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Abstract: As a motivating problem, we aim to study some special aspects of the marginal distributions of the
order statistics for exchangeable and (more generally) for minimally stable non-negative random variables
T1, ..., Tr. In any case, we assume that T1, ..., Tr are identically distributed, with a common survival func-
tion G and their survival copula is denoted by K. The diagonal sections of K, along with G, are possible tools
to describe the information needed to recover the laws of order statistics.
When attention is restricted to the absolutely continuous case, such a joint distribution can be described in
terms of the associated multivariate conditional hazard rate (m.c.h.r.) functions. We then study the distribu-
tions of the order statistics of T1, ..., Tr also in terms of the system of them.c.h.r. functions. We compare and,
in a sense, we combine the two di�erent approaches in order to obtain di�erent detailed formulas and to an-
alyze some probabilistic aspects for the distributions of interest. This study also leads us to compare the two
cases of exchangeable and minimally stable variables both in terms of copulas and of m.c.h.r. functions. The
paper concludes with the analysis of two remarkable special cases of stochastic dependence, namely Archi-
medean copulas and load sharing models. This analysis will allow us to provide some illustrative examples,
and some discussion about peculiar aspects of our results.

Keywords: Minimally stable random vectors, diagonal sections of survival copulas, diagonal dependence,
t-exchangeability, absolute continuity, Archimedean copulas, load-sharing models
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1 Introduction
Concerning the basic role of the concept of copula and of the Sklar’s theorem in the analysis of stochastic
dependence, a main issue is the study of the distributions of the order statistics X1:r , ..., Xr:r for a set of in-
terdependent random variables X1, ..., Xr. On the one hand, the condition of exchangeability is specially
relevant (see in particular Galambos [11]) in such a study. On the other hand, the marginal distributions
of X1:r , ..., Xr:r are strictly related to the diagonal sections of copulas (see, e.g., Jaworski [12], Durante and
Sempi [9]). For these reasons, in the theory of order statistics, the study of diagonal sections of copulas has
been mainly concentrated on the case of exchangeable random variables.
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Really, in such a study, the assumption of exchangeability can at any rate be replaced by the more gen-
eral condition that, for d = 2, ..., r − 1, all the diagonal sections of the d-dimensional marginal copulas do
coincide. Such a condition has been attracting more and more interest in the recent literature, where it has
been however designated bymeans of di�erent terminologies. In fact, such a condition can actuallymanifest
under di�erent mathematical forms, as we will discuss in details. For our purposes it is specially convenient
to look at it as the condition that X1, ..., Xr are minimally stable (see De�nition 3 below).

In this note we concentrate attention on the case of non-negative, minimally stable, random variables
which we denote by T1, ..., Tr.

Generally, concerning with non-negative random variables, stochastic dependence can also be conve-
niently described in terms of stochastic intensities of related counting processes. See in particular Arjas [1],
Bremaud [3], Arjas and Norros [2]. Such a description, in particular, can be based on the knowledge of the
so-called multivariate conditional hazard rates (m.c.h.r.) functions, when attention is restricted to the abso-
lutely continuous case (see in particular the papers by Shaked and Shanthikumar [26–28]). In such a case the
family of those functions gives rise to amethod to describe a joint distribution, which is alternative to the one
based on copulas and marginal distributions or on the joint density function.

From an analytical view-point the twomethods are actually equivalent: on the one hand the family of the
m.c.h.r. functions can be obtained in terms of the joint density function, on the other hand the joint density
can be recovered when the m.c.h.r. functions are known. As a matter of fact, however, the corresponding
formulas are not easily handleable in general cases. The two methods, furthermore, are respectively apt to
explain completely di�erent aspects of stochastic dependence.

In this paper we aim to establish a bridge between the two di�erent approaches. Maintaining the atten-
tion focused on the minimally stable case, then, we are primarily interested in the relations tying the system
of the diagonal sections with the system formed by the m.c.h.r. functions. Such relations will allow us to de-
tect, both in terms of copulas and in terms of the m.c.h.r. functions, which are the minimal sets of functions
able to convey su�cient information to recover the family of the marginal distributions of the order statistics
T1:r , ..., Tr:r.

In such a framework, interesting questions also concern with understanding the real di�erence between
the cases when T1, ..., Tr are exchangeable and when they are minimally stable. On this purpose, the dif-
ferences between the two properties will be detailed both using the language of copulas and the language
of the m.c.h.r. functions. Still by using and combining the two approaches, we will also face the problem of
constructing examples of random variables T1, ..., Tr which are minimally stable but not exchangeable.

More in details, the plan of this paper goes as follows.
In Section 2 we introduce some needed notation and then we review basic facts about distributions of

order statistics, about diagonal sections of copulas, and about the relations tying these two families of objects.
We also show in details the equivalence among di�erent forms under which one can represent the condition
that T1, ..., Tr areminimally stable. Some relevant remarks are given and an example is presented concerning
the construction of random variables which are minimally stable but not exchangeable.

In Section 3 we will �rst recall, in general, the de�nition and some basic aspects of the family of the
multivariate conditional hazard rate functions. We will then show special features of the cases where the
lifetimes T1, ..., Tr are exchangeable or minimally stable. In this frame, the results of Section 2 will emerge
as natural tools to obtain, in Section 4, the relations existing among diagonal sections of copulas, the dis-
tributions of order statistics, and a special subclass C of multivariate conditional hazard rates (see (37) and
(39)), corresponding to the (unconditional) one-dimensional hazard rates ofmin(T1, ..., T`), ` = 1, ..., r. See
in particular Propositions 18 and 19.

In order todemonstrate some special aspects of the results presented in theSections 3 and4, Section 5will
be devoted to a detailed discussion of the remarkable cases of Archimedean copulas and of minimally stable
time homogeneous load-sharing models. Some more general examples will be presented in the Appendix.

Often, along the paper, the term lifetimewill be used as a short-hand for "non-negative random variable".
Notation: For any natural number n, we set [n] := {1, 2, ..., n}.
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For any subset J ⊆ [n], we denote by |J| the cardinality of J, and as usual we denote by Jc the comple-
mentary set of J, i.e., the set of indices [n] \ J. Furthermore, for any k ≤ |J| we denote by

Πk(J) =
{
(j1, ..., jk) : j` ∈ J, ∀ ` = 1, .., k, j` ≠ jh , ∀` = ̸ h

}
,

the set of k-permutations of J. When k = |J| we drop the index k and write simply Π(J). The symbol

(n)k := n(n − 1) · · · (n − (k − 1))) = |Πk([n])|

denotes the number of k-permutations in Πk([n]).

For any subset A = {j1, ..., j`} ⊂ [n] we denote by eA the vector whose i-th component is equal to 1 if
i ∈ A, and is equal to 0, otherwise.

2 Diagonal sections and distributions of order statistics
Let T1, ..., Tr denote r non-negative random variables, de�ned on a same probability space (Ω,F, P), with
joint survival function

F(t1, ..., tr) := P (T1 > t1, ..., Tr > tr) ,

and survival copula K : [0, 1]r → [0, 1].

All over the paper we generally assume the following conditions, unless speci�ed otherwise,
(H1) the randomvariables T1, ..., Tr are identically distributedwith commonone-dimensionalmarginal sur-

vival function G, i.e.,
G(t) := P

(
Tj > t

)
, for j = 1, ..., r, and for t > 0.

(H2) G(t) is continuous, strictly positive, and strictly decreasing on (0,∞).
(H3) the random variables T1, ..., Tr are no-ties, i.e., P(Ti = Tj) = 0, for i ≠ j.
Since T1, ..., Tr are non-negative, condition (H2) implies thatG(0) = 1 and thatG(t) is invertible. Though (H2)
is not strictly necessary (as, for example, in Proposition 8), we assume it for simplicity’s sake (for example
we use (H2) in Proposition 5, Remark 6 and Corollary 9, within this section and somewhere else, within the
other sections). Condition (H3) allows the order statistics T1:r , ..., Tr:r of (T1, ..., Tr) to be de�ned without
ambiguity. We denote by

G1:r(t) := P (T1:r > t) , ..., Gr:r(t) := P (Tr:r > t) (1)

the corresponding marginal survival functions.
Note that the order statistics T1:r , ..., Tr:r may be considered as the jump times of the counting process

N(t) :=
r∑
i=1

1{Ti≤t}

i.e., the process such that N(t) = k for t ∈ [Tk:r , Tk+1:r), where we have set T0:r = 0 and Tr+1:r =∞.

Before continuing we recall the following de�nition.

De�nition 1. For a r-dimensional copula C the diagonal section is the function

δC : [0, 1]→ [0, 1]; u 7→ δC(u) = C(u, u, ..., u)

Furthermore, for any A ⊂ [r], by δCA we denote the diagonal section of the marginal copula, corresponding to
the A-components, i.e., the function

δCA : [0, 1]→ [0, 1]; u 7→ δCA(u) := C(ueA + eAc ).
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In particular we refer to the functions

δC[`](u) = C(
` times︷ ︸︸ ︷
u, ..., u,

r−` times︷ ︸︸ ︷
1, ..., 1), 2 ≤ ` ≤ r

as the diagonal sections associated to C.

For the functions δC[`] we will also use the shorter notation δC` , namely

δC` (u) := δC[`](u), 2 ≤ ` ≤ r,

and the shorter term diagonal sections of C. Such terminology turns out to be convenient for the ensuing
arguments. It is clear that, for A ( [r], with |A| = ` and A ≠ [`], the two functions δCA and δC` are generally
di�erent.
It is also clear that δC` (u) is an increasing function and that δC2(u) ≥ δC3(u) ≥ ... ≥ δCr (u). Conditions, for a
function δ : [0, 1] → [0, 1] to be the diagonal section of a copula, are given, in particular, in Jaworski [12],
and Durante and Sempi [9].

In what follows, when dealingwith the diagonal sections associated to the survival copula K of T1, ..., Tr
we drop the superscript, i.e., we set

δ`(u) := δK` (u), 2 ≤ ` ≤ r.

Assume for the moment that the joint survival function F(t1, ..., tr) is exchangeable, namely

F(t1, ..., tr) = K
(
G(t1), ..., G(tr)

)
, for t1, ..., tr > 0,

with K permutation-invariant.

Aswell-known, adirect relationship canbe establishedbetween δr and theprobability lawof theminimal
order statistics T1:r, in fact one immediately obtains, for t > 0,

G1:r(t) = P (T1 > t, ..., Tr > t) = δr(G(t)). (2)

By taking into account exchangeability of T1, ..., Tr one can similarly write

P
(
Tj1 > t, ..., Tjd > t

)
= P (T1 > t, ..., Td > t) ,

= F(t, ..., t, 0, ..., 0) = K
(
G(t), ..., G(t), 1, ..., 1

)
= δd(G(t)), (3)

for d = 1, 2, ..., r −1 and for any subset of indices J = {j1, .., jd} ⊂ [r] of cardinality d. Whence one can write

G`:r(t) =
r∑

h=r−`+1
(−1)h−r−1+`

(
r
h

)(
h − 1
r − `

)
δh(G(t)), ` = 1, ..., r. (4)

In fact, by using (3), the latter formula is readily obtained from the formula expressing the survival func-
tions of the order statistics of exchangeable variables in terms of the survival functions of the minima within
subsets of the same variables (see in particular David and Nagaraja, p. 46 [5], Jaworski and Rychlik [13], Rych-
lik [22]).

As we will see in Proposition 7, formula (4) for G`:r(t) is still valid when the joint distribution of T1, ..., Tr
satisfy the speci�c symmetry conditions recalled in De�nitions 2 and 3, below. Such conditions are actually
weaker than exchangeability, and turn out to be equivalent each other (see Proposition 5 below).

