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We consider three-dimensional lattice SU(Nc) gauge theories with multiflavor (Nf > 1) scalar
fields in the adjoint representation. We investigate their phase diagram, identify the different Higgs
phases with their gauge-symmetry pattern, and determine the nature of the transition lines. In
particular, we study the role played by the quartic scalar potential and by the gauge-group repre-
sentation in determining the Higgs phases and the global and gauge symmetry-breaking patterns
characterizing the different transitions. The general arguments are confirmed by numerical analyses
of Monte Carlo results for two representative models that are expected to have qualitatively different
phase diagrams and Higgs phases. We consider the model with Nc = 3, Nf = 2 and with Nc = 2,
Nf = 4. This second case is interesting phenomenologically to describe some features of cuprate
superconductors.

I. INTRODUCTION

Gauge symmetries represent a fundamental feature of
high-energy particle theories [1–3] and of emerging phe-
nomena in condensed matter physics [3–6]. It is there-
fore important to understand the role they play in gauge
models. In particular, it is crucial to have a solid un-
derstanding of how they relate to global symmetries and
of their role in determining the phase structure of the
model, the nature of its different Higgs phases and of its
quantum and thermal transitions.

We address these issues in three-dimensional (3D) lat-
tice gauge models with multicomponent scalar fields. We
consider a lattice model with O(Nf ) global invariance,
SU(Nc) local invariance, and in which the scalar-matter
field transforms in the adjoint representation of SU(Nc)
and in the fundamental representation of O(Nf ) [7, 8].
This model is of direct phenomenological interest. In par-
ticular, the gauge model with Nc = 2 and Nf = 4 has
been proposed as an effective model for optimal doping
criticality in hole-doped cuprate superconductors [9, 10].

Studies addressing the interplay between global and
gauge non-Abelian symmetries in 3D models have been
already reported. We mention Refs. [11, 12] that studied
models with fields transforming under the fundamental
representation of the gauge group: Ref. [11] studied a
model with a local SU(Nc) and a global SU(Nf ) invari-
ance and Ref. [12] studied a model with global O(Nf ) and
local SO(Nc) invariance. Other studies have focused on
Abelian U(1) gauge theories [13, 14], such as the lattice
Abelian-Higgs model with compact [15–19] and noncom-
pact [20–23] gauge fields, and with higher-charge scalar
fields [24–30].

In this paper we extend these studies. First, we in-
vestigate the role played by the gauge-group representa-
tion of the scalar fields. In particular, we consider lat-
tice SU(Nc) gauge theories with multiflavor scalar mat-
ter in the adjoint representation. Second, we consider a
generic quartic scalar potential, obtaining a richer phase

diagram with different Higgs phases. We mention that
some results for this model have been already reported in
Ref. 10, which discusses the phase diagram and the dif-
ferent Higgs phases for Nc = 2 and Nf = 4. We extend
here those results, presenting a numerical analysis of the
nature of the phase transitions along the transition lines
that separate the different phases. We also mention that
the phase behavior of the same model has been studied
also in two dimensions [31], finding that the asymptotic
zero-temperature behavior (continuum limit) is the same
as in models defined on symmetric spaces that have the
same global symmetry [32].

The phase diagram of the lattice SU(Nc) gauge model
with multiflavor scalar matter in the adjoint represen-
tation depends on the number of colors Nc and flavors
Nf . Its low-temperature Higgs phases are essentially de-
termined by the nature of the scalar configurations in
the low-temperature limit, and also by the topological
properties of the gauge fields. In particular, qualita-
tively different behaviors emerge for Nf ≤ N2

c − 1 and
Nf > N2

c − 1. In the first case there is only one low-
temperature Higgs phase, while the second case presents
various low-temperature Higgs phases. Correspondingly,
we observe transitions that are related to the breaking
of the global symmetry group acting on the scalar fields,
and topological transitions separating phases with differ-
ent topological properties of the gauge field. We present
numerical studies based on Monte Carlo simulations for
one representative of each class of models. We study the
model for Nc = 3 and Nf = 2—in this case we have
Nf < N2

c − 1—and for Nc = 2 and Nf = 4, for which
Nf > N2

c − 1. Some numerical results for Nc = 2 and
Nf = 4 in the strong gauge-coupling limit were also re-
ported in Ref. 10.

The model with one scalar field, i.e., with Nf = 1,
is also phenomenologically interesting—it is relevant for
electron-doped cuprates [9]. However, its phase diagram
is somewhat trivial, as it presents a single thermodynam-
ical phase, with two continuously-connected regimes, a
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disordered-like and a Higgs-like regime [9, 33]. Indeed,
the existence of a distinct low-temperature Higgs phase
generally requires the breaking of a global symmetry
group, which is only possible for Nf ≥ 2.
The paper is organized as follows. In Sec. II we define

the lattice SU(Nc) gauge model with Nf scalar fields in
the adjoint representation. In Sec. III we introduce the
observables and discuss their finite-size scaling (FSS) be-
havior, which will be at the basis of our numerical analy-
ses. In Sec. IV we determine the minimum-potential con-
figurations, which specify the different Higgs phases, and
characterize the global and gauge symmetry-breaking
patterns. In Sec. V we discuss the renormalization-group
(RG) flow of the statistical field theory that is associ-
ated with the lattice model, focusing on the case Nc = 2.
In Sec. VI we discuss some limiting cases, corresponding
to simpler models for which some features of the phase
diagram are already known. The next two sections are
dedicated to the presentation of the numerical results.
In Sec. VII we discuss the phase diagram of the model
with Nc = 3 and Nf = 2, which is a representative of
models with Nf ≤ N2

c − 1. Sec. VIII reports a numerical
analysis of the more interesting case with Nc = 2 and
Nf = 4, for which Nf > N2

c − 1. Finally, in Sec. IX we
summarize and draw our conclusions. Some details on
the MC simulations and numerical analyses are reported
in App. A.

II. LATTICE SU(Nc) GAUGE MODELS WITH
ADJOINT SCALAR FIELDS

We consider lattice gauge models that are invariant
under local SU(Nc) and global O(Nf) transformations,
with scalar fields that transform under the adjoint rep-
resentation of SU(Nc) and under the fundamental repre-
sentation of the O(Nf ) group. They are defined on cubic
lattices of linear size L with periodic boundary condi-
tions. The fundamental variables are real matrices Φaf

x
,

with a = 1, ..., N2
c −1 (color index) and f = 1, ..., Nf (fla-

vor index), defined on the lattice sites, and gauge fields
Ux,µ ∈ SU(Nc) associated with the lattice links [2]. The
partition function is

Z =
∑

{Φ,U}

e−βH , β = 1/T , (1)

H = HK(Φ, U) +HV (Φ) +HG(U) , (2)

where the lattice Hamiltonian H is the sum of the kinetic
term HK of the scalar fields, of the local scalar potential
HV , and of the pure-gauge Hamiltonian HG. As usual,
we set the lattice spacing equal to one, so that all lengths
are measured in units of the lattice spacing.
The kinetic term HK is given by

HK(Φ, U) = −J
Nf

2

∑

x,µ

TrΦt
x
Ũx,µ Φx+µ̂ , (3)

where the matrix Ũab
x,µ is the adjoint representation of

the original link variable Ux,µ, explicitly defined as

Ũab
x,µ = 2Tr(U †

x,µT
aUx,µT

b ) , a, b = 1, ..., N2
c − 1 , (4)

where T a are the N2
c − 1 generators in the fundamental

representation, normalized so that Tr T aT b = 1
2
δab. In

the following we fix J = 1, so that energies are measured
in units of J .
The scalar potential term HV is written as

HV (Φ) =
∑

x

V (Φx) , (5)

V (Φ) =
r

2
TrΦtΦ+

u

4

(
TrΦtΦ

)2
+

v

4
Tr (ΦtΦ)2 ,

which is the most general quartic potential invariant un-
der O(Nf )⊗O(N2

c − 1) transformations. For v = 0, the
symmetry group of HV (Φ) is larger, namely, the O(M)
group with M = Nf(N

2
c − 1).

