work (CNN) − trained with 4800 segmented hands − in combination with window-
ing at fixed temporal size. CNNs can be synergistically used in combination with
Recurrent Neural Networks (RNNs), which allow to efficiently and robustly man-
age spatio-temporal features [16, 17, 18]. RNNs usually rely on Long Short Term
Memory (LSTM) cells, which can put in memory a compressed representation of
medium-range temporal relationships in the input sequence [19].

However, to the authors’ best knowledge, there is currently no approach based
on deep learning applied to videos, for the characterization of the dynamic and time-
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-dependent content underpinning human hand pose evolution, during the interaction
with the environment. To bridge this gap, we proposed a framework, named Deep-
DynamicHand presented in [20], which targets visual features related to the hand
shape only (instead of considering the whole video frame) and dynamic video an-
notation encompassing both the pre-grasp and grasping actions. DeepDynamicHand
consists of two neural architectures: the first one is a CNN for segmenting human
hand in each video frame, enabling the extraction of a compressed and rich encoding
of the hand posture; the second architecture is a RNN based on LSTM recurrent units
[21].

The latter architecture takes as input the sequence of encodings provided by the
CNN and generates as output a sequence of action primitives − i.e. a dictionary of
meaningful behavior components whose composition enables to successfully interact
with the environment in grasping tasks − performed by human hands in the videos.

1.2.1 Methods
Let us consider a set of videos

< V1,V2, · · · ,VT > . (1.1)

A single video V j comprises a sequence of frames

V j = (I j,1,I j,2, · · · ,I j,n), (1.2)

where I j,t ∈ Rw×h×3, w and h are the width and height of the video frame at
time t, respectively. In general, the number of frames n composing the video varies
from case to case. Our goal is to automatically convert each video into a sequence
of labels

Y j = (y j,1,y j,2, · · · ,y j,n), (1.3)

where each label y j,t ( j refers to the actual video, while t is the temporal frame)
is the action primitive − included in a pre-defined (finite) dictionary S − executed
by the participant’s hand in each frame. Moreover, considering that, in each video,
actions performed by the participant are executed in a dynamic temporal sequence,
implies that the label y j,t associated to the action primitive at frame t depends on
features observed both in prior as well as in the actual frames (I j,1,I j,2, · · · ,I j,t).

To address the aforementioned challenge, we propose a two-stage architecture
(Figure 1.1). In the first stage (Figure 1.1-(a)) we leverage on a CNN based approach
to recognize the hand in each video frame I j,i and subsequently extract a condensed
and, still, informative characterization of the hand pose. To this end, we employ two
units, named window proposal and window classification, respectively. The window
proposal unit

HP : Rw×h×3 −→ Rwk×hk×3, (1.4)

where wk ≤w and hk ≤ h, is realized through the pre-trained four-dimensional Gaus-
sian Kernel Density Estimator (KDE) fitted on the EgoHands dataset [7]. The aim of
such unit is to discover the most likely regions that enclose the hand within a proba-
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Figure 1.1 General structure of the proposed architecture. In a) we show a
CNN-based approach, used to detect hands in the frames extracted
from videos, encoding the associated bounding boxes into feature
vectors corresponding to the activation of the penultimate fully
connected layer of the CNN. In b) we show a LSTM model, trained to
learn to predict the sequence of n input vectors, corresponding to the n
video frames, into a sequence of n hand action primitives.

bilistic context. Accordingly, the output includes a set of candidate windows that are
then passed to the window classification unit

ξV : Rwk×hk×3 −→ (p,1− p) ∈ R2, (1.5)

where p ∈ [0,1], whose target is to detect the presence of the hand in the candidate
window (hereinafter, bounding box). For this purpose, we use the pre-trained CNN



“main”
2020/2/10
page 6

6 AI for Emerging Verticals

developed as part of the Egohands framework [7]. The structure of the CNN is sum-
marized in Table 1.1. Convolutional layers− Convi − extract input features through
convolution operations represented by the number of filters (kernels) b with spatial
size f × f , applied to the input with stride s. The outcomes of convolutional lay-
ers are sequentially: saturated by ReLUi layers (introducing non-linearity into the
CNN); down-sampled by Pooli layers (which apply a mask on f × f input regions
and stride s); and, normalized by Normi layers. On the top of the CNN structure,
there are two fully connected layers FC6 and FC7, respectively. These layers con-
nect all neurons of previous layer with 4096 nodes. Finally, the Softmax function
capitalizes on the last FC7 layer encodings to generate a probability distribution over
two classes (hand, no-hand).