De�nition 2. Wewill say that the random variables T1, ..., Tr are t-Exchangeable if for every t ≥ 0, the binary
random variables Xi(t) = 1{Ti>t}, i = 1, ..., r, are exchangeable, or equivalently the events {Ti > t}, i = 1, ..., r,
are exchangeable.

We will brie�y refer to the previous property as t-EX.
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De�nition 3. The random variables T1, ..., Tr are said minimally stable, when, for any ` = 1, ..., r and for
any subset A = {j1, ..., j`} ⊆ [r]

P
(
Tj1 > t, ..., Tj` > t

)
= P (T1 > t, ..., T` > t) , ∀ t > 0, (5)

namely P
(
Tj1 > t, ..., Tj` > t

)
= F(t, ..., t︸ ︷︷ ︸

` times

, 0, ..., 0︸ ︷︷ ︸
r−` times

), ∀ t > 0.

Finally we recall the strictly related concept of diagonal dependent copulas (see Navarro and Fernandez-San-
chez [17]). Such a concept can be obtained as a special case of the one of k-diagonal dependence, for k ≤ r,
as introduced by Okolewski in [21].

De�nition 4. Let C be an r-dimensional copula C. The copula C is said to be a k-diagonal dependent copula,
with k ≤ r, if for any subsets A, B ⊂ [r], with |A| = |B| ≤ k

δCA(u) = δCB(u), ∀ u ∈ [0, 1]. (6)

When k = r, the copula C is said diagonal dependent.

As in Navarro and Fernandez-Sanchez [17] we brie�y refer to the property of diagonal dependence as DD.
The following result canbe obtainedby taking into account basic andwell knownproperties of exchange-

able binary random variables originally obtained by de Finetti (see [6]). See also Navarro et al. [18].

Proposition 5. Under the conditions (H1)–(H3) the following properties are equivalent
(i) The random variables T1, ..., Tr, are t-Exchangeable;
(ii) For all H, H′ ⊆ {1, 2, ..., r}, with |H| = |H′|

P
(
Tj > t, ∀j ∈ H, Ti ≤ t, ∀i ∉ H

)
= P
(
Tj > t, ∀j ∈ H′, Ti ≤ t, ∀i ∉ H′

)
. (7)

(iii) The random variables T1, ..., Tr are minimally stable;
(iv) The random variables T1, ..., Tr are identically distributed and their survival copula K is diagonal depen-
dent.

Proof. Properties (i) and (ii) are clearly equivalent: indeed

P
(
Tj > t, ∀j ∈ H, Ti ≤ t, ∀i ∉ H

)
= P
(
Xj(t) = 1, ∀j ∈ H, Xi(t) = 0, ∀i ∈ ̸ H

)
.

Similarly properties (iii) and (iv) are equivalent: indeed if T1, ..., Tr are minimally stable, then by taking
` = 1 in (5), they are identically distributed, and therefore for all A ⊂ [r] with |A| = `

P(Ti > t, ∀i ∈ A) = K(G(t)eA + eAc ) = δ`(G(t)), ∀ t ≥ 0,

and G(t) is invertible, in view of the regularity condition (H2).
Finally (iv) is equivalent to (ii), in view of the inclusion-exclusion formula.

Remark 6. The previous result (Proposition 5) holds true also without the regularity assumption (H2) on G, but
in the general case an extension of the notion of Diagonal Dependence is needed (see Navarro et al. [18]).

The interest for the properties (i) and (iv) had independently emerged in the two papers Marichal et al. [15]
and Navarro and Fernandez-Sanchez [17] with reference to the �eld of systems’ reliability. Still in the same
framework, furthermore, the study of conditions for the equivalence between (i) and (iv) has been developed
in Navarro et al. [18]. See Remark 14 below for details about the connections with system reliability.

We are now in a position to establish the following result.
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Proposition 7. Assume (H1)–(H3) and any condition among (i)–(iv). Then the equations (4) hold.

Actually the validity of (4) hinges on the Eq. (3), which only requires the DD property of the survival copula
and the identical distribution of Ti, i = 1, ..., r.

From now on we make the following further assumption
(H4) the random variables T1, ..., Tr are minimally stable.
Namely we assume the condition (iii) of Proposition 5 and, at a time, we highlight that such a result just
ensures the validity of the equivalence among all the conditions (i)–(iv), under our standing hypotheses
(H1)–(H3).

Under the assumptions (H1)–(H4)we thus proceed to establish detailed results concerning the relations
between the following families of functions

A := {G; δ2, ..., δr}, B := {G1:r , ..., Gr:r}. (8)

Since the marginal survival functions G1:r , ..., Gr:r are determined by the knowledge of the joint distribution
of T1, ..., Tr then, in principle, the family B should depend on the survival copula K and the common sur-
vival marginal G(t). Actually the full knowledge of K is not necessary, since the knowledge of the associated
diagonal sections is su�cient as shown by the formula (4). More precisely the families A and B convey the
same amount of information concerning the joint distribution of T1, ..., Tr, as we point out in details in what
follows and summarize in Proposition 10.

To this end we start by recalling that when G1:r , ..., Gr:r are known, we can easily recover the common
marginal survival function G(t). Indeed, the random variables T1,...,Tr are identically distributed and there-
fore

G(t) = 1
r

r∑
k=1

Gk:r(t), (9)

as immediately follows by observing that
∑r

h=1 1{Th>t} =
∑r

k=1 1{Tk:r>t}.
Furthermore the same formula (4) would permit to recover, step-by-step, the functions δ2, ..., δr. Here

we follow a di�erent path and the detailed formula is given in the Corollary 9 of the following result.

Proposition 8. Under the conditions (H1)–(H4), for every d ∈ [r], and J ⊆ [r], with |J| = d

P
(
Tj > t, ∀j ∈ J

)
=

r∑
h=d

(h)d
(r)d

(
Gr−h+1:r(t) − Gr−h:r(t)

)
(10)

= d
(r)d

r−d+1∑
k=1

(r − k)d−1 Gk:r(t), t > 0, (11)

where by convention G0:r(t) = 0, for t > 0.

Also forwhat concerns the proof of Proposition 8, similarly towhatwementioned for Proposition 5, one could
apply well-known and simple results (see, e.g., de Finetti [6]) about exchangeable binary random variables.
For the ease of the reader we give a self-contained, and detailed, proof at the end of this section. Here we only
point out that the most important ingredient of the proof amounts to the validity of the following identity for
any subset J ⊂ [r]:

P
(
Tj > t, ∀j ∈ J

)
=
∑

K: K⊆Jc
P
(
Tj > t, ∀j ∈ J ∪ K, Ti ≤ t, ∀i ∉ J ∪ K

)
(12)

or equivalently

P
(
Tj > t, ∀j ∈ J

)
=
∑
H: H⊇J

P
(
Tj > t, ∀j ∈ H, Ti ≤ t, ∀i ∈ ̸ H

)
. (13)

FromProposition 8we get the expression of δd in terms of themarginal survival functions Gk:r(t), k = 1, ..., r.
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Corollary 9. Under the conditions (H1)–(H4), for every d ∈ {1, 2, ..., r}, the following equalities hold

δd(u) =
r∑
h=d

(h)d
(r)d

(
Gr−h+1:r

(
G−1(u)

)
− Gr−h:r

(
G−1(u)

))
(14)

= d
(r)d

r−d+1∑
h=1

(r − h)d−1 Gh:r
(
G−1(u)

)
, u ∈ [0, 1]. (15)

Indeed, this result is a consequence of equations (10), (11), and (3), since, as already observed the condition
appearing in (3) also holds for minimally stable variables.

The above results, concerning the relations tying the familiesA andB, will be now summarized bymeans
of the following proposition.

Proposition 10. Under the conditions (H1)–(H4), the family of the survival functions B =
{
G1:r , ..., Gr:r

}
is

determined by the familyA =
{
G, δ2, ..., δr

}
by means of formula (4). Viceversa the familyA is determined by

the familyB by means of formula (14) (or (15)) and formula (9).

Remark 11. For non-exchangeable, but minimally stable lifetimes T1, ..., Tr there still exist exchangeable life-
times T̃1, ..., T̃r, such that P(T̃j > t) = P(Tj > t) = G(t), and the diagonal sections δ̃`(u) associated to their
survival copula K̃ coincide with the diagonal sections δ`(u) associated to the survival copula K. Indeed K̃ may
be constructed by symmetrizing K:

K̃(u1, ..., ur) =
1
r!

∑
σ∈Π([r])

K(uσ1 , ..., uσr ).

The above construction can be of help in obtaining the explicit form of P(Tj > t, ∀ j ∈ A) in some special cases
(see in particular Subsection 5.2).

Remark 12. The problem of constructing examples of vectors which are not exchangeable, but still minimally
stable, naturally arises. Sinceminimally stable variables T1, ..., Tr are identically distributed, constructing such
examples is equivalent to constructing diagonal-dependent copulas, which are not exchangeable. In the fol-
lowing Example 13 we present a simple path to such a construction. Other examples can be found in Navarro,
Fernandez-Sanchez [17], and Navarro et al. [18]. See also Example 31 in the Appendix.

Example 13. First of all we notice that, when r = 2, then any pair (T1, T2) of identical distributed random
variables is minimally stable, but in general is not exchangeable. Similarly, and trivially, any 2-dimensional
copula C is minimally stable. Indeed δC2(u) = C(u, u), and δC1(u) = C(u, 1) = C(1, u) = u. Starting from the
copula C one may de�ne two 3-dimensional copulas as follows

C(1,2,3)(u1, u2, u3) :=
1
3
[
C(u1, u2)u3 + C(u2, u3)u1 + C(u3, u1)u2

]
C(3,2,1)(u1, u2, u3) :=

1
3
[
C(u3, u2)u1 + C(u2, u1)u3 + C(u1, u3)u2

]
respectively obtained as the symmetric mixture over the cyclic permutations of (1, 2, 3) and the cyclic permu-
tations of (3, 2, 1). Notice that when C is non-exchangeable, then C(1,2,3) and C(3,2,1) are non-exchangeable:
indeed if u, v ∈ (0, 1) are such that C(u, v) = ̸ C(v, u) then, for example,

C(1,2,3)(u, v, 1) :=
1
3
[
C(u, v) + C(v, 1)u + C(1, u)v

]
= 1
3 C(u, v) +

2
3 uv,

which is clearly di�erent from

C(1,2,3)(v, u, 1) :=
1
3
[
C(v, u) + C(u, 1)v + C(1, v)u

]
= 1
3 C(v, u) +

2
3 uv,
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thus C(1,2,3) is non-exchangeable, though the 2-dimensional marginal distributions are all equal, namely

C(1,2,3)(u, v, 1) = C(1,2,3)(v, 1, u) = C(1,2,3)(1, u, v) =
1
3 C(v, u) +

2
3 uv.

By iterating the above construction, one can also obtain a DD, non-exchangeable, copula which is n-
dimensional. Details can be found in the Appendix (see Example 30).

Remark 14. As already mentioned, the topics developed in the papers Marichal et al. [15], Navarro and
Fernandez-Sanchez [17], and Navarro et al. [18] are motivated by questions arising in the �eld of systems’ re-
liability. More precisely these papers deal with the so-called signature representation for the survival function
R(φ)S (t) of the lifetime TS of a binary coherent system S, made with r binary components, with structure function
φ, and for which the random variables T1, ..., Tr have the meaning of the components’ lifetimes. The signature
of S is a probability distribution s(φ) := (s(φ)1 , ..., s(φ)r ) over [r] which is a combinatorial invariant associated to
φ (see in particular Samaniego [24]). The signature representation means that the equation

R(φ)S (t) =
r∑
h=1

s(φ)h Gh:r(t) (16)

holds for any t > 0.
Under our standing hypotheses (H1)—(H4), the properties (i) and (iv) are equivalent and also imply the signa-
ture representation (16) for the survival function R(φ)S (t). When the functions G1:r , ..., Gr:r are known, one can
then recover from (16) the function R(φ)S (t), relatively to any structure φ for which the signature s(φ) is known. At
the same time the family of all the functions R(φ)S (t) in particular contains the familyB = {G1:r , ..., Gr:r}. In fact,
the survival functions Gk:r can be seen as the reliability functions of the coherent systems of the type k-out-of-r,
for k = 1, ..., r.