Finally, the pure-gauge plaquette term reads

HG(U) = − γ

Nc

∑

x,µ>ν

ReTrΠx,µν , (6)

Πx,µν = Ux,µ Ux+µ̂,ν U
†
x+ν̂,µ U

†
x,ν ,

where the parameter γ plays the role of inverse gauge
coupling.
The model is invariant under global O(Nf ) transfor-

mations, Φaf → ∑
g O

fgΦag, and under local SU(Nc)
transformations

Ux,µ → VxUx,µV
†
x+µ̂ Φaf

x
→

∑

b

Ṽ ab
x

Φbf
x
, (7)

where Vx is an SU(Nc) matrix and Ṽx is the correspond-

ing matrix in the adjoint representation [Ṽ can be ob-
tained from V using the analogue of Eq. (4)].
In our study we focus on a representative model with

fixed-length scalar fields Φx, satisfying

TrΦt
x
Φx = 2 . (8)

Formally, this model can be obtained by taking the limit
u, r → ∞ keeping the ratio r/u = −2 fixed. The corre-
sponding lattice Hamiltonian reads

H = −Nf

2

∑

x,µ

TrΦt
x
Ũx,µ Φx+µ̂ (9)

+
v

4

∑

x

Tr (Φt
x
Φx)

2 − γ

Nc

∑

x,µ>ν

ReTrΠx,µν .

Models with generic values of r and u are expected to
have the same qualitative behavior as this simplified
model.
For γ = 0 each matrix Ux,µ can be multiplied by an ar-

bitrary (x, µ)-dependent element of the gauge-group cen-
ter ZNc

without changing the Hamiltonian, thus implying
that the gauge group is SU(Nc)/ZNc

. In particular, this
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implies 〈TrΠx,µν〉 = 0 for γ = 0. Note also that, for
Nc = 2 and again for γ = 0, because of the isomorphism
SU(2)/Z2 =SO(3), we recover an SO(3) gauge theory
with scalar matter in the fundamental representation.
For γ 6= 0, the gauge Hamiltonian breaks the previous

symmetry. However, the Hamiltonian is still invariant
under a subgroup of those transformations. More pre-
cisely, it is invariant under the transformations Ux,µ →
c(xµ)Ux,µ, where c(xµ) is an element of the gauge-group
center that depends only on xµ (the component µ of the
position vector). When this symmetry is not sponta-
neously broken, Wilson loops obey the area law and color
charges transforming in the fundamental representation
are confined.
Finally, for γ → ∞, the link variables Ux,µ become

equal to the identity, modulo gauge transformations.
Thus, one recovers a matrix scalar model which is in-
variant under global O(Nf )⊗O(N2

c − 1) transformations
[for v = 0, the global symmetry group is O(M) with
M = Nf (N

2
c −1)]. This is strictly true only for an infinite

system. On a finite lattice with periodic boundary con-
ditions, it is not possible to set Ux,µ = 1 on all links and
therefore, one ends up with a scalar model with SU(Nc)
(since the fields transform under the adjoint representa-
tion, the group is more precisely SU(Nc)/ZNc

) fluctuat-
ing boundary conditions (see Ref. [34] for a discussion in
the context of U(1) gauge models).

III. OBSERVABLES, ORDER PARAMETER
AND FINITE-SIZE SCALING

To investigate the phase diagram of the lattice SU(Nc)
gauge theory (9), we consider the energy density and the
specific heat, defined as

E = − 1

3L3
〈H〉 , CV =

1

L3

(
〈H2〉 − 〈H〉2

)
. (10)

The critical properties of the scalar fields can be mon-
itored by using the correlation functions of the gauge-
invariant bilinear operators

Bfg
x

=
1

2

∑

a

Φaf
x
Φag

x
, Qfg

x
= Bfg

x
− 1

Nf
δfg , (11)

which satisfy TrBx = 1 and TrQx = 0 due to the fixed-
length constraint. The bilinear scalar operator Qx pro-
vides the natural order parameter for the breaking of the
global O(Nf) symmetry. As we use periodic boundary
conditions for all fields, translation invariance holds. We
define the two-point correlation function

G(x− y) = 〈TrQxQy〉 , (12)

the corresponding susceptibility χ =
∑

x
G(x), and the

second-moment correlation length

ξ2 =
1

4 sin2(π/L)

G̃(0)− G̃(pm)

G̃(pm)
, (13)

where G̃(p) =
∑

x
eip·xG(x) is the Fourier transform

of G(x), and pm = (2π/L, 0, 0). We also consider RG-
invariant quantities, such as the Binder parameter

U =
〈µ2

2〉
〈µ2〉2

, µ2 =
1

L6

∑

x,y

TrQxQy , (14)

and

Rξ = ξ/L . (15)

At continuous transitions RG-invariant quantities, gener-
ically denoted by R, scale as [35]

R(β, L) = fR(X) + L−ωgR(X) + . . . , (16)

where

X = (β − βc)L
1/ν , (17)

and next-to-leading scaling corrections have been ne-
glected. The function fR(X) is universal up to a multi-
plicative rescaling of its argument, ν is the critical expo-
nent associated with the diverging correlation length, and
ω is the exponent associated with the leading irrelevant
operator. In particular, U∗ ≡ fU (0) and R∗

ξ ≡ fRξ
(0)

are universal, depending only on the boundary condi-
tions and aspect ratio of the lattice. Since Rξ defined in
Eq. (15) is an increasing function of β, we can write

U(β, L) = F (Rξ) +O(L−ω) , (18)

where F (x) depends on the universality class, boundary
conditions, and lattice shape, without any nonuniversal
multiplicative factor. Eq. (18) is particularly convenient
to test universality-class predictions, as it permits a di-
rect comparison of results for different models without
requiring a tuning of nonuniversal parameters.
The Binder parameter U is also useful to identify weak

first-order transitions, especially when large lattices are
required to obtain evidence of a finite latent heat or of
a bimodal energy distribution. Indeed, at a first-order
transition, the maximum Umax of U increases as the vol-
ume L3, i.e. [36–38]

Umax = aL3 +O(1) . (19)

This is the key point which distinguishes first-order from
continuous transitions. Indeed, at a continuous phase
transition, U is finite as L → ∞; at the critical point
U converges to a universal value U∗, while the data of
U corresponding to different values of Rξ collapse onto
a scaling curve as the volume is increased. Therefore, U
has a qualitatively different scaling behavior for first- and
second-order transitions. The absence of a data collapse
in plots of U versus Rξ may be considered as an early
indication of the first-order nature of the transition [39].
To identify the transition, one can also consider the spe-
cific heat. At first-order transitions, its maximum value
Cmax(L) asymptotically increases as [36]

Cmax(L) =
∆2

h

4
L3 +O(1) , (20)
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where ∆h is the latent heat, defined as the difference
∆h = E(β → β+

c )− E(β → β−
c ). Moreover, the value of

β corresponding to the maximum converges to the critical
value βc as βmax,C(L)− βc ≈ c L−3. Note that Cmax(L)
may also diverge at continuous transitions (this occurs
when α > 0), and therefore the identification of the order
of the transition from the behavior of Cmax(L) requires
a detailed analysis of its asymptotic large-L behavior.

IV. HIGGS PHASES

The lattice gauge models we consider may have dif-
ferent Higgs phases associated with different symmetry-
breaking patterns. They are determined by the minima
of the local scalar potential (5), namely

V (Φ) =
v

4
Tr (ΦtΦ)2 , (21)

in the fixed-length limit TrΦtΦ = 2. In the following
we summarize (using the notations of Ref. [31]) the main
properties of these phases, which crucially depend on the
number of colors Nc, of flavors Nf , and on the parameter
v [9, 10, 31]. Moreover, as we shall see, their nature may
also depend on the behavior of the fluctuations of vari-
ables associated with the gauge-group center ZNc

, which
are expected to undergo a transition at finite values of
γ > 0.

