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ABSTRACT 14 

Electrical resistivity tomography (ERT) is an ill-posed and non-linear inverse problem commonly 15 

solved through deterministic gradient-based methods. These algorithms guarantee fast convergence 16 

toward the final solution but hinder accurate uncertainty assessments. On the contrary, numerical 17 

Markov Chain Monte Carlo algorithms provide accurate uncertainty appraisals but at the expense of 18 

a considerable computational effort. In this work, we develop a novel approach to ERT that 19 

guarantees an extremely fast inversion process and reliable uncertainty appraisals. The implemented 20 

method combines a Discrete Cosine Transform (DCT) reparameterization of data and model spaces 21 

with a Convolutional Neural Network. The CNN is employed to learn the inverse non-linear mapping 22 

between the DCT-compressed data and the DCT-compressed 2-D resistivity model. The DCT is an 23 

orthogonal transformation that here acts as an additional feature extraction technique that reduces the 24 

dimensionality of the input and output of the network. The DCT also acts as a regularization operator 25 

in the model space that significantly reduces the number of unknown parameters and the ill-26 



 

2 

 

conditioning of the inversion procedure, thereby preserving the spatial continuity of the resistivity 27 

values in the recovered solution. The estimation of model uncertainties is a key step of geophysical 28 

inverse problems and hence we implement a Monte Carlo simulation framework that propagates onto 29 

the estimated model the uncertainties related to both noise contamination and network approximation 30 

(the so-called modeling error). We first apply the approach to synthetic data to investigate its 31 

robustness in case of erroneous assumptions on the noise and model statistics used to generate the 32 

training set. Then, we demonstrate the applicability of the method through inverting real data 33 

measured along a river embankment. We also demonstrate that transfer learning avoids retraining the 34 

network from scratch when the statistical properties of training and target sets are different. Our tests 35 

confirm the suitability of the proposed approach, opening the possibility to estimate the subsurface 36 

resistivity values and the associated uncertainties in near real-time. 37 

 38 
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 40 

INTRODUCTION 41 

Electrical resistivity is an important property of geological formations with high sensitivity to fluid 42 

saturation and porosity and thus, the Electrical Resistivity Tomography (ERT) is a geophysical 43 

method widely and successfully employed for groundwater exploration, geotechnical 44 

characterization, mapping of contaminant plumes, landfill studies, and levees monitoring (see, for 45 

example, Legaz et al. 2009;  Müller et al. 2010; Pollock and Cirpka 2012; Moradipour et al. 2016; 46 

Arosio et al., 2017; Crawford et al., 2018; Hojat et al. 2019a; Tresoldi et al. 2019; Hermans and 47 

Paepen, 2020; Aleardi et al. 2020a). The ERT inverse problem is nonlinear and ill-posed and is 48 

usually solved through deterministic gradient-based algorithms (Pidlisecky and Knight 2008; 49 

Karoulis et al. 2014) that linearize the problem around an initial solution thereby losing the 50 

information for accurate uncertainty appraisals. On the contrary, Markov Chain Monte Carlo 51 

algorithms can be employed to cast nonlinear inverse problems into a solid probabilistic framework 52 
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in which the final solution is the so-called posterior probability density (PPD) function in the model 53 

space (Sambridge and Mosegaard, 2002; Ramirez et al. 2005; Aleardi et al. 2018; Aleardi and Salusti, 54 

2020; Pradhan and Mukerji, 2020; Aleardi et al. 2020b) that fully quantifies the ambiguities in the 55 

retrieved solution. However, the application of these methods to ERT inversion is usually hampered 56 

by both the high-dimensional parameter space and the expensive forward modeling operator. To 57 

partially mitigate these issues, model reparameterization techniques can be employed. These methods 58 

make use of different orthogonal basis functions (e.g., principal component analysis, wavelet 59 

transforms, Legendre polynomials, Discrete Cosine Transform) to reduce the dimensionality as well 60 

as the computational complexity of inverse problems. After such reparameterization, the unknown 61 

parameters become the numerical coefficients that multiply the basis functions (Dejtrakulwong et al., 62 

2012; Lochbühler et al. 2014; Fernández Martínez et al. 2017; Aleardi 2019; Szabó and Dobróka, 63 

2019). However, the compression should be applied keeping in mind that the model parameterization 64 

must always constitute a compromise between model resolution and model uncertainty (Grana et al. 65 

2019). 66 

In addition to the previously described conventional inversion algorithms, the recent advent of high-67 

speed multi-core CPUs and GPUs over the last years has also promoted the applications of machine 68 

learning approaches (Monajemi et al., 2016; Goodfellow et al. 2016) to solve geophysical problems. 69 

In particular, Convolutional Neural Networks (CNNs) have recently gained attention (Krizhevsky et 70 

al. 2012) because they overcome some limitations of artificial neural networks such as local minima, 71 

overfitting, vanishing gradient, significant computational cost (Schmidhuber, 2015). Moreover, 72 

CNNs have been also implemented in many powerful software packages (Paszke et al. 2019). 73 

Training a CNN is a supervised learning task that requires a sufficiently large training set to iteratively 74 

refine and update the internal network parameters. This learning is an optimization process that 75 

minimizes a difference criterion between predicted and desired output. Even though the training is 76 

often computationally intensive, once the network is trained it converts an input dataset into the 77 

corresponding output response in real-time. In geophysics, CNNs have been initially applied to aid 78 
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structural interpretation of geophysical data such as seismic horizon and fault interpretation, and 79 

seismic texture identification (Xiong et al. 2018; Waldeland et al. 2018). Then, they have been 80 

extended to quantitatively solve many geophysical problems. For example, a CNN was employed by 81 

Lewis and Vigh (2017) and Richardson (2018) to full-waveform inversion, and by Araya-Polo et al. 82 

