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Abstract: Cybersecurity is a critical issue for Real-Time IoT applications since high performance
and low latencies are required, along with security requirements to protect the large number of
attack surfaces to which IoT devices are exposed. Elliptic Curve Cryptography (ECC) is largely
adopted in an IoT context to provide security services such as key-exchange and digital signature.
For Real-Time IoT applications, hardware acceleration for ECC-based algorithms can be mandatory
to meet low-latency and low-power/energy requirements. In this paper, we propose a fast and
configurable hardware accelerator for NIST P-256/-521 elliptic curves, developed in the context of
the European Processor Initiative. The proposed architecture supports the most used cryptography
schemes based on ECC such as Elliptic Curve Digital Signature Algorithm (ECDSA), Elliptic Curve
Integrated Encryption Scheme (ECIES), Elliptic Curve Diffie-Hellman (ECDH) and Elliptic Curve
Menezes-Qu-Vanstone (ECMQV). A modified version of Double-And-Add-Always algorithm for
Point Multiplication has been proposed, which allows the execution of Point Addition and Doubling
operations concurrently and implements countermeasures against power and timing attacks. A
simulated approach to extract power traces has been used to assess the effectiveness of the proposed
algorithm compared to classical algorithms for Point Multiplication. A constant-time version of the
Shamir’s Trick has been adopted to speed-up the Double-Point Multiplication and modular inversion
is executed using Fermat’s Little Theorem, reusing the internal modular multipliers. The accelerator
has been verified on a Xilinx ZCU106 development board and synthesized on both 45 nm and 7 nm
Standard-Cell technologies.

Keywords: Elliptic Curve Cryptography; European Processor Initiative (EPI); cryptography; Real-
Time; ASIC; 7 nm; FPGA; verification; side-channel

1. Introduction

Nowadays the request for secure communication over a network is growing dramat-
ically. Different areas such as automotive, Internet of Things (IoT), health-care, storage
and financial services require the exchange of sensitive information on insecure channels.
Symmetric and asymmetric cryptography can provide several security services as authen-
tication, key exchange, digital signature and data encryption, ensuring the protection of
data exchanged. Elliptic Curve Cryptography (ECC) is a kind of asymmetric cryptography,
which provides the advantage of obtaining an equivalent security level key size that is
smaller in respect to other public key algorithms, such as Rivest-Shamir-Adleman (RSA) [1]
or schemes based on the Discrete Logarithm Problem (DLP) [2,3]. ECC was introduced by
Victor Miller [4] and Neil Koblitz [5] in 1985 and has been adopted by many standardization
institutes such as IEEE [6], NIST [7], ANSI [8] and SECG [9].

The main operation involved in every cryptography scheme based on ECC is the Point
Multiplication (PM), also named Scalar Multiplication (SM). Given two points Q and G
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belonging to an elliptic curve and a scalar k, PM is denoted as Q = kG and represents
the sum of G to itself (k − 1) times to obtain the point Q. In ECC the point Q assumes
the meaning of public key while k is the private key. The mathematical security of ECC
relies on the hardness of the Elliptic Curve Discrete Logarithm Problem (ECDLP), that is,
the problem of finding the value of k given the values of Q and G. In addition, the shape
of the elliptic curve and its parameters must be properly selected in order to ensure the
security and robustness of the whole system based on ECC. In 1999 NIST standardized
five elliptic curves over a prime finite field GF(p) [10], named NIST P-224, P-256, P-384
and P-521, that are widely used in many internet protocols and applications such as SSL
(Secure Sockets Layer), TLS (Transport Layer Security) [11] and IPSec (IP Security) [12] and
in some standards for automotive communication such as WAVE [13] and ETSI [14].

ECC algorithms can be implemented in software providing higher level of configura-
bility respect to hardware solutions; however, hardware implementations can be suitable
for particular scenarios such as power/energy and resource constrained devices or real
time IoT applications. Work in [15] proposes a token-based security protocol for IoT devices
that makes use of on-chip physically unclonable functions and ECC to authenticate devices
in large-sized networks. The paper focuses on trading-off energy/quality of the protocol,
and it shows that the required energy for executing the protocol is largely dominated
by the ECC computation. The scheme proposed in [16] for Edge Computing and IoT is
based also on ECC. In contexts like these, dedicated hardware for ECC could improve
the performance in terms of speed/energy of the entire protocol. As stated in [17,18], for
some markets (e.g., high-performance computing, automotive and Real-Time applications
in general) hardware accelerators solutions could be mandatory in cases of ECC-based
algorithms (e.g., ECDSA) due to their long execution times on low-power processors [18],
or high energy consumption on general-purpose processors [17]. These remarks lead to the
conclusion that hardware acceleration for ECC-based cryptographic algorithms seems to be
mandatory for Real-Time IoT applications which simultaneously require high performance,
low latency and limited power and energy consumption. This problem has been addressed
by different researchers. The work in [19] is a review paper that shows some guidelines
to aid hardware designers in choosing the combination of methods and algorithms for
different application classes. Works like [20–24] focus on the acceleration of ECC.