Supposing ηi,k ∈ Rwk×hk×3 be the most likely scored bounding box enclosing
the hand. We leverage on FC6 layer encodings to characterize hand pose features.
This layer comprises less task-specific information than FC7 layer, which is closer
to the Softmax layer and, thus, more dedicated to the recognition of the hand rather

Table 1.1 Description of the CNN structure. Each row describes a layer of the
network, organized from input to output. (kernels b) refer to the number
of kernels (each of them is a f × f matrix, whose dimensions are
determined by the spatial size f ) containing the convolutional
parameters, stride s controls the shift step of the kernel (convolution
layer) or the mask (pooling layer) around the input volume, and output
size represents the output dimension (height, weight and depth in the
case of a volume or the vector size).

type kernels (b) spatial size (f ) stride (s) output size

Conv1 96 11 4 55×55×96
ReLU1 - - - 55×55×96
Pool1 - 3 2 27×27×96
Norm1 - - - 27×27×96
Conv2 256 5 1 27×27×256
ReLU2 - - - 27×27×256
Pool2 - 3 2 13×13×256
Norm2 - - - 13×13×256
Conv3 384 3 1 13×13×384
Conv4 384 3 1 13×13×384
ReLU4 - - - 13×13×384
Conv5 256 3 1 13×13×256
ReLU5 - - - 13×13×256
Pool5 - 3 2 6×6×256
FC6 - - - 4096
ReLU6 - - - 4096
FC7 - - - 4096
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than its high level information (i.e. edges, shapes, etc.). As a result, for each frame
we represent the hand pose features as fixed vectorial encondings x j,i ∈ Rg, where
g = 4100 (the first four components refer to the bounding box coordinates, while the
remaining ones include the FC6 layer encodings). Therefore, the whole video V j is
now represented as sequence

X j = (x j,1,x j,2, . . . ,x j,n), (1.6)

of such hand-pose encodings.
In the second stage (Figure 1.1-(b)), the Sequence learning model is trained to

process the input sequence X j − hand pose encodings obtained by the CNN − to
predict a related output sequence of action primitives

Y j = (y j,1,y j,2, . . . ,y j,n). (1.7)

Moreover, to model the dynamic temporal behavior, we employ a RNN − im-
plemented using LSTM recurrent units − in the Sequence learning component of
our architecture. Specifically, LSTM is able to provide as output the prediction for
the current frame, while taking into account the history of the poses and action se-
quences performed by the hand in the previous instants. To this end, the action
primitives (which −as aforementioned − are symbols from a discrete and finite al-
phabet) are converted to a numeric vector using a one-hot encoding. The approach
encodes the k-th symbol of the action primitive alphabet as a vector of length equal
to the alphabet size, where only the k-th element is set to 1, while the rest is equal
to zero. More formally, the one-hot encoding of the action label for frame xi is the
vector yi ∈ R|S| defined as

yi
k =

{
1, if k = ind(yi)

0, otherwise ,
(1.8)

where ind(yi) is the index of the current label in the dictionary S.
Moreover, the details of the LSTM network are specified by model selection,

using validation data outside of the training and test samples for ensuring robustness
and avoiding results biased towards high precision on the test-set. Such details in-
clude, among others, the number of hidden layers and the number of LSTM units in
each layer. The following experimental analysis provides details on the final config-
uration. More information and technical details can be found here [20].

1.2.2 Experiments
Videos were manually segmented and labeled by an experienced person using the
action primitives described below. Each grasping video is represented by a combina-
tion of a subset of the following action primitives: rest, approach, close, slide, flip,
edge.

Note that the CNN we leverage on to detect hands was trained on RGB images
(hands), instead our videos are in black and white. In addition the participants wore
a glove during the experiments. We thus apply a simple image segmentation filter
using the imbinarize function in MATLAB to convert each frame into RGB coding.
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In this way, we can select the pixels connected to the glove, which roughly repre-
sent the hand, and colorize them with the same color, chosen as the mean value of
EgoHands ground truth [7].

1.2.2.1 Evaluation on ECE dataset
Training and testing procedures are executed on a NVIDIA Tesla M40 GPU with
12GB of onboard memory. We propose two types of cross-validation: hold out
and leave one out to verify the generalization and robustness of action primitive
prediction. The goal of cross-validation is to estimate the expected level of model
predictive accuracy in a way that is independent from the data used to train the model.