(2018) to seismic tomography. Wang et al. (2019) used a machine learning approach for seismic data 83 

interpolation. Park and Sacchi (2020) used a CNN for automatic velocity analysis; a trained 84 

convolutional network was employed by Das et al. (2019) and by Puzyrev (2019) for impedance 85 

inversion, and electromagnetic inversion, respectively. Moghadas (2020) used a CNN for inverting 86 

electromagnetic induction data, while Aleardi (2020a) exploited a CNN to speed up the Hamiltonian 87 

Monte Carlo sampling. A specific kind of fully convolutional neural network (the U-net) has been 88 

also employed to solve the ERT inversion (Liu et al. 2020). However, one well-known issue of 89 

machine-learning methods is that their performances sensibly worsen if the target and training data 90 

are significantly different (Goodfellow et al. 2016). To overcome this issue, transfer learning can be 91 

used  (Li et al. 2020; Park and Sacchi, 2020), in which an additional training process with a small 92 

portion of target data is used to adjust the network internal parameters. 93 

In this work, we train a CNN to map the apparent resistivity data to a 2-D subsurface resistivity model. 94 

The ERT is usually an under-determined problem with more unknowns than data points. For this 95 

reason, we use the Discrete Cosine Transform to compress the data and model spaces and to reduce 96 

the number of unknown parameters. The use of the DCT reparameterization in the model space also 97 

guarantees that realistic spatial variabilities are preserved in the retrieved solution. Indeed, the order 98 

of the retained non-zero DCT coefficients determines the wavelength of the recovered resistivity 99 

model. The resistivity models forming the training and validation sets are drawn from a previously 100 

defined a-priori resistivity distribution that incorporates a 2-D stationary Gaussian variogram 101 

expressing the assumed lateral and vertical variability of the resistivity values in the study area. A 102 

Finite-Elements (FE) code (Karoulis et al. 2013) is used to compute the observed data associated with 103 

each generated model.  The CNN inversion is combined with a Monte Carlo (MC) simulation to 104 
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estimate the uncertainties affecting the retrieved solution. To this end, we propagate onto the model 105 

space not only the uncertainties related to noise contamination but also the so-called modeling error 106 

introduced by the CNN. Indeed, the trained network learns an approximated function that maps the 107 

observed data into the associated model and this approximation introduces an additional source of 108 

uncertainty. 109 

We first focus on synthetic inversion experiments in which we assess the applicability and the 110 

robustness of the CNN inversion in the presence of errors in the assumed noise statistic and a-priori 111 

resistivity distribution. For simplicity, we assume log-Gaussian distributed resistivity values in the 112 

synthetic experiments. Therefore, the simple kriging geostatistical method (Azevedo and Soares, 113 

2017) is used to generate the resistivity models forming the training and validation examples.  Then, 114 

the CNN predictions and the MC estimated uncertainties are compared with the outcomes of a more 115 

computationally expensive MCMC inversion running in the DCT space (Vinciguerra et al. 2020) and 116 

with the predictions yielded by a local least-squares inversion algorithm (Loke, 2018). Finally, we 117 

apply the implemented approach to field data and its outcomes are compared with those provided by 118 

the local inversion. In this case, transfer learning is applied to update the internal parameters of the 119 

network previously trained for the synthetic data application. We also take into account the facies-120 

dependent behavior of the resistivity values and hence, we assume a non-parametric mixture prior 121 

model in which each mode is associated with a given litho-fluid class. As far as the authors are aware, 122 

this is the first time that DCT compression, CNN inversion, and MC simulations are combined to 123 

solve the ERT inversion and to estimate model uncertainties.  124 

 125 

METHODS 126 

Discrete Cosine Transform 127 

The DCT is a linear and orthogonal transformation that projects an N-length signal (e.g., vector of 128 

model parameters) to an N-length vector containing the coefficients of N different cosine (base) 129 

functions. This approach concentrates most of the information of the original signal into the low-130 
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order DCT-coefficients so that only q<N coefficients can be used to accurately approximate the input 131 

signal. In the context of geophysical inversion, this means that the numerical values of these q DCT 132 

coefficients become the unknowns to be inferred from the data. Estimating the retained DCT-133 

coefficients reduces the parameter space dimensionality and can significantly improve the 134 

computational efficiency of the inversion procedure. We use the DCT parameterization because it 135 

exhibits superior compression power over other compression methods (Lochbühler et al. 2014). 136 

Several variants of DCT exist with slightly modified definitions, but in this work, we use the so-137 

called DCT-2 formulation that is the most common one. Hereafter we simply refer to the DCT-2 138 

transformation as the DCT. This is a Fourier-related transform that uses only real numbers to express 139 

a finite signal in terms of the sum of cosine functions oscillating at different frequencies. If we assume 140 

a 2-D resistivity model 𝛒(x,y) in which x=[0,1,…,𝑀𝑥-1] and y=[0,1,…,𝑀𝑦-1] represent the horizontal 141 

and vertical coordinates, respectively, the associated 2-D transform is defined as follows:                                     142 

{
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, (1) 143 

where 𝐑𝑘𝑥,𝑘𝑦  represents the 𝑘𝑥-th and 𝑘𝑦-th DCT coefficient. The values within the matrix R 144 

represent the unknowns to be estimated in a DCT-reparameterized inverse problem. Equation 1 can 145 

be compactly rearranged in matrix form:  146 

                                                            𝐑 = 𝐁𝑦𝛒𝐁𝑥
𝑇 ,    (2)                                                                147 

where 𝐁𝑥 and 𝐁𝑦 are the matrices with dimensions 𝑀𝑥 ×𝑀𝑥 and 𝑀𝑦 ×𝑀𝑦, respectively that contain 148 

the DCT basis functions, whereas the 𝑀𝑦 ×𝑀𝑥 matrix R expresses the DCT coefficients. Most of the 149 

spatial variability of the resistivity model is explained by low-order DCT coefficients and for this 150 

reason, an approximation of the subsurface resistivity model can be obtained as follows:  151 