In this paper, we propose a hardware architecture, configurable at synthesis level, to
support NIST P-256 only, NIST P-521 only, or both the elliptic curves, which provides a
security level from 128 to 256 bits. Such design is exploitable for accelerating the most
used cryptographic schemes based on ECC. It makes use of a constant-time and Simple
Power Analysis (SPA) resistant modified version of Double-and-Add algorithm to compute
PM and of a constant-time version of Shamir’s trick (algorithm 3.48 in [25]) to speed-up
the Double Point Multiplication (DPM) required in ECDSA verification, using projective
coordinates in order to avoid modular division. In addition, Fermat’s Little Theorem has
been adopted to reuse the internal modular multipliers avoiding to employ dedicated
hardware for converting the coordinates in the standard domain. This work is part of the
early development phase for the architecture of the ECC hardware accelerator within the
Hardware Secure Module (HSM) of the European Processor Initiative [26] chip. NIST is
running a standardization process for new public-key algorithmss, and currently ECC is
adopted by several standards and the EPI project cryptographic functions based on ECC
are required to provide the Root of Trust (RoT) of an EPI chip. The main contributions of
this works are as follows:

• Architectural design of a configurable (at synthesis level) ECC crypto-processor for
NIST P-256 and/or NIST P-521 elliptic curves, developed in the framework of the
European Processor Initiative together with other cryptographic hardware accelerators
(AES, RNG [27,28], SHA [29]). The proposed architecture supports the most used
cryptographic schemes based on ECC such as ECDSA, ECDH, ECIES and ECMQV.
The design is resistant to timing and SPA attacks and uses a constant-version of
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Shamir’s trick for Double Point Multiplication, and Fermat’s Little Theorem to execute
modular inversion.

• A simulated environment to extract and evaluate the power consumption of the
circuit, which allowed the evaluation of the proposed countermeasure against SPA.
The proposed simulated approach does not require any dedicated equipment to
acquire power samples and can be adopted in the early design phase to help designers
find effective architectural and algorithmic solutions against Power attacks.

• Synthesis on the open source 45 nm NANDGATE45 [30] library and 7 nm TSMC
silicon technology (the first contribution available to the best of authors’ knowledge)
with a complete analysis of the performance in terms of complexity, throughput and
power consumption.

• Verification and characterization in terms of resources utilization and throughput
on a Xilinx ZCU106 development board equipped with Zynq UltraScale+ xczu7ev-
ffvc1156-2-e MPSoC.

The remainder of this paper is organized as it follows: Section 3 discusses the prelimi-
naries of ECC, PM and coordinates representation. Section 2 lists and analyzes the related
works on hardware implementations of ECC accelerators. Section 4 presents the proposed
hardware architecture and shows the FPGA verification approach. In addition, this section
describes the power simulation environment we used to assess countermeasures against
SPA and the power traces we extracted during PM operation; Section 5 shows the results
of our design and a comparison with the state of the art. Finally, Section 6 concludes
this paper.

2. Related Works

Several ECC hardware systems can be found in literature targeting high-performance,
low-resources consumption or low-power. Research on hardware accelerators for ECC
mainly focuses on improving the performance of PM operation, but sometimes no verifica-
tion on side-channel attacks resistance is provided. The work in [31] is a Dual-Field ECC
processor that exploits a hardware–software design to support an arbitrary elliptic curve.
It adopts the radix-4 interleaved multiplication algorithm for modular multiplication and
the Euclidean algorithm for modular inversion. To assess the resistance against power
attacks, the authors implemented their design on a FPGA and recorded power traces by
measuring the power consumption of the device. This work has been implemented in
both XMC 55 nm CMOS technology and on Xilinx Virtex-4 FPGA platform. On CMOS
technology it requires 1450 µs for a PM that is a relatively low speed. The design in [24] is
the fastest we found in the literature; it adopts a full-word Montgomery multiplier and
implements PA and PD operations concurrently. The authors synthesized their work in a
65 nm CMOS technology that requires only 12.5 µs for a PM, but the area consumption
is extremely high. No consideration about side-channel resistance has been done. Their
implementation is not suitable for resource-constrained devices and for IoT applications.
The authors in [20] present a processor for NIST P-224 and P-256 elliptic curves. They used
the Montgomery algorithm for modular multiplication, the binary inversion algorithm
for modular inversion and Jacobian coordinates to represent the elliptic curve points. PM
takes between 560 and 730 µs for 224-bit and 256-bit elliptic curves on a 65 nm CMOS
technology. The area consumption is quite high and no side-channel countermeasures have
been evaluated. The work in [32] is an elliptic curve processor over GF(p) synthesized in
TSMC 90 nm technology. The authors adopted a 3-pipelined-stage Montgomery multiplier
and Standard projective coordinates, performing a PM in 120 µs with 540K gate counts. The
authors propose a Montgomery ladder algorithm with a swap operation for PM and claim
their solution is resistant to SPA attacks, but no experimental results have been provided to
confirm this assumption. In [33] a cryptographic processor for general curves over GF(p)
is presented. The authors in this work employed a systolic arithmetic unit to implement
the operations of addition, subtraction, multiplication and inversion, sharing the hardware
resources and obtaining good performance in terms of area occupation but low speed. No
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considerations about side-channel resistance are proposed. They synthesized the design on
a 65 nm CMOS technology. The work in [21] is a ECC Processor for Weierstrass Curves
over GF(p) implemented on 7-series FPGA. It adopts a Montgomery multiplication which
is constructed employing a large number of Digital Signal Processor (DSP) primitives. The
PM is executed in constant time but no experimental verification about side-channel attacks
resistance is provided. The performance in terms of speed is good but the resource con-
sumption is very high. The work in [22] is a low hardware consumption design for elliptic
curves from 160 to 256 bits over GF(p). Interleaved Modular Multiplication and Binary
Modular Inversion algorithms have been used, and the PM algorithm is claimed to be
resistant to SPA attacks, but no experimental results have been provided. The design in [23]
presents a novel modular squaring scheme that has been synthesized on a 130 nm CMOS
technology. It reaches good performance in terms of area and speed, but no side-channel
attacks resistance is guaranteed.