Figure 1.2 Performance of the proposed network, reported as confusion matrices
evaluated on a benchmark SVM method and on the proposed LSTM.
For each matrix, on the y-axis are reported the true classes, on the
x-axis the predicted classes. Optimal performances are represented by
purely diagonal matrices. Results show significantly better
performances for the LSTM case, confirming the crucial relevance of
temporal information for an accurate classification of action
primitives.

Considering that hold out approach requires less computation time compared
to leave one out, we employed it to determine both network hyper-parameters (i.e.
LSTM depth and width) and learning hyper-parameters (i.e. batch size, learning
rate, number of epochs and dropout). We trained 30 different network configu-
rations which were obtained by varying respectively: number of LSTM hidden-
-layers in {1,2,3}, number of LSTM cells per layer in {64,128,256,512}, batch
size in {5,10,15,20}, learning rate in {10−2,10−3,10−4}, number of epochs in
{10,20,30,40}, and dropout in {0.4,0.5,0.6}. Relying on the results of each sim-
ulation, we consider the configuration which provided both the highest min-score
accuracy − the lowest accuracy with respect to the six classes − and f1-score [22]
accuracy on the validation dataset − which are 73% and 91% respectively. In such
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Figure 1.3 Action primitives classified by the proposed network during the
reaching and grasping of a credit card. Each picture represents a
time-frame of the action execution. For each frame, we show a
bounding box around the hand with a color dependent on the classified
action, the label associated to the predicted action, a bar indicating the
level of prediction confidence (green if the classification is correct, red
otherwise).

configuration, we consider three hidden layers, with respectively 256, 256, and 128
dimensions for the size of the LSTM memory. We train the network for 30 epochs us-
ing RMSprop optimizer with a fixed learning rate of 10−3, batch size 20 and dropout
0.5. Furthermore, with such architecture and such learning parameters, the network
is able to predict the dynamic hand strategies in the test dataset with an accuracy
ranging from 75% up to 96%, depending on the action class. Normalizing scores
with respect to the total number of classes, we obtain an accuracy of 85% − please
refer to [20] for details.

Results of the leave one out cross-validation analyses of network performance,
which necessitate a longer computation time compared to hold out approach, but
guarantee more robust validation results, are reported in Figure 1.2-(b). We show the
per class normalized confusion matrix index of the predictor of all six classes that
were detected. What we can observe from Figure 1.2-(b) is that there is a class (ap-
proach) with a precision of over 94%, three classes with a precision over 83% (edge,
close, rest), one class (slide) with a precision of 73% and one (flip) that reaches a rea-
sonable 62%. This is a very strong result given the fact that the predictor is trained on
videos with poor quality − videos are in black and white format, and subjects wore
gloves. Furthermore, we provide a comparison with a benchmark Support Vector
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Machine (SVM) method in Figure 1.2-(a). This approach is implemented with the
purpose of noticing the accuracy discrepancy when action primitives are predicted
without considering any temporal information. It is also evident from the results that
LSTM outperforms SVM, confirming the crucial relevance of temporal information
for an accurate classification of action primitives.

Figure 1.4 Action primitives classified by the proposed network during the
reaching and grasping of a french chalk. Each picture represents a
time-frame of the action execution. For each frame, we show a
bounding box around the hand with a color dependent on the classified
action, the label associated to the predicted action, a bar indicating the
level of prediction confidence (green if the classification is correct, red
otherwise).

Figures 1.3 and 1.4 show some examples of action primitives predicted by our
DeepDynamicHand model on ECE dataset. In each video frame we overlaid (i) the
bounding box that likely encloses the hand, color changes depending on the action
primitive the hand currently performs, (ii) the predicted action label, and in case
of failure, the true label, and (iii) the level of confidence represented with a filled
rectangle − the color is green if the predicted action is true, red otherwise. We
can observe that wrong classification usually happens when a transaction between
primitives occurs. Frame 1.3-(f) refers to such example, showing that confusion may
arise in situations where hand shapes are hardly distinguishable also by a human.
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1.3 Autonomous Grasping With Anthropomorphic Soft Hands

In the previous section, we reported on how the human example can be investi-
gated using DL techniques to identify common action primitives, which take into
account the compliance of the hands for the exploitation of the environmental con-
straints during manipulation tasks. In this section, we describe the usage of DL to
translate human observations on the robotic side, for autonomous grasping with soft
hands [23]. More specifically, we considered a soft articulated robotic hand, the
Pisa/IIT SoftHand [3], although the approach can be generalized to any soft end ef-
fector. In our solution, which was presented in [23], the intelligence is distributed on
three levels of abstractions, see Figure 1.5: (i) high-level: a classifier for planning
the right action, choosing among a set of available ones, ii) medium level: a set of
human-inspired low level strategies implementing both the approaching phase and
the sensor-triggered reaction, iii) low level: a soft hand whose embodied intelligence
mechanically manages local uncertainties. All the three levels are human-inspired.
We report in the next sub-sections the detailed description of these components.