�̄� = (𝐁𝑦
𝑞)
𝑇
𝐑𝑞𝑝𝐁𝑥

𝑝, (3) 152 
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where �̄� is the approximated [𝑀𝑦 ×𝑀𝑥] resistivity model, 𝐁𝑦
𝑞
 is a [𝑞 ×𝑀𝑦] matrix containing only 153 

the first 𝑞 rows of 𝐁𝑦; 𝐁𝑥
𝑝
 is a [𝑝 × 𝑀𝑥] matrix containing only the first 𝑝 rows of 𝐁𝑥, whereas the 154 

matrix 𝐑𝑞𝑝 represents the first q rows and p columns of R. In other words, the scalar q and p represent 155 

the retained number of basis functions along the y and x directions used to derive the approximated 156 

resistivity model. Therefore, the DCT transformation reduces the (𝑀𝑦 ×𝑀𝑥)-D full resistivity model 157 

space to a (𝑞 × 𝑝)-D DCT-compressed domain with 𝑝 < 𝑀𝑥 and 𝑞 < 𝑀𝑦.  158 

In the context of CNN, the DCT constitutes an additional feature extraction technique that reduces 159 

the number of pixels in the input and output images of the CNN, thus reducing the complexity of the 160 

CNN architecture (i.e., number of hidden layers) needed to map the input of the network into the 161 

corresponding output. This translates into an easier CNN configuration and hyperparameter settings 162 

and a faster training phase because fewer CNN parameters must be updated. In the context of ERT 163 

inversion, the DCT acts as a regularization operator in the model space that mitigates the ill-164 

conditioning of the inverse problem, while preserving reasonable spatial resistivity variations in the 165 

estimated model.  Figure 1 shows some DCT basis functions of different orders in a 2-D space. Note 166 

that the variability of the solution along each dimension is directly determined by the orders of the 167 

retained DCT coefficients. Finally, we refer the interested readers to Lochbühler et al. (2014) for a 168 

comparison of different parameterization techniques in the context of ERT inversion.  169 
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 170 

Figure 1: 2-D DCT basis functions of different orders. Dark and light colors code low and 171 

high numerical values, respectively. 172 

Convolutional neural networks 173 

The relation between a CNN and its generated model is usually expressed as follows: 174 

𝐎 = 𝐹(𝐏, 𝐋),      (4) 175 

where F denotes the CNN as a function that maps the input L to the output 𝐎 through the CNN 176 

internal parameters P. CNNs use blocks of convolutional layers, subsampling layers, and fully 177 

connected layers, to extract features from 1-D, 2-D, or 3-D input maps treated as grids of pixels. The 178 

extracted features form the so-called feature maps. The core of CNNs is the convolutional layer, in 179 

which the feature maps are convolved with convolution filters. This process can be written as:  180 

𝑂𝑗
𝑝

 
= 𝑓 (𝑏𝑗 +∑ 𝑂𝑖

𝑝−1 ∗ 𝑊𝑗   
𝐼

𝑖=1
) ,     𝑗 = 1, 2, … , 𝐽      (5) 181 

where I represents the number of the feature maps in the (p-1)-th layer, whereas J is the total number 182 

of feature maps in the p-th layer, which is equal to the number of filters considered in that layer; 𝑏𝑗 is 183 

a scalar value representing the j-th bias of the p-th layer, ∗ represents the convolution operator, 𝑓() is 184 

the so-called activation function used to include non-linearity in the mapping process, 𝑂𝑗
𝑝
 is the j-th 185 

feature map in the p-th layer, 𝑂𝑖
𝑝−1

 represents the i-th feature map in the (p-1)-th layer, and 𝑊𝑗 denotes 186 
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the j-th convolutional filter of the p-th layer. This filter has a user-specified size and slides over the 187 

input map with a specified stride. The internal CNN parameters to be updated are the values 188 

associated with the filters 𝑊𝑗 and the biases 𝑏𝑗  in each layer.  189 

The aim of the subsampling layers (also known as pooling) is to prevent overfitting by reducing the 190 

dimension of the feature map generated in the convolutional layer and the number of features. The 191 

most common pooling strategies are max-pooling and average pooling (Scherer et al. 2010). After 192 

the features of the input image are extracted by convolutional layers, they are usually fed into fully 193 

connected layers, which are appended to the end of the last convolutional blocks.  194 

At the first iteration, the internal CNN parameters are initialized and then updated during the 195 

iterative learning process. The learning process aims to minimize an error (loss) function that 196 

measures the difference between the desired and the computed output. A back-propagation algorithm 197 

usually drives the minimization process and the updating of the filter values. This updating process 198 

can be written as follows: 199 

𝐏𝑖 = 𝐏𝑖−1  − 𝛾
𝜕𝜀

𝜕𝐏𝑖−1
,      (6) 200 

where i represents the iteration number,  𝜀 is the loss function value, and 𝛾 is the so-called learning 201 

rate, and P again represents all the CNN learnable parameters. 202 

To define the CNN architecture, some hyperparameters must be set: number of hidden layers and 203 

number of filters, kernel width and stride of the convolution and pooling operators, activation 204 

function, a method for weight initialization, optimization algorithm to minimize the loss function and 205 

to update the filter weights, number of epochs. There are no rigid rules to set these hyperparameters 206 

and the final choice is often dictated by personal preference and experience. We found the optimal 207 

setting through a trial and error procedure in which, different hyperparameters are changed (i.e., 208 

number of filters, filter size, learning rate, batch size, and the type of activation function) and the final 209 

net architecture has been determined based on the net performances on the validation set. In the case 210 
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that different CNNs achieve similar prediction capabilities, we selected the one with the fastest 211 