A. The model for v < 0

For v < 0 the mininum-potential configurations can be
generally written as [9, 31]

Φaf =
√
2 sazf , (22)

where s and z are unit real vectors of dimension N2
c − 1

and Nf , respectively. To identify the symmetry breaking
pattern at the transition, we should identify the stabilizer
group (little group in Wigner’s notation) of the solution
(22), i.e., the group of O(Nf ) transformations that leave
the field (22) invariant, modulo gauge transformations.
Explicitly, we should find the orthogonal matrices Ofg

such that
∑

g

Ofgsazg =
∑

b

Ṽ absbzf , (23)

for some V ∈ SU(Nc) (the tilde accent indicates the ad-
joint representation). It is immediate to verify that V

should satisfy |∑ab s
aṼ absb| = 1, so that Eq. (23) can

be written as
∑

g

Ofgzg = ±zf . (24)

The invariance group is therefore Z2⊗O(Nf −1) and the
global symmetry breaking pattern is

O(Nf ) → Z2 ⊗O(Nf − 1) . (25)

We also define a gauge-symmetry breaking pattern as the
stabilizer of the minimum-potential solution with respect
to the gauge group. For this purpose, we determine the
matrices V ∈ SU(Nc) such that

∑

b

Ṽ absb = sa . (26)

Defining T̂ =
∑

a s
aT a, and using Eq. (4) we obtain

2
∑

a

T aTr (V †T aV T̂ ) = T̂ . (27)

Using the completeness relation for the generators, we
end up with the condition [V, T̂ ] = 0. The stabilizer
subgroup is therefore U(1)⊕U(Nc− 2), so that for v < 0
we observe a gauge symmetry breaking pattern

SU(Nc) → U(1)⊗U(Nc − 2) , (28)

independently of the flavor number Nf . In particu-
lar, for Nc = 2, we have [10] SU(2)→U(1) [equiva-
lently, disregarding discrete subgroups, it corresponds to
O(3)→O(2)]. Note that we are not claiming here that
the gauge symmetry is broken in the standard statistical-
mechanics sense (i.e., that we can force the system in one
specific minimum, for instance, by appropriately fixing
the boundary conditions), as this is forbidden by well-
known rigorous arguments [40–42]. The right-hand side
of the gauge-symmetry breaking pattern only represents
the residual gauge symmetry of the minimum-potential
configuration once the scalar fields have been fixed to a
specific value by means of an appropriate gauge-fixing
condition (see Ref. [42] for a discussion of the role of
gauge fixings), i.e., once a specific value of s in Eq. (22)
has been chosen.
One may also establish a correspondence between the

critical behavior of the SU(Nc) gauge model (9) and
the 3D RPNf−1 model [31]. Consider indeed the limit
v → −∞ at fixed β and J . In this limit Bx, defined in
Eq. (11), becomes

Bfg
x

= zf
x
zg
x
, (29)

i.e., it corresponds to a local projector onto a one-
dimensional subspace. If we now assume that the dynam-
ics in the gauge model is determined by the fluctuations
of the order parameter Bx, or equivalently of Qx, we
identify the effective scalar model as the RPNf−1 model.
Indeed, the standard nearest-neighbor RPN−1 action is
obtained by taking the simplest action for a local projec-
tor P fg

x
:

HRP = −J
∑

x,µ

TrPxPx+µ̂ , P fg
x

= ϕf
x
ϕg
x
, (30)

where ϕa
x
is a unit vector. We do not expect the limit

v → −∞ to be relevant. The crucial property should
be the structure of the low-temperature configurations,
and thus we expect RPNf−1 in the whole phase in which
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the symmetry-breaking patterns (25) and (28) hold. We
recall that 3D RPN−1 models undergo continuous transi-
tions only for N = 2—they belong to the XY universality
class. For any N > 2, transitions are of first order, as
predicted by the Landau-Ginzburg-Wilson (LGW) the-
ory [43, 44].

B. The model for v > 0

The behavior of the model is more complex for
v > 0. The minimum-potential configurations can be
parametrized as [9, 31]

Φag =

√
2

q

q∑

k=1

CakF kg , q = Min[Nf , N
2
c − 1] , (31)

where C and F are orthogonal matrices of dimension
N2

c − 1 and Nf , respectively. To further simplify this
expression we should distinguish two cases: Nf ≤ N2

c −1
and Nf > N2

c − 1
For Nf ≤ N2

c − 1, we can simplify Eq. (31) into

Φag =

√
2

q
Cag , C ∈ O(N2

c − 1) . (32)

Moreover, for Nc = 2, since the adjoint representation
of SU(2) is equivalent to SO(3), one may further sim-
plify the representation of the mininum-potential config-
uration: all such configuration are obtained by applying
gauge transformations to Φag =

√
2/q δag.

The global invariance group of the ordered phase is
given by those transformations O ∈ O(Nf ) such that

∑

g

OfgCag =
∑

b

Ṽ abCbf , (33)

for some SU(Nc) matrix V . This condition implies that

Ofg = (CtṼ tC)fg. Since the matrix CtṼ tC is an ele-
ment of the adjoint representation of SU(Nc), O should
be an Nf × Nf submatrix of an element of SU(Nc)adj.
We write the corresponding global symmetry breaking
pattern as

O(Nf ) → O(Nf ) ∩ SU(Nc)adj. (34)

For Nf = 2 and 3, since SU(Nc)adj includes SU(2)adj =
SO(3) and inversion transformations on the firstNf com-
ponents, we have O(Nf ) ∩ SU(Nc)adj = O(Nf ). Thus,
there is no global symmetry breaking, and thus no tran-
sition is expected. These conclusions are consistent with
the more general argument presented in Ref. [31]. It was
noted that the gauge-invariant order parameterQ defined
in Eq. (11) vanishes if the fields are given by Eq. (31),
as it does in the disordered phase. Thus, the system is
not expected to have low-temperature phases in which
the gauge-invariant bilinear operator Q condenses.

For Nf > N2
c − 1, the minimum-potential configura-

tions can be parametrized as [31]

Φag =

√
2

q
F ag , F ∈ O(Nf ) . (35)

Modulo global O(Nf ) transformations, a simple repre-

sentative is Φag =
√
2/q δag. For what concerns the

global-symmetry breaking pattern, the transformations
O ∈ O(Nf ) that leave the minimum-potential configu-
rations invariant modulo gauge transformations satisfy

the condition Oab = Ṽ ab, so that the symmetry-breaking
pattern is

O(Nf ) → O(Nf −N2
c + 1)⊕ SU(Nc)adj . (36)

For Nc = 2, it becomes

O(Nf ) → O(Nf − 3)⊕ SO(3) . (37)

If we additionally set Nf = 4, it becomes O(4) → O(3),
which is the symmetry breaking pattern of the O(4) vec-
tor model. If we consider the gauge group, instead, since
the only matrix that leaves Φag =

√
2/q δag invariant is

Ṽ = 1, the stabilizer group is the center ZNc
. The gauge

symmetry breaking pattern is therefore

SU(Nc) → ZNc
. (38)

In the previous discussion we have characterized the
phases on the basis of the different minima of the po-
tentials. However, phases may also depend on topologi-
cal properties of the gauge fields, which are controlled by
the coupling γ. In particular, the modes related to the
center of the gauge group ZNc

may undergo a confining-
deconfining phase transition at finite values of γ, giving
rise to low-temperature Higgs phases that have the same
global and local gauge symmetry breaking patterns, but
differing for the topological nature of the gauge-center
excitations. We expect these phenomena to be relevant
for v > 0, when the gauge symmetry breaking pattern is
SU(Nc) → ZNc

, so that the minimum-potential configu-
rations are only invariant under the gauge-group center.
To understand the role of the gauge-group center, we

consider the limit β → ∞ keeping κ ≡ βγ fixed. In
this limit, the relevant configurations minimize the po-
tential and the scalar kinetic energy HK . As discussed
in Ref. [31], for v > 0 the minimization of HK implies