1.3.1 High-Level: Deep Classifier
The target of the deep neural network is the association to an object, detected from
the scene using a RGB camera, the primitive, intended as the temporal evolution
of the hand pose, that humans would likely perform for grasping it. The object
detection is implemented using the state of the art detector YOLOv2 [24], which
produces as output a set of labeled bounding boxes containing all the objects in the
scene from the RGB input image. This output is fed to the second classifier, which
is built moving from Inception-v3 [25] trained on the Image Net dataset. The goal
is not to obtain a one-to-one signature of a particular object, but, on the contrary, to
achieve a semantic description that can be applied to objects with similar geometric
characteristics. We modified the Inception-v3 and added two fully connected layers
(2048 neurons each, with ReLU activation), which perform an adaptive non-linear
combination and refinement of the features. The outcome of the last layer acts as
input to the Softmax, whose output is a probability distribution on the set of motion
primitives.

The deep classifier was trained using 6336 first person RGB videos (single-
object, table-top scenario), which were collected from 11 right-handed subjects grasp-
ing 36 objects, see Figure 1.6 − which cover most of grasping possibilities in every-
day life − from different points of view (4), see Figure 1.9. Videos were visually
inspected to extract and label the main strategies, resulting in a set of ten primitives,
i.e. Top, Top Left, Top Right, Bottom, Pinch, Pinch Right, Slide, Flip and Lateral.
For more details on primitive description, please refer to [23]. The choice of these
primitives was done taking inspiration from literature [4, 26], and to provide a rep-
resentative yet concise description of human behavior, without any claim of exhaus-
tiveness. Note that the selection of the action primitive is also object-configuration
dependent.
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Figure 1.5 General description of the proposed methodology, combining reactive
actions and anticipatory behavior. A deep classifier observes the scene
and − given a specific object − predicts the approaching strategy a
human would implement to grasp the object. This semantic description
is used to select a corresponding motion primitive on the robot, in
terms of hand posture over time. IMUs fastened on the fingers detect
contact with the object and triggers a reactive grasp behavior.

1.3.1.1 Object detection
The activity of object detection is achieved through a YOLOv2 detector [24]. More
specifically, given a RGB image as input, YOLOv2 is able to provide as output a
series of labeled bounding boxes that contain all the objects in the scene. Among
all, we first discard all the ones labeled as person. Then, assuming that the target is
placed close to the center of the picture, we select the bounding box closest to the
scene center. Note that this is an arbitrary selection, made only for implementation
purposes and can be easily generalized. After the identification of the particular
object, the picture is automatically cropped around the bounding box, and resized
to 416× 416 pixels. The result of this procedure is then used as input for a second
block used for classification.
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Figure 1.6 Set of objects (36) used during the experiments with human
participants. Pictures are not in scale.

1.3.1.2 Primitive Classification
Network Architecture
The Primitive Classification is based on a transfer learning approach [27]. This ap-
proach leverages on prior knowledge − learned from one environment − to solve a
new problem, typically related but different in general. With this approach, a reduced
amount of samples is needed to train the model, thus resulting in shorter training time
while preserving high accuracy of results. To do this, we leveraged on Inception-v3
[25], trained on the ImageNet dataset [28] to classify objects from images. We keep
the early and middle layers and remove the Softmax layer. This enables a direct
access to the informative, highly refined, neural features that Inception-v3 uses for
the classification. It is worth noticing that the object classification is not intended as
one-to-one, but rather it aims at extracting high level − semantic − descriptions that
can be easily transferred to objects with similar characteristics. On the top of the



“main”
2020/2/10
page 14

14 AI for Emerging Verticals

Figure 1.7 Robotic platform used for the experiments. A Kuka LWR is mounted on
a rigid framework and equipped with a Pisa/IIT SoftHand as
end-effector. The scene is recorded through a camera mounted at the
robot base. Hand is sensorized through Inertial Measurement Units
(IMUs) placed on the back of the fingertips. Local and Global
reference systems are also reported.

original architecture we also included two fully connected layers containing 2048
neurons each (with ReLU activation function). These layers introduce a non-linear,
adaptive, combination of the high-level features identified by the convolutional and
pooling layers, further refining the information. In this way, the geometric features
are implicitly linked each other to serve as the base for the classification. The output
of the last fully-connected layer is thus fed into the Softmax layer, which produces
as output a probability distribution over the considered set of motion primitives. The
output of the overall network is then the motion primitive that shows the maximum
probability.

