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Abstract

This paper investigates approximate solutions to the two-dimensional equations of motion of a generalized sail-
based spacecraft. A generalized sail is a propellantless propulsion system that produces a continuous thrust the
magnitude of which varies with the heliocentric distance as 1/rη, where η is a positive real number that char-
acterizes the propulsion system performance. Under the simplifying assumptions of low propulsive acceleration,
constant thrust angle, and circular parking orbit, the spacecraft trajectory is approximated through closed-form
relations. The general solution is then specialized to the case of a Magnetic Sail with a so-called“thick”operation
mode, the latter being consistent with a kilometer-size loop radius. The effectiveness of the proposed mathe-
matical model is verified by comparison with a numerical integration of the equations of motion, which confirms
the accuracy of the analytical results even on very long timescales. Finally, the set of approximate equations is
applied to the analysis of transfer trajectories towards a heliocentric target orbit with a given semimajor axis.
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Nomenclature

a = semimajor axis, [au]
ac = characteristic acceleration, [mm/s2]
a = propulsive acceleration vector, [mm/s2]
{CD, CL} = dimensionless functions of φ
h = spacecraft specific angular momentum magnitude, [km2/s]
{h0, h1} = best fit coefficients of CD
îr = radial unit vector

îθ = transverse unit vector
{k0, k1} = best fit coefficients of CL
m = magnetic dipole moment, [A m2]
O = Sun’s center of mass
r = Sun-spacecraft distance, [au]
r = spacecraft position vector, [au]
r⊕ = reference distance, [au]
S = spacecraft center of mass
t = time, [days]
T = polar reference frame
v = spacecraft velocity vector, [km/s]
vr = radial component of spacecraft velocity, [km/s]
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vθ = transverse component of spacecraft velocity, [km/s]
α = thrust angle, [deg]
β = dimensionless coefficient, see Eq. (13)
γ = dimensionless function
εi = dimensionless relative error
η = dimensionless thruster parameter
θ = polar angle, [deg]
λ = dimensionless thruster coefficient, see Eq. (13)
µ� = Sun’s gravitational parameter, [km3/s2]
φ = angle of attack, [rad]
χ = dimensionless auxiliary function, see Eq. (15)

Subscripts

0 = initial
f = final
max = maximum
min = minimum

Superscripts

· = time derivative
∼ = approximate

1. Introduction

The use of propellantless propulsion systems in the interplanetary space, such as photonic solar sails [1,
2, 3, 4, 5], Electric Solar Wind Sails (E-sails) [6, 7, 8, 9, 10], or magnetic sails (MagSails) [11, 12, 13],
is a fascinating option in view of the opportunity they offer to obtain long-lasting missions. A common
peculiarity of these propulsion systems is in the dependence of the thrust magnitude on the distance from
the Sun. The thrust is obtained by exploiting the solar wind flux or the solar radiation pressure, so that the
thrust vector can only point outward from the Sun’s direction. All these propulsion systems may therefore
be referred to as “generalized sails”, a concept that was introduced by Aliasi et al. [14, 15, 16] about ten
years ago to simulate the behaviour of photonic solar sails and E-Sails with a Sun-facing attitude. The
original concept of generalized sail has also been recently used in Ref. [17] to investigate a new class of spiral
trajectories covered by a radially-accelerated spacecraft with a constant mass.

The aim of this paper is to extend the mathematical model introduced by Aliasi et al. [14, 15, 16],
and to look for approximate solutions to the two-dimensional equations of motion of a generalized sail-
based spacecraft. The problem of developing approximate solutions to the spacecraft equations of motion
is a very current topic, as is shown, for example, by Ogundele’s recent work [18], which deals with the
nonlinear Riccati spacecraft formation flying dynamics. Under the simplifying assumptions of low propulsive
acceleration magnitude, constant thrust angle, and circular parking orbit, the spacecraft trajectory may be
approximated through closed-form relationships. The general solution is then applied to the special case of
a MagSail with a so-called “thick” operation mode, which is consistent with a MagSail with a kilometer-size
loop radius. More precisely, a MagSail is constituted by a large ring made of superconducting material
through which an electric current flows so as to generate a magnetic field. The interaction between the solar
ions and the artificial magnetosphere surrounding the MagSail causes a momentum exchange and induces
the onset of a thrust. The latter is nearly aligned with the Sun-spacecraft line, although a small transverse
thrust component may also be obtained by suitably orienting the magnetic dipole moment. Figure 1 shows
an artistic impression of the MagSail concept.