3. Preliminaries on ECC
3.1. Elliptic Curve Cryptography

An elliptic curve over prime field GF(p) is defined by the Weierstrass equation:

y2 = x3 + ax + b (mod p) (1)

where the parameters a and b are integers included in the prime field GF(p) which satisfies
4a3 + 27b2 6= 0 (mod p). A Weierstrass elliptic curve E over GF(p) consists of a set of points
P = (x, y), with x, y ∈ GF(p) together with an extra point O called “point at infinity”.
The NIST P elliptic curves are Weierstrass curves over GF(p) and their parameters can be
found in [9]. The set of elliptic curve points plus the point at infinity forms a group where
the following group law can be defined:

• Point Addition (PA): P1(x1, y1) + P2(x2, y2) = P3(x3, y3) where

x3 =

(
y2 − y1

x2 − x1

)2
− x1 − x2 (2)

y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1 (3)

• Point Doubling (PD): 2P1(x1, y1) = P3(x3, y3) where

x3 =

(
3x2

1 + a
2y1

)2

− 2x1 (4)

y3 =

(
3x2

1 + a
2y1

)
(x1 − x3)− y1 (5)

where P1(x1, y1) and P2(x2, y2) are two points on the elliptic curve. It should be noted
that all the arithmetic operations (additions, subtractions, multiplications and divisions)
described above are on the prime field GF(p). PA and PD operations over such group are
used to construct many elliptic curve crypto-systems, and a typical hierarchical structure
of an ECC crypto-system is reported in Figure 1. At the top level there are protocols
such as ECDSA, ECIES, ECDH and ECMQV. In the lower layer there are PM and DPM
that will be discussed in Section 3.2; the next layer comprises the basic operations on the
ECC points: PA and PD. They require the underlying level that consists of finite field
arithmetic operations on GF(p) such as modular addition, subtraction and multiplication.
In our hierarchical structure we placed modular inversion at the same level of PA and PD
because we implemented it using Fermat’s Little theorem that exploits the operations at
the lowest layer.
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Figure 1. Implementation Hierarchy of the ECC Operations.

3.2. Point Multiplication and SPA

PM between an integer k and an elliptic curve point P is the main operation involved
in every cryptographic scheme based on ECC. PM is indicated with Q = kP, and represents
the sum of the point P to itself (k− 1) times:

Q = kP =

(k - 1)︷ ︸︸ ︷
P + P + · · ·+ P (6)

Many algorithms can be used to perform PM and the most know are based on Double-and-
Add method. Algorithm 1 shows the Double-and-Add method for PM in Right-to-Left version.

Algorithm 1 Double-and-Add Right-to-Left.
Input: P ∈ E, k = (kn−1, kn−2, .., k1, k0)
Output: Q = kP
1: Q = O
2: R = P
3: for i = 0 to i = (n− 1) do
4: if ki = 1 then
5: Q = Q + R
6: end if
7: R = 2R
8: end for
9: return Q

In Algorithm 1 the number of PA depends on the Hamming weight of k and its
execution time is not fixed, making this kind of algorithm weak against timing attacks. In
addition, the dissimilarity between PA and PD can be exploited by SPA [34] attacks. SPA
involves the interpretation of power traces over time during the execution of PM in order
to determine the integer k which in ECC must be secret. An attacker could easily extract
the value of k by observing the power trace and understanding which operation the crypto-
processor is performing. Timing attacks can be executed by an attacker at distance, by
measuring the time needed to respond to a request, in contrast to SPA attacks that require
physical access to the device equipped with the crypto-processor. In our work, we focused
on protecting our ECC-system against both timing and SPA attacks. As reported in [35],
the Double-and-Add-Always method can be used to hide the dependency of the key on the
operations flow. As can be seen in Algorithm 2, in Double-and-Add-Always algorithm PA
is executed even if the scalar bit is null and the result of this operation is discarded. This
countermeasure theoretically does not allow to distinguish between real and dummy PA
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operations. Nevertheless, in Algorithm 2 the presence of operations between real points
and the point-at-infinity allows to guess part of the key k. At line 1 of the Algorithm 2
it can be seen that both the variables Q and T are initialized to the point-at-infinity, and
in lines 4 and 5 they are summed to the variable R. As long as Q and T are equal to the
point-at-infinity (this happens in the case of Q as long as no 1 is encountered in the key,
and in the case of T as long as no 0 is encountered), the first PA operation between either Q
and T and a real point can be identified, and an attacker may be able to assume some part
of the key k. These considerations will be explained in more detail in Section 4.6, where
the power traces extracted during the execution of Algorithm 2 will also be shown. To
overcome this issue, our design implements a modified version of Algorithm 2, reported in
Algorithm 3. The variable one_ f lag is used to indicate whether a 1 has been encountered in
the key k. As long as one_ f lag is 0, dummy PA is executed between the input point P and
R. When one_ f lag becomes 1, PA is performed between Q and R, and the resulting point is
sampled only when a 1 is encountered. This method allows avoiding PA at point-at-infinity.
We selected Right-to-left version Double-and-Add algorithms since they allow performing
PA and PD operations simultaneously. Furthermore, our PM implementation does not use
precomputations on the base point, and allows using different points P as input. ECDH,
ECMQV and ECIES algorithms require the performance of PM between private and public
keys where the public key could be different from the base point. In addition, we support
the DPM operation required in ECDSA verification. DPM is composed of two separated
PMs and one PA, as reported in the equation below:

Q = kP + lR (7)

where Q,P and R are three different elliptic curve points while k and l are two scalars.
A constant-time version of Shamir’s trick is used in our implementation, reported in
Algorithm 4.