Ũx,µ = 1, so that Ux,µ = λx,µ ∈ ZNc
. In this limit,

model (9) reduces to the lattice ZNc
gauge theory

HZNc
= −κ

∑

x,µ>ν

Reλx,µ λx+µ̂,ν λ̄x+ν̂,µ λ̄x,ν . (39)

In three dimensions, this lattice discrete gauge model
undergoes a continuous transition at a finite κc (see
Sec VID for more details). For example, for Nc = 2
the Hamiltonian (39) corresponds to a lattice Z2 gauge
theory [4], which presents a small-κ confined phase and
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a large-κ deconfined phase (which may carry topological
order at the quantum level [5]), separated by a critical
point at κc = 0.761413292(11) (see Sec. VID). If the
ZNc

gauge transition persists for finite values of β, then,
when varying γ, we may have different low-temperature
Higgs phases that are associated with the same gauge-
symmetry pattern SU(Nc) → ZNc

but that differ in the
large-scale behavior of the ZNc

variables. This may lead
to a change of the nature of the phase transition from
the disordered to the Higgs phases when Nf > N2

c − 1,
or give rise to observable effects on the scalar correla-
tions for Nf ≤ N2

c − 1, which are not expected to order
for v > 0.

V. RG FLOW OF THE GAUGE FIELD THEORY

In this section we discuss the RG flow of the statistical
field theory corresponding to the lattice model (2), fo-
cusing on the case Nc = 2. The starting point is a scalar
theory in which the fundamental field is a real matrix
Φaf (a = 1, ..., N2

c − 1 and f = 1, ..., Nf), transforming
as the corresponding lattice field (see Sec. II). The cor-
responding Hamiltonian includes all field monomials of
dimension less or equal to four that are invariant under
global O(Nf)⊗O(N2

c − 1) transformations. To obtain a
model invariant under SU(Nc) gauge transformations, we
add an SU(Nc) gauge field Aa

µ and set Aµ ab ≡ iAk
µT

k
A,ab,

where T k
A,ab = −ifabk are the SU(Nc) generators in the

adjoint representation (fabc are the structure constants
of the SU(Nc) group). The Hamiltonian density is

H =
1

4g20
(F k

µν )
2 + (∂µΦaf +Aµ abΦbf )

2 +
1

2
rTrΦtΦ

+
1

4
u0(TrΦ

tΦ)2 +
1

4
v0

[
Tr (ΦtΦ)2 − (TrΦtΦ)2

]
(40)

where F k
µν is the non-Abelian field strength associated

with the gauge field Ak
µ. To determine the nature of

the transitions described by the continuum SU(Nc) gauge
theory (40), one studies the RG flow determined by the
β functions of the model in the coupling space.
In the ǫ-expansion framework, the RG flow close to

four dimensions is determined by the one-loopMS β func-
tions. Introducing the renormalized couplings u, v, and
α = g2, the one-loop β functions for Nc = 2 are given
by [9]

βu = −ǫu+
3Nf + 8

6
u2 (41)

+
Nf − 1

3
(v2 − 2uv)− 3uα+

9

4
α2 ,

βv = −ǫv +
Nf − 5

6
v2 + 2uv − 3vα+

9

8
α2 ,

βα = −ǫα+
Nf − 22

12
α2 ,

where ǫ ≡ 4 − d. The normalizations of the couplings

can be easily inferred from the above expressions.1 The
β-functions (41) have a stable fixed point for sufficiently
large Nf , more precisely for Nf > N∗ +O(ǫ) with N∗ ≈
210.5. In particular, in the large-Nf limit the β functions
can be written in terms of the large-Nf parameters û ≡
Nfu, v̂ ≡ Nfv, α̂ ≡ Nfα, as

βû = −ǫû+
1

6
û2 +

1

3
(û− v̂)2 , (42)

βv̂ = −ǫv̂ +
1

6
v̂2 , βα̂ = −ǫα̂+

1

12
α̂2 ,

which have a stable fixed point located at

α̂∗ = 12ǫ , û∗ = 6ǫ , v̂∗ = 6ǫ . (43)

Note that the stable fixed point in the large-Nf limit is
located in the region v > 0. Thus, it should describe the
continuous transitions between the disordered phase and
the positive-v Higgs phase discussed in Sec. IVB.

VI. SOME PARTICULAR CASES

In this section we discuss some particular cases of the
gauge model (9), which correspond to lattice models that
have already been studied in the literature. This analysis
will provide us some indications on the phase diagram of
the full theory.

A. The model for Nc = 2, γ = 0, and v = 0

For Nc = 2 and γ = 0, the model (9) is equivalent to a
lattice SO(3) gauge model with Nf scalar flavors in the
fundamental representation. The Hamiltonian is

H = −Nf

2

∑

x,µ

TrΦt
x
Vx,µ Φx+µ̂ +

v

4

∑

x

Tr (Φt
x
Φx)

2 ,

(44)
where the link variables Vx,µ belong to the fundamental
representation of the gauge group SO(3). For v = 0 this

1 The β-functions (41) must be equal to those of the SO(3) gauge
theory in the fundamental representation. They indeed agree for
Nc = 2 with those of the SO(Nc) gauge model reported below:

βu = −ǫu+
NcNf + 8

6
u2 +

(Nf − 1)(Nc − 1)

6
(v2 − 2uv)

−

3

2
(Nc − 1)uα+

9

8
(Nc − 1)α2 ,

βv = −ǫv +
Nc +Nf − 8

6
v2 + 2uv

−

3

2
(Nc − 1)vα +

9

8
(Nc − 2)α2 ,

βα = −ǫα+
Nf − 22(Nc − 2)

12
α2 .

We report them here, as a few misprints are present in the ex-
pressions reported in Ref. 12.
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model was discussed in Ref. [12]. It was predicted that,
for any Nf , the system undergoes a finite-temperature
transition which is the same as in the corresponding
RPNf−1 model, cf. Eq. (30). Therefore, one predicts
a continuous XY transition for Nf = 2 and a first-order
transition for any Nf > 2. Indeed, in the LGW Hamilto-
nian appropriate for the RPNf−1 model [43, 44], a cubic
Φ3 term is always present for Nf > 2, a presence which is
usually considered as an indication of a first-order tran-
sition for 3D statistical models.
These predictions have been confirmed numerically

[12]. For Nf = 2 there is a continuous XY transition at
βc = 1.97690(7), while for Nf = 3 there is a first-order
transition at βc ≈ 1.77. These numerical results indicate
that, for v = 0, the relevant low-temperature configura-
tions are those of the form (22), that correspond to the
minima of the potential for v < 0.

B. The limit γ → ∞

For γ → ∞ the variables Ux,µ converge to the identity,
apart from gauge transformations. Thus, we obtain the
scalar model

H = −Nf

2

∑

x,µ

TrΦt
x
Φ

x+µ̂ +
v

4

∑

x

Tr (Φt
x
Φx)

2 , (45)

with a global O(Nf )⊗O(N2
c − 1) symmetry. For v =

0, the symmetry group is larger, namely O(M) with
M = Nf (N

2
c − 1), and therefore we expect continuous

transitions belonging to the O(M) vector universality
class. For v 6= 0, the models (45) may undergo a finite-
temperature continuous transition only if a correspond-
ing universality class exists and, in particular, only if the
corresponding LGW Φ4 theory has a stable fixed point.
RG analyses indicate that continuous transitions are pos-
sible for Nf = 2 and Nc = 2 [35, 38, 45–50], for both
v < 0 and v > 0, and for [51] Nf = 4 and Nc = 2
when v < 0. Moreover, for v > 0 there is a stable fixed
point for sufficiently large Nf at fixed Nc and sufficiently
large Nc at fixed Nf (in particular for Nc = 2 and any
Nf ) [38, 45, 52]. It is not clear whether the fixed points
of the O(Nf)⊗O(N2

c −1) field theory are relevant for the
behavior for finite values of γ. For instance, the O(M)
fixed point that controls the behavior for γ = ∞ and
v = 0 is unstable with respect to the gauge coupling, and
is therefore irrelevant for the finite-γ behavior, although
it is expected to give crossover effects for large values of
γ. There are at present no analogous results for v 6= 0.