In the last two decades, several simulations and laboratory tests [19, 20, 21, 22] have provided important
information about the MagSail theoretical performance. Starting from those data, Quarta et al. [23] have
suggested a handy mathematical description of the MagSail thrust vector. This model has been recently
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Figure 1: Artistic illustration of the MagSail concept. Courtesy of Steve Bowers, 2021.

used in Ref. [13] to analyze MagSail-based displaced non-Keplerian orbits around the Sun and, now, will be
exploited to analyze heliocentric transfers by means of a low-performance MagSail. The effectiveness of the
proposed solution is checked by comparison with the numerical integration of the equations of motion. In
particular, the validity of the approximate model is investigated by quantifying the relative errors on a very
long timescale.

The paper is organized as follows. Section 2 deals with the mathematical model used to describe the two-
dimensional orbital dynamics of a spacecraft equipped with a generalized sail. Section 3 derives an analytical
approximation of the propelled trajectory by introducing a set of suitable simplifying assumptions. Section
4 specializes the previously found results to the case of a MagSail with a “thick” magnetopause mode. The
analytical model is then validated in Section 5, where a comparison between the approximate and numerical
results confirms the accuracy of the proposed solutions. Section 6 investigates a set of transfer trajectories
towards a target orbit with an assigned semimajor axis. Finally, Section 7 contains some concluding remarks,
while the subsequent Appendix (Section 8 ) makes a comparison between the presented solutions and those
available in the literature.

2. Mathematical preliminaries

Consider a heliocentric mission scenario in which, at the starting time t0 , 0, a spacecraft S covers a
circular Keplerian orbit of radius r0. The magnitude of the spacecraft initial velocity is v0 ,

√
µ�/r0, where

µ� is the Sun’s gravitational parameter. Introduce a heliocentric polar reference frame T (O; îr, îθ), where
the origin O coincides with the Sun’s center of mass, îr is the Sun-spacecraft (radial) unit vector, and îθ is
the transverse unit vector; see Fig. 2. The spacecraft position (r) and velocity (v) vectors in T are given by

r = r îr , v = vr îr + vθ îθ (1)

where r is the Sun-spacecraft distance, while vr and vθ are the radial and transverse component of the
spacecraft velocity vector, respectively, which are defined as

vr , ṙ , vθ , r θ̇ (2)

where θ is the spacecraft polar angle, measured anticlockwise from the Sun-spacecraft line at the initial time
t0; see Fig. 2.

The spacecraft dynamics is described by the polar equations of motion

ṙ = vr , θ̇ =
h

r2
, v̇r = −µ�

r2
+
h2

r3
+ a · îr , ḣ = r a · îθ (3)

where h , r vθ is the magnitude of the specific angular momentum vector, while a is the propulsive ac-
celeration vector. Note that the dynamical model described by Eqs. (3) does not consider the third-body
perturbation effects. Such effects will be ignored throughout the paper because we are interested in analysing
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Figure 2: Reference frame and spacecraft state variables.

the heliocentric transfer phase of a generalized sail-based spacecraft, where the gravitational perturbations
are small and, as such, of no practical interest in a preliminary phase of the trajectory analysis. In fact,
the deep space phase represents a large part of an interplanetary transfer and, therefore, it is reasonable to
neglect the gravitational perturbations due to the attraction of the departure and arrival planets. Bearing in
mind that the parking orbit is circular, the system of differential equations (3) is completed by the following
initial conditions

r(t0) = r0 , θ(t0) = 0 , vr(t0) = 0 , h(t0) = r0 v0 ≡
√
µ� r0 (4)