Algorithm 2 Double-and-Add-Always Right-to-Left.
Input: P ∈ E, k = (kn−1, kn−2, .., k1, k0)
Output: Q = kP
1: Q, T = O
2: R = P
3: for i = 0 to i = (n− 1) do
4: if ki = 1 then
5: Q = Q + R
6: else
7: T = T + R
8: end if
9: R = 2R

10: end for
11: return Q
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Algorithm 3 Modified Double-and-Add-Always Right-to-Left.
Input: P ∈ E, k = (kn−1, kn−2, .., k1, k0)
Output: Q = kP
1: one_flag = 0, R = 2P
2: if k0 = 1 then
3: Q = P, one_flag = 1
4: end if
5: for i = 1 to i = (n− 1) do
6: if ki = 1 then
7: if one_flag = 1 then
8: Q = Q + R
9: else

10: P + R, Q = R
11: end if
12: else
13: if one_flag = 1 then
14: Q + R
15: else
16: P + R
17: end if
18: end if
19: R = 2R
20: end for
21: return Q

Algorithm 4 Constant Time Version of Shamir’s Trick.
Input: P, R ∈ E, k = (kn−1, .., k0), l = (ln−1, .., l0)
Output: Q = kP + lR
1: S = P + Q
2: Q, T = O
3: for i = n− 1 to i = 0 do
4: Q = 2Q
5: if ki = 1 and li = 1 then
6: Q = Q + S
7: else if ki = 1 and li = 0 then
8: Q = Q + P
9: else if ki = 0 and li = 1 then

10: Q = Q + R
11: else
12: T = T + S
13: end if
14: end for
15: return Q

3.3. Coordinates Representation

PA and PD formulas reported in Section 3.1 can be used when the elliptic curve points
are represented in the classical form (affine form). In this case both PA and PD require
modular inversion on the prime field GF(p). However, since modular inversion is the
most expensive finite field operation, a redundant projective representation can be used
in order to avoid the modular inversion. Actually, only one modular inversion is needed
to reconvert in affine coordinates. In projective representation, every point P1(x1, y1) can
be mapped to P1(X1, Y1, Z1) where Z1 may be chosen arbitrarily. Selecting a projective
representation, the form of Weierstrass equation, the points over the elliptic curve and
the addition and doubling formulas change. The most common coordinate systems are
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reported in Table 1, together with the number of modular multiplications and modular
inversions required by each of them to compute PA and PD operations.

Table 1. Computational Cost of PA and PD.

Affine Standard Projectives Jacobian Projectives

PA 3M + 1I 14M 16M
PD 4M + 1I 10M 8M

In this paper Standard projective coordinates are used. PA and PD in standard
projective coordinates are reported respectively in equations 1 and 2. The addition between
two points P1(X1, Y1, Z1) and P2(X2, Y2, Z2) is the point P3(X3, Y3, Z3) such that:

X3 = BC
Y3 = A(B2X1Z2 − C)− B3Y1Z2

Z3 = B3Z1Z2

(8)

where: 
A = Y2Z1 −Y1Z2

B = X2Z1 − X1Z2

C = A2Z1Z2 − B3 − 2B2X1Z2

(9)

The double of a point P1(X1, Y1, Z1) is the point P3(X3, Y3, Z3) such that:
X3 = EB
Y3 = A(D− E)− 2C2

Z3 = B3

(10)

where: 

A = 3(X1 + Z1)(X1 − Z1)

B = 2Y1Z1

C = BY1

D = 2CX1

E = A2 − 2D

(11)

4. Proposed Hardware Architecture
4.1. Modular Addition and Subtraction

Modular addition/subtraction algorithm is reported in Algorithm 5 where the steps 2–
7 represent modular addition and the steps 10–15 represent modular subtraction. The hard-
ware architecture is shown in Figure 2. In the case of modular addition S = a + b(modp),
the signal SEL_OP shall be set to 0; the first adder executes addition between the two inputs
a, b providing sum S1 and carry Cout1, and the second one performs subtraction between
S1 and p with outputs S2 and Cout2. At the end, S1 and S2 are multiplexed according
to line 4 of Algorithm 5. In the case of modular subtraction S = a− b(modp), the signal
SEL_OP shall be set to 1, and the first adder performs subtraction between the inputs a, b
and the second one adds the result S1 to the modulo p. Similarly to the first case, S1 and S2
are multiplexed according to to line 12 of Algorithm 5. This implementation requires one
clock cycle.
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Algorithm 5 Modular Addition/Subtraction.
Input: a, b ∈ [0, p− 1], p and SEL_OP
Output: S = a± b(modp)
1: if (SEL_OP == 0) then
2: S1 = a + b
3: S2 = S1 + (∼ p) + (∼ SEL_OP)
4: if (Cout1|Cout2) then
5: S = S2
6: else
7: S = S1
8: end if
9: else

10: S1 = a + (∼ b) + SEL_OP
11: S2 = S1 + p
12: if (Cout1) then
13: S = S2
14: else
15: S = S1
16: end if
17: end if
18: return S

a bCin

S1Cout1

a b

S2

SEL_OP input_a input_b p

0 01 1

Cout2

Cin

0 1

Cout2 Cout1

SEL_OP

SEL_OP

S

SEL_OP SEL_OP

Figure 2. Modular Addition and Subtraction Architecture.

4.2. Modular Multiplication

As reported in Section 3.3 a projective representation of the elliptic curve can be used
to avoid modular inversion in PA and PD formulas, at the cost of increasing the number of
modular multiplications. For this reason, in the design of hardware architectures for ECC
that adopt projective coordinates, the modular multiplier is the most important block. In
this work we focused on NIST P-256/521 curves that support a fast modular reduction
algorithm, reported in Algorithms 6 and 7.
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Algorithm 6 Fast Modular Reduction for NIST P-256.