C. The limit β → ∞

In the limit β → ∞ the behavior of the system is
controlled by the configurations minimizing the Hamilto-
nian. As already discussed in Sec. IV, two different low-
temperature phases occur for v < 0 and v > 0. There-
fore, in this limit we expect a transition line for v = 0

and any γ. The transition line should be of first order for
any Nf and Nc, as it separates phases that correspond
to different minima of the potential.

D. The limit β → ∞ keeping κ ≡ βγ fixed

Let us now consider the limit β → ∞ keeping κ ≡ βγ
fixed. As mentioned in Sec. IVB, for v > 0 the model
(9) reduces to the lattice ZNc

gauge theory defined in
Eq. (39). This model can be related by duality to the
Nc-state clock spin model [29], characterized by a global
ZNc

symmetry. For q = 2, the q-state clock model
is equivalent to the standard Ising model and thus we
expect an Ising transition. Duality allows us to ob-
tain κc for Nc = 2: κc = 1

2
ln cothβI,c, where βI,c is

the inverse temperature of the Ising model. Using [53]
βI,c = 0.221654626(5), we obtain κc = 0.761413292(11).
For q = 3, the q-state clock model is equivalent to a
three-state Potts model, which can only undergo first-
order transitions. For larger values of q, we expect a
continuous transition. It belongs to the Ising universality
class for [54] q = 4, and to the 3D XY universality class
for [54–56] q ≥ 5. Note, however, that in the q → ∞ limit
we recover the pure U(1) gauge theory, with λx,µ ∈ U(1),
which is known [57] to have no transitions for finite val-
ues of κ. Therefore, if a transition occurs for any finite
q, we must have κc → ∞ in the q → ∞ limit.
Since for v > 0 and Nf > N2

c − 1 the low-temperature
Higgs phase is characterized by the gauge-symmetry
breaking pattern SU(Nc) → ZNc

(see Sec. IVB), it seems
natural to expect that the confinement-deconfinement
center transition also persists for finite β, giving rise to
two different positive-v Higgs phases, depending on γ.

For v < 0, the low-temperature Higgs phase is char-
acterized by a residual continuous gauge symmetry, see
Eq. (28). Since 3D pure gauge theories with con-
tinuous gauge group do not display any confinement-
deconfinement transition, the same is expected to happen
for the model (9) when v < 0.

E. The limit v → ±∞

For |v| → ∞, configurations are constrained to be
minima of the the scalar potential (21). For v → +∞,
the scalar fields take the form (31), reducing the model
to a particular σ model. Transitions are expected for
Nf > N2

c − 1, with the global symmetry-breaking pat-
tern (36) [or (37) for Nc = 2]. For Nf = 4, Nc = 2,
the global symmetry-breaking pattern is O(4)→O(3) and
therefore the transition should belong to the O(4) vector
universality class.

For v → −∞ scalar variables take the form (29). As
discussed in Sec. IVA, one expects to recover the effective
RPNf−1 model (30), whose transitions are continuous for
Nf = 2 and of first order for any Nf > 2.
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v

β

XY

1st order

SU(3)→U(1)⊕U(1)
Higgs phase

disordered
phase

γ = 0

FIG. 1: A sketch of the phase diagram for Nc = 3, Nf = 2,
and γ = 0, inferred from the numerical results.

VII. RESULTS FOR Nc = 3 AND Nf = 2

In this section we determine the phase diagram for
Nf = 2, Nc = 3, and γ = 0. According to the dis-
cussion reported in Sec. VIC, since Nf < N2

c − 1, for
β = ∞ there is only one ordered Higgs phase, which is
obtained for v < 0. For finite values of β we expect there-
fore only two phases: a disordered phase and an ordered
Higgs phase, separated by a single transition line. As dis-
cussed in Sec. IV, the transitions between the disordered
and Higgs phases should be described by an effective RP1

model, which is equivalent to the XY model for Z2 gauge-
invariant observables. Therefore, such transitions should
belong to the XY universality class [35], if they are con-
tinuous. The transition line is expected to approach the
point v = 0 in the β = +∞ limit. Moreover, since this
ending point should correspond to a first-order transition
as outlined in Sec. VIC, we expect the transition line to
become of first order for large values of β. The phase
diagram obtained from our MC simulations, see Fig. 1,
is fully consistent with these considerations. Note that
the transition line intersects the line v = 0 at a finite β
value, so that the ordered Higgs phase is also present for
finite-β positive values of v. Of course, the transition line
should be reentrant, since vc → 0+ for β → ∞.
To verify the phase diagram sketched in Fig. 1, we have

performed simulations for v = 0 varying β, and at fixed β
(we have considered β = 5.2, 6, 7.5, 9, 12) varying v. We
have verified the reentrant nature of the transition line
and that the transition changes from a continuous one
to a first-order one as β increases (the tricritical point,
where the order of the transition changes, should satisfy
6 . βtri . 7.5). Some technical details on the MC simu-
lations are reported in App. A.
The FSS analysis of the data at v = 0 and γ = 0, see

Figs. 2 and 3, provides a clear evidence of a continuous
transition at βc ≈ 4.84. If we plot Rξ versus (β−βc)L

1/ν ,
using the XY correlation-length exponent [55, 58, 59]

4.7 4.75 4.8 4.85 4.9 4.95 5

β

0.5

1

Rξ

L=12
L=16
L=24
L=32
L=48

Nc=3, Nf =2, v=0

-12 -8 -4 0 4 8

(β − β
c
)L

1/ν

0.5

1

Rξ

L=12
L=16
L=24
L=32
L=48

Nc=3, Nf =2, v=0

FIG. 2: Top: Plot of Rξ versus β for Nc = 3, Nf = 2, γ = 0,

and v = 0. Bottom: Plot of Rξ versus (β−βc)L
1/ν , using the

XY correlation-length exponent ν = 0.6717 and βc = 4.8374.
Data collapse on an asymptotic curve with increasing L.

ν = 0.6717(1), we obtain an excellent collapse of the
data, confirming that the transition belongs to the XY
universality class. Fits of Rξ using the XY estimate for
the critical exponent ν lead to an accurate estimate of
the critical point, βc = 4.8374(2). The best evidence
for an XY critical behavior is provided by the plots of
U versus Rξ. The data approach the universal curve of
the XY universality class obtained by MC simulations
of the standard XY model. Differences get smaller and
smaller with increasing L. Moreover, see the inset of
Fig. 3, deviations are consistent with the expected FSS
scaling behavior

U(L,Rξ)− F (Rξ) ≈ L−ωFω(Rξ) , (46)

where F (Rξ) is the universal curve associated with the
XY universality class, ω = 0.789(4) is the leading XY
scaling correction exponent [55], and Fω(Rξ) is a scal-
ing function that is universal apart from a multiplicative
factor.
We have also performed simulations at fixed β, varying

v. The numerical results show evidence of an XY con-
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0 0.5 1
Rξ

1

1.2

1.4

1.6

1.8

2

U L=12
L=16
L=24
L=32
L=48
XY

0 0.5 1
Rξ

0

0.5

1

Fω(Rξ)

Nc=3, Nf =2, v=0

FIG. 3: Plot of U versus Rξ for Nc = 3, Nf = 2, γ = 0,
and v = 0. The continuous line represents the universal curve
F (Rξ) for the XY universality class (the explicit expression
is reported in Ref. [34]; it is valid in the range [0, 1.1] with
an error of at most 0.5%). The inset shows [U − F (Rξ)]L

ω

versus Rξ, using the XY correction-to-scaling exponent ω =
0.789. Data show a reasonable scaling behavior as predicted
by Eq. (46).