Assume now that the spacecraft is equipped with a primary propulsion system that may be considered as
an extension of the“generalized sail”concept introduced by Aliasi et al. [14, 15, 16]. More precisely, according
to the model discussed in Ref. [14], a generalized sail is essentially a propellantless propulsion system,
capable of providing a continuous thrust in the interplanetary space by exploiting either the solar wind or
the solar radiation pressure. A generalized sail typically gives an outward radial propulsive acceleration,
the magnitude of which depends on the heliocentric distance as 1/rη, where η ≥ 0 is a constant design
parameter that characterizes the propulsion system. In particular, in the applications discussed by Aliasi et
al. [14, 15, 16], the value of η is chosen so as to describe the behaviour of suitable propulsion systems, such
as a photonic solar sail or an E-Sail with a Sun-facing attitude, that is, with a thrust vector aligned along
the Sun-spacecraft line.

In this paper, the original concept of a generalized sail is extended by assuming a nonzero value of the
transverse component of a, that is, by considering the more general case in which a · îθ 6= 0. With the aim
of describing the orbital dynamics of a spacecraft equipped with a propellantless thruster, the propulsive
acceleration vector is here modeled as

a = ac γ
(r⊕
r

)η (
cosα îr + sinα îθ

)
(5)

where ac > 0 is a reference propulsive acceleration (a sort of sail performance parameter) and r⊕ , 1 au is a
reference distance. In Eq. (5), the terms γ and α are related to the sail orientation relative to the local radial
unit vector îr. In particular, the dimensionless function γ ∈ [γmin, 1] (with γmin ≥ 0) models a possible
dependence of the propulsive acceleration magnitude on the sail attitude, whereas α ∈ [−αmax, αmax] (with
αmax > 0) is the thrust angle, that is, the angle between a and îr. Using the standard nomenclature for
photonic solar sails [1], ac is referred to as “characteristic acceleration”, since it coincides with the maximum
magnitude of a (obtained when γ = 1) at the reference distance r = r⊕.
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The values of {η, αmax} and the expression of γ depend on the specific propulsion system that is modeled
through the generalized sail concept. For example, the propulsive acceleration vector of a flat and perfectly
reflective solar sail [24] is obtained with η = 2, αmax = 90 deg, and γ = cos2 α, while the propulsive
acceleration vector of Robert Forward’s solar-photon thrustor [25, 26, 27] is characterized by η = 2, αmax =
90 deg, and γ = cosα. Note that, in general, γ is not necessarily an explicit function of α. This is the case,
for example, of the latest mathematical models that describe the propulsive acceleration vector generated
by a spinning E-Sail [28, 29]. In particular, the thrust model by Huo et al. [28], which is consistent with a
flat E-Sail with a uniform electrical voltage, corresponds to when η = 1 and

γ =

√
1− 3

4
sin2 αn , α = arctan

(
sinαn cosαn
1 + cos2 αn

)
(6)

where αn ∈ [−90, 90] deg represents the angle between îr and the E-Sail spin axis. In this model, αmax =
arctan

(√
2/4
)

rad ' 19.47 deg and γ ∈ [0.5, 1] cannot be written as an explicit function of α. The propulsive
acceleration provided by a MagSail [30, 12, 11] may also be modeled through Eq. (5), as it will be clarified
later on.

Using the expression of a given by Eq. (5), the last two of Eqs. (3) become

v̇r = −µ�

r2
+
h2

r3
+ ac γ

(r⊕
r

)η
cosα (7)

ḣ = ac γ r
η
⊕ r

1−η sinα (8)

Even though the system of differential equations given by the first two of Eqs. (3) and Eqs. (7)-(8) has
no general solution, an analytical approximation of the time-variation of the spacecraft states will now be
obtained with suitable simplifying approximations.

3. Generalized sail trajectory approximation

The spacecraft propelled trajectory may be calculated by introducing two simplifying assumption. The
first one is to consider a low-performance propulsion system, that is, a generalized sail such that the propul-
sive acceleration magnitude ‖a‖ is a small fraction of the local Sun’s gravitational acceleration µ�/r

2, viz.

ac γ r
η
⊕ r

2−η

µ�
≤ ac r

η
⊕ r

2−η

µ�
� 1 (9)

In the second place, we assume a constant thrust angle α along the whole flight, which amounts to stating
that the generalized sail attitude remains constant in an orbital reference frame. Note that the latter
assumption implies the dimensionless function γ to be a constant of motion.

Because the parking orbit is circular, and paralleling the procedure proposed by Battin [31], it is rea-
sonable to expect that the spacecraft propelled trajectory will remain nearly circular, so that the specific
angular momentum may be approximated as

h ' √µ� r (10)

from which

ḣ '
√
µ�

4 r
ṙ (11)

In other terms, it is reasonable to expect that the spacecraft trajectory will roughly resemble a sort of tight
spiral. Equating (8) and (11), we get the following first order differential equation in r

ṙ = λ r1−β (12)
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where β and λ are two constants of motion defined as

β ,
2 η − 1

2
, λ ,

2 γ sinαac r
η
⊕√

µ�
(13)

An integration of Eq. (12) gives the approximate time-variation of the Sun-spacecraft distance, viz.

r ' r̃ ,


r0 χ

1/β if η 6= 1/2

r0 exp (λ t) if η = 1/2

(14)

where χ = χ(t) is a dimensionless auxiliary function (of time t) defined as

χ , 1 +
β λ t

rβ0
(15)

Note that χ makes physical sense provided it is positive; see Eq. (14). In particular, the latter condition

occurs ∀t when β λ ≥ 0, and for t < −rβ0 / (β λ) when β λ < 0, that is, when α < 0∧η > 1/2 or α > 0∧η < 1/2.
Differentiating Eq. (14), the approximate time-variation of the radial component of the spacecraft velocity

is given by

vr ' ṽr ,


r1−β0 λχ1/β−1 if η 6= 1/2

r0 λ exp (λ t) if η = 1/2

(16)

while, bearing in mind Eq. (10) and recalling that vθ , h/r, the transverse component of the spacecraft
velocity is vθ '

√
µ�/r, which gives

vθ ' ṽθ ,


√
µ�

r0
χ−1/(2 β) if η 6= 1/2√

µ�

r0
exp

(
−λ t

2

)
if η = 1/2

(17)

Finally, the approximate time-variation of the polar angle θ may be obtained by observing that, because
θ̇ , vθ/r and vθ '

√
µ�/r, the spacecraft angular velocity is related to the orbital radius as

θ̇ '
√
µ�

r3
(18)

so that θ is the solution of the following integral

θ ' θ̃ ,


√
µ�

r30

∫ t

0

χ−3/(2 β) dt if η 6= 1/2√
µ�

r30

∫ t

0

χ−1 dt if η = 1/2

(19)
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In particular, when λ 6= 0, the previous equation gives

θ̃ =



√
µ�

r30

2 rβ0
(3− 2β) λ

[
1− χ1−3/(2 β)

]
if η 6= {1/2; 2}

√
µ�

r30

rβ0
β λ

lnχ if η = 2

√
µ�

r30

2

3λ

[
1− exp

(
−3λ t

2

)]
if η = 1/2

(20)

When, instead, λ = 0, Eq. (15) gives χ = 1. In that case, Eqs. (14), (16), (17), and (19) give r̃ = r0,
ṽr = 0, ṽθ =

√
µ�/r0, and θ̃ =

√
µ�/r30 t, that is, the approximate trajectory coincides with the circular

parking orbit. In fact, the case λ = 0 corresponds to either ac = 0 or α = 0; see Eq. (13). In the former
case, the spacecraft is not subject to any propulsive acceleration and, therefore, it keeps moving along the
circular (Keplerian) parking orbit. In the latter case, instead, the spacecraft is subjected to a purely radial
thrust and the specific angular momentum is a constant of motion. Due to the assumption of low thrust,
the spacecraft actual trajectory is constrained within an annular region, which describes the potential well
introduced by Prussing and Coverstone [32].

4. Application to a MagSail-based mission scenario

The previously discussed mathematical model is now applied to approximate the propelled trajectory of
a MagSail-based spacecraft in a heliocentric mission scenario. In this context, the thrust model detailed in
Ref. [33] is used to describe the propulsive acceleration of a MagSail with a so-called “thick magnetopause
mode”, that is, a MagSail with a kilometer-size loop radius; see Fig. 1. In the rest of the work, such a
MagSail will be referred to as “thick MagSail”.

The thrust model of Ref. [33] describes the thick MagSail propulsive acceleration vector a though the
following (compact) equation

a = ac

(r⊕
r

)4/3 (
CD îr + CL îθ

)
(21)

where {CD, CL} are two dimensionless functions of the MagSail angle of attack φ ∈ [−90, 90] deg, the latter
being defined as the angle between the Sun-spacecraft line and the direction of the loop magnetic dipole
moment m; see Fig. 3.
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Figure 3: MagSail angle of attack φ.
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Using a best-fit of experimental data [33], the two dimensionless functions {CD, CL} can be written as

CD = h0 + h1 cos(2φ) (22)

CL = k0 sin(2φ) + k1 sin(4φ) (23)

where h0 = 0.8312, h1 = −0.1688, k0 = −0.1338, and k1 = −0.03969 are the best-fit (dimensionless)
coefficients. Note that the thick MagSail thrust model of Eqs. (21)–(23) only applies in the interplanetary
space and is no longer usable when the spacecraft is located inside a planetary magnetosphere. Therefore,
the (simplified) two-body dynamics described by Eqs. (3) is well suited to deal with a MagSail with a thrust
model given by Eqs. (21)–(23). From Eq. (21), the expressions of ‖a‖ and α of a thick MagSail are

‖a‖ = ac

√
C2
D + C2

L

(r⊕
r

)4/3
, α = arctan

(
CL
CD

)
(24)

so that, comparing Eq. (5) with Eq. (21) and taking into account Eq. (24), the heliocentric behaviour of a
thick MagSail may be described by a generalized sail model with η = 4/3 and

α = arctan

[
k0 sin(2φ) + k1 sin(4φ)

h0 + h1 cos(2φ)

]
(25)

γ =

√
[h0 + h1 cos(2φ)]

2
+ [k0 sin(2φ) + k1 sin(4φ)]

2
(26)

In this context, Figs. 4-5 show the variations of {α, γ} with the angle of attack φ. Note that α = αmax '
11.38 deg when φ ' −29.77 deg, while γ = γmin = 0.6624 when φ = 0. In addition, Fig. 6 shows the locus
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Figure 4: Variation of α with φ for a thick MagSail.

of all the admissible pairs (α, γ). Notably, a pair of values of γ exists for each value of α 6= {−αmax, αmax},
while γ ' 0.7606 when α = ±αmax. Moreover, both γmax = 1 and γmin = 0.6624 occur when α = 0.
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In particular, when η = 4/3, Eqs. (13)–(17) and (20) give β = 5/6 and

r̃ = r0 χ
6/5 , ṽr = r

1/6
0 λχ1/5 , ṽθ =

√
µ�

r0
χ−3/5 , θ̃ =

√
µ�

r30

3 r
5/6
0

2λ

[
1− χ−4/5

]
(27)
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where the auxiliary function χ = χ(t) is now given by

χ = 1 +
5λ t

6 r
5/6
0

(28)

Note that for a thick MagSail-based mission scenario the term χ is positive ∀t when λ ≥ 0 and for t <

tmax , −6 r
5/6
0 / (5λ) when λ < 0.