Input: a = a152480 + a142448 + a132416 + a122384 + a112352 + a102320 + a92288 + a82256 +
a72224 + a62192 + a52160 + a42128 + a3296 + a2264 + a1232 + a0
Output: r = a(modp)
1: t = (a7, a6, a5, a4, a3, a2, a1, a0)
2: s1 = (a15, a14, a13, a12, a11, 0, 0, 0)
3: s2 = (0, a15, a14, a13, a12, 0, 0, 0)
4: s3 = (a15, a14, 0, 0, 0, a10, a9, a8)
5: s4 = (a8, a13, a15, a14, a13, a11, a10, a9)
6: d1 = (a10, a8, 0, 0, 0, a13, a12, a11)
7: d2 = (a11, a9, 0, 0, a15, a14, a13, a12)
8: d3 = (a12, 0, a10, a9, a8, a15, a14, a13)
9: d4 = (a13, 0, a11, a10, a9, 0, a15, a14)

10: return r = (t + 2s1 + 2s2 + s3 + s4− d1− d2− d3− d4)modp

Algorithm 7 Fast Modular Reduction for NIST P-521.

Input: a = a12521 + a0
Output: r = a(modp)
1: return r = (a1 + a0)modp

Thanks to these reduction algorithms, the multiply-then-reduce approach can be
efficiently used for modular multiplication. In this work we used a two-stage Schoolbook-
based multiplier; the multiplication algorithm and the hardware architecture are reported
respectively in Algorithm 8 and Figure 3. In this case our crypto-processor is configured
to support the NIST P-256 curve only. The 256-bit inputs are split in four parts of 64 bits
each and multiplied iteratively. The first stage of the multiplier is composed of two
64× 64 bits multipliers and a multiplexer network used to select the proper 64-bit words
to be multiplied. Sixteen 64-bit multiplications are required to perform a 256-bit full-word
multiplication, so each 64-bit multiplier has to execute eight multiplications. The results
are registered into two pipeline registers and processed by the second stage. It is composed
of a multiplexer-shifter module that shifts and selects properly the partial products stored
into the pipeline registers and one 512-bit adder that sums the content of an accumulation
register and the partial products. A finite state machine is used to control the multiplexer
networks and to enable the accumulation register. As can be seen in Algorithm 6, modular
reduction for NIST P-256 requires six modular additions and four modular subtractions.
In our work we implemented it using modular addition/subtraction blocks, computing
modular reduction iteratively in three clock-cycles. The latency of the modular multiplier
is thirteen clock cycles for a single multiplication but the pipeline reduces the latency to
eight cycles on average. Figure 4 shows the data timeline for a modular multiplication
for NIST P-256. M1 and M2 indicate two different modular multiplications. When the
pipeline is empty, the first clock cycle is needed to store the operands and both stages of the
multiplier are unused; in the second clock cycle only the first stage works, executing two
64-bit multiplications simultaneously. From the third clock cycle to the ninth, both stages
are occupied and at the ninth clock cycle the multiplier can store new data and starts a new
modular multiplication. In the case where the crypto-processor is configured to support
NIST P-521, the architecture of the modular multiplier is similar to the one discussed above.
The two 64-bit multipliers are replaced by two 66-bit multipliers and the 512-bit adder by
a 1042-bit adder. The 521-bit operands are split in eight parts, requiring thirty-four clock
cycles for a 521-bit single multiplication. The reduction algorithm, reported in Algorithm 7,
requires only one modular addition executed in one clock cycle. Thirty-five clock cycles
are required for a single modular multiplication for the NIST P-521 curve, reduced to
thirty-two in pipeline.
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Figure 3. Proposed Hardware Architecture for the 256-bit Multiplier.

Algorithm 8 Schoolbook-Based Multiplication Algorithm.
Input: A, B 256-bit integers such that:
A = a32192 + a22128 + a1264 + a0,
B = b32192 + b22128 + b1264 + b0.
Output: C = A×B
1: P0 = a0×b0; P1 = a1×b0; C = 0
2: P2 = a0×b1; P3 = a2×b0; C = C + P0 + P1264

3: P4 = a1×b1; P5 = a0×b2; C = C + P2264 + P32128

4: P6 = a3×b0; P7 = a2×b1; C = C + P42128 + P52128

5: P8 = a1×b2; P9 = a0×b3; C = C + P62192 + P72192

6: P10 = a3×b1; P11 = a2×b2; C = C + P82192 + P92192

7: P12 = a1×b3; P13 = a3×b2; C = C + P102256 + P112256

8: P14 = a2×b3; P15 = a3×b3; C = C + P122256 + P132320

9: C = C + P142320 + P152384

10: return C

M1 STORE
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STAGE 2 STAGE 2
REDUCT

M1 
DONE

STAGE 1
STAGE 2

STAGE 1
STAGE 2

5 clock cycles

M2 STORE
STAGE 1 STAGE 1

STAGE 2 STAGE 2

M2 
DONE

STAGE 1
STAGE 2 STAGE 2

STAGE 1
STAGE 2

5 clock cycles

REDUCT REDUCT

REDUCT REDUCT REDUCT

STAGE 2

Figure 4. Modular Multiplier Data Timeline for NIST P-256 Curve.

4.3. PA, PD and Modular Inversion

PA and PD operations in Standard projective coordinates have been shown in Equa-
tions (1) and (2) of Section 3.3. In this work we implemented two separate hardware
modules for PA and PD, as showed in Figure 5. Each of them is composed of one modular
multiplier, one modular adder/subtractor module, a multiplexer network and registers
bank to store the intermediate results. The scheduling strategy is to parallelize PA and
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PD operations and to maximize the parallelism of the field operations that compose them.
Considering that the time for computing modular addition/subtraction is negligible with
respect to the one to compute modular multiplication, we scheduled the fields operations
in order to perform modular addition/subtraction and modular multiplication simultane-
ously, avoiding stopping the multiplier. Tables 2 and 3 show the scheduling for PA and PD
respectively. For PA, 127 and 457 clock cycles (c.c. in Tables 2 and 3) are required in cases
of P-256 and P-521 curves, respectively, in contrast to PD, which requires 95 and 329 clock
cycles for P-256 and P-521 curves, respectively. Modular inversion has been implemented
using Fermat’s Little theorem because the presence of two separated modular multipliers
allows to easily integrate this technique into the proposed design and to avoid use of a
dedicated block, saving area. This theorem allows calculating the modular inverse of an
integer a performing ap−2, where p is the modulus. A constant time right-to-left version of
square-and-multiply has been used to calculate the modular exponentiation ap−2, reported
in Algorithm 9. The modular multiplications given in lines 4 or 6 and 8 of the Algorithm 9
are executed concurrently by the two modular multipliers.