We end this section with the afore announced proof of Proposition 8.

Proof of Proposition 8. We start by recalling that N(t) =
∑r

i=1 1{Ti≤t} and observing that

P(N(t) = r − h) =
∑
J:|J|=h

P(Tj > t, ∀j ∈ J, Ti ≤ t, ∀ i ∈ ̸ J)

so that, thanks to Eq. (7)

P(N(t) = r − h) =
(
r
h

)
P(Tj > t, ∀j ∈ {1, 2, .., h}, Ti ≤ t, ∀i ∈ {h + 1, ..., r}),

or equivalently, for any H ⊂ [r], with |H| = h

P
(
Tj > t, ∀j ∈ H, Ti ≤ t, ∀i ∉ H

)
= 1( r

h
) P(N(t) = r − h). (17)

On the other hand, we observe that

P(N(t) = r − h) = P(Tr−h:r ≤ t < Tr−h+1:r)
=P(Tr−h+1:r > t) − P(Tr−h:r > t) = Gr−h+1:r(t) − Gr−h:r(t). (18)

Then the thesis follows immediately: indeed, for every J ⊂ {1, 2, ..., r}with |J| = d, Eq.s (17) and (18), together
with (12), imply (with the convention that

(0
0
)
= 1)

P
(
Tj > t, ∀j ∈ J

)
=

r∑
h=d

(
r − d
h − d

)
1( r
h
) (Gr−h+1:r(t) − Gr−h:r(t)) ,
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and formula (10) follows by observing that ( r−d
h−d
)( r

h
) = (h)d

(r)d
.

Finally, from (10), taking into account the convention that G0:r(t) = 0, one obtains

(r)d P
(
Tj > t, ∀j ∈ J

)
=

r∑
h=d

(h)dGr−(h−1):r(t) −
r−1∑
h=d

(h)dGr−h:r(t)

=
r−1∑
k=d−1

(k + 1)dGr−k:r(t) −
r−1∑
h=d

(h)dGr−h:r(t)

= d!Gr−(d−1):r(t) +
r−1∑
k=d

[
(k + 1)d − (k)d

]
Gr−k:r(t).

Therefore, by observing that

(k + 1)d − (k)d = (k)d−1 [k + 1 − (k − (d − 1))] = (k)d−1 d,

one gets

P
(
Tj > t, ∀j ∈ J

)
= d
(r)d

r−1∑
k=d−1

(k)d−1Gr−k:r(t),

Then formula (11) follows by setting h = r − k in the last sum.

3 The use of multivariate conditional hazard rates
In this section attention will be restricted to random vectors of lifetimes with absolutely continuous joint
distributions, so that their probabilistic properties can be alternatively described in terms of the multivariate
conditional hazard rate (m.c.h.r.) functions. In a �rst part of this sectionwe recall the de�nition of them.c.h.r.
functions associated to generic random variables {Vj , j ∈ [n]}, reviewing related properties and providing
some references. Furthermore, for A ⊂ [n], we focus attention on the joint distributions of {Vj , j ∈ A}. In par-
ticular we analyze the probability distributions of their minima bymeans of the m.c.h.r. functions associated
to {Vj , j ∈ A}. In the second part, coming back to our lifetimes T1, ..., Tr, and adding absolute continuity
condition to our standing hypotheses, we characterize both the exchangeability and the minimal stability
conditions by means of the m.c.h.r. functions associated to {Tj , j ∈ [r]}.

3.1 Multivariate conditional hazard rates and distribution of minima

In this subsection we brie�y recall some de�nitions and basic properties of multivariate conditional hazard
rate functions for n non-negative random variables V1, ..., Vn with an absolutely continuous joint distribu-
tion whose joint density function is denoted by fV. For simplicity’s sake we will assume moreover that there
exists a version of the joint density which is strictly positive on Rn+, i.e., fV(v1, .., vn) > 0, when vi > 0, for all
i = 1, 2, ..., n.

For k = 1, ..., n − 1, and for any k-permutation j = (j1, ..., jk) ∈ Πk([n]), the symbol Vj denotes the vector
of lifetimes (Vj1 , · · · , Vjk ); for any subset J ⊆ [n] we denote

V1:J := min
j∈J

Vj; (19)
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furthermore, if j ∈ Π(J), for 0 < v1 < · · · < vk ≤ v the symbol

Vj = v; V1:Jc > v (20)

brie�y denotes the observation

Vj1 = v1, · · · , Vjk = vk , min
j∈Jc

Vj > v.

The observation Vj = v; V1:Jc > v in (20) is often called a “dynamic history".
For the given k ≥ 1, J ⊂ [n], with |J| = k, j = (j1, ..., jk) ∈ Π(J), v > 0, 0 < v1 < · · · < vk ≤ v, j ∈ ̸ J, the

multivariate conditional hazard rates (m.c.h.r.) function v 7→ λj|j(v|v1, · · · , vk) is de�ned by the limit (where
it exists)

λj|j1 ,...,jk (v|v1, · · · , vk) := lim
∆→0+

P
(
Vj ≤ v + ∆|Vj = v;V1:Jc > v

)
∆ , a.e. (21)

Note that the above m.c.h.r. functions λj|j1 ,...,jk depend also on the version of the conditional probability.
Furthermore, for any j ∈ [n], the m.c.h.r. function λj|∅(v) : [0,∞)→ [0,∞) is de�ned by the limit (where

it exists)

λj|∅(v) := lim
∆→0+

P
(
Vj ≤ v + ∆|V1:n > v

)
∆ , a.e. (22)

In the sequel we will use the convention

λj|j1 ,...,jk (v|v1, · · · , vk) = λj|∅(v), when k = 0. (23)

The above limits make sense in view of the assumption of absolute continuity of the joint distribution of
V1, ..., Vn and the m.c.h.r. functions can be seen as direct extensions of the common concept of hazard rate
function of a univariate non-negative random variable.

For the random vector V ≡ (V1, ..., Vn), the system of the m.c.h.r. functions in (21) and (22) can be
computed in terms of the joint density fV. It is remarkable the circumstance that the function fV can be ob-
tained from the knowledge of the set of all the m.c.h.r. functions in terms of a formula, that we are going
to recall next. Preliminarily, we �rst notice an obvious di�erence between fV and the functions λj|j1 ,...jk (v|
v1, ..., vk): while the arguments v1, ..., vn of fV are generally not ordered, the arguments v1, ..., vk of the
functions λj|j1 ,...jk (v|v1, ..., vk) are necessarily listed in increasing order by de�nition. Furthermore, for given
non-ordered values v1, ..., vn, we denote by v1:n , ..., vn:n the same values rearranged in increasing order.
Then the following formula holds: for (v1, ..., vn), let j = (j1, ..., jn) a permutation in Π([n]) such that
v1:n = vj1 ≤ v2:n = vj2 ≤ · · · ≤ vn:n = vjn ,

fV (v1, ..., vn) = Πnk=1λjk|j1 ,...,jk−1 (vjk |vj1 , ..., vjk−1 )·

· e−
∫ vjk
vjk−1

Λj1 ,...,jk−1 (u|vj1 ,...,vjk−1 ) du , (24)

where we have set vj0 = 0,

Λj1 ,....,jk−1 (u|vj1 , ..., vjk−1 ) =
∑

j∈ ̸{j1 ,...,jk−1}

λj|j1 ,...,jk−1 (u|vj1 , ..., vjk−1 ), (25)

and we have used the convention that, when k = 1,

λj|j1 ,...,jk−1 (u|vj1 , ..., vjk−1 ) = λj|∅(u),

Λj1 ,....,jk−1 (u|vj1 , ..., vjk−1 )
∣∣∣
k=1

= Λ∅(u) =
∑
j∈[n]

λj|∅(u). (26)

For proofs, details, and for general aspects of the m.c.h.r. functions see Shaked, Shantikumar [26, 27].
See also the reviews contained within the more recent papers Shaked, Shantikumar [28], Spizzichino [30].

For any subset of indicesA = {h1, ..., h|A|} ⊂ [n], one can also consider joint density of the randomvector
(Vh1 , ...Vh|A| ). Such adensitymaybede�nedbymeans of a di�erent family ofm.c.h.r. functions, related to the
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choice of the set A. Namely for any k ≤ |A| and for any k-permutation (j1, ..., jk) ∈ Πk (A), j ∈ A\{j1, ..., jk},
0 < v1 < · · · < vk ≤ v, we can consider the m.c.h.r. functions de�ned as follows

λAj|j1 ,...,jk (v|v1, · · · , vk) := lim
∆→0+

P
(
Vj ≤ v + ∆|Vj = v;V1:A\{j1 ,...,jk} > v

)
∆ , a.e. (27)

and, for j ∈ A, v > 0

λAj|∅(v) := lim
∆→0+

P
(
Vj ≤ v + ∆|V1:A > v

)
∆ , a.e. (28)

In view of the characterization of minimal stability, we are interested in the distributions of minima over
di�erent subsets of [r]. It is therefore relevant to highlight that, in particular, the functions λj|∅(v), for j ∈ [n],
are strictly related to the marginal law of the minimal order statistic V1:n ≡ V1:[n] = minj=1,...,n Vj. In this
respect the following identity holds:

P(V1:n > v) = exp
{
−

v∫
0

n∑
j=1

λj|∅(s)ds
}
= exp

{
−

v∫
0

Λ∅(s)ds
}
. (29)

(See, e.g., De Santis et al. [7], where a more detailed description of the probabilistic behavior of Vi:n in terms
of λj|∅(v), for j ∈ [n], is pointed out). Similarly, we can also consider the survival function of V1:A, theminimal
order statistic among the variables Vj, with j ∈ A, for A ⊂ [r]. With the notation introduced so far, one can
write

P(V1:A > v) = exp
{
−

v∫
0

∑
j∈A

λAj|∅(s)ds
}
= exp

−
v∫

0

ΛA∅ (s) ds

 , (30)

where
ΛA∅ (t) :=

∑
j∈A

λAj|∅(t). (31)

Notice that therefore the functions Λ∅(t) and ΛA∅ (t) can be respectively interpreted as the “usual” hazard rate
functions for the random variables V1:n and V1:A. This observation will be a key point for the discussion in
Section 4.

3.2 The m.c.h.r. functions and characterizations of Exchangeability and of Minimal
Stability

Here we come back to our lifetimes T1, ..., Tr. We maintain the condition (H1), whereas the conditions (H2)
and (H3) are replaced by the following stronger condition:
(H5) The joint distribution of T1, ..., Tr is absolutely continuous, with the joint density such that

fT(t1, .., tr) > 0, a.e. in Rr+

We start with the exchangeable case, noticing that such a case leads to a remarkable simpli�cation of nota-
tion, technical results, and conceptual aspects concerning the m.c.h.r. functions.

