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ABSTRACT Tavaborole is currently used in the topical treatment of onychomycosis.
In this study, we analyzed the in vitro emergence/evolution of resistance against tava-
borole in Trichophyton rubrum. When T. rubrum strains were propagated on media con-
taining the MIC of tavaborole, spontaneous resistant mutants were isolated at a fre-
quency of 1028. The frequency was almost 100-fold higher following fungal growth in
the presence of a subinhibitory tavaborole concentration (0.5-fold the MIC) for 10 trans-
fers. All collected mutants showed similar 4- to 8-fold increases in the drug MIC. No
cross-resistance to other antifungals was evident.
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Onychomycosis is a fungal infection of the nail that is commonly caused by the der-
matophyte Trichophyton rubrum (1). Several U.S. Food and Drug Administration

(FDA)-approved systemic (terbinafine [TRB], itraconazole [ITC]) and topical (amorolfine
[AMF], ciclopirox [CPX], efinaconazole [EFI], tavaborole [TVB]) antifungal agents are com-
monly used for the treatment of onychomycosis (1). The oxaborole drug TVB (AN2690)
inhibits the leucyl-tRNA synthetase by trapping the 39 end of tRNALeu in the editing site,
thus impairing protein synthesis (2–6). TVB displays broad-spectrum activity, being active
against dermatophytes, molds, yeasts, and some bacteria, and well penetrates the nail
plate for its low molecular weight and hydrophobicity (6–12).

Onychomycosis is often intractable because of the difficulty to reach effective drug
levels at the site of infection and the potential acquisition of resistance by fungi, lead-
ing to frequent relapses after therapy cessation. In addition, long-term therapy often
leads patients to abandon treatments, thus promoting relapses and selection of more-
resistant fungal strains (13–15). The proficiency of T. rubrum to develop resistance to-
ward several antifungal agents has been documented (16–20).

In this study, we evaluated the natural emergence and evolution of resistance
against TVB in T. rubrum, which was chosen as a model organism for clinically relevant
dermatophytes. We also investigated the potential of TVB to cause cross-resistance to-
ward TRB, ITC, AMF, CPX, and EFI.

Two reference T. rubrum strains (ATCC 28188 and ATCC MYA-4438) and two T.
rubrum clinical isolates (CI-1 and CI-2) were used in this study (17, 20). All of the experi-
ments were repeated three times on separate days, and each strain was tested in dupli-
cate. Conidial suspensions were prepared, and the MICs of TVB, TRB, ITC, AMF, CPX,
and EFI were determined by the microtiter broth dilution method as indicated by CLSI
standard M38 methodology for susceptibility testing of dermatophytes (21). For all T.
rubrum strains, the MIC of TVB was 0.63mg/liter. This value agrees with previously pub-
lished data (22, 23), but it is lower than the MICs of TVB indicated in other studies for T.
rubrum (24, 25). As already reported, the MIC value against T. rubrum was higher for
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TVB than for TRB (0.01mg/liter), ITC (0.08mg/liter), AMF (0.16mg/liter), CPX (0.31mg/li-
ter), and EFI (0.003 mg/liter) (25).

To test the emergence of both natural and induced resistance to TVB in T. rubrum
isolates, the MIC of the drug was determined by agar dilution assay as previously
described (17, 20). For all strains, the MIC values of TVB were 1mg/liter when 108 CFU/
plate were seeded. When 105 CFU/plate were inoculated, the MICs were 0.50mg/liter
for T. rubrum ATCC 28188 and 0.25mg/liter for T. rubrum ATCC MYA-4438, CI-1, and CI-
2. To isolate naturally occurring spontaneous T. rubrum mutants resistant to the drug,
aliquots of conidial suspensions (;108 CFU/plate) were seeded on Sabouraud dextrose
agar (SDA) containing 1mg/liter TVB. To confirm the development of resistance, colo-
nies were transferred to SDA plates containing 2mg/liter TVB (17, 20). For all strains,
the frequency of natural resistance to TVB was ;1028 (Table 1). This frequency is com-
parable to that previously obtained for EFI and lower than that of ITC for the same T.
rubrum strains but higher than those of TRB, AMF, and CPX (17, 20).