Table 2. PA Operations Scheduling (c.c. stands for clock cycles).

c.c. P-256 c.c. P-521 Modular
Multiplication Modular Add/Sub

0–12 0–34 X2 · Z1
8–20 32–66 X1 · Z2

16–28 64–98 Y2 · Z1 B = X2Z1 + X1Z2
24–36 96–130 B2 = B · B
37–49 131–165 B3 = B2 · B
45–57 163–197 B2 · X1Z2
53–65 195–229 Y1 · Z2 2 · (B2X1Z2)
61–73 227–261 Z1 · Z2 A = Y2Z1 −Y1Z2
69–81 259–293 A · A
82–94 294–328 A2 · Z1Z2

90–102 326–360 Z3 = B3 · Z1Z2 (A2Z1Z2)− B3

98–110 358–392 B3Y1Z2 C = (A2Z1Z2 − B3)− 2B2X1Z2
106–118 390–424 X3 = B · C (B2X1Z2)− C
114–126 422–456 A · (B2X1Z2 − C)

127 457 Y3 = (A(B2X1Z2 − C))− (B3Y1Z2)

Table 3. PD Operations Scheduling (c.c. stands for clock cycles).

c.c. P-256 c.c. P-521 Modular
Multiplication Modular Add/Sub

0–12 0–34 Y1 · Z1 X1 + Z1 , X1 − Z1
8–20 32–66 (X1 + Z1) · (X1 − Z1) B = Y1Z1 + Y1Z1

16–28 64–98 C = B ·Y1 2 · (X1 + Z1)(X1 − Z1)
24–36 96–130 C2 = C · C A = 3(X1 + Z1)(X1 − Z1)
37–49 131–165 C · X1 2 · C2

45–57 163–197 A2 = A · A D = 2 · CX1
53–65 195–229 B2 = B · B 2 · D
61–73 227–261 Z3 = B · B2 E = A2 − 2D
69–81 259–293 X3 = E · B D− E
82–94 294–328 A · (D− E)

95 329 Y3 = (A(D− E))− (2C2)
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Algorithm 9 Right-to-left Square-and-Multiply for Modular Exponentation.
Input: a, x = (xn−1, xn−2, .., x1, x0)
Output: b = (ax)modp
1: r1 = 1, r2 = a, r3 = 0
2: for i from 0 to n− 1 do
3: if x[i] = 1 then
4: r1 = (r1r2)modp
5: else
6: r3 = (r1r2)modp
7: end if
8: r2 = (r2)

2modp
9: end for

10: return r1

4.4. Overall Architecture

PM and DPM are realized based on PA and PD operations. In the case of PM, no
precomputed values are used, and the crypto-processor allows selecting which point P has
to be used as input between the base point recommended by NIST or another one provided
by externally.

In the case of DPM, we used a constant time version of Shamir’s Trick reported in
Algorithm 3. The scalar k and l together with the point R have to be provided externally
while the point P, as in the case of PM, can be selected internally or externally. The overall
architecture is reported in Figure 5; a main state machine is used to achieve PM and DPM
based on PA and PD in standard projective coordinates. The state machine controls also
the operations flow to convert the computed point in the affine domain.

Modular
multiplier

Modular
add/sub

R
eg

is
te

rs
 b

an
k

M
u

lt
ip

le
xe

r 
n

et
w

o
rk

DATA 
INPUT/

OUTPUT
&

CONTROL 
STATE 

MACHINE

Point P

Point R

Scalar k

Scalar l

Point 
Multiplication

Double-Point 
Multiplication

Point addition module

Point doubling module

Modular
multiplier

Modular
add/sub

R
eg

is
te

rs
 b

an
k

M
u

lt
ip

le
xe

r 
n

et
w

o
rk

Figure 5. Overall Architecture of the proposed ECC Crypto-Processor.

4.5. FPGA Verification

The crypto-processor has been verified on a Xilinx ZCU106 board. We used the test
vectors distributed by NIST for ECDSA in the Elliptic Curve Digital Signature Algorithm
Validation System (ECDSA2VS) [36]. Our crypto-processor has been used to perform the
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PM operation required for the generation of a digital signature and the DPM operation
required to verify the signature. In addition, our crypto-core has been verified by inte-
gration with the NIOS II and other crypto engines (AES and SHA) on Stratix IV FPGA to
implement the Hardware Security Module of a WAVE (Wireless Access in the Vehicular
Environment) IEEE 802.11p modem for V2X connectivity.