First notice that the symmetry conditions among the di�erent random variables, as requested by
exchangeability, imply a specially simple form for the m.c.h.r. functions. More precisely, the functions
λj|i1 ,...,ik (t|ti1 , . . . , tik ) cannot depend on the index j ∉ {i1, ..., ik}. Furthermore all the k-permutations
(i1, ..., ik) are to be considered as similar one another and thus the dependence of a m.c.h.r. function w.r.t.
to (i1, ..., ik) is encoded in the number k. For the present exchangeable case, for any t > 0, 0 < t1 < · · · <
tk ≤ t, we then introduce the symbols µ(t|k; t1, . . . , tk) and µ(t|0) with the following meaning: for any
j = (j1, ..., jk) ∈ Π(I)

λj|j1 ,...,jk (t|t1, . . . , tk) = µ(t|k; t1, . . . , tk), λj|∅(t) = µ(t|0). (32)
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Thus, for any (t1, ..., tr) ∈ Rr+, and denoting by t1:r , ..., tr:r the values t1, . . . , tr rearranged in an increasing
order, by Eq. (24), fT takes the form

fT (t1, ..., tr) = Πr−1k=0 µ(tk+1:r|k; t1:r , ..., tk:r)e
−(r−k)

∫ tk+1:r
tk:r

µ(s|k;t1:r ,...,tk:r) ds , (33)

where we used the further convention that t0:k = 0.
On the other hand, when the form (32) is assumed for the family of the m.c.h.r. functions, the consequent
formula (33) shows that fT actually depends on the arguments t1, ..., tr only through the ordered values
t1:r , ..., tr:r and thus it is necessarily exchangeable. In conclusion, the following characterizationof exchange-
ability holds (see also Spizzichino [29], chap.2).

Proposition 15. Non-negative random variables T1, ..., Tr with a strictly positive joint density are exchange-
able if and only if the corresponding m.c.h.r. functions are of the form (32).

As far as minimal stability is concerned, one can �nd natural conditions involving the hazard rates functions
ΛA∅ (t) of the minima T1:A, for A ⊂ [r]. See in particular Lemma 17 in the next Section 4, where this topic is
dealt with in some details. Here we point out that the functions ΛA∅ (t) can be recovered once them.c.h.r. func-
tions λAj|∅(t), associated to the random variables {Tj , j ∈ A}, are known (see (31)). However in general, when
the distribution of T1, ..., Tr is speci�ed in terms of the associated m.c.h.r. functions λj|j1 ,...,jk (t|t1, ..., tk), it
is not easy to recover the m.c.h.r. functions λAj|∅(t) associated to {Tj , j ∈ A}. Therefore it is useful to �nd
conditions for minimal stability expressed directly in terms of the m.c.h.r. functions λj|j1 ,...,jk (t|t1, ..., tk). On
this purpose, taking into account the equivalence between condition (7) and minimal stability (i.e., between
conditions (ii) and (iii) of Proposition 5), it is relevant to express

P
(
Tj > t, ∀j ∈ A, Ti ≤ t, ∀i ∈ [r] \ A

)
in terms of the m.c.h.r. functions. To this end for any d-permutation j = (j1, ..., jd), we set

Ψ(t; [r], j) :=P
(
Tj1 < Tj2 < · · · < Tjd ≤ t, Ti > t ∀i ∉ {j1, ..., jd}

)
=

t∫
0

dsd

sd∫
0

dsd−1 · · ·
s2∫
0

ds1 e
−
∫ t
sd
Λj1 ,...,jd (τ|s1 ,...,sd)dτ·

·
d∏
`=1

λj`|j1 ,...,j`−1 (s`|s1, . . . , s`−1)e
−
∫ s`
s`−1

Λj1 ,...,j`−1 (τ|s1 ,...,s`−1)dτ . (34)

Then, for any subset A ⊂ [r], we can write

P
(
Tj > t, ∀j ∈ A, Ti ≤ t, ∀i ∈ [r] \ A

)
=

∑
j∈Π([r]\A)

Ψ(t; [r], j). (35)

The above Eq. (35), together with Eq. (34), and Proposition 5 can be used to get the following characteri-
zation of minimal stability.

Proposition 16. Non-negative random variables T1, ..., Tr with a strictly positive joint density are minimally
stable if andonly if the correspondingm.c.h.r. satisfy the condition thatwheneverA, B ⊂ [r], with |A| = |B| ≤ r−1,
then ∑

j∈Π(A)

Ψ(t; [r], j) =
∑

j′∈Π(B)

Ψ(t; [r], j′), t > 0, (36)

where we have used the notation (34).

Observe that the exchangeability condition implies the identity Ψ(t; [r], j) = Ψ(t; [r], j′) for any pair of d-
permutations j, j′, so that condition (36) is trivially satis�ed.
The characterization of Proposition 16, besides its conceptualmeaning, reveals to be e�ective in some special
cases. In particular we will use it when dealing with a subclass of Load Sharing models (see Subsection 5.2).
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4 Relations among diagonal sections of DD copulas, distributions
of order statistics, and hazard rates of minima

Concerning with the joint distribution of minimally stable lifetimes T1, ..., Tr, it has been pointed out in
Proposition 10 that the two systems of functionsA = {G; δ2, ..., δr} andB = {G1:r , ..., Gr:r} convey the same
information about the joint distribution of T1,...,Tr and that they can be then recovered one from the other.
Like in Subsection 3.2 we assume (H1) and (H5), where the joint distribution of T1,...,Tr can be described in
terms of the correspondingm.c.h.r. functions. In terms of those functions, we aim to single out characteristics
of the joint distribution,whose knowledgemaybe equivalent, under the condition (H4), to that of the systems
of functions A and B de�ned in (8). It will emerge that the information contained in the systems A and B is
equivalent to the knowledge embedded in the systems of functions de�ned by

C =: {Λ[1]∅ , ..., Λ[r]∅ }. (37)

Such equivalence is demonstrated by the relations tyingCwithA andB. Such relationswill be detailed below
by means of the following Propositions 18 and 19. More precisely, in Proposition 18 we express each of the
familiesA andB in terms of C, whereas in Proposition 19 the family C is expressed in terms ofA and in terms
ofB.

We start by giving a characterization of minimal stability in terms of the hazard rates of minima. As al-
ready observed (see Eq.s (28) and (30)) the m.c.h.r. functions λAj|∅(t), j ∈ A, are related to the law of the
minimum on an arbitrary set A ⊂ [r], indeed

P(T1:A > t) = exp

−
t∫

0

ΛA∅ (s) ds

 , t > 0, (38)

where ΛA∅ (t) =
∑

j∈A λ
A
j|∅(t) is the one-dimensional failure rate of T1:A. Concerning with this notation, ob-

serve that the failure rate Λ[r]∅ (t) coincides with Λ∅(t) =
∑r

j=1 λj|∅(t), so that G1:r(t) = P(T1:r > t) =
exp

{
−
∫ t
0 Λ∅(s) ds

}
, (see also Eq. (29)). Equation (38) leads immediately to the following simple charac-

terization of minimal stability.

Lemma 17. Assume condition (H5) and assume that the hazard rates ΛA∅ (t) of the minima T1:A are known, for
every non-empty subsetA ⊂ [r]. Then each of the following conditions is necessary and su�cient for theminimal
stability condition (H4):

∀A ⊂ [r], ΛA∅ (t) = Λ
[d]
∅ (t) a.e., t > 0 where d = |A|, (39)

and

∀A ⊂ [r], P(T1:A > t) = exp

−
t∫

0

Λ[d]∅ (s) ds

 , t > 0, where d = |A|. (40)

Proof. Conditions (39) and (40) are clearly equivalent to each other, and if (40) holds then (H4) is immedi-
ate. Viceversa, by the assumption of minimal stability we may restrict attention on the subset of variables
T1, ..., Td, which are minimally stable, as well. Indeed, since P(T1:A > t) = P(T1:B > t) for any A, B ⊆ [r] such
that |A| = |B|, then (40) follows, and therefore also (39) holds.

Clearly when the m.c.h.r. functions λAj|∅(t) are known, for every non-empty subset A ⊂ [r], then (39) is equiv-
alent to

∀A ⊂ [r],
d∑
j=1

λAj|∅(t) =
d∑
j=1

λ[d]j|∅(t), a.e., t > 0, where d = |A|, (41)

Proposition 18. Assume theminimal stability condition (H4), and the joint absolute continuity condition (H5).
Assume furthermore that the family C of the hazard rate functions Λ[d]∅ (t) is known. Then
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(i) the familyA is given by:

G(t) = exp

−
t∫

0

Λ[1]∅ (s) ds

 , for any t > 0, (42)

and for d = 2, ..., r and for any u ∈ [0, 1],

δd(u) = exp

−
G−1(u)∫
0

Λ[d]∅ (s) ds

 ; (43)

(ii) the familyB is given by:
for ` = 1, ..., r and for any t > 0,

G`:r(t) =
r∑

h=r−`+1
(−1)h−r−1+`

(
r
h

)(
h − 1
r − `

)
exp

−
t∫

0

Λ[h]∅ (s) ds

 . (44)

Proof of (i). Due to minimal stability the random variables Ti share the marginal survival function with T1,
i.e.,

exp

−
t∫

0

λi|∅(s) ds

 = exp

−
t∫

0

λ1|∅(s) ds

 , t > 0.

Therefore λi|∅(t) = λ1|∅(t) ≡ Λ[1]∅ (t), for any t > 0, and (42) follows.

As already observed, we may concentrate attention on the random variables T1, ..., Td. Therefore to
prove (43), on the one hand one has

P( min
i=1,...,d

Ti > t) = exp

−
t∫

0

Λ[d]∅ (s) ds

 .

On the other hand, taking into account (3) we can also write

P( min
i=1,...,d

Ti > t) = δd(G(t)).

Thus Eq. (43) is immediately achieved by comparing the preceding two formulas and recalling that condition
(H5) implies condition (H2), which in its turn implies that G is invertible.
Proof of (ii). Taking into account Proposition 7, Eq. (44) is immediately achieved by combining Eq. (43) with
Eq. (4).

Proposition 19. Assume theminimal stability condition (H4), and the joint absolute continuity condition (H5).
(i) If the familyA = {G, δ2, ..., δr} is known, then, setting δ1(u) = u,

Λ[`]∅ (t) = −
d
dt log

[
δ`(G(t))

]
, a.e. t > 0, ` = 1, 2, ..., r. (45)

(ii) If the familyB = {G1:r , ..., Gr:r} is known, then, respectively denoting by g1:r , ..., gr:r the probability density
of the order statistics T1:r , ..., Tr:r,

Λ[`]∅ (t) =
∑r

h=`(h)`
(
gr−h+1:r(t) − gr−h:r(t)

)∑r
h=`(h)`

(
Gr−h+1:r(t) − Gr−h:r(t)

)
=
∑r−(`−1)

k=1 (r − k)`−1 gk:r(t)∑r−(`−1)
k=1 (r − k)`−1 Gk:r(t)

, a.e. t > 0, ` = 1, 2, ..., r. (46)
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Proof of (i). For ` = 1 Eq. (45) follows immediately by Eq. (42). For ` = 2, ..., r, Eq. (45) is immediately
achieved by inverting the Eq. (43).

Proof of (ii). Eq. (46) is obtained by resorting to Eq. (45) and Proposition 8, together with the circumstance
that P

(
T1:A > t

)
= δd

(
G(t)

)
.