learning process.  212 

 213 

APPLICATION TO SYNTHETIC DATA  214 

The implemented CNN inversion 215 

We assume that the study area is 35 m long and 11 m deep. This area is discretized with quadratic 216 

cells with spatial dimensions of 1 m × 1 m. We also assume that the subsurface resistivity values in 217 

the target area follow a stationary (i.e., spatial invariant) a-priori log-Gaussian distribution, with a 218 

spatial variability pattern defined by a 2-D Gaussian variogram model. The ranges of the assumed 219 

variogram model are 3 m and 8 m along the vertical and horizontal directions, respectively. We 220 

employ a log-normal distribution to reduce the variability range of the resistivity values. The 221 

statistical properties of this prior model are summarized in Table 1 and they can be inferred from 222 

available borehole data or geologic information in practical applications. To generate the training and 223 

validation sets, we use the simple kriging geostatistical method to randomly draw 20000 resistivity 224 

models from the assumed prior statistic. The previously mentioned FE code has been used to compute 225 

the data for each generated model. Since most field data that are used in our researches are measured 226 

with the Wenner array, we simulate a Wenner acquisition layout using 36 electrodes and an injected 227 

current of 1 Ampere. The maximum a value we considered is 11. This configuration results in 228 

11 × 35 = 385 model parameters to be estimated from 198 data points. To the so obtained 20000 229 

data vectors we add Gaussian uncorrelated noise with a standard deviation equal to 10 % of the 230 

average standard deviation of the noise-free pseudosections associated with the 20000 generated 231 

models (see Table 1). The training set includes 18000 out of the 20000 examples, while the remaining 232 

2000 examples form the validation set.  233 

 234 

 235 
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Observed data characteristics  Prior resistivity model  

Uncorrelated noise standard 

deviation 

10 % of n Type of prior distribution Log-Gaussian 

Correlated noise standard 

deviation 

0 % of n 

Prior mean resistivity value 

[ln(Ω∙m)]  

5.82 

Type of noise distribution Gaussian 

Prior standard deviation of 

resistivity [ln(Ω∙m)] 

0.86 

  

Vertical range of the 

Gaussian variogram model 

3 m 

  

Lateral range of the 

Gaussian variogram model 

8 m 

Table 1: Principal characteristics of the observed data and of the prior model that have 236 

been used to generate the training and validation sets. n indicates the average standard 237 

deviation of the noise-free datasets computed from the generated models.  238 

 239 

The next step after the generation of the training and validation examples involves the estimation 240 

of the optimal number of DCT coefficients needed to approximate the resistivity models and the 241 

associated datasets. The optimal number of DCT coefficients in the data and model spaces are 242 

determined by decomposing some of the 20000 models and data previously generated. Figure 2 shows 243 

an example of a DCT-projected resistivity model and the associated data drawn from the training 244 

examples. Note that because of its trapezoidal shape, the apparent resistivity pseudosection cannot be 245 

expressed as a 2-D matrix, and thus, it has been flattened to a 1D vector before the DCT projection. 246 

 247 



 

12 

 

 248 

Figure 2: a) Example of a resistivity section extracted from the prior distribution and the 249 

associated DCT projection. b) Example of an apparent resistivity pseudosection and the 250 

associated DCT projection. Note that the apparent resistivity pseudosection is flattened to a 251 

1D vector before the DCT projection. 252 

Figure 3 illustrates, for four models extracted from the prior distribution, the explained variability 253 

of the original uncompressed model as the number of the considered basis functions along the two 254 

DCT dimensions increases. The explained variability is computed as the ratio between the standard 255 

deviation of the approximated and the uncompressed resistivity model (Aleardi, 2020b). We observe 256 

that 5 coefficients along the 1st DCT dimension and 4 along the 2nd dimension explain almost 100 % 257 

of the total variability of the original, un-compressed resistivity models. This means that the spatial 258 

resolution of the recovered model is equal to that expressed by the assumed variogram model and that 259 

the DCT compression does not sensibly reduce the resolution of the result because the number of 260 

retained coefficients allows recovering almost the total variability of prior realizations.    261 

Figure 4 represents the explained variability as the number of DCT coefficients increases for the 262 

four data associated with the models previously shown in Figure 3. In this case, we observe that 150 263 

basis functions explain almost the total variability of the original four datasets. Based on the previous 264 

considerations, we approximate the resistivity model using the first 4 rows and 5 columns of the 265 

associated DCT matrices, while only the first 150 DCT coefficients of the flattened apparent 266 

resistivity pseudosection are considered in the data domain. The use of DCT reduces the 385-D full 267 
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model space to a 20-D space, while the 198-D data domain has been compressed to a 150-D space. 268 

In the implemented approach, the DCT transformation acts as an additional feature extraction 269 

technique that reduces both the number of unknown parameters to invert for and the dimensionality 270 

of the input and the output of the network. Therefore, the use of the DCT reduces the complexity of 271 

the CNN architecture (i.e. number of hidden layers) needed to convert the input into the associated 272 

output response. This translates into an easier CNN hyperparameter setting and a faster training phase 273 

because fewer CNN parameters must be adjusted.  274 

To better understand the effect of the DCT compression of the model space, Figure 5 compares an 275 

uncompressed resistivity model drawn from the prior distribution with the approximated models 276 

derived when different numbers of DCT coefficients are considered. If only two coefficients are 277 

considered along the two DCT dimensions, the approximation provides just a very smoothed version 278 

of the original model, while only 5 coefficients along the 2 DCT dimensions guarantee a satisfactory 279 

reproduction of the lateral and vertical variations of the model.  280 

 281 

 282 

Figure 3: Examples of the explained model variability as the number of DCT coefficients 283 

along the 1st and 2nd DCT dimension increases. a), b), c), and d) illustrate the explained 284 

variability for four different models extracted from the prior distribution. In each plot, the 285 

numerical value with coordinates (x, y) indicates the explained variability if the first x, and 286 

y DCT coefficients along the 1st and 2nd DCT dimensions, respectively, are used for 287 

compressing the resistivity model. In all cases, it emerges that 5 DCT coefficients along the 288 
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1st dimension and 4 along the 2nd dimension explain almost 100 % of the variability of the 289 

uncompressed resistivity models. 290 

 291 

Figure 4: Explained variability as the number of DCT coefficients increases for the data 292 

associated with the four resistivity models considered in Figure 3. Different colors refer to 293 

different data. 294 

 295 

 296 

Figure 5: a) Original uncompressed resistivity model drawn from the prior distribution. b) 297 