4.6. SPA Assessment through Simulated Approach

To evaluate the proposed SPA countermeasure we used a simulated approach to
extract power traces from gate-level netlist without requiring any additional physical
circuit or dedicated equipment for power samples acquisition. We implemented three
different designs for the algorithms reported in Algorithms 1–3,which are based on the
same overall architecture reported in Section 4.4 where the main difference among the three
designs is related to the main state and control machine. The steps of our SPA assessment
method are reported in Figure 6. The first step requires the logic synthesis of the RTL
design, executed using Synopsys Design Compiler [37] with the Standard-cell library
Artisan TSMC 7nm (Typical corner case: 0.75V, 85°C). The output of the logic synthesis
process is a gate-level netlist which represents an approximation of the physical circuit,
and it is used together with the Standard-cell library as input for the gate-level simulations,
performed with QuestaSim [38]. The switching activity of the circuit running testbenches
is stored in a Value Change Dump (VCD) file during the gate-level simulations and the
tool PrimeTime [39] is used to extract the power. Finally, the power trace is parsed and
plotted by a Python script. The three different designs have been synthesized at 100 MHz
(10 ns of period) and the sampling period has been set to 0.01 ns, in order to generate a
fairly dense power trace. Figures 7–9 show the plots of acquired power traces which have
been restricted to 7810 ns for reasons of readability and space within the paper.

Logic Synthesis

RTL Design
Standard-cell 

library

Gate-level 
Netlist

Gate-level 
Simulations

Testbenches 
Standard-cell 

library

Value Change 
Dump

Power 
Extraction

Standard-cell 
library

Waveforms
Generation

Figure 6. Power Simulation Flow for SPA Assessment.

The traces in Figure 7 are the ones acquired during the execution of Algorithm 1. In
this case, the value of the i-th bit of the key k can be easily guessed due to the dissimilarity
of the power consumption during the execution of the algorithm. A higher power peak can
be easily seen when 1 is encountered (PA and PD operations are executed concurrently),
and a lower power peak can be seen when 0 (only PD is executed).

The traces in Figure 8 have been acquired during the execution of Algorithm 2. In this
case, the power trace during PA with the point-at-infinity is quite different with respect to
PA with real points. Referring to the top left and top right plots in Figure 8, two consecutive
PAs with point-at-infinity can be seen. This information can be exploited by an adversary
who may be able to understand the fact that the first two least significant digits of the
key are different, and may assume the values 01 or 10. Referring to the bottom left and
bottom right plots instead, the first and the third PAs are with the point-at-infinity as input.
This means that the first two least significant bits of the key are equal, and the third one
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is different. In this case, an adversary can hypothesize that the value of the first three
least significant bits of the key are 001 or 110. Therefore, in the Double-And-Add-Always
algorithm in the Right-to-left version the information leakage of the private key is related
to the number of equal bits starting from the least significant part of the key.

0 1000 2000 3000 4000 5000 6000 7000 8000
Time [ns]

0 1000 2000 3000 4000 5000 6000 7000 8000
Time [ns]

0 1000 2000 3000 4000 5000 6000 7000 8000
Time [ns]

0

Time [ns]
0 1000 2000 3000 4000 5000 6000 7000 8000

1

1 1 1 10 0 0 1 1 1 10 0 0

11 1 1 1 10 0 0 001

Figure 7. Acquired Power Traces for the Double-and-Add (Algorithm 1) where the least significant part of the key k is (LSB
first): -1010101 (top left), -0101011 (top right), -0011001 (bottom left), -1100111 (bottom right).
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0

0 1000 2000 3000 4000 5000 6000 7000 8000
Time [ns]

0

0 1000 2000 3000 4000 5000 6000 7000 8000
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0

0 1000 2000 3000 4000 5000 6000 7000 8000
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0
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01 10 0 0 1 1 0 0 1 1

Figure 8. Acquired Power Traces for the Double-and-Add-Always (Algorithm 2) where the least significant part of the key
k is (LSB first): -101010 (top left), -010101 (top right), -001100 (bottom left), -110011 (bottom right).

The traces in Figure 9 have been acquired during the execution of Algorithm 3. In this
case there are no substantial differences among the acquired power traces. It should also be
noted that in our simulation environment there are no additional circuits (e.g., processors,
communication buses, etc.) that would be present in a real system and would contribute to
power consumption, masking any small differences present in the power traces acquired
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during the execution of Algorithm 3 and depicted in Figure 9. In any case, the extraction
and analysis of real power traces will be carried out to test the effectiveness of the proposed
algorithm and the validity of the implemented simulation environment.
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Time [ns]

0

0 1000 2000 3000 4000 5000 6000 7000 8000
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Figure 9. Acquired Power Traces for the Modified Double-and-Add-Always (Algorithm 3) where the least significant part
of the key k is (LSB first): -101010 (top left), -010101 (top right), -001100 (bottom left), -110011 (bottom right).

5. Results and Comparison

The design described in Section 4 has been synthesized with Design Compiler L-
2016.03 both on 45 nm Silvaco and 7 nm Artisan TSMC (Typical corner case: 0.75 V, 85 °C)
ASIC standard-cell libraries. Table 4 reports the post-synthesis results; Kcycles column
indicates the number of clock cycles required to execute a PM operation; T [µs] column
depicts the latency needed for PM at the maximum frequency reported in the column
Freq; Column Configuration reports the three possible configurations at the synthesis level
for the proposed crypto-processor. In our design, PM requires, respectively, 36.390K and
254.456K clock cycles for NIST P-256 and P-521 elliptic curves in all the configurations. DPM
operation requires 61.344K and 430.360K clock cycles for NIST P-256 and P-521, respectively,
reducing the computation latency of the 16% respect to executing two separated PM and
one PA. On the 45nm Standard-Cell, the maximum frequency is 400 MHz for the P-256
only configuration which decreases to 375 MHz for the other configurations. On the 7 nm
Artisan TSMC Standard-Cell, the maximum clock frequency is 1820 MHz for the P-256 only
configuration, and 1650 MHz for the other configurations. Table 5 reports the synthesis
results on Xilinx ZCU106 board equipped with Zynq UltraScale+ xczu7ev-ffvc1156-2-e
MPSoC; columns CLBs and DSPs indicate, respectively, the number of Configurable Logic
Block (CLB) and DSP occupied, while T [µs] column depicts the latency for PM at the
maximum frequency reported in the column Freq. In 7-series FPGAs, each CLB contains
two slices which consist in four 6-input LUTs. No device-dependent optimizations were
adopted on the FPGA platform because the goal was only to verify the functionality of
the design.