Training and validation
The network was trained using the labeled dataset introduced above. More specifi-
cally, while the original parameters of the Inception-v3 were fine-tuned for the spe-
cific task, the parameters of the two fully-connected layers placed at the top of the
architecture were trained from scratch. This was achieved using a different learning
rate for the layers. Indeed, the weights of the first 172 layers − which are more
devoted to universal features, like curves and edges − were maintained unchanged,
while the remaining 77 layers − used to capture features more related to the specific
dataset − were re-trained in this implementation. Changes on the latter were limited
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by a relatively small learning rate λft. Finally, the last two fully-connected layers
were randomly initialized and trained with a higher learning rate.

We minimized the risk of over-fitting by using a dropout policy [29]. More
specifically, for every new training sample presented to the network, we randomly
disconnected a set of neurons by masking their activation. Each neuron has a specific
disconnection probability pdrop. This results in a new − different − topology of
the network after each training, with the ultimate result to introduce variability and
minimize the arising of unwanted co-adaptation of weights. Network design and
training was performed through Keras library [30] leveraging on a NVIDIA Tesla
M40 GPU with 12GB of memory on-board.

Figure 1.8 Performance of the proposed deep classifier, reported as confusion
matrix evaluated on the test set. Each element of the matrix reports the
percentage of cases in which the primitive identified (identified by the
row label) is classified as the primitive associated with the column
label. Optimal performances are represented by purely diagonal
matrices. Numerical values are color-coded: white is low rate, dark
green is high rate.
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A hold-out validation was then used to verify the robustness and the generaliza-
tion capabilities of primitive classification. To do this, we split our samples in three
datasets: 70% of samples used for the training phase; 20% of samples used for the
validation phase; 10% of samples used for the testing phase. The three sub-datasets
were organized with a balanced representation of objects for each class we consid-
ered. We performed the training using 30 different configurations of the network,
leveraging on cross entropy cost function to adjust the weights by calculating the er-
ror between the output of the Softmax layer and the label vector of the given sample
category. Each configuration resulted from the variation of the most relevant hyper-
-parameters of the learning phase, i.e. probability of dropout pdrop ∈ {0.4,0.5,0.6},
learning rates λft ∈ {10−3,10−4,10−5,10−6} and λtr ∈ {10−2,10−3,10−4}, number
of epochs in {10,20,30,40} and batch size ∈ {10,20,30,40}. The training time
employed− for each network− was between 1 and 5 hours. Among all the configu-
rations trained, we selected the one that provided the highest f 1-score accuracy [22]
on the validation set. In our case, we had a maximum value of 97% with the follow-
ing hyper-parameters: pdrop = 0.5, λft = 10−5, λtr = 10−3, 30 epochs and batches
size 20.

The network with these parameters resulted able to correctly classify the motion
primitives with an accuracy between 86% and 100%, depending on the primitive,
with an average value equal to 95%. In Figure 1.8 we show the normalized accu-
racy of the proposed network for the 10 classes considered in this work. It is worth
noticing that the occasional failure of the network is related to two main reasons.
First, the formulation of the problem itself makes intrinsically not possible an accu-
racy of 100% , since different subjects may use different grasping strategy for the
same object in the same configuration. An example is the grasp of the coin, which is
typically grasped through a flip strategy, but sometimes may be grasped leveraging
on a sliding primitive instead. Another reason for occasional failure is related to the
experimental setup. Indeed, the usage of a single RGB camera sometimes results
in a misinterpretation of the object size which, for example, could lead to the pre-
diction of a top grasp instead of a bottom grasp for a bowl. This particular problem
can be solved through the usage of a stereo-camera; this extension is currently under
evaluation and is left for future developments of this work.

1.3.2 Transferring Grasping Primitives to Robots
In [31], Johansson and Edin hypothesized that the Central Nervous System (CNS)

monitors specific, more-or-less expected, peripheral sensory events and use
these to directly apply control signals that are appropriate for the current
task and its phase.