0 0.25 0.5 0.75 1
Rξ

1

1.25

1.5

1.75

2

U
L=8
L=12
L=20
XY

0 0.5 1
Rξ

0

0.5

1

1.5

Fω(Rξ)

Nc=3, Nf =2, β=6.0

FIG. 4: Plot of U versus Rξ for Nc = 3, Nf = 2, γ = 0, and
β = 6.0. The inset shows [U − F (Rξ)]L

ω versus Rξ, using
the XY value ω = 0.789, confirming the expected behavior
(46). Note also that the data reported in the inset appear to
collapse onto a curve which differs from that reported in the
inset of Fig. 3 only by a multiplicative factor, in agreement
with Eq. (46).

tinuous transition for β = 5.2 and β = 6 (see Fig. 4), at
vc ≈ 0.23 and vc ≈ 0.58, respectively. On the other hand,
we observe first-order transitions for β = 7.5 at vc ≈ 0.99
(see Fig. 5), for β = 9 at vc ≈ 0.75, and for β = 12 at
vc ≈ 0.45. Note that these results are consistent with
the fact that the transitions become of first order as β
increases and that vc → 0+ in the limit β → ∞ (see
Sec. VIC).
We do not expect the phase diagram to change for

1.05 1.075 1.1
E

0

50

100

150 v=0.995, L=10

Nc=3, Nf =2, β=7.5

0 0.5 1 1.5 2
Rξ

2

4

6

8

U

L=6
L=8
L=10

Nc=3, Nf =2, β=7.5

FIG. 5: Top: Histogram of the total energy E for Nc =
3, Nf = 2, β = 7.5, v = 0.995, and L = 10. Bottom: Binder
parameter U versus Rξ . Data clearly indicate that the tran-
sition is of first order.

finite γ > 0, since the main features of the disordered
and of the Higgs phase should not depend on γ. On the
other hand, for γ = ∞, the phase diagram should signifi-
cantly change, see Sec. VIB. One expects three different
phases: one disordered phase, and two different ordered
phases, characterized by different breakings of the global
O(Nf)⊗O(N2

c − 1) i.e., O(2)⊗O(8) in the case at hand
(for β → ∞, they would be specified by the sign of v).
Correspondingly, we expect three transition lines: one
line separates the two ordered phases (starting at β = ∞,
v = 0) and two lines separate the ordered phases from
the disordered one. The order-disorder transitions for
v > 0 may be continuous, and associated with the stable
fixed point of the corresponding LGW theory [46, 52].
On the other hand, first-order transitions are expected
for v < 0, since there is no corresponding stable fixed
point. We do not expect the γ = ∞ phases to be sta-
ble with respect to the gauge perturbation (this can be
proved using the ǫ expansion for the simpler case v = 0),
and thus the γ = ∞ transitions should only give rise to
crossover effects.
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v

β

SU(2)→U(1)
Higgs phase

disordered
phase

SU(2)→ Z2

Higgs phase

γ = 0

FIG. 6: Sketch of the phase diagram for Nc = 2, Nf = 4, and
γ = 0, as inferred from the numerical results. Thick lines de-
note first-order transitions, while the thin line corresponds to
continuous transitions. The shaded point is a first-order mul-
ticritical point (satisfying 1.6 < βmc < 2.5); the filled black
point that separates first-order from continuous transitions
occurs at v = v∗ with 6 < v∗ < 12.

VIII. RESULTS FOR Nc = 2 AND Nf = 4

We now present a study of the phase diagram for
Nf = 4 and Nc = 2. In this case, since Nf > N2

c − 1,
according to the arguments of Sec. IV, different Higgs
phases caracterized by different gauge-symmetry pat-
terns are possible. For β → ∞, they correspond to the
behavior of the system for v < 0 and v > 0, and thus
we will refer to the two phases as the negative-v and
positive-v phases, respectively, although, this character-
ization will not hold for finite β. For finite β the two
phases are divided by a transition line that ends at v = 0,
β = ∞ and which is expected to be of first order as it is
the boundary of two different ordered phases.

The structure of the negative-v Higgs phase has been
discussed in Sec. IVA. The global symmetry breaking
pattern is O(4) → O(3) ⊕ Z2 and the gauge symmetry
breaking pattern is SU(2) → U(1). Since the remnant
gauge-invariance group of the Higgs phase is U(1) and a
U(1) gauge theory never undergoes phase transitions, we
expect the gauge coupling to be irrelevant: we have a sin-
gle negative-v Higgs phase, irrespective of the value of γ.
As discussed in Sec. IVA, the transition line separating
the negative-v Higgs phase from the disordered phase is
expected to be described by the RP3 model, which can
only undergo first-order transitions.

The structure of the positive-v Higgs phase is more
interesting. Indeed, the gauge symmetry breaking pat-
tern is SU(2) → Z2, i.e., the Higgs phase is only in-
variant under the center of the gauge group. Since Z2

gauge theories have a finite-temperature transition, we
expect γ to be relevant, as discussed in Sec. VID. There-
fore, we may have two different positive-v Higgs phases,

κ = βγ

β

Z2
gauge

1st order

continuous

SU(2)→ Z2

Higgs phase
Z2 confined

SU(2)→ Z2

Higgs phase
Z2 deconfined

disordered
phase

v = 24

FIG. 7: A sketch of the β-κ phase diagram for the model
with Nc = 2, Nf = 4 for v = 24. The Z2 gauge transition line
starts at κc ≈ 0.761, β = ∞. The multicritical point, where
the three transition lines meet, satisfies 1 < κ < 2.

which differ for the behavior of the topological modes as-
sociated with the gauge-group center [9, 10]. The global
symmetry breaking pattern of the positive-v Higgs phase
is O(4)→O(3). This would suggest that the continuous
transitions between one of the positive-v Higgs phases
and the disordered phase belong to the O(4) vector uni-
versality class, provided that gauge modes are irrelevant
at the transition.

In Fig. 6 we report a sketch of the phase diagram for
γ = 0. As already observed for Nc = 3 and Nf = 2,
the negative-v phase extends in the positive-v region for
intermediate values of β. The transitions between the
two low-temperature phases and between the negative-v
and the disordered phases are of first order, as expected.
The nature of the transition between the positive-v and
the disordered phase depends instead on v. At least for
v . 6, the transition line is of first order. On the other
hand, for large v, the transitions become apparently con-
tinuous.

To understand the role played by the parameter γ for
v > 0, we focus on the phase diagram for a specific posi-
tive value of v, as a function of κ = βγ and β. In particu-
lar, we consider the relatively large value v = 24. For this
value, at γ = 0, there is a continuous transition between
the positive-v Higgs phase and the disorderd phase. A
sketch of the phase diagram is reported in Fig. 7. It
is characterized by three phases, a small-β disordered
phase, and two large-β Higgs phases, which are distin-
guished by the behavior of gauge-group center modes.
These phases are separated by three transition lines: (i)
a disordered-Higgs transition line for small κ, which ap-
pears to be continuous; (ii) a disordered-Higgs transition
line for large κ, which is of first order; (iii) a continuous
Z2 gauge (Ising) transition line, which separates the two
low-temperature Higgs phases.
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FIG. 8: Plot of U versus Rξ for Nc = 2, Nf = 4, γ = 0, and
v = 0. The rapid increase of the maximum of U indicates
that the transition is of first order.
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FIG. 9: The specific heat, defined in Eq. (10), versus v, for
Nc = 2, Nf = 4, γ = 0, and β = 2.5, The data provide
evidence of a first-order transition for v ≈ 2.7.