Approximated model when only the first 2 DCT coefficients along the first and the second 298 

DCT dimensions are considered. c) Approximated model when the first 4 DCT coefficients 299 

along the first and the second DCT dimensions are considered. d) Approximated model when 300 

the first 5 DCT coefficients along the first and the second DCT dimensions are considered. 301 
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 302 

Figure 6: Schematic representation of the CNN-ERT inversion framework. The Monte Carlo 303 

error propagation is not included in this figure. See the text for details. 304 

 305 

Figure 6 describes the workflow of the implemented CNN inversion that retrieves the resistivity 306 

model from the pseudosection. One additional but crucial step is the assessment of the uncertainty 307 

affecting the estimated solution. We must project onto the model space both the noise affecting the 308 

resistivity data and the so-called modeling error introduced by the CNN approximation. In the 309 

following discussion, we describe our Monte Carlo approach to quantify and project such errors: Let 310 

M represent the ensemble of resistivity models forming the training dataset, while N is the associated 311 

ensemble of models predicted by the trained CNN. A sample of the modeling error can be obtained 312 

as 𝐄 = 𝐌− 𝐍 (Hansen and Cordua, 2017). Assuming a Gaussian distribution, the modeling error can 313 

be defined as 𝒩(0, Ce), where Ce is the covariance of E. This error together with the noise term 314 

𝒩(0, 𝐂𝑛) (also assumed Gaussian-distributed) are propagated onto the final prediction with an 315 

iterative MC approach. Now, let d be the vector expressing the observed data input to the CNN, 316 

whereas n represents the number of MC simulations. The implemented MC approach for uncertainty 317 

propagation comprises the following six steps:  318 
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1) Use the trained CNN to compute the predicted resistivity model 𝐦𝐛 from the observed data vector 319 

𝐝; 320 

2) Run a forward modeling to compute the noise-free 𝐝𝐛 data associated to 𝐦𝐛;  321 

3) For i=1 to Q 322 

a. Draw 𝐧𝐢 from 𝒩(0, 𝐂𝑛)  and compute 𝐝𝐧,i = 𝐝𝐛 + 𝐧𝐢; 323 

b. Use the trained CNN to compute the predicted model 𝐦𝐧,𝐢 from 𝐝𝐧,𝐢; 324 

c. Draw 𝐞𝐢 from 𝒩(0, 𝐂𝑒)  and compute 𝐦𝐞,𝐢 = 𝐦𝐧,𝐢 + 𝐞𝐢; 325 

d. Store 𝐦𝐞,𝐢  326 

 327 

Each generated 𝐦𝐞,𝐢 model can be considered a possible subsurface model in agreement with the 328 

observed data, the trained CNN, and the assumed distributions for the noise and modeling errors. This 329 

ensemble of Q models can be used to numerically derive the statistical properties of the posterior 330 

model such as posterior mean and posterior standard deviation. For simplicity, we assume that both 331 

error terms (noise and modeling errors) are Gaussian, but the implemented approach can be applied 332 

to whatever parametric or non-parametric error distribution. Note that the previous MC approach is 333 

extremely fast because the network predicts a model from the input data (steps 1 and 4) in real-time.  334 

 335 

Setting the CNN architecture 336 

The CNNs usually consist of one input layer, one or more hidden convolutional layers, one or 337 

several fully connected layers, and one output layer. In our case, the training ensemble is constituted 338 

by a tensor of 150 × 1 × 18000 where 18000 is the number of the training examples and 150 is the 339 

number of the retained DCT basis functions in the data space. The corresponding output is a vector 340 

of 20 × 1 × 18000 DCT coefficients where 20 is the number of DCT basis functions used to 341 

compress the resistivity model. We perform different experiments to optimally set the main CNN 342 

hyperparameters, and the final CNN architecture (Figure 7) was chosen according to the best fit on 343 

the validation set. It consists of two convolution blocks and a fully connected layer. The first 344 
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convolution block uses 5 1-D convolution filters of size 3, and a stride of 1, whereas the second block 345 

includes 10 1-D convolution filters of size 5, and a stride of 1. After each convolutional layer, we use 346 

the LeakyRelu activation function with a slope of 0.1 (Krizhevsky et al., 2012). Batch normalization 347 

is used within each convolution block because Santurkar et al. (2018) suggested that it would 348 

guarantee more predictive and stable behavior of the gradients as well as faster training. After the 349 

convolutional blocks, max-pooling of size 2 and a stride 1 is applied for subsampling. Before the fully 350 

connected layer, a dropout of 0.1 is used to prevent overfitting. We adopt the RMSprop optimizer 351 

(i.e., an unpublished, adaptive learning rate method) running for 20 epochs to minimize the root-352 

mean-square error (RMSE) between the expected and the predicted outputs. The He method is used 353 

to initialize the network weights (He et al., 2015). We use a batch size of 32, and an initial learning 354 

rate of 0.001 that is multiplied by 0.9 every epoch. We chose this batch size and initial learning rate 355 

because they guaranteed the best performances in the experiments we carried out. In particular, the 356 

benefits of small batch sizes have been discussed in many studies (e.g., Masters and Luschi 2018). 357 