To mimic the conditions of body sites in which low drug levels are reached during
therapy, the T. rubrum strains were subcultured (;105 CFU/plate) for 10 sequential
transfers on SDA plates containing 0.5-fold the MIC obtained by seeding 105 CFU/plate
in the agar dilution assay as previously described (17, 20). For each strain, a confluent
growth was obtained at each transfer by using these subinhibitory drug concentra-
tions. At the 5th and 10th transfers, all conidia were collected and seeded on plates
containing 2-fold the MIC of TVB. Data analysis was performed by applying one-way
analysis of variance followed by Tukey’s multiple-comparison test. After the 5th trans-
fer, mutants with increased MIC levels of TVB were isolated from all T. rubrum strains at a
frequency of;1027 (Table 1). Compared with the frequency of natural resistance and that
obtained after the 5th transfer, the frequency observed after the 10th transfer (;1026)
was significantly higher for all strains (P , 0.001). This resistance frequency was similar to
that obtained for TRB in a previous study. In addition, the frequency of resistance to TVB is
lower than that of ITC and higher than those of AMF and CPX (17). Although T. rubrum iso-
lates collected from patients during a phase 3 clinical trial did not show resistance after
repeated exposure to TVB (4, 26), TVB-resistant mutants of Saccharomyces cerevisiae and
Escherichia coli were previously isolated (2, 27, 28). In these organisms, TVB resistance was
associated with mutations in the leucyl-tRNA synthetase-encoding gene that alter the edit-
ing site or affect the hydrolytic editing activity (2, 27, 28). Staphylococcus aureus, E. coli,
Pseudomonas aeruginosa, and Klebsiella pneumoniae treated with the TVB derivative
AN3365 were also shown to develop resistance to the compound (29–31).

To ensure that resistant phenotypes were genetically stable in the absence of TVB,
selected natural and induced mutants were propagated for three transfers on nonse-
lective SDA plates (17, 20). At the end of the transfers, conidia were collected and the
MIC of TVB determined by broth microdilution. Natural and induced mutants showed
4- to 8-fold increases in MIC values of TVB versus the parental strains (Table 2). No sig-
nificant differences were found among the MICs of natural and induced mutants, sug-
gesting that growth in the presence of subinhibitory TVB concentrations does not
cause variations in the level of resistance.

The development of resistance to some antifungals can lead to cross-resistance to

TABLE 1 Natural TVB-resistant mutants and in vitro evolution of resistance in T. rubrum

T. rubrum strain

Resistance frequency to TVBa

Natural After 5th transfer After 10th transfer
ATCC 28188 5.606 1.37� 1028 1.606 0.71� 1027 8.106 0.76� 1026

ATCC MYA-4438 1.816 0.17� 1028 5.796 0.98� 1027 1.766 0.24� 1026

CI-1 2.436 0.73� 1028 2.456 0.89� 1027 3.976 0.91� 1026

CI-2 1.786 1.03� 1028 4.186 0.70� 1027 1.876 0.32� 1026

aData were calculated by dividing the number of CFU grown on the plates containing TVB by the total number
of CFU spread on plates. Mean6 SD from three separate experiments.
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other drugs, particularly those sharing a common mechanism of action (16, 17, 20, 32).
Therefore, we wondered whether the development of resistance toward TVB could
induce cross-resistance to other drugs. The MICs of TRB, ITC, AMF, CPX, and EFI were
tested in T. rubrum mutants showing increased MIC values to TVB by broth microdilu-
tion. No increases in the MICs of these drugs were observed, indicating that the devel-
opment of lower TVB susceptibility does not induce cross-resistance to other antifun-
gals. This result can be explained by the unique mechanism of action exerted by TVB.
In fact, whereas TVB inhibits protein synthesis, TRB, ITC, AMF, and EFI act on the ergos-
terol biosynthetic pathway, and CPX chelates trivalent cations and impairs fungal cell
membrane integrity (1).

In conclusion, natural T. rubrum mutants that are resistant to TVB can rarely be iso-
lated. The presence of subinhibitory drug concentrations stimulates the increase of
such resistance frequency. However, the good nail penetration of TVB and the absence
of cross-resistance in mutants for which TVB MIC levels are elevated suggest that the
drug can be successfully used for the treatment of onychomycosis caused by dermato-
phytes (7, 33–36).
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