A so small value of the maximum thrust angle (about 11 deg) corresponds to a nearly radial thrust condi-
tion. This is confirmed by Fig. 7, which shows the variation of γ sinα (a sort of dimensionless component of
the transverse propulsive acceleration vector, see Eq. (8)) with φ. In particular, the maximum (or minimum)
of γ sinα occurs when φ ' −33.11 deg (or φ ' 33.11 deg) and its value is about 0.1517 (or −0.1517). The
corresponding values of α are approximately equal to 11.25 deg and −11.25 deg, respectively.
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Figure 7: Variation of γ sinα as a function of φ for a thick MagSail.

5. Model validation

The solution obtained for the thick MagSail is now validated by comparison with the results of a numerical
integration of the equations of motion. The simulations are made on an 1.8 GHz Intelr Core

TM

i7-10510U
processor using a variable order Adams-Bashforth-Moulton PECE solver [34] with absolute and relative
errors equal to 10−12. Such a comparison is performed by evaluating the maximum relative errors in terms
of orbital radius, semimajor axis, and specific angular momentum magnitude. For an assigned value of ac
and r0 = r⊕, the maximum relative errors are calculated as a function of φ ∈ [−90, 90] deg during a long
flight time of 100 years when λ ≥ 0, or 0.99 tmax when λ < 0. In the latter case we have also introduced
the constraint min (r) = rmin , 0.25 au on the minimum allowable orbital radius in order to prevent the
spacecraft from an excessive thermal load due to a close passage with the Sun. Such a constraint is activated
when, for an assigned value of λ < 0, there exists t̄ < 0.99 tmax for which r (t̄) = rmin.

The relative errors εi, with i = {r, a, h}, are defined as

εr ,
|r − r̃|
r

, εa ,
|a− ã|
a

, εh ,

∣∣∣h− h̃∣∣∣
h

(29)
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where a is the semimajor axis of the osculating orbit, given by

a =
µ� r

2µ� − r (v2r + v2θ)
(30)

The maximum value of εi as a function of φ, is plotted in Fig. 8 when ac = {0.05, 0.075, 0.1}mm/s2. As
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Figure 8: Maximum relative errors for ac = {0.05, 0.075, 0.1}mm/s2.

expected, the maximum relative errors grow with ac for both an orbit raising (φ < 0) and an orbit lowering
(φ > 0). With reference to Fig. 8, the largest relative error concerns the orbital radius when ac = 0.1 mm/s2

and φ = −43.04 deg. In that case, α ' 9.62 deg, γ ' 0.8313, and γ sinα ' 0.1389. The comparison between
the numerical (solid line) and approximate (dotted line) results when γ sinα ' 0.1389 is illustrated in
Fig. 9(a), which clearly shows that the analytical approximations of {r, a, h} closely follow their numerical
counterparts. Finally, Fig. 9(b) shows the variation of the relative error in orbital radius during a 100-years
long flight. In accordance with Figs. 8, the maximum of εr is 4.35% and occurs at t = 100 years.

The approximate analytical solutions ensure a considerable reduction in computational costs. More
precisely, the computational savings are increasingly apparent the larger the integration time interval is. For
example, when ac = 0.1 mm/s2, φ = −43.04 deg, and the total flight time is 1 year, the computational cost
reduces of a factor of about 30. If, instead, the total flight time is increased up to 10 years, the computational
cost reduces of a factor of about 100.

6. Mission application

The previous relationships are useful for estimating the flight time tf necessary for a thick MagSail to
reach a heliocentric target orbit of semimajor axis af . This scenario may be used, for example, to achieve
a target orbit that is synchronous with the orbit of a celestial body as a planet or an asteroid. Moreover,
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Figure 9: Comparison between numerical (solid line) and approximate (dotted line) results.

since the eccentricity of the spacecraft osculating orbit remains small and the orbits of the planets are nearly
circular, this case basically describes a circle-to-circle (two-dimensional) orbit transfer.

From Eqs. (27)-(30) it is found that the approximate flight time satisfies the equation

λ2 r
4/3
0

µ�
χ
8/5
f +

r0
af

χ
6/5
f − 1 = 0 (31)
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with

χf = 1 +
5λ tf

6 r
5/6
0

(32)

which may be simply solved either numerically or graphically. For example, assuming ac = 0.1 mm/s2 and
φ = −33.11 deg (the latter corresponding to the maximum allowable value of λ) for performing a classical
Earth-Mars transfer, when r0 = r⊕ and af ' 1.5237 au, the integration of the equations of motion gives
tf ' 15.768 years, whereas Eq. (31) gives tf ' 15.689 years. In this case, the relative error in flight time
is only 0.5%. The relative error in flight time is further reduced in a flyby mission towards Venus, when
r0 = r⊕ and af = 0.7233 au, assuming ac = 0.1 mm/s2 and φ = 33.11 deg (the latter corresponding to the
minimum allowable value of λ). In that case, the integration of the equations of motion and Eq. (31) give
tf ' 8.866 years and tf ' 8.830 years, respectively, so that the corresponding relative error in flight time is
only 0.4%.

In light of these results, Eq. (31) turns out to be very accurate in estimating the flight time tf required for
performing an orbital raising (or lowering) with a thick MagSail. Figure 10 shows how tf varies with φ and
af when r0 = r⊕ and ac = 0.1 mm/s2. Note that, for a generic value of af , the minimum of tf occurs when
φ = ±33.11 deg (the sign changes according to whether it is an orbit lowering or an orbit raising), that is,
when |γ sinα| is maximum. This is confirmed by a very accurate approximation of the solution to Eq. (31),
which may be obtained by neglecting the first term in the left-hand side of Eq. (31). This simplification is
possible because the coefficient of the first term in the left-hand side of Eq. (31) is much less than 1 due to
the assumption (9) and the observation that |2 γ sinα| < 1 (see Fig. 7), so that

λ2 r
4/3
0

µ�
=

[
2 γ sinαac (r⊕/r0)

4/3

µ�/r20

]2
<

[
ac (r⊕/r0)

4/3

µ�/r20

]2
� 1 (33)

For example, when r0 = r⊕ and ac = 0.1 mm/s2, then λ2 r
4/3
0 /µ� ' 2.6 × 10−5. Accordingly, Eq. (31)

reduces to
r0
af

χ
6/5
f − 1 ' 0 (34)

from which

tf '
3
√
µ�/r0

5 γ sinαac

(
r0
r⊕

)4/3
[(

af
r0

)5/6

− 1

]
(35)

where sinα < 0 (or sinα > 0) when af/r0 < 0 (or af/r0 > 0). In particular, Eq. (35) shows that tf is
inversely proportional to |γ sinα|. This means that, for given values of r0 and ac, the minimum of tf (i.e.,
the minimum flight time) occurs when |γ sinα| is maximum, in accordance with the results of Figs. 7 and
10.

In this context, it is worth mentioning the recent work by Wang et al. [35], who dealt with the optimization
of low-thrust Earth-orbit transfers using the vectorial orbital elements and proved the performance of the
proposed dynamical model by optimizing two orbit-raising trajectories and one orbit-lowering trajectory.
Note also that, according to Eq. (35), tf is inversely proportional to ac. Finally, Fig. 11 shows the minimum
value of tf as a function of af for a thick MagSail with ac = 0.1 mm/s2 when r0 = r⊕ and φ = 33.11 deg
(orbit lowering) or φ = −33.11 deg (orbit raising). In this case, the values of tf provided by Eq. (35) nearly
coincides with those obtained by numerical integration.

7. Conclusions

This paper has investigated two-dimensional heliocentric transfers performed by a generalized sail, that
is, a propellantless propulsion system that provides a thrust magnitude proportional to a given power of
the Sun-spacecraft distance. Under the simplifying assumptions of low characteristic acceleration, constant
thrust angle, and circular parking orbit, the proposed mathematical model is able to accurately approximate
the spacecraft position and velocity as a function of time. The general solution has then been specialized to
the case of a kilometer-size MagSail.
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Figure 10: Flight time tf as a function of φ and af for a thick MagSail with ac = 0.1 mm/s2 when r0 = r⊕.
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Figure 11: Minimum flight time tf as a function of af for a thick MagSail with ac = 0.1 mm/s2 when r0 = r⊕ and φ = 33.11 deg
(orbit lowering) or φ = −33.11 deg (orbit raising).

The effectiveness of the proposed solution has been validated by comparison with the numerical integra-
tion of the equations of motion, which show that the analytical results approximate the actual trajectory
with very small errors. The proposed mathematical model has been applied to the analysis of transfer tra-
jectories towards a target orbit with a given semimajor axis, and an estimate of the corresponding flight time
has been obtained through a closed-form expression. Based on the simulation results, it is clear that, when
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dealing with the heliocentric trajectory of a generalized sail, simple analytical expressions may effectively
be used to quickly estimate the evolution of the orbital parameters as a function of time. In particular, it
is worth noting that the shape of the heliocentric trajectory of a generalized sail is strictly related to the
exponent that describes the variation law of the thrust magnitude with the orbital radius.

8. Appendix

In this Appendix we show that the general solution of Eqs. (14)–(17) and (20) can also be applied to
other (low-performance) propellantless propulsion systems. For example, the propulsive acceleration vector
of an ideal photonic solar sail corresponds to when η = 2, αmax = 90 deg, and γ = cos2 α. In that case,
Eqs. (14)-(20) give

r̃ = r0

(
1 +

3 cos2 α sinαac r
2
⊕ t√

µ� r30

)2/3

(36)

θ̃ =
µ�/r

2
⊕

3 cos2 α sinαac
ln

(
1 +

3 cos2 α sinαac r
2
⊕ t√

µ� r30

)
(37)

This approximate solution is consistent with the results of Ref. [36]. Indeed, the flight time necessary to
reach a target orbital radius rf is

tf '
µ�/r

2
⊕

3 cos2 α sinαac

√ r3f
µ�
−

√
r30
µ�

 (38)

which is equivalent to Eq. (6) of Ref. [36] when the (photonic) solar sail thrust vector is described by an
ideal force model without degradation [37, 38].

The second case, when η = 1, is consistent with an E-Sail thrust model [23, 39]. Using the simplified
E-Sail thrust vector model of Ref. [23], where γ = 1, Eqs. (14)-(20) give

r̃ = r0

(
1 +

sinαac r⊕ t√
µ� r0

)2

(39)

θ̃ =
µ�/r0

2 sinαac r⊕

[
1−

(
1 +

sinαac r⊕ t√
µ� r0

)−2
]

(40)

This solution is different from the approximate result reported by Quarta and Mengali [23]; see Eqs. (5)-
(6) and (10)-(11) of Ref. [23]. The reason of this discrepancy is that the solution of Ref. [23] is obtained
under the assumption v̇r ' 0, while the solution proposed in this work is found by considering vθ '

√
µ�/r.

Notably, Eqs. (39)-(40) provide the exact time-variation of the specific angular momentum magnitude, which
is known to vary linearly over time for an E-Sail with a constant attitude [23]. In fact, observe that

h , r2 θ̇ ' r̃2 ˜̇
θ =
√
µ� r0 + sinαac r⊕ t (41)

coincides with Eq. (5) of Ref. [23] recalling that, in our case,
√
µ� r0 represents the specific angular momen-

tum at the initial time.
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