From the evolution of the RMSE error for the training and the validation datasets, we observe that 358 

the learning process successfully converges in less than 5 epochs (Figure 8). 359 

 360 

Figure 7: Schematic representation of the adopted 1-D CNN architecture. The first image on 361 

the left is the input of the network that is a vector expressing the 150 DCT coefficients used 362 
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for data compression. The image on the far right is the output of the network that is a vector 363 

containing the 20 DCT coefficients coding the resistivity model. The intermediate rectangles 364 

represent convolutional layers and are annotated with key parameters. In the grey rectangles, 365 

the initial value in brackets (e.g., 5) indicates the number of filters. This is followed by the 366 

filter size (i.e., 3). Within the green rectangles, we also indicate the dimension of the max-367 

pooling filter (2). The cyan rectangle represents the fully connected layer (FCL). The 368 

numbers on the bottom of each rectangle indicate the dimension of the input and output to 369 

each layer. 370 

 371 

Figure 8: Evolution of the root-mean-square error in the training and validation sets during 372 

training. 373 

We now discuss the CNN performances when some of the hyperparameters are changed. In the 374 

following examples, only one parameter at a time is modified to the previously described network 375 

architecture. As the test set, we employed a synthetic model of a high-resistivity half-space that hosts 376 

a low-resistivity rectangular block. This model will be described more in detail in the next section. 377 

Figure 9a shows the results obtained by changing the number of convolutional layers. As expected, 378 

it is not guaranteed that adding more layers will improve the performance. Indeed, redundancy results 379 

in increased training time, waste of computational power, and numerical instability. In this case, two 380 

convolution blocks constitute the best compromise between the network performances and the 381 

computational effort. Figure 9b shows the RMSE on the training, validation, and test datasets for a 382 

different number of filters (i.e., feature maps) in the first convolutional block. It emerges that 5 filters 383 

guarantee the best performances using an RMSE loss function and that adding more layers does not 384 
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improve the final error value. This probably means that the essential features extracted by the DCT 385 

are already predicted by a simple network and that a more complex CNN architecture only results in 386 

a waste of computational resources. To decrease the final RMSE value, more DCT coefficients should 387 

be considered in the model space but at the expense of an increased dimensionality of the network 388 

output. However, we will demonstrate at the end of this section that the considered number of DCT 389 

coefficients guarantees accurate reconstruction of the subsurface models. Figure 9c illustrates the 390 

network performances for different dimensions of the training set. We can observe that 20000 training 391 

samples offer the best compromise between the generalization capability of the network (expressed 392 

by the RMSE value on the validation and test datasets) and the computational cost needed for training, 393 

although similar performances can be also achieved with only 10000 training examples. In this regard, 394 

if we consider serial Matlab codes running on a common notebook equipped with a quad-core intel 395 

core i-7 7700HQ CPU@2.80 GHz with 16 Gb RAM, the selected CNN architecture can be trained in 396 

approximately 2 minutes, whereas all the tests in Figure 9 run in approximately 22 minutes. These 397 

small computing times are guaranteed by the limited dimensions of the input and the output of the 398 

network and by the simple CNN architecture employed. In other words, the use of the DCT 399 

compression allows a fast assessment of the performances of CNNs with different hyperparameter 400 

settings and architectures, thus limiting the human effort and the computational resources needed to 401 

configure the network. Note that the vast majority of the network configurations considered in Figure 402 

9 provide similar RMSE values. This means that different networks achieve similar predictions and 403 

that the quality of the results is not heavily affected by the selected network configuration.  404 

 405 
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 406 

Figure 9: RMSE errors on the training, validation, and test sets when some CNN 407 

hyperparameters are changed. a) Changing the number of convolution blocks. b) Changing 408 

the number of feature maps (filters) in the first block. c) Changing the dimension of the 409 

training set. 410 

 411 

Finally, Figure 10 shows some comparisons between resistivity models extracted from the validation 412 

set and the corresponding CNN predictions. As expected, we observe that moving from the shallowest 413 

to the deepest part of the subsurface and from the center to the lateral edges of the model, the quality 414 

of the predictions worsens. These examples illustrate that the resistivity values below 6 m depth are 415 

not informed by the data. Therefore, the estimation of these unknowns from the recorded data is a 416 

hopelessly ill-conditioned problem regardless of any approach we may use. This comparison shows 417 

that the trained CNN can reliably predict the resistivity values within the first 5-6 m depth. The 418 

previous results refer to resistivity models and associated data that perfectly honor the statistical 419 

characteristics assumed in the learning phase. Therefore, in the following section, we assess the 420 

robustness of the CNN-ERT inversion to errors in the assumed noise statistic and prior model. The 421 

CNN predictions will also be validated against those provided by a deterministic inversion and by an 422 

MCMC algorithm sampling the DCT-compressed model space (Vinciguerra et al. 2020).  423 
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 424 