Energies 2021, 14, 4676 17 of 20

Table 4. Synthesis Results on ASIC Technologies.

Configuration Process.
[nm]

Gate Counts
[kGE] Kcycles Freq.

[MHz] T [µs]

P-256 only 45 281 36.390 400 90.975
P-521 only 45 407 254.456 375 686.54
P-256/-521 45 447 36.390/257.456 375 97.04/686.54
P-256 only 7 279 36.390 1820 19.99
P-521 only 7 405 257.456 1650 156.03
P-256/-521 7 445 36.39/257.456 1650 22.05/156.03

Table 5. ECC Crypto-Core Resources Utilization on Zynq UltraScale+ xczu7ev-vc1156-2-e MPSoC.

Config. CLBs DSPs Freq. [MHz] T [µs]

P-256 only 3444 64 150 242
P-521 only 5689 64 120 2145
P-256/-521 6575 64 110 330/2340

5.1. Discussion and Comparison

Several ECC processors proposed in the literature are implemented in different FPGA
platforms or ASIC technologies, making the process of comparison and benchmarking
extremely complicated. For this reason, in order to make a fair comparison with previous
works, in this paper we present a comparison among our synthesis results on 45 nm and
other ECC systems synthesized on ASIC technologies from 55 nm to 130 nm. The results
are reported in Table 6. The column denoted with T [µs] indicates the time needed to
execute a PM, and the column AT indicates the area-time product that is normalized into
45 nm to compare all the reported designs implemented in different processes.

Table 6. Comparison among previous works for 256-bit PM.

Ref. Process.
[nm]

Gate Counts
[kGE] Primes Kcycles Freq.

[MHz] T [µs] AT SPA
Assessment

Our 45 281 P-256 36.390 400 90.97 1 Simulated approach
[31] 55 187 Dual-Field – 316 1450 8.68 Power extraction
[24] 65 3500 P-256 2.35 188 12.5 1.18 –
[20] 65 447 P-256 397.3 546.5 730 8.84 –
[32] 90 540 256-bit 22.3 185 120 1.27 Theoretical
[33] 130 122 256-bit 340 556 1010 1.67 –
[23] 130 77.1 256-bit – 200 860 0.9 –
[22] 130 57.05 256-bit 610 150 4070 3.14 Theoretical

The work in [31] is a Dual-Field ECC processor that supports an arbitrary elliptic
curve. The result of this work is more flexible with respect to our design but achieves
lower performance in terms of speed and AT. The design in [24] is faster in respect to ours,
but it has higher AT and no SPA resistance has been guaranteed. The processor in [20]
supports both NIST P-224 and P-256 elliptic curves. Their design requires more area with
respect to our implementation and achieves a higher AT without any protection against
power attacks. The work in [32] performs a PM in 120 µs with 540K gate counts. Their
design requires less c.c. with respect to our work, but the area consumption is higher
together with the AT product. In this case, no experimental results have been provided to
test the SPA resistance, but the authors claim their solution works well. Works in [23,33]
do not implement any countermeasure against side-channel attacks. The design in [33]
reaches good performance in terms of area occupation but lower speed with respect to our
work. The modular square method proposed in [23] allows good performance and an AT
similar to the one achieved by our crypto-processor. The work in [22] is a low hardware
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consumption design for ECC. The area consumption in fact is lower with respect to our
work, but both speed and AT are higher. The adopted SPA countermeasure has not been
tested and is only theoretical. In addition, our crypto-processor can be configured at a
synthesis level to also support the NIST P-521 elliptic curve, providing a security level of
256 bits. Using the proposed crypto-processor on 7 nm Artisan technology for running
ECDSA algorithms, up to 50k and 29k digital signatures per second can be generated and
verified on the NIST P-256 curve. These results are up to four orders of magnitude better
with respect to the ones achieved on Cortex-M processors reported in [18], where the power
consumption comprises between 118.5 mW and 281.8 mW. In our work we estimated the
power consumption of our crypto-processor (configured to support only NIST P-256 curve),
which is around 49 mW @ 400 MHz and 102 mW @ 1.82 GHz, respectively, in 45 nm Silvaco
at 1.1 V and 7 nm Artisan at 0.75 V. These results have been extracted by means of the
PrimeTime tool.

6. Conclusions

In this paper, we proposed a fast and configurable ECC crypto-processor for NIST
P-256/-521 elliptic curves. It has been synthesized both on 45nm Silvaco and 7nm Artisan
TSMC technologies, and verified on a Xilinx ZCU106 board with official NIST test vectors
for ECDSA. The presented processor can be used to accelerate ECDH, ECMQV, ECIES and
ECDSA algorithms based on ECC. A simulation environment to extract and evaluate the
power traces during the execution of PM has been implemented, allowing the design of a
modified version of a Double-And-Add-Always algorithm as a countermeasure against SPA
and timing attacks. This work is part of the early development phase for the architecture
of the ECC crypto-accelerator that, together with other crypto-engines that we are also
designing (i.e., AES, SHA, RNG), will be integrated into the HSM of the European Processor
Initiative chip. Synthesis results on a 45nm Standard-Cell show that performance in terms
of speed and area consumption are aligned with the state-of-the-art with an optimal AT.
On 7nm technology the speed performance in absolute value outperforms most of the
previous works. Our work is the first contribution in literature with synthesis results
on 7 nm technology. Although NIST and other standardization institutes are running a
standardization process for post-quantum public-key algorithms, currently ECC is one of
the public-key system most often adopted for key agreement, encryption/decryption and
digital signatures services.
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