A. The case γ = 0

To verify that the line that separates the negative-v
Higgs phase from the disordered phase is of first order,
we have studied the model for v = 0. A transition is ob-
served for β ≈ 1.63. Since the Binder parameter U , re-
ported as a function of Rξ in Fig.8, has a maximum that
increases rapidly with the size of the lattice, we conclude
that the transition is of first order. To verify that transi-
tions along the line that separates the two Higgs phases
are of first order, we have performed simulations at fixed
β = 2.5. We observe a transition for v ≈ 2.7. On both
sides of the transition, the Binder parameter U is ap-
proximately 1, as expected, while it increases rapidly for
v ≈ 2.7. The transition is of first order as also confirmed
by the behavior of the specific heat CV , that appears to
diverge roughly as the volume L3, see Fig. 9.
We now focus on the transition line separating the dis-

ordered phase from the positive-v Higgs phase, perform-
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L=16
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Nc=2, Nf =4, v=6.0

FIG. 10: Plot of U versus Rξ for Nc = 2, Nf = 4, γ = 0, and
v = 6. The increase of the maximum of U may be considered
as an early indication of a first-order phase transition.
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FIG. 11: Data for Nc = 2, Nf = 4, γ = 0 and the values
v = 12. For comparison, we also report the spin-2 universal
curve computed in the O(4) vector model [60].
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ing simulations at fixed v (we consider v = 6, 12, 24, and
48). For v = 6, we have studied the behavior of the sys-
tem for 0 ≤ β ≤ 3.4, identifying a single transition for
βc ≈ 2.04. This guarantees us that the transition point
belongs to the positive-v transition line. The transition
appears to be of first order. Indeed, the Binder parameter
U has a maximum that increases with increasing lattice
size, see Fig. 10. As already mentioned, this behavior
provides an early indication for a first-order transition.
Indeed, at a continuous transition the maximum of U
does not increase.
The results for v = 12 (up to L = 48), v = 24 (up to

L = 32), and v = 48 (up to L = 24) are consistent with
continuous transitions, see Figs. 11 and 12, located at
βc ≈ 1.860, βc ≈ 1.710, and βc ≈ 1.618, respectively. Fits
of Rξ allow us to estimate ν ≈ 0.7 in all cases, which is
quite different from the effective exponent ν = 1/d ≈ 0.33
expected at first-order transitions. These results confirm
the phase diagram reported in Fig. 6: The positive-v
transition line is of first order from the multicritical point,
where the three transition lines meet, up to a tricritical
point v∗ (with 6 ≤ v∗ ≤ 12), and continuous for v > v∗.
As mentioned in Sec. IVB, along the transition

line dividing the disordered phase from the positive-v
Higgs phase, the global symmetry breaking pattern is
O(4)→O(3), which is the one characterizing the vector
O(4) universality class. One would thus expect O(4)
transitions for all v > v∗. Fits of Rξ give ν ≈ 0.7 (with
somewhat large errors), which is consistent with the O(4)
value ν = 0.750(2) [35, 61–63]. However, the scaling
curves of the Binder parameter U versus Rξ are signifi-
cantly different from the O(4) one, see Figs. 11 and 12.
O(4) behavior is apparently possible only if there are
slowly-decaying and nonmonotonic scaling corrections.
Alternatively, it is possible that the transitions belong
to a new universality class. However, one should still ex-
plain the significant differences in the behavior of U ver-
sus Rξ for v = 12 and for v = 24, 48 (compare Figs. 11
and 12). Scaling nonuniversal corrections or crossover ef-
fects due to the nearby tricritical point may be invoked
as possible reasons. In this scenario, the O(4) fixed point
would be unstable, and it would only give rise to crossover
phenomena, that apparently become less important as v
increases. The available simulations do not allow us to
clarify this point. Simulations on significantly larger lat-
tices are clearly required.

B. The case γ > 0

We have also performed a numerical study of the model
for γ > 0, focusing on the region v > 0, where gauge-
center modes can give rise to finite-γ transitions. We
have fixed v = 24, obtaining the phase diagram reported
in Fig. 7. We parametrize the phase diagram in terms of
κ ≡ βγ instead of γ, since this is the natural variable that
appears in the Z2 gauge model obtained for large values
of β, see Eq. (39). To identify the nature of the disorder-
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FIG. 12: Data for Nc = 2, Nf = 4, γ = 0 and the values
v = 24 and v = 48. For comparison, we also report the spin-2
universal curve computed in the O(4) vector model [60].
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FIG. 13: Data of U versus Rξ for Nc = 2, Nf = 4, v = 24,
and two values of κ, κ = 0 and 1.

Higgs transitions, we have performed simulations keeping
κ fixed and varying β. Since the Z2 gauge transition line
ends at κc = 0.761, β = ∞, we expect the multicriti-
cal point to have κmc of order 1, and therefore we have
considered κ = 1 , 2 , 3. Finally, we have performed a
simulation keeping β fixed (β = 1.7) and varying κ, to
determine the position of the Z2 gauge transition line and
the corresponding universality class.

For κ = 1, there is a clear evidence of a continuous
transition at βc ≈ 1.615 (correspondingly γ ≈ 0.62). The
transition appears to be analogous to that observed for
γ = κ = 0 at a similar value of β (βc ≈ 1.710). In
Fig. 13 we report U versus Rξ for κ = 0 and 1. Data
are consistent with a single asymptotic curve, suggesting
that the two transitions belong to the same universality
class. Differences are small, of the same order of the
differences observed for the largest v results for γ = 0,
and can be interpreted as scaling corrections.
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FIG. 14: Energy hystograms for v = 24, κ = 2 (top) and
κ = 3 (bottom), for L = 8. They clearly show the double-peak
structure characterizing first-order transitions. The difference
of the energies of the two maxima provides the latent heat:
∆h ≈ 0.7 for κ = 2, and ∆h ≈ 0.5 for κ = 3.

For κ = 2 and 3 we observe instead strong first-order
transitions. For example, the energy distributions are
bimodal for κ = 2, βc ≈ 1.29 and for κ = 3, βc ≈ 1.07
(correspondingly γ ≈ 1.55 and γ ≈ 2.79) already for
lattices sizes L = 6, 8, see Fig. 14. The latent heat ∆h is
quite large. It decreases with increasing κ, varying from
∆h ≈ 0.7 at κ = 2 to ∆h ≈ 0.5 at κ = 3. This decrease
is also confirmed by results for κ = 5: for L = 8 the
energy distribution is broad—therefore it is consistent
with a first-order transition—but it does not yet show
two peaks. We have also performed some simulations
for κ = γ = ∞, i.e., of the scalar model with global
O(4)⊗O(3) symmetry, to determine the critical behavior
of the endpoint of the finite-κ transition line. MC data
for relatively small lattices, up to L = 18, (not shown) are
compatible with a continuous transition (larger lattices
are however needed to confirm this behavior), indicating
that ∆h → 0 as κ → ∞.

The above-reported results show that the nature of the
transition changes significantly with increasing κ. While
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FIG. 15: Estimates ofH3GL
−3/νI for v = 24, β = 1.7, Nc = 2,

and Nf = 4, using the Ising exponent νI = 0.629971. The

top panel reportsH3GL
−3/νI versus κ, while the bottom panel

reports L−3/νH3G versus L1/ν(κ− κc), with κc = 1.265. The
plots provide evidence of an Ising transition at β = 1.7 and
κc ≈ 1.265.

a continuous transition occurs for κ . 1, for κ ≥ 2 tran-
sitions are of first order, decreasing their strength with
increasing κ. A natural hypothesis is that this abrupt
change is due to the different nature of the Higgs phase:
For κ = 1 the low-temperature phase is characterized by
confined Z2 gauge excitations, while for κ ≥ 2 the Z2

gauge modes are deconfined. This requires the existence
of the Z2 gauge transition line and implies that, in the
sketch reported in Fig. 7, the multicritical point lies in
the region 1 < κmc < 2.