These results can be further specialized to the case of exchangeable times T1, ..., Tr. For any d = 1, ..., r, the
exchangeable random lifetimes T1, ..., Td, are characterized by the m.c.h.r. functions µ[d](t|k; t1, .., tk) for
k = 0, ..., d − 1, 0 < t1 < · · · < tk ≤ t, and therefore (see (32) and Proposition 15 for r = d)

Λ[d]∅ (t) = dµ[d](t|0). (47)

In view of this remark, the set of functions C is equivalent to the set of functions

C′ := {µ[1](t|0), ..., µ[r](t|0)}, (48)

which is therefore equivalent also to the systems of functionsA andB.
More precisely, when T1, ..., Tr are exchangeable and satisfy (H5), then, with the above notation,

Eq.s (42), (43) and (44) can be rewritten as

G(t) = exp

−
t∫

0

µ[1](s|0) ds

 , t > 0, (49)

δd(u) = exp

−d
G−1(u)∫
0

µ[d](s|0) ds

 , u ∈ [0, 1], d = 2, ..., r, (50)

and

G`:r(t) =
r∑

h=r−`+1
(−1)h−r−1+`

(
r
h

)(
h − 1
r − `

)
exp

−h
t∫

0

µ[h](s|0) ds

 . (51)

Similarly Eq.s (45) and (46) take the form

µ[`](t|0) = −1
`

d
dt log

[
δ`(G(t))

]
, a.e. t > 0, ` = 1, 2, ..., r, (52)

µ[`](t|0) = 1
`

∑r
h=`(h)`

(
gr−h+1:r(t) − gr−h:r(t)

)∑r
h=`(h)`

(
Gr−h+1:r(t) − Gr−h:r(t)

)
= 1
`

∑r−(`−1)
k=1 (r − k)`−1 gk:r(t)∑r−(`−1)
k=1 (r − k)`−1 Gk:r(t)

, a.e. t > 0, ` = 1, ..., r. (53)

5 Special cases
The arguments developed in the previous sections will now be illustrated by considering in Subsections 5.1
and 5.2 the two remarkable classes of models respectively de�ned by Archimedean copulas and by multi-
variate conditional hazard rate functions satisfying the load-sharing condition. These choices in a sense cor-
respond to the simplest possible forms admitted in the two types of descriptions of a joint distribution for
lifetimes, respectively.
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In particular, the analysis of these classes will allow us to obtain some examples of application for some
of the results derived so far, by showing the special form takenby related formulas. Subsection 5.1 is tailored to
illustrate basic aspects of the exchangeable case. On the other hand the arguments in Subsection 5.2 permit to
pave theway for a better understanding of the di�erences between exchangeability andminimal stability, and
to present some heuristic ideas at the basis of the construction of minimally stable, but non-exchangeable,
multivariate models.

5.1 Archimedean Copulas

Let us consider the case when the survival copula K of T1, ..., Tr is Archimedean with generator ψ. For sim-
plicity’s sake we assume that K is a strict Archimedean copula, i.e., the generator ψ is a strictly decreasing,
continuous and convex function, such that ψ(1) = 0 and ψ(0+) =∞, so that K = Cψ, with

Cψ(u1, ..., ur) := ψ−1
(
ψ(u1) + · · · + ψ(ur)

)
.

It is important to recall that the function Cψ is an r-dimensional copula if andonly if the inverse functionψ−1 is
r-monotonic (see Theorem 6.3.6 in Schweizer and Sklar [25], Nelsen [20], see alsoMcNeil andNešlehová [16]).
By De�nition 1 it is immediately seen that the diagonal sections associated to K = Cψ assume the form

δ`(u) = ψ−1(`ψ(u)), 2 ≤ ` ≤ r.

Furthermore, the survival copula K being symmetric, themodel T1, ..., Tr is exchangeable when the lifetimes
share the same common marginal survival function G, i.e., under condition (H1). Therefore, once ψ and G
are given, then the familyA in (8) coincides with the family {G(t), ψ−1(2ψ(u)), ..., ψ−1(rψ(u))}. From Eq. (4)
(see also Proposition 10) we know how the family B is generally obtained from A. In the present case, one
can more precisely write

G`:r(t) =
r∑

h=r−`+1
(−1)h−r−1+`

(
r
h

)(
h − 1
r − `

)
ψ−1(hψ(G(t))), 1 ≤ ` ≤ r.

Moreover, under the further regularity condition (H5), by Eq. (52) one can get the m.c.h.r. functions

µ[`](t|0) = −1
`

d
dt log

[
ψ−1

(
`ψ(G(t))

)]
, a.e.

= 1
ψ′
(
ψ−1

(
`ψ(G(t))

)) ψ′(G(t)) g(t), a.e. (54)

Conversely, when the family B of the survival distribution functions Gk:r is given, then we can recover the
family A. In this respect we stress that, even if the explicit expression of the generator ψ is not known, still
by Corollary 9 (see also Proposition 10), fromB we immediately get the diagonal sections δd(u), d = 2, ..., r.
Then the following question naturally arises:

Does the knowledge ofB allow us to identify the generator ψ?
In other words wewonder whether the identity δd(u) = ψ−1(dψ(u)) for any d = 2, ..., r is su�cient to identify
ψ. We brie�y discuss about this problem in Remark 20 below. To this end it is useful to write down explicitly
the case d = r:

ψ−1(rψ(u)) = δr(u) = G1:r
(
G−1(u)

)
,

and the case d = r − 1:

ψ−1((r − 1)ψ(u)) = δr−1(u) =
1
r G2:r

(
G−1(u)

)
+
(
1 − 1

r

)
δr(u).

Remark 20. It is interesting to point out (see Jaworski [12]) that when r > 2 the generator ψ is uniquely de-
termined (up to a multiplicative constant) by the pair δr and δr−1, though the proof of the latter claim is not
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constructive. On the other hand in general one cannot uniquely determine ψ only from δr, when r > 2, since
there may exist in�nite generators with the same diagonal section δr (see again [12]). However, when the diag-
onal δr satisfy the condition δ′r(1−) = r, then Erderly et al. [10] show that ψ is uniquely determined (up to a
multiplicative constant) by δr and, furthermore, ψ can be approximated thanks to the following formula:

ψ(u) ∝ lim
m→∞

rm
(
1 − δ−mr (u)

)
,

where δ−mr is the composition of δ−1r with itself m times.

A further particular case within Archimedean models is the Schur-constant case, i.e., when

P(T1 > t1, ..., Tr > tr) = G(t1 + · · · + tr), (55)

corresponding to the choiceG = ψ−1 (see, e.g., [29]). In this case both thediagonal sections δh and the survival
functions G`:r are determined by the marginal survival function G(t):

δh(G(t)) = ψ−1(hψ(G(t))) = G(ht) (56)

G`:r(t) =
r∑

h=r−`+1
(−1)h−r−1+`

(
r
h

)(
h − 1
r − `

)
G(ht), 1 ≤ ` ≤ r.

Furthermore, in view of the particularly simple form (56) of the diagonal sections, Eq. (52) can be rewritten as

µ[`](t|0) = −1
`

d
dt log

[
G(`t)

]
= g(`t)
G(`t)

, a.e. (57)

Note that for Schur-constant models one could get the above results also directly, taking into account that
(55) implies

P(T1 > t, ..., T` > t) = P(T1 > t, ..., T` > t, T`+1 > 0, ..., Tr > 0) = G(` t).

Example 21. In order to illustrate how to compute the m.c.h.r. functions for Archimedean models, in this exam-
ple we consider two special cases within the class of Archimedean models sharing the same generator

ψ(u) = (u−α − 1)
1
β , α > 0, β ≥ 1.

Note that the inverse function ψ−1(t) = 1
(tβ+1)α is completely monotonic, so that Cψ is a copula for any r ≥ 2.

The �rst case is the Archimedean model with G(t) = e−t. Then, for any A ⊂ [r] with |A| = `, one has

P(T1:A > t) = δ`(G(t)) = ψ−1(`ψ(G(t)))

= 1((
`(etα − 1)

1
β
)β

+ 1
)α = 1(

`βetα − `β + 1
)α .

Therefore by (54) and taking into account that

ψ′(u) = −αβ u
−(α+1) (u−α − 1) 1

β −1 ,

we get

µ[`](t|0) =
eαt
(
eαt − 1

) 1
β −1(

`βetα − `β + 1
)α2+α ((

`βetα − `β + 1
)α2 − 1) 1

β −1
.

As a second case, we consider the Schur-constant model with the same generator ψ, which corresponds to the
choice

G(t) = ψ−1(t) = 1
(tβ + 1)α

, g(t) = α β tβ−1

(tβ + 1)α+1
.

Then by Eq.s (56) and (57) we get

P(T1:A > t) = 1(
(`t)β + 1

)α , µ[`](t|0) = α β (`t)β−1

(`t)β + 1
.
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5.2 Time homogeneous load-sharing models

Load sharing models are characterized by the condition that the m.c.h.r. functions depend on current time
and on the set of failed components at the current time, but do not depend on the failure times. Load sharing
models are well known and recurrently studied in the reliability literature (see, e.g., Spizzichino [30], Rychlik
and Spizzichino [23], and the references cited therein). In particular the joint and marginal distributions of
the order statistics have been studied in some details. For what concerns the special case of exchangeability
see also Kamps [14].
In the literature it is also assumed that them.c.h.r. functions donot depend on the order of failures, however it
is interesting here to extend such a de�nition to a generalized class of models in which instead also the order
of failure times may in�uence the m.c.h.r. functions. Actually some of the existing results on load sharing
models can be easily extended to this class.

De�nition 22. The joint distribution of the random variables T1, ..., Tr is anOrder Dependent Load Sharing
model (ODLS) if it is absolutely continuous, and them.c.h.r. functions do not depend on the failure times, i.e., for
any k = 0, 1, ..., r − 1, there exist

(r
k
)
k!(r − k) functions v 7→ λj|j1 ,...,jk (v) such that, for any 0 < v1 < · · · < vk < v,

and (j1, ..., jk) ∈ Πk([r])
λj|j1 ,...,jk (v|v1, · · · , vk) = λj|j1 ,...,jk (v).

The model is said simply Load Sharing (LS) model when the m.c.h.r. functions depend neither on the failure
times nor on the order of failures, i.e., for any k = 0, 1, ..., r-1, there exist

(r
k
)
(r − k) functions v 7→ λj|{j1 ,...,jk}(v)

such that, for any 0 < v1 < · · · < vk < v, and (j1, ..., jk) ∈ Πk([r])

λj|j1 ,...,jk (v|v1, · · · , vk) = λj|{j1 ,...,jk}(v).

When furthermore the functions v 7→ λj|j1 ,...,jk (v) = λj|j1 ,...,jk (respectively, the functions v 7→ λj|{j1 ,...,jk}(v))
are constant w.r.t. time v, then the model T1, ..., Tr is said an Order Dependent Time Homogeneous Load
Sharing model (ODTHLS) (respectively, a Time Homogeneous Load Sharing model (THLS)).

Clearly a Load Sharing model is also an Order Dependent Load Sharing model. To distinguish between the
two cases, we will sometimes say that a model is a strictly Order Dependent Load Sharing modelwhen the
m.c.h.r. functions do depend on the order. From an engineering-oriented viewpoint, strictly ODLSmodels do
not seem very signi�cant for applications in the �eld of reliability. However models with this property may
emerge in di�erent �elds, as shown in De Santis, Spizzichino [8] in the analysis of aggregation paradoxes.
See also Example 29 below, where the condition of load sharing must be limited to strictly ODTHLS models
on the purpose of �nding among uniform frailty models (see (76)) those which are minimally stable, without
falling in the exchangeable case.

Concerning the analysis of the minimal stability, it is important to stress that, in general, d-marginal
models of load sharing models are not load sharing. This fact entails that the m.c.h.r. functions λAj|∅ are in
general not easy to compute, even in the exchangeable case. In the latter case however we will be able to
compute such functions explicitly by using the results of Section 4. On the contrary in the non-exchangeable
case, we will give minimal stability conditions in terms of the m.c.h.r. functions λj|j1 ,...,jk−1 .