Figure 10: a) Some models extracted from the validation set and (b) the corresponding CNN 425 

predictions.   426 

 427 

Inversion 428 

In all the following tests the reference model used to derive the observed data has the same dimension 429 

as the models considered in the training phase and is constituted by a low-resistivity rectangular block 430 

hosted in a high-resistivity homogeneous half-space (Figure 11a).  Note that for this model, the spatial 431 

variability of the resistivity values and their statistical distribution are very different from those 432 

assumed in the learning process (i.e., a log-Gaussian prior model with a Gaussian variogram). In the 433 

following, we also assess the accuracy and the stability of the CNN predictions when the distribution 434 

of the noise affecting the data and the statistical resistivity properties  (i.e., mean and variance) in the 435 

true, target model differ from those assumed during the training phase.  436 

However, before analyzing the robustness of the CNN-ERT inversion, we validate its predictions (in 437 

terms of both estimated model and uncertainties) with those achieved by a computationally 438 

demanding MCMC algorithm sampling the DCT-compressed model space. In this context, note that 439 
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the unknown parameters for both the CNN and MCMC inversions are the retained 20 DCT 440 

coefficients in the model space. In this first example, the mean and the variance of the true resistivity 441 

values are equal to those of the training set, although their statistical distribution and spatial variability 442 

are different (Figure 11a). The previously mentioned FE code was used to compute the observed data 443 

that are contaminated with Gaussian uncorrelated noise with statistical properties equal to those 444 

previously considered in the learning phase (i.e., a standard deviation equal to 10% of the standard 445 

deviation of the noise-free dataset).  The CNN prediction is also compared with that yielded by a 446 

deterministic least-squares approach. In Figures 11b-11d we note that the CNN inversion retrieves a 447 

final solution very close to the a-posteriori mean estimated by the MCMC sampling and with the 448 

model provided by the deterministic inversion. In all cases, the background resistivity values and the 449 

low resistivity anomaly are well recovered and the anomaly is also properly located. As expected, the 450 

quality of the predictions decreases at the lateral edges and bottom of the model due to the limited 451 

parameter illumination. The slightly lower spatial resolution of the CNN prediction with respect to 452 

deterministic inversion results can be ascribed to the fact that abrupt lateral and vertical resistivity 453 

contrasts are not modeled by the employed variogram model assumed for the network training. 454 

Figures 11e and 11f compare the estimated standard deviation values affecting the retrieved solution 455 

estimated by the implemented MC algorithm and by the MCMC inversion, respectively. In both cases, 456 

the low resistivity anomaly is recovered with high accuracy, while the cells located at the lateral edges 457 

and below 6 m depth are associated with high uncertainties. These results demonstrate the reliability 458 

of the proposed inversion framework. Indeed, the CNN+MC approach provides final predictions and 459 

uncertainty estimations in agreement with those yielded by the much more computationally 460 

demanding MCMC inversion.  461 
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 462 

Figure 11: a) The true model for this first example. Note that the mean and the standard 463 

deviation of the resistivity values are equal to those of the training set, but the statistical 464 

distribution and the spatial variability of the resistivity values differ from those assumed in 465 

the learning phase. b) CNN prediction. c) Mean posterior solution provided by the MCMC 466 

sampling. d) Resistivity model estimated by the deterministic inversion. e) Standard 467 

deviation values computed from 10000 MC simulations. f) MCMC estimate of the posterior 468 

standard deviation. 469 

Figure 12 shows some examples of MC simulated resistivity models that were used to compute the 470 

standard deviation represented in Figure 10e. Again, as expected, the differences in the simulated 471 

models increase at the lateral edges and bottom of the study area. As a final consideration, we point 472 

out that the CNN result of Figure 11b and the MC estimation of the standard deviation shown in 473 

Figure 11e can be computed in near real-time (i.e., the model and the uncertainties are almost 474 

instantaneously estimated from the data; see the discussion section for more details), while the 475 

MCMC algorithm takes almost 10 hours and thousands of forward modeling runs to attain stable 476 

posterior model assessments. The deterministic inversion (Figure 11d) takes less than 2 minutes to 477 

converge but the local linearization hinders accurate uncertainty assessments. 478 
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 479 

Figure 12:  Some examples of MC simulations used to compute the standard deviation shown 480 

in Figure 11e. 481 

The effects of errors in the assumed noise statistic  482 

Now we analyze the robustness of the CNN predictions in case of erroneous assumptions on the 483 

statistical properties of the noise contaminating the observed data. We remind that in the training 484 

phase we considered Gaussian uncorrelated noise with a standard deviation value equal to 10% of the 485 

standard deviation value of the noise-free dataset. We perform eight inversion tests in which the 486 

observed data are contaminated with both uncorrelated and correlated Gaussian noise with different 487 

statistical properties. The true model in these experiments is the same previously used for the 488 

comparison with the MCMC inversion (Figure 11a). Therefore, in these tests the mean and the 489 

standard deviation of the resistivity values in the target model are equal to those of the training 490 

examples. In the first four tests (Tests 1-4) we only consider uncorrelated noise contaminating the 491 

measured pseudosections but with increasing standard deviation values (i.e., decreasing Signal to 492 

Noise, S/N, ratios in the observed data). Figure 13 compares the noise-free pseudosection associated 493 

with the true model, and the pseudosections contaminated with 20% and 50% of Gaussian 494 

uncorrelated noise (Figures 13b and 13c, respectively) that constitute the observed datasets for Tests 495 

1 and 4, respectively.  In Tests 5-8 we add both spatially correlated and uncorrelated Gaussian noise 496 

to the data. The details of these eight inversion experiments are given in Tables 2 and 3.  497 

 498 
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 499 

Figure 13: a) Noise-free pseudosection associated with the reference synthetic model. b) 500 

Pseudosection contaminated with 20% of Gaussian uncorrelated noise. c) Pseudosection 501 

contaminated with 50% of Gaussian uncorrelated noise. b), and c) represent the observed 502 

datasets for Tests 1 and 4, respectively. 503 

 504 

Parameters Test 1 Test 2 Test 3 Test 4 

Uncorrelated noise 

standard deviation 

20 % of n 30 % of n 40 % of n 50 % of n 

Correlated noise 

standard deviation 

0 % of n 0% of n 0 % of n 0 % of n 

Error on the prior 

mean  

0% of m 0% of m 0% of m 0% of m 

Error on the prior 

standard deviation 

0% of s 0% of s 0% of s 0% of s 

Table 2: Error on the assumed noise and model statistics for Tests 1-4. n indicates the 505 

standard deviation of the noise-free observed dataset; m and s are respectively the mean and 506 

the standard deviation values of the prior resistivity model assumed in the learning phase.  507 