This means that control signals descending from the CNS are more likely com-
puted in advance (i.e. feedforward/anticipatory actions). Motivated by this obser-
vation, our translation of human behavior in a robotic framework was implemented
leveraging mostly on feedforward actions. To do this, we moved from the observa-
tions discussed in the previous section of this chapter and defined a basis of human-
inspired motion primitives, to be triggered by specific events. The first triggering



“main”
2020/2/10
page 17

Deep Learning and Soft Hands 17

Figure 1.9 Initial configuration of the hand w.r.t. the object at the beginning of
four different motion primitives: a) top grasp; b) bottom grasp; c)
pinch grasp; d) lateral grasp. Moving from these initial poses, the
hand translates until the contact with the object is detected by the
IMUs. The contact triggers a reactive behavior.

event is associated with the object detection. To each object, the framework asso-
ciates a corresponding grasping primitive. Among all the primitives included in this
work, we do not consider here the flip, because this cannot be implemented by the
particular end-effector used in this work. Motor primitives are divide in two main
phases: i) approaching and ii) reactive adaptation. The transition between the two
phases is triggered by the detection of a contact event perceived by the Inertial Mea-
surement Units (IMUs) mounted on the back of the fingers of the softhand.



“main”
2020/2/10
page 18

18 AI for Emerging Verticals

Figure 1.10 Set of objects (20) used during the experiments with the robotic
platform for the experimental validation. Note that all the selected
objects are different w.r.t. the ones used during the training phase. A
30cm ruler is placed in all the pictures to enable a qualitatively
perception of the objects size.

1.3.3 Experimental setup
Even if the proposed approach is general and not limited to the specific robotic archi-
tecture, it is convenient to report here its description to increase clarity. The platform
we used is composed by a Pisa/IIT SoftHand [32] mounted as end-effector on a
KUKA LWR-IV arm. The particular end-effector used is an anthropomorphic soft
robotic hand with 19 Degrees of Freedom, which are jointly (following synergistic
covariation patterns) actuated by one single Degree of Actuation. It is worth noticing
that the particular design and control of the end effector represent a low-level intel-
ligence embodied, integral part of the control architecture itself. Video information
are recorded through a RGB camera, fastened close to the robot base to generate a
first-person point-of-view.

The soft hand is endowed with inertial sensors (IMUs) placed on the back of the
fingertips. Measures recorded from IMUs (i.e. accelerations) are needed to detect
contacts and trigger reactive grasping [5] strategies. Figure 1.7 shows the whole
experimental setup, with reference frames for the global and end effector reference
systems.
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Figure 1.11 Snapshot of power top grasps generated through the proposed
architecture. Subfigs a-h show a top grasp performed on object 12;
subfigs i-p show a top-left grasp performed on object 5; subfigs q-x
show a top-right grasp performed on object 16. For each line, it is
possible to observe an approaching phase (e.g. subfigs a-b), a contact
detection (e.g. subfig c), a reactive behavior for posture adaptation
(e.g. subfigs c-f) and a firm grasp and lift of the object (e.g. subfigs
g-h).

Figure 1.12 Snapshot of a bottom grasp performed on object 14. Subfig a shows
the initial configuration of the primitive. In b the contact triggers the
reactive routine. Finally, in subfig f the item is firmly lifted.

1.3.3.1 Approach phase
Given the starting pose, the approaching phase toward the object position is encoded
via the following Cartesian trajectory

x(t) = x0 +dtQ(t) = Q0, (1.9)

where x∈R3 represents the hand 3D Cartesian position and Q∈R4 is the quater-
nion that encodes its orientation (all w.r.t. the global reference system); x0 ∈ R3 and
Q0 ∈ R4 refer to the initial position and orientation and d ∈ R3 is the approaching
direction. All these three quantities are defined by the selected primitive, and dic-
tated by the aim of heuristically reproducing as close as possible the human behavior
observed in the videos. Figure 1.9 depicts the initial configuration of the hand for
four directions of approach, while Table 1.2 collects numerical values of initial ori-
entations and approaching directions for all the primitive implemented in this work.
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Table 1.2 Initial orientation Q0 and normalized direction of approach d̂ for each
primitive.

Strategy QT
0 d̂T

Top [0.0 0.711 0.0 0.703] [0 0 −1]
Top left [0.269 0.6570 −0.2721 0.6496] [0 0 −1]
Top right [0.269 −0.657 −0.272 −0.649] [0 0 −1]
Bottom [0.145 −0.696 0.701 0.030] [0 1 0]
Pinch [0.084 0.816 0.17 0.458] [0 0 −1]
Pinch left [0.116 0.733 0.483 0.463] [0 0 −1]
Pinch right [0.186 0.890 −0.110 0.400] [0 0 −1]
Slide [0.0 0.711 0.0 0.703] [0 0 −1]
Lateral [0 −1 0 0] [0 1 0]

1.3.3.2 Grasp phase
Following the approaching phase, the action is intended to proceed with the grasp
of the detected object. This is the phase in which primitives differentiate more from
each others. On the following, we will review the grasping strategies implemented
in this work. Note that, when not differently specified, hand movements are intended
in local coordinates.

Top and lateral grasps
The local wrist/hand adaptation around the object leverages on the reactive grasp
framework [5], moving from a set of 13 basis adaptation movements of the end
effector w.r.t. the contacted object. A detailed description of these strategies is
reported in [5], on the following we will recall some concepts, useful for the un-
derstanding of this chapter. In [33], a human participant was asked to reach and
grasp a tennis ball placed on a table, while actively controlling the SoftHand through
an interface endowed with a lever, which is used to accomplish a grasping task.
The user was instructed to continuously move the hand until a contact with the ob-
ject was perceived, then adapt the hand orientation w.r.t. the object so to favour
the grasp. Movements were replicated 13 times, considering different approaching
direction. For each movement, the 3D pose of the hand was recorded via motion
tracking (PhaseSpace) and synchronized with the recordings of fingers accelerations
α1 . . .α13 : [0,T ]→ R5 from IMUs, and the hand motor current (to keep track of
the hand closure). This resulted in the association between acceleration profiles and
corresponding reactive adaptation movements of the hand w.r.t. the object. In [23],
when the Pisa/IIT SoftHand touches an object, acceleration profiles a : [0,T ]→ R5

are recorded through the IMUs. Then, one reactive strategy − defined by the local
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rearrangement − is selected as the one that maximizes the covariation of measured
IMUs signals with the recorded ones:

j = argmax
i

∫ T

0
aT(τ)αi(τ)dτ . (1.10)

When this adaptation w.r.t. the object is completed, the hand closes around
the object. Preliminary experiments on top grasps, discussed in [33], proved the
effectiveness of this approach, which is here extended to top right, top left and lateral
strategies.

Bottom
In case of large concave objects, to mimic human behavior, when the contact is
triggered, the hand rotates along the x axis of an angle equal to π/3 and translate
along y axis of 300mm. This roto-translation is determined to let the palm move over
and enables the thumb entering into the object concave part during hand closure.

Pinches
For pinch strategies, the hand is programmed to close without any change in relative
pose. Note that the end effector we used in this work is onceived for power grasps,
but the interaction with the environment enables the execution of pinch grasping
actions.

Slide
To account for objects difficult to be grasped via power of pinch strategies (e.g. a
book), we implemented a multi-phase anticipatory strategy, triggered, as usual, by
the contact with the object:

1. exert a normal force on the object (x axis) to preserve the contact during sliding
(commanding a ref. position 10mm below the contact position);

2. translate toward the table edge (sliding);
3. remove the normal force (inverse of step 1);
4. translate (translation 100mm along x and 50mm along z) and rotate (π/12 radi-

ans around y) the hand to favour the grasp;
5. close the hand.

1.3.3.3 Control Strategy
A Jacobian-based Inverse kinematic algorithm is used to map the Cartesian refer-
ences provided by the motion primitives to the joint level qr. Then, a joint impedance
control is used to realize the movement, with stiffness K = 103 Nm

rad and damping
D = 0.7 Nms

rad . The resulting control law is τ(t) = Ke(t)+Dė(t)+D(q, q̇) , where τ

is the vector of joint torques, while e = qr−q and ė = q̇ are the joint tracking error
and its derivative, respecitvely. D is a compensation of the robot dynamics evalu-
ated by the KUKA embedded controller. Control and strategies implementation was
developed in ROS.
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Figure 1.13 Snapshot of pinch grasps generated through the proposed
architecture. Subfigs a-d show a pinch grasp performed on object 7;
subfigs e-h show a pinch-left grasp performed on object 8; subfigs i-l
show a pinch-right grasp performed on object 9. For each line, it is
possible to observe an approaching phase (e.g. subfigs a-b),a contact
detection (e.g. subfig b), and a firm grasp and lift of the object (e.g.
subfig c-d).

1.3.4 Results
We evaluated the performances achieved by the proposed framework by performing
a set of experiments in a table-top scenario. A flat surface is placed in front of the
manipulator, as reported in Figure 1.7. One of the objects is placed by an operator
approximatively in the center of the table. RGB data extracted from the camera
are used to classify through the proposed deep neural network. The classification
outcome is then associated to the corresponding motion primitive. Each object is
randomly proposed three times. Position and orientation of the object can vary at
every time, taking a random position inside a circle of ∼ 100mm centered in the
table center. Tests were performed with 20 different objects (see Figure 1.10). None
of these was used during the training phase. The particular selection was made so as
to consider all the grasping strategies included in the study. Note that for objects 5,
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Figure 1.14 Snapshot of slide grasp performed on object 3. Subfigs a-c show the
approaching phase. Subfigs d-e show how the system exploits the
environment toward the table edge. Subfigs f-g show the hand
changing its relative configuration w.r.t. the object, established in
Subfigs h-i. Finally, in Subfig j the item is firmly lifted.

Figure 1.15 Snapshot of lateral grasp performed on object 4. Subfigs a-c show the
approaching phase. In e the grasp is achieved and in f the item is
firmly lifted.

6, 7, 8, 9, 10, 16, and 19 the classification can point to different strategy depending
on the object position/orientation. The total amount of configurations tested is 111.

Table 1.3 collects the results of this study. We achieved an overall success rate
equal to 81.1% (a grasp is labeled as successful if the closure is maintained for 5
seconds). It is worth noticing that objects 15 and 12 − which are rotationally sym-
metric − are classified as associated to top grasp primitives, regardless the specific
orientation under testing. Regarding the success rate for each primitive, our results
show the following: Top 85.7% (Figure 1.11 (a-h)), Top left 73.3% (Figure 1.11 (i-
p)), Top right 100% (Figure 1.11 (q-x)), Bottom 100% (Figure 1.12), Pinch 55.6%
(Figure 1.13 (a-d)), Pinch left 55.6% (Figure 1.13 (e-h)), Pinch right 66.7% (Figure
1.13 (i-e)), Slide 83.3% (Figure 1.14), Lateral 86.7% (Figure 1.15).

1.4 Discussion and Conclusions

One of the key enablers for the extraordinary dexterity of human hands is their
compliance and capability to purposefully adapt with the environment, to multiply
their manipulation possibilities. This observation has also produced a significant
paradigm shift for the design of robotic hands, leading to the avenue of soft end-
effectors that embed elastic and deformable elements directly in their mechanical
architecture. This shift has also determined a perspective change for the control and
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Table 1.3 Strategy used, successes and failures for each grasp.

Object Strategy Successes Failures

1 bottom 3 0
2 lateral 2 1
3 slide 2 1
4 lateral 3 0
5 top 3 0

top left 2 1
top right 3 0

6 lateral 3 0
top 3 0
top left 2 1
top right 3 0

7 pinch 3 0
pinch left 2 1
pinch right 3 0

8 pinch 2 1
pinch left 2 1
pinch right 2 1

9 pinch 0 3
pinch left 1 2
pinch right 1 2

10 top 3 0
top left 2 1
top right 3 0

11 lateral 3 0
12 top 2 1
13 bottom 3 0
14 bottom 3 0
15 top 2 1
16 top 2 1

top left 3 0
top right 3 0

17 bottom 3 0
18 slide 3 0
19 top 3 0

top left 2 1
top right 3 0

20 lateral 2 1

Total - 90 21
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planning of the grasping phases, with respect to the classical approach used with
rigid grippers. Machine-learning (ML) and, especially, deep-learning (DL) can be
promising tools to overcome the modelling challenges that arise when dealing with
soft bodies and their interaction with the external environment, targeting solutions
close enough to the desired ones, rather than exact, leveraging on the adaptation
capabilities of the soft hands to overcome local uncertainties.

More specifically, in this chapter we report on how DL can be used to model hu-
man behavior and to translate this modelling for autonomous grasping with robotic
softhands. In the first section, we propose an approach that combines CNN and
RNN, and represents the first attempt to include also dynamic information for classi-
fying different time related action primitives, which are used by humans for grasping
and manipulation tasks. This idea will be further explored and tested to extract an
exhaustive description of human grasping and manipulation with the environment,
and to devise effective guidelines for the translation of human observations on the
robotic side [20]. In the second section, we report on how the human example can be
used for autonomous grasping of the softhands using DL [23]. This work represents
− together with [10] − the first attempt to validate − over a large set of objects −
the combination of soft robotic hands and deep learning techniques for autonomous
grasping, with a success rate of 81%.

In the future we will work to integrate the results from [20] within the framework
reported in [23]. The objective will be to increase the dataset of the primitives to be
implemented with soft manipulators. On the other side, we aim at testing the DL
human-inspired approach with other robotic softhands, e.g. continuously deformable
[2], and investigate sensing strategies to predict grasping failures. We do believe, that
Deep Learning can be an effective solution to devise control guidelines for soft end-
effectors that autonomously perform manipulation and grasping tasks following the
human example.
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