We performed simulations to identify the Z2 gauge
transition line. We fixed β = 1.7 (which is slightly larger
than the critical point βc = 1.615 for κ = 1) and varied
κ between κ = 1 and κ = 2. To determine the Z2 gauge
transition we monitored thermodynamic quantities, since
the transition is not characterized by a local order param-
eter. We considered cumulants of the gauge part HG of
the Hamiltonian, focusing on the second and third cumu-
lant. The second cumulant per unit volume behaves as
the specific heat CV ∼ c Lα/ν + Creg, where Creg is the
regular contribution. Using the accurate estimates of the
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3D Ising critical exponents [64–69], and in particular [67]
ν = 0.629971(4), we obtain α/ν = 2/ν − 3 = 0.17475(2).
The divergence is very mild and scaling corrections (due
to the regular background) decay only as L−0.17, so that
FSS analyses of this quantity are not useful for accurate
checks of the Ising behavior. A more promising quantity
is the third cumulant of HG

H3G = − 1

γ3
〈(HG − 〈HG〉)3〉 . (47)

It behaves as H3G ∼ L3/ν = L4.76, with scaling correc-
tions that decay as L−ω ∼ L−0.8, therefore significantly
faster than in the second-cumulant case. We will use the
third cumulant to verify the Ising nature of the transi-
tion, checking that the data of L−3/νH3G asymptotically
collapse onto a universal scaling function with a pecu-
liar oscillating shape [29], when they are plotted against
(κ − κc)L

1/ν , where κc is the critical point at β = 1.7.
This is nicely confirmed by Fig. 15. We have therefore
a robust evidence of an Ising transition at κc ≈ 1.265,
(correspondingly γc = κc/β ≈ 0.744).
These results provide evidence for the existence of a

finite-β Z2 transition line, starting at κc ≈ 0.761, β = ∞,
consistently with the sketch reported in Fig. 7. Moreover,
they suggest that the multicritical point lies in the region
1 ≤ κm ≤ 2, explaining the different behavior observed
for κ = 1 and κ = 2, 3.

IX. CONCLUSIONS

We have investigated the phase diagram, and the tran-
sitions separating the different phases, of a class of 3D lat-
tice non-Abelian SU(Nc) gauge models withNf (Nf > 1)
degenerate scalar fields in the adjoint SU(Nc) represen-
tation, using the Wilson formulation of lattice gauge the-
ories, see Eq. (2). These models are also relevant phe-
nomenologically, in particular the model with Nc = 2
and Nf = 4 has been recently proposed to describe op-
timal doping criticality in cuprate high-Tc superconduc-
tors [9, 10].
We discuss the role played by the scalar quartic poten-

tial and by the gauge-group representation of the scalar
fields, which are crucial to determine the structure of
the low-temperature Higgs phases and the nature of the
phase transitions. For this purpose we have performed a
detailed analysis of the minima of the scalar-field poten-
tial. As discussed in Sec. IV, such an analysis shows the
emergence of two qualitatively different phase diagrams,
depending on the number of colors Nc and of flavors Nf .
For Nf ≤ N2

c − 1 a single Higgs phase exists and, for
positive values of v (v is parameter entering the scalar
potential (5)), there is a single disordered phase for any
temperature up to T = 0. For Nf > N2

c −1, instead, two
different low-temperature Higgs phases exist, with tran-
sitions characterized by different global and gauge sym-
metry breaking patterns. In particular, for Nc = 2, we
have a low-temperature Higgs phase characterized by the

gauge symmetry breaking pattern SU(2) → U(1) (this
phase is observed when v is negative), and a second low-
temperature Higgs phase characterized by SU(2) → Z2

(this occurs for positive v).

The phase diagram of the model can also be influenced
by the properties of the gauge modes, depending on the
residual gauge symmetry present in the ordered Higgs
phase. The phase diagram for Nf ≤ N2

c − 1 is not ex-
pected to depend on the gauge modes, as the residual
gauge symmetry group in the Higgs phase is continu-
ous, and therefore no finite-temperature transitions as-
sociated with these gauge variables are possible in three
dimensions. Thus, the phase diagram should not de-
pend on the gauge coupling γ. Differences should occur
only for γ = ∞. Analogously, for Nf > N2

c − 1, the
negative-v Higgs phase should not depend on γ, given
the large residual gauge symmetry characterizing its low-
temperature Higgs phase. On the other hand, in the
positive-v Higgs phase present for Nf > N2

c − 1 con-
figurations are only invariant under gauge-group cen-
ter transformations. Since ZNc

gauge theories undergo
finite-temperature transitions, there are two different
Higgs phases, characterized by the same gauge-symmetry
breaking pattern SU(Nc)→ ZNc

, but differing in the
topological behavior of the ZNc

gauge modes. as sketched
in Fig. 7 for Nc = 2 and Nf = 4.

We have presented numerical studies of two represen-
tative models: the case Nc = 3, Nf = 2, to verify the
general scenario for models satisfying Nf ≤ N2

c − 1,
and the case Nc = 2, Nf = 4, which shows the more
complex phase diagram predicted for models satisfying
Nf > N2

c − 1, and which is also relevant for cuprate su-
perconductors. In both cases, the general predictions for
the Higgs phases, and for the nature of the transition
lines, are verified.

Although our results confirm the general picture, there
are still some issues that call for further investigations.
For Nf = 4 and Nc = 2, we have evidence of continuous
transitions for small values of γ and large positive values
of v, whose characterization is not clear (we have not been
able to assign these transitions to a known universality
class). A second issue is the behavior for large values
of γ and of v. We have observed first-order transitions,
whose latent heat decreases with increasing γ. It would
be interesting to investigate the nature of the endpoint
of the transition line at γ = ∞: numerical simulations on
small lattices are consistent with a continuous transition,
but larger lattices are needed to settle the question.

An intriguing possibility is that the continuous tran-
sitions observed when Nf > N2

c − 1, v > 0 and small
values of γ, are associated with the fixed point found
in the analysis of the one-loop ǫ-expansion RG flow, see
Sec.V. The O(ǫ) fixed point in Eq. (43) is stable only
if Nf > N∗ ≈ 210 close to four dimensions. However,
it is conceivable that the critical number N∗ is dras-
tically smaller in three dimensions, so small to include
Nf = 4. One might find this possibility unplausible;
however, we should note that this is what happens in
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the Abelian-Higgs U(1) field theory. A leading order
ǫ-expansion computation [13], analogous to the one re-
ported in Sec. V, predicts the existence of a stable fixed
point for Nf > N∗

f ≈ 183. However, if higher-order

corrections are included [70], a significantly smaller esti-
mate of the 3D critical value is obtained. A numerical
MC study in three dimensions finds N∗

f = 7(2) [20], con-
firming that the one-loop estimate is of no quantitative
relevance. We believe that further work is called for to
test this possibility and to achieve a full understanding
of the actual behavior of the model for positive values of
v. A promising strategy consists in studying the model
for v = +∞. The model is significantly simpler, since the
scalar field variables take the form given in Eq. (21), and
simulations faster, as there is no need to take the poten-
tial into account in the update and more powerful MC
algorithms can be used. This should allow us to perform
a more effective numerical study of the phase diagram in
the β-γ plane.

Acknowledgement. Numerical simulations have been
performed on the CSN4 cluster of the Scientific Comput-
ing Center at INFN-PISA.

Appendix A: Monte Carlo simulations

We performed MC simulations on cubic lattices with
periodic boundary conditions. The gauge link variables
Ux,µ were updated using a standard Metropolis algo-
rithm [71]. The new link variable was chosen close to
the old one, in order to guarantee an acceptance rate of
approximately 30%. The scalar fields were updated us-
ing two different Metropolis updates, again tuning the
proposal to obtain an acceptance rate of 30%. The first
move performs a rotation in flavor space, while the sec-
ond one rotates the color components of a single flavor.
This update procedure is the same already used in [31],
to which we refer for some more implementation details.
For the largest sizes simulated, the typical statistics are
of the order of 106−7 (Nc = 3, Nf = 2) and of 107−8

(Nc = 2, Nf = 4) lattice sweeps of both scalar and gauge
variables. To take into account autocorrelations and de-
termine the correct statistical errors, we used a standard
blocking and jackknife procedure. Our maximum block-
ing sizes were of the order of 104−5 (Nc = 3, Nf = 2) and
105−6 (Nc = 2, Nf = 4).
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