Exchangeable THLS models. An exchangeable load sharing model clearly cannot be strictly order depen-
dent, in that itsm.c.h.r. functions are such that µ(t|k; t1, . . . , tk) = µ(t|k). Furthermore it is timehomogeneous
if and only if for any k = 0, 1, .., r − 1 there exists a constant L(r − k) such that Λj1 ,...,jk (t) = L(r − k) and

µ(k) = L(r − k)r − k . (58)

In such a case it is easily seen that

Gk:r(t) = P
( X0
L(r) +

X1
L(r−1) + · · · +

Xk−1
L(r−(k−1)) > t

)
where Xi ∼ EXP(1), i = 0, 1, 2..., r−1, are independent random variables (see in particular Spizzichino [30],
Kamps [14], Cramer andKamps [4], and references therein). In otherwords, for any k = 1, .., r, the distribution
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of Tk:r coincides with the distribution of the sum of k independent exponential distributions of parameters
γ1 = L(r), ...., γk = L(r − (k − 1)). In the literature such a distribution is known as Generalized Erlang or
Hypoexponential distribution: for a �xed vector γ = (γ1, ..., γr) ∈ Rr+,

Gγ
k (t) := P

( k∑
j=1

Yj
γj
> t
)

(59)

for Y1, ..., Yr, independent and standard exponential random variables.
When γ = (γ1, ..., γr) is such that γi ≠ γj for all i ≠ j, the above distribution is referred to as Hyperexpo-

nential, and furthermore (see, e.g., Cramer and Kamps [4] and references therein) the survival function and
the probability density are respectively given by

Gγ
k (t) =

k∑
j=1

 ∏
h∈[k]\{j}

γh
γh − γj

 e−γj t ,

and

gγk (t) =
k∑
j=1

 ∏
h∈[k]\{j}

γh
γh − γj

 γje−γj t .

Therefore, denoting by L the vector

L :=
(
L(r), L(r − 1), ..., L(1)

)
,

in the exchangeable case we can write
Gk:r(t) = G

L
k (t). (60)

Furthermore, on the one hand formula (9) takes the special form

G(t) = 1
r

r∑
k=1

P
( X0
L(r) +

X1
L(r−1) + · · · +

Xk−1
L(r−(k−1)) > t

)
= 1
r

r∑
k=1

GLk (t). (61)

On the other hand, taking into account (11), for any A ⊂ [r], with |A| = d, one has

P
(
T1:A > t

)
= δd

(
G(t)

)
= d
(r)d

r−d+1∑
k=1

(r − k)d−1 P
( X0
L(r) +

X1
L(r−1) + · · · +

Xk−1
L(r−(k−1)) > t

)
= d
(r)d

r−d+1∑
k=1

(r − k)d−1 G
L
k (t) (62)

and consequently, recalling the notation in (47), (53) becomes

µ[d](t|0) = 1
d

∑r−d+1
k=1 (r − k)d−1 gLk (t)∑r−d+1
k=1 (r − k)d−1 G

L
k (t)

. (63)

In particular, assuming that L(i) ≠ L(j) for i ≠ j, and setting

ϑL`,k :=
∏

h∈{0,...,k−1}\{`}

L(r − h)
L(r − h) − L(r − `) ,

one has

G(t) = 1
r

r∑
k=1

k∑
j=1

 ∏
h∈[k]\{j}

L(r − (h − 1))
L(r − (h − 1)) − L(r − (j − 1))

 e−L(r−(j−1))t

= 1
r

r−1∑
`=0

( r∑
k=`+1

ϑL`,k

)
e−L(r−`)t ,

P
(
T1:A > t

)
= d
(r)d

r−d∑
`=0

(r−d+1∑
k=`+1

(r − k)d−1ϑL`,k

)
e−L(r−`)t
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and

µ[d](t|0) = 1
d

∑r−d
`=0

(∑r−d+1
k=`+1(r − k)d−1 ϑ

L
`,k

)
L(r − `) e−L(r−`)t∑r−d

`=0

(∑r−d+1
k=`+1(r − k)d−1ϑL`,k

)
e−L(r−`)t

Note that, when d = r, then we obviously get that the function t 7→ µ[r](t|0) is constant and µ[r](t|0) =
1
r L(r), whereas for d < r the function t 7→ µ[d](t|0) is not constant.
This fact is somehow related to the afore-mentioned circumstance that the d-dimensional marginal distribu-
tions of a load sharing model is generally not load sharing.

Before passing to the non-exchangeable case, we observe that in the present THLS exchangeable case
the function Ψ(t; [r], j) de�ned in (34) can be explicitly computed:

Ψ(t; [r], j) = P
(
Tj1 < Tj2 < · · · < Tjd ≤ t < Ti , ∀i ∈ ̸ {j1, ..., jd}

)
= 1
d! P

(
Tj ≤ t < Ti , ∀ j ∈ {j1, ..., jd}, ∀ i ∈ ̸ {j1, ..., jd}

)
= 1
d!

1( r
d
) P(N(t) = d) = 1

(r)d
[
GLd+1(t) − G

L
d(t)
]
, (64)

where we have used the notation introduced in (59). In view of Proposition 16, expression (64) turns out to
be useful also in the analysis of minimal stability conditions. Indeed even for any ODTHLS model one has

Ψ(t; [r], j) = P
(
Tj1 < Tj2 < · · · < Tjd ≤ t < Ti , ∀i ∉ {j1, ..., jd}

)
=

d∏
`=1

λj`|j1 ,....,j`−1 ·
t∫

0

dsd

sd∫
0

dsd−1 · · ·
s2∫
0

ds1

[
e−(t−sd)Λj1 ,....,jd

d∏
`=1

e−(s`−s`−1)Λj1 ,....,j`−1
]

(65)

=
d∏
`=1

λj`|j1 ,....,j`−1
Λj1 ,....,j`−1

[
GΛd+1(t) − G

Λ
d (t)
]
, (66)

where Λ =
(
Λ∅, Λj1 , ..., Λj1 ,...,jk , ..., Λj1 ,...,jr−1

)
.

In the following Example 23, for the case r = 3, we will analyze two di�erent THLSmodels: an exchange-
able THLS model and a minimally stable (non-exchangeable) THLS model which is trivially not strictly order
dependent. On this purpose we will compute the survival functions of minima on sets of size d = 1, 2, 3 and
the marginal survival functions of order statistics. We will focus both on the common features and on the
di�erences between the two models.

Example 23. We start by considering the non-exchangeable model: let r = 3 and let T1, T2, T3 be lifetimes
jointly distributed according to a THLS model with m.c.h.r. functions given as follows:

λ1|∅(t) = λ2|∅(t) = λ3|∅(t) =
1
3 ,

λ3|1(t) = γ, λ2|1(t) = 1 − γ, λ1|2(t) = γ, λ3|2 = 1 − γ λ2|3(t) = γ, λ1|3(t) = 1 − γ,

for a �xed value γ ∈
(1
2 , 1

)
and �nally

λ1|2,3(t) = λ1|3,2(t) = λ2|1,3(t) = λ2|3,1(t) = λ3|1,2(t) = λ3|2,1(t) = 2.

For this model one has

(i) Λ∅ = 1, Λj1 = 1, Λj1 ,j2 = 2, for any j1 = ̸ j2 ∈ {1, 2, 3}.
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Furthermore we consider lifetimes T̃1, T̃2, T̃3 jointly distributed according to the exchangeable THLS model
de�ned by

(ii) Λ̃∅ = L(3) = 1, Λ̃j1 = L(2) = 1, Λ̃j1 ,j2 = L(1) = 2, for any j1 ≠ j2 ∈ {1, 2, 3},

or, equivalently (recall (58) with r = 3), such that µ(0) = 1
3 , µ(1) =

1
2 , µ(2) = 2.

As we are going to see below, the two models share the samemarginal survival functions of the order statis-
tics. Before checking this property, we point out amain di�erence between the twomodels: for the exchangeable
model one obviously has

P
(
T̃j1 < T̃j2 < T̃j3 ) =

1
3! , for any (j1, j2, j3) ∈ Π([3]),

whereas, for instance, one has
1 − γ
3 = P(T1 < T2 < T3) < P(T1 < T3 < T2) =

γ

3 .

The above inequality is implied by the observation that for THLS models one has (see, e.g., Spizzichino [30])

P(Tj1 < Tj2 < Tj3 ) =
λj1|∅
Λ∅

λj2|j1
Λj1

λj3|j1 ,j2
Λj1 ,j2

.

The above inequality shows also that T1, T2, T3 is a non-exchangeable THLS model. However the random vari-
ables T1, T2, T3 are minimally stable. Indeed by the previous values in (i), and by Eq. (65), one has:
for any j1 ∈ {1, 2, 3},

Ψ
(
t; [3], j1

)
= P
(
Tj1 ≤ t, Tj > t, j ≠ j1

)
=

t∫
0

λj1|∅e
−sΛ∅ e−(t−s)Λj1 ds =

t∫
0

1
3 e

−s e−(t−s) ds = 1
3 t e

−t; (67)

for any (j1, j2) ∈ Π2([3]),

Ψ
(
t; [3], (j1, j2)

)
= P
(
Tj1 ≤ Tj2 ≤ t, Tj3 > t

)
=

t∫
0

ds
s∫

0

ds′ e−(t−s)Λj1 ,j2 λj1|∅λj2|j1 e
−s′Λ∅ e−(s−s

′)Λj1 ds

= 1
3 λj2|j1 e

−2t
t∫

0

s es ds = 1
3 λj2|j1

(
e−t t − e−t + e−2t

)
.

Taking into account that, for any (j1, j2)

λj2|j1 + λj1|j2 = γ + (1 − γ) = 1,

we may apply Proposition 16 to conclude that T1, T2, T3 are minimally stable. Furthermore we get that, for any
(j1, j2, j3) ∈ Π

(
[3]
)
,

P
(
Tj1 ≤ t, Tj2 ≤ t, Tj3 > t

)
= 1
3
(
e−t t − e−t + e−2t

)
. (68)

From the previous computations, and in particular (67)and (68), we get explicitly the following survival functions

P(T1:{1,2,3} > t) = P(T1 > t, T2 > t, T3 > t) = e−t;
P(T1:{1,2} > t) = P(T1 > t, T2 > t) = P(T1 > t, T2 > t, T3 > t)

+ P(T1 > t, T2 > t, T3 ≤ t) = e−t +
1
3 t e

−t = e−t
(
1 + t

3

)
,

G(t) = P(T1 > t) = P(T1 > t, T2 > t, T3 > t) + P(T1 > t, T2 > t, T3 ≤ t)
+ P(T1 > t, T3 > t, T2 ≤ t) + P(T1 > t, T2 ≤ t, T3 ≤ t)

= e−t + 2 t3 e
−t + 1

3
(
t e−t − e−t + e−2t

)
= 2
3 e

−t + t e−t + 1
3 e

−2t .
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To see that the families of the marginal survival functions of the order statistics coincide for the twomodels,
we take into account that in general, even with r ≥ 3,

G1:r(t) = e−
∫ t
0 Λ∅(s) ds = P(N(t) = 0), and G`:r(t) = P(N(t) ≤ ` − 1).

We notice furthermore that, for minimally stable models, Eq. (17) (with h = r − k and H = {k + 1, ..., r}) and
Eq. (35) imply that

P(N(t) = k) =
(
r
k

)
P
(
Ti ≤ t, ∀ i ∈ {1, 2, .., k}, Tj > t, ∀j ∈ {k + 1, ..., r}

)
=
(
r
k

) ∑
(j1 ,...,,jk)∈Π([k])

Ψ
(
t; [r], (j1, j2, .., jk)

)
, 1 ≤ k ≤ r.

Thus, comparing Eq. (66) with Eq. (64) for minimal THLS models, and taking into account that Λ = L, i.e.,
Λj1 ,...,jk = Λ̃j1 ,...,jk = L(r − k), we obtain the afore mentioned conclusion, i.e., that for both models one has

G1:3(t) = e−Λ∅ t = e−t , G2:3(t) = e−t (1 + t), G3:3(t) = 2 e−t t + e−2t .

We will see moreover that even the respective joint distributions of the order statistics do coincide for the two
models. Actually the latter circumstance is a consequence of the condition that the functions (j1, ..., jk) 7→
Λj1 ,...,jk are constant, only depending on k (see Remark 27 below and condition (80) in Example 32 in the Ap-
pendix).

Minimally stable ODTHLSmodels. We start our discussion with a simple necessary condition for minimal
stability of ODTHLS models.

Lemma 24. Let T1, ..., Tr be an ODTHLS model. If T1, ..., Tr are minimally stable then necessarily

λi|∅ =
Λ∅
r and Λi = Λ1, ∀ i ∈ [r]

Proof. By Proposition 5 we know that when T1, ..., Tr are minimally stable, for any t > 0 the probabilities
P(Ti ≤ t, Tj > t, ∀j ≠ i) necessarily assume the same value for any i ∈ [r]. Taking into account that (see (65)
and (66))

P(Ti ≤ t, Tj > t, ∀j = ̸ i) = λi|∅

t∫
0

e−Λ∅s e−Λi(t−s)ds

one immediately gets that

P(Ti ≤ t, Tj > t, ∀j ≠ i) =


λi|∅ t e−Λ∅ t if Λi = Λ∅.

λi|∅
e−Λi t − e−Λ∅ t

Λ∅ − Λi
if Λi ≠ Λ∅,

If there exists i0 ∈ [r] such that Λi0 = Λ∅ then necessarily Λi = Λ∅, for any i ∈ [r]. Consequently, also
λi|∅ = λi0|∅.

Viceversa if there exists i0 ∈ [r] such that Λi0 ≠ Λ∅, then necessarily Λi ≠ Λ∅, for any i ∈ [r]. Furthermore
one necessarily has

λi|∅
e−Λi t − e−Λ∅ t

Λ∅ − Λi
= λ1|∅

e−Λ1 t − e−Λ∅ t

Λ∅ − Λ1
.

Then the thesis follows by the linear independence of the functions t 7→ eat for di�erent values of a ∈ R.
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In the next result (see Proposition 25 below) we show that the survival functions Gh:r of a minimally stable
ODTHLS model is a mixture of Hypoexponential distributions.

Before stating formally our result we need to introduce some further notation. Let T1, ..., Tr be an
ODTHLS model. For any permutation j = (j1, ..., jr) ∈ Π[r] we will write Λj1 ,...,jr to denote the vector

Λj1 ,...,jr := (Λ∅, Λj1 , ..., Λj1 ,...,jk , ..., Λj1 ,...,jr−1 ).

We will also use the shorter notation Λj instead of Λj1 ,...,jr .
Then we consider the partition of Π[r] generated by the equivalence relation

j ∼ j′ ⇔ Λj1 ,...,jr = Λj′1 ,...,j′r .

If we de�ne
L :=

{
L : ∃ j ∈ Π([r]) with Λj = L

}
(69)

then the elements of the partition may be labeled by the vectors L ∈ L:

Π([r]) =
⋃
L∈L

Π([r]; L),

where
Π([r]; L) :=

{
j ∈ Π([r]) such that Λj = L

}
. (70)

For our purposes it is convenient to label the coordinates of the vectors in L as follows:

L =
(
L(r), L(r − 1), ..., L(1)

)
.

When T1, ..., Tr are minimally stable, then, in view of Lemma 24, L(r) takes on the same value for any
L ∈ L, and the same happens for L(r − 1). More precisely one has

L(r) = Λ∅, L(r − 1) = Λ1 = Λi , ∀ i ∈ [r].

Proposition 25. Let T1, ..., Tr be aminimally stableODTHLSmodel. Then,with the notation introduced above,
the survival functions G`:r, ` = 1, ..., r, can be obtained as the following mixture of Hypoexponential survival
functions

G`:r(t) =
∑
L∈L

|Π([r]; L)|
r! GL` (t). (71)

Before giving the proof of the previous proposition, it is convenient to present the following remarks.

Remark 26. The previous expression (71) of G`:r(t) is alternative to the expression (44) given in Proposition 18.
Themain di�erence is that in (44)weneed to know explicitly the hazard rates Λ[h]∅ of theminima, butwe need not
to know explicitly the m.c.h.r. functions λj|j1 ,...,jk , while, viceversa, in (71) we need to know explicitly the m.c.h.r.
functions, but we need not to compute the hazard rates Λ[h]∅ of the minima.

Remark 27. Note that (see (60)) the functions GLk (t) are the survival functions of the order statistics of an ex-
changeable THLS model with µ(k) = L(r − k)/(r − k). Therefore the r.h.s. of (71) can be interpreted as a mixture
of the survival functions of exchangeable models. In the model T1, T2, T3 of Example 23 the mixture turns out to
be degenerate, since the set L is the singleton {(1, 1, 2)}. The latter circumstance explains the reason why the
two models in Example 23 share the same family {G1:3, G2:3, G3:3}.

Proof of Proposition 25. Consider a random permutation σ1, ..., σr, uniformly distributed in Π([r]). Then
Tσ1 , ..., Tσr is the symmetrized model of T1, ..., Tr, denoted by T̃1, ..., T̃r in Remark 11.

Clearly the two models share the same distributions for the order statistics, and the joint distribution of
T̃1, ..., T̃r is the mixture over L ∈ L of the exchangeable THLS models with m.h.c.r. functions

µ(k) = L(r − k)r − k ,
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withmixtureweights givenby |Π([r];L)|r! . For any L ∈ L, the survival functions of the order statistics of the above
exchangeable THLS model is GLh:r(t), and therefore the marginal survival functions of the order statistics of
the model T̃1,..., T̃r are given by

P(T̃h:r > t) =
∑
L∈L

|Π([r]; L)|
r! GLh:r(t),

whence the thesis follows.

Similarly to (71) one obtains that for minimally stable ODTHLSmodels themarginal survival function and the
survival functions of the minima are mixtures over k ∈ [r] and L ∈ L of GLk (t). More precisely by (9) one gets
immediately that

G(t) = 1
r

r∑
k=1

∑
L∈L

|Π([r]; L)|
r! GLk (t) (72)

and, furthermore, by (11) one gets

P
(
T1:A > t

)
= δd

(
G(t)

)
= d
(r)d

r−d+1∑
k=1

(r − k)d−1
∑
L∈L

|Π([r]; L)|
r! GLk (t). (73)

As a generalization of the arguments presented in Example 23, we now characterize the set of all mini-
mally stable ODTHLS models T1, T2, T3 in terms of the m.c.h.r. functions.

Example 28 (Minimally stable ODTHLS with r = 3). Let us consider the ODTHLSmodel with T1, T2, T3 whose
joint distribution is given in terms of the m.c.h.r. functions λj1|∅, λj2|j1 , λj3|j1 ,j2 , j1, j2, j3 ∈ {1, 2, 3}, j2 ≠ j1,
j3 ≠ j1, j2.
We are going to prove that T1, T2, T3 are minimally stable if and only if conditions (A1) and (A2) below hold,
together with either condition (A3) or condition (A3)′, where
(A1) there exists a value L(3) such that

λ1|∅ = λ2|∅ = λ3|∅ =
L(3)
3 ;

(A2) there exists a value L(2) such that

Λ1 = λ2|1 + λ3|1 = Λ2 = λ1|2 + λ3|2 = Λ3 = λ1|3 + λ2|3 = L(2);

(A3) there exists a value L(1) such that

λj3|j1 ,j2 = L(1), ∀ (j1, j2, j3) ∈ Π([3]),

and there exist two values γ1 and γ2 (possibly equal) such that

{λj2|j1 , λj1|j2} = {γ1, γ2}, for any {j1, j2}, (74)

and
γ1 + γ2 = L(2); (75)

(A3)′ there exist two values L′(1) = ̸ L′′(1) such that

λj3|j1 ,j2 ∈
{
L′(1), L′′(1)

}
, ∀ (j1, j2, j3) ∈ Π([3]),

there exist two values γ1 and γ2 (possibly equal) such that (74) and (75) hold, and furthermore

λj2|j1 = γ1, λj3|j1 ,j2 = L
′(1) if and only if λj1|j2 = γ2, λj3|j2 ,j1 = L

′′(1).
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Note that the model is strictly order dependent only under condition (A3)′.

Conditions (A1) and (A2) are the necessary conditions of Lemma 24 with L(3) := Λ∅ and L(2) := Λ1 and
guarantee that the following probabilities (see (65) and (66)) take the same value for any j1 ∈ {1, 2, 3},

Ψ
(
t; [3], j1

)
= P
(
Tj1 ≤ t, Tj > t, j = ̸ j1

)
=

t∫
0

λj1|∅e
−sΛ∅ e−(t−s)Λj1 ds.

Furthermore for any (j1, j2) ∈ Π2([3]), we get

Ψ
(
t; [3], (j1, j2)

)
= P
(
Tj1 ≤ Tj2 ≤ t, Tj3 > t

)
=

t∫
0

ds
s∫

0

ds′ e−(t−s)Λj1 ,j2 λj1|∅λj2|j1 e
−s′Λ∅ e−Λj1 (s−s

′) ds

whereas

Ψ
(
t; [3], (j2, j1)

)
=

t∫
0

ds
s∫

0

ds′λj2|∅λj1|j2 e
−Λj1 ,j2 (t−s) e−Λ∅s′ e−Λj2 (s−s

′).

Proposition 16 guarantees that T1, T2, T3 are minimally stable if and only if for any t > 0 the following proba-
bilities take on the same value for any {j1, j2} ⊂ {1, 2, 3}:

P
(
Tj1 ≤ t, Tj2 ≤ t, Tj3 > t

)
= Ψ

(
t; [3], (j1, j2)

)
+ Ψ

(
t; [3], (j2, j1)

)
.

Taking into account the necessary conditions (A1) and (A2), and that when r = 3, then Λj1 ,j2 = λj3|j1 ,j2 the
previous condition is equivalent to requiring that, for any t > 0 the following sums take on the same value for
any {j1, j2} ⊂ {1, 2, 3}:

λj2|j1

t∫
0

ds
s∫

0

ds′ e−λj3|j1 ,j2 (t−s) e−L(3)s
′
e−L(2)(s−s

′)

+ λj1|j2

t∫
0

ds
s∫

0

ds′ e−λj3|j2 ,j1 (t−s) e−L(3)s
′
e−L(2)(s−s

′).

In its turn the above requirement is equivalent to either condition (A3) or (A3)′.

As a generalization of the previous example, in Example 32 (see the Appendix), we characterize the minimal
stability property for ODTHLS models whose L is a singleton.

Among load sharing models, an interesting subclass is the class of the so-called uniform frailty models,
whose m.c.h.r. functions are such that, for any k = 0, 1, 2, ..., r − 1,

λj|j1 ,...,jk =
Λj1 ,...,jk
r − k , ∀ (j1, ..., jk) ∈ Πk([r]). (76)

We conclude this section by analyzing the property of minimal stability for the model of the previous Exam-
ple 28, under the additional assumption of uniform frailty.

Example 29. Let us consider the model T1, T2, T3 of the previous Example 28. If besides minimal stability,
we impose the uniform frailty condition, then the model T1, T2, T3 turns out to be non-exchangeable only if it is
strictly order dependent. Indeedwhen condition (A3) holds, then the additional uniform frailty condition implies
that γ1 = γ2 = L(2)/2 and therefore the model is exchangeable: for any (j1, j2, j3) ∈ Π([3])

λj|∅ =
L(3)
3 , λj2|j1 =

L(2)
2 , λj3|j1 ,j2 = L(1).
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On the contrary, when condition (A3)′ holds, the model is strictly order dependent. Then the uniform frailty and
the minimal stability conditions together become: for any (j1, j2, j3) ∈ Π([3])

λj1|∅ =
L(3)
3 , λj2|j1 =

L(2)
2 ,

{
λj3|j1 ,j2 , λj3|j2 ,j1

}
=
{
L′(1), L′′(1)

}
.

A More general examples
Example 30 (A procedure to construct DD, not exchangeable, n-dimensional copulas). Our aim is to prove a
generalization of Example 13. We start by proving that, given a DD n−1-dimensional copula Cn−1, then it is pos-
sible to construct a n-dimensional copula Cn which is DD. Subsequently we show that by using this construction
recursively, starting with a 2-dimensional not symmetric copula, the copulas Cn are not exchangeable.

Given the DD copula Cn−1, we de�ne a n-dimensional copula Cn as

Cn(u1, ..., un−1, un)

:=1n
[
Cn−1(u1, ..., un−1) · un + Cn−1(u2, ..., un−1, un) · u1 + · · ·

· · · + Cn−1(un−1, un , u1, ..., un−3) · un−2 + Cn−1(un , u1, ..., un−2) · un−1
]
,

Namely Cn is obtained as the symmetric mixture of the copulas over the n cyclic permutations of (1, 2, ..., n)

σ1 = (1, 2, ..., n), and σk = (k, k + 1, ..., n, 1, .., k − 1), 2 ≤ k ≤ n,

Cn(u1, ..., un−1, un) :=
1
n

n∑
k=1

Cn−1(uσk(1), ..., uσk(n−1)) · uσk(n). (77)

It is easy to see that Cn is DD, with diagonal sections

δCnn (u) = Cn(u, ..., u, u) = δCn−1n−1 (u) · u, δCn1 (u) = u

and
δCnd (u) = dn δ

Cn−1
d−1 (u) · u +

(
1 − dn

)
δCn−1d (u), 2 ≤ d ≤ n − 1. (78)

Indeed when (u1, ..., un−1, un) = (ueA +eAc ), with A ⊂ [n], and |A| = d, then, for any k = 1, ..., n, one can write
the n − 1-dimensional vectors appearing in (77) as

(uσk(1), uσk(2), ..., uσk(n−1)) ≡ (uk , uk+1, ..., un , ..., uk−2) = (ueB + eBc ),

where B is a suitable subset of [n − 1]. Furthermore the cardinality |B| takes on either the value d or the value
d − 1, depending on the value of uk−1, namely

|B| =

d if uσk(n) ≡ uk−1 = 1

d − 1 if uσk(n) ≡ uk−1 = u,

where we have used the convention that u0 = un.

Starting from (78) one can easily prove that

δCnd (u) = αn,d ud + (1 − αn,d) C(u, u)ud−2, 1 ≤ d ≤ n,

with
αn,1 = 1, αn,d =

d
n αn−1,d−1 +

(
1 − dn

)
αn−1,d .
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Starting from a �xed permutation (π(1), ..., π(n)) ∈ ̸ {σk , k = 1, ..., n}, a similar procedure can be used
to construct another DD n-dimensional copula (possibly di�erent from Cn), by using the n cyclic permutations
σk ∈ ΠC(1, 2, ..., n):

Cn,π(u1, ..., un−1, un) :=
1
n

n∑
k=1

Cn−1
(
uπ(σk(1)), uπ(σk(2)), ..., uπ(σk(n−1))

)
· uπ(σk(n)).

When the procedure is implemented recursively startingwith a �xed permutation π ∈ Π([n]), andwith a not-
symmetric copula C2(u, v) = C(u, v), as in Example 13, denote by U1, ..., Un the random variables associated
to the copula of Cn,π, n ≥ 3. Then for any �xed i = 1, ..., n the 2-dimensional marginals of Ui , Ui+1 (with the
convention that Un+1 = U0) are obtained recursively as

Cn,π(u, v,
n−2︷ ︸︸ ︷

1, ..., 1) = 1
n

(n − 2)Cn−1,π(u, v, n−3︷ ︸︸ ︷
1, ..., 1) + 2uv

 , u, v ∈ [0, 1],

and therefore are all equal, i.e.,

Cn,π
(
ue{i} + ve{i+1} + e[n]\{i,i+1}

)
= Cn,π(u, v, 1, ...., 1).

Notice that therefore
Cn,π(u, v, 1, ...., 1) = ̸ Cn,π(v, u, 1, ...., 1),

so that the copulas Cn,π are not symmetric.

Sincewe are particularly interested in examples with absolutely continuous joint andmarginal distributions,
observe that if we start this procedure with a absolutely continuous copula we get absolutely continuous
copulas.

Furthermore we recall the class of absolutely continuous examples given in Navarro and Fernandez-San-
chez [17] (see in particular Proposition 1 therein). The class in [17] may be seen as a particular case of the
larger class considered in the next example.

Example 31 (Negative mixtures of DD copulas are DD). Suppose that D(u1, ..., ur) is an absolutely continu-
ous exchangeable copula with probability density d such that

0 < d ρ(u1, ..., ur) ≤ d(u1, ..., ur),

for some positive function ρ and some positive constant d.
Let Ci(u1, ..., ur), i = 1, 2, be two di�erent copulas which are DD, but non-exchangeable, and absolutely con-
tinuous, with probability density ci(u1, ..., ur) such that, for some positive constant c

0 ≤ ci(u1, ..., ur) ≤ c ρ(u1, ..., ur).

Assume also that the function c1(u1, ..., ur) − c2(u1, ..., ur) is not symmetric, and de�ne

Kα(u1, ..., ur) := D(u1, ..., ur) + α
[
C1(u1, ..., ur) − C2(u1, ..., ur)

]
. (79)

If α is strictly positive and su�ciently small, then Kα is an absolutely continuous DD copula, but not ex-
changeable.

We now proceed with the proof of the previous statement.

The function Kα de�ned in (79) has a density

kα(u1, ..., ur) = d(u1, ..., ur) + α
[
c1(u1, ..., ur) − c2(u1, ..., ur)

]
,
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such that the integral ∫
[0,1]n

kα(u1, ..., ur)du1 · · · dur = 1.

Therefore kα is a probability density, if and only if kα(u1, ..., ur) ≥ 0 for any (u1, ..., ur) ∈ (0, 1)r. The condition
cα ≤ d implies that

kα(u1, ..., ur) ≥ dρ(u1, ..., ur) + α[0 − c ρ(u1, ..., ur)] ≥ 0

The assumption on the densities may be weakened, for instance, it is clearly not necessary any assumption on
the density of C1. Furthermore the example could be generalized to the case

Kα1 ,...,αm (u1, ..., ur) := D(u1, . . . , ur) +
m∑
k=1

αk
[
C1,k(u1, ..., ur) − C2,k(u1, ..., ur)

]
,

with suitable conditions on αi and Ci,k, for k = 1, ...,m, i = 1, 2.
Finally it is interesting to note that Kα is a negative mixture of copulas, and that negative mixture of i.i.d.

random variable are linked to �nite exchangeability, and the problem of extendibility.

Example 32. (Minimally stable ODTHLS models sharing the joint distribution of the order statistics with an
exchangeable THLS model) Let us assume that T1, .., Tr, with r ≥ 3, is an ODTHLS model described by the
m.c.h.r. functions λj|j1 ,...,jd−1 , d = 1, ..., r, (j1, ..., jd−1, j) ∈ Π([r]) with the usual convention that when d = 1
then λj|j1 ,...,jd−1 = λj|∅. We are going to characterize all the minimally stable ODTHLS models in the particular
case when the set L is the singleton

{
L =

(
L(r), L(r − 1), ..., L(1)

)}
, i.e.,

Λj1 ,...,jk =
∑

j∈ ̸{j1 ,...,jk}

λj|j1 ,...,jk = L(r − k), ∀ k = 0, 1, ..., r − 1. (80)

By Proposition 25, for all the above minimally stable ODTHLSmodels, one has Gk:r = G
L
k , k = 1, 2, ..., r, i.e., the

same Hypoexponential marginal survival functions of the exchangeable THLS model (58). The characterization
of the condition that T1, ..., Tr are minimally stable is then a consequence of Proposition 16 together with the
comparison between (66) and (64): the m.c.h.r. functions satisfy the following system of equations

∑
j∈ ̸{j1 ,...,jd−1} λj|j1 ,...,jd−1 = L(r − (d − 1)), {j1, ..., jd−1} ⊂ [r]

∑
j∈Π(I)

∏d
h=1 λjh|j1 ,...,jh−1 =

1
( rd)
∏d
`=1 L(r − (` − 1)), for any I ⊂ [r], with |I| = d,

d = 1, ..., r.

This characterization yields that there exist in�nitely many minimally stable ODTHLS models satisfying condi-
tion (80). This statement is a consequence of the observation that one can see the previous system as a family
of nested linear systems:{∑

j∈[r] λj|∅ = L(r),
λj|∅ = 1

r L(r); j ∈ [r]

once λj|∅ are given, then λj2|j1 are the solutions xj1 ,j2 , j2 ≠ j1, of
∑

j= ̸j1 λj1|∅xj1 ,j = L(r − 1), ∀ j1 ∈ [r]
λj1|∅ xj1 ,j2 + λj2|∅ xj2 ,j1 =

1
(r2)
L(r)L(r − 1); ∀ {j1, j2} ⊂ [r];

once λj|∅ and λj|j1 are given, then λj3|j1 ,j2 are the solutions xj1 ,j2 ,j3 of
∑

j∈ ̸{j1 ,j2} xj1 ,j2 ,j = L(r − 2), ∀ {j1, j2} ⊂ [r],∑
(j1 ,j2 ,j3)∈Π({k1 ,k2 ,k3}) λj1|∅λj2|j1xj1 ,j2 ,j3

= 1
(r3)
L(r) L(r − 1)L(r − 2); ∀ {k1, k2, k3} ⊂ [r];
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and so on. Since the above nested systems always admit the solutions xj1 ,...,jk ,j = λj|j1 ,..,jk =
L(r−k)
r−k , then there

are in�nite solutions.
We end this example by observing that under condition (80) all the ODTHLS models (not necessarily mini-

mally stable) share with the exchangeable THLSmodel (58) not only themarginal distributions but also the joint
distribution of the order statistics. More precisely the joint distribution of

(
T1:r , ..., Tr:r

)
coincides with the joint

distribution of (
Y0
L(r) ,

Y0
L(r) +

Y1
L(r − 1) , . . . ,

Y0
L(r) +

Y1
L(r − 1) + · · ·

Yr−1
L(1)

)
, (81)

where Yk, k = 0, 1, ..., r−1, are i.i.d. standard exponential. Indeed, one can easily extend Corollary 3 in Rychlik
and Spizzichino [23] for THLSmodels, to ODTHLS ones: for any permutation (j1, ..., jr) ∈ Π([r]), the conditional
joint distribution of

(
T1:r , ..., Tr:r

)
given the event

{
Tj1 < Tj2 < · · · < Tjr

}
, coincides with the law of(

Y0
Λ∅

, Y0Λ∅
+ Y1
Λj1

, . . . , Y0Λ∅
+ Y1
Λj1

+ · · · + Yr−1
Λj1 ,...,jr−1

)
, (82)

and by (80), the random vectors in Eq.’s (81) and (82) do coincide.
Finally we observe that, as a consequence, these models satisfy also the following condition: for any per-

mutation (j1, ..., jr) ∈ Π([r]),

P
(
Tk:r > t|Tj1 < Tj2 < · · · < Tjr

)
= P
(
Tk:r > t

)
(83)

Indeed, in the case of ODTHLSmodels, we have just seen that condition (80) implies an even stronger property:

P
(
Tk:r > tk , k = 1, 2, .., r|Tj1 < Tj2 < · · · < Tjr

)
= P
(
Tk:r > tk , k = 1, 2, ...r

)
. (84)

Condition (83) emerges in a natural way even in more general settings beyond load-sharing, as pointed out in
Navarro et al. [19], where it has been referred to as a condition of weak exchangeability (see also Navarro et
al. [18]).
In the frame of load-sharing models, condition (80), (and therefore also (84) and (83)) emerges in De Santis and
Spizzichino [8], where it plays an important role for the special type of problems studied therein.
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