 508 

 509 

 510 

 511 
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Parameters Test 5 Test 6 Test 7 Test 8 

Uncorrelated noise 

standard deviation 

20 % of n 30 % of n 40 % of n 50 % of n 

Correlated noise 

standard deviation 

10 % of n 20 % of n 30 % of n 50 % of n 

Error on the prior 

mean  

0% of m 0% of m 0% of m 0% of m 

Error on the prior 

standard deviation 

0% of s 0% of s 0% of s 0% of s 

Table 3: Error on the assumed noise and model statistics for Tests 5-8. n indicates the 512 

standard deviation of the noise-free observed dataset; m and s are respectively the mean and 513 

the standard deviation of the a-priori model assumed in the learning phase.  The range values 514 

of the correlated noise are 3 m and 8 m along the vertical and horizontal directions, 515 

respectively.  516 

In Figure 14, as expected, we observe that the quality of the predictions worsens as the noise 517 

increases, or in other terms, as the overestimation of the S/N ratio increases. In all cases, the low 518 

resistivity anomaly is correctly located but the inversion tends to underpredict the actual resistivity 519 

contrast between the rectangular block and the homogeneous half-space as the difference between 520 

the actual and the assumed noise standard deviation increases. In Tests 1-3, the predicted data 521 

computed on the estimated model show good matches with the observed data, although their 522 

differences increase as the overestimation of the actual S/N ratio increases. The data match 523 

significantly decreases in Test 4 compared to Tests 1-3.   524 

Figure 15 illustrates the results for Tests 5-8. In the case of low correlated and uncorrelated noise 525 

contamination, the CNN still provides quite accurate model estimations in which the low resistivity 526 

anomaly is correctly located (Tests 5-6). As previously observed in Figure 14, the predicted resistivity 527 

contrasts underestimate the actual contrasts as the overestimation of the S/N ratio increases (Tests 5-528 
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7). As the correlated noise increases, the quality of the results decreases and some biased predictions 529 

appear; for example, the low resistivity anomaly is not recovered from the data (Test 8). In this last 530 

case, the predicted data does not match the observed one. However, the previous inversion tests 531 

demonstrated that the CNN inversion is quite robust against errors in the assumed noise statistic, and 532 

only a significant overestimation of the actual S/N ratio produces unrealistic and biased predictions.   533 

 534 

Figure 14: a) The true model for Tests 1-4. b) CNN predictions for the different tests. c) 535 

Comparison between the observed data (blue curves) and the data derived from the CNN 536 

prediction for different tests (red curves). The horizontal axis in c) represents the index 537 

associated with each apparent resistivity value along the data vector. 538 

 539 

Figure 15: a) The true model for Tests 5-8. b) CNN predictions for the different tests. c) 540 

Comparison between the observed data (blue curves) and the data derived from the CNN 541 

prediction for different tests (red curves). 542 

 543 

The effects of erroneous assumptions on the noise and model statistics 544 
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We analyze the combined effect of erroneous assumptions on both the noise and the model statistics 545 

on the CNN predictions. We again perform eight inversion tests employing the previously trained 546 

network. Similar to Tests 1-4, the observed data in the first four experiments (Tests 9-12) are 547 

contaminated with uncorrelated Gaussian noise characterized by different standard deviation values, 548 

but in this case, the mean and the variance values of the target, true model differ from those assumed 549 

in the learning phase. We simulate that the assumed prior mean and standard deviation (of the log-550 

transformed resistivity values) underestimate the actual values in the study area. In particular, the 551 

errors in the assumed mean and standard deviation values in Tests 9-12 linearly increased from 5 % 552 

to 20 % (see Table 4 for details). 553 

Parameters Test 9 Test 10 Test 11 Test 12 

Uncorrelated noise 

standard deviation 

20 % of n 30 % of n 40 % of n 50 % of n 

Correlated noise 

standard deviation 

0 % of n 0% of n 0 % of n 0 % of n 

Error on the prior 

mean  

5 % of m 10 % of m 15 % of m 20 % of m 

Error on the prior 

standard deviation 

5 % of s 10 % of s 15 % of s 20 % of s 

Table 4: Error on the assumed noise and model statistics for Tests 9-12. n indicates the 554 

standard deviation of the noise-free observed dataset; m and s are respectively the mean and 555 

the standard deviation of the prior log-Gaussian model assumed in the learning phase.     556 

Figure 16 shows the results for Tests 9-12. For errors on the model statistic lower than 15 % the CNN 557 

inversion is still able to provide good results in which the low resistivity anomaly is correctly located 558 

and the actual resistivity values are satisfactorily recovered. In these cases (Tests 9-10), the observed 559 

data are well reproduced by the predicted model. The quality of the CNN predictions significantly 560 
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decreases when the errors on the prior model assumptions are equal to 15 %, and the true model is 561 

not recovered for errors on the prior assumptions equal to 20 %. In this case (Test 12), the low 562 

resistivity body is not recovered and significant low and high-resistivity artifacts appear in the CNN 563 

solution; as a consequence, the recovered model does not reproduce the observed data. These tests 564 

demonstrate that the CNN inversion is much more sensitive to errors in the prior model statistic than 565 

to errors in the assumed noise properties.  566 

 567 

Figure 16. a) The true models for Tests 9-12. Note the different color scales. b) CNN 568 

predictions for different tests. c) Comparison between the observed data (blue curves) and 569 

the data derived from the CNN prediction for different tests (red curves). 570 

Finally, in Tests 13-16 we combine erroneous model assumptions with both uncorrelated and 571 

correlated Gaussian noise affecting the data (see Table 5 and Figure 17). For model errors lower than 572 

10 %, the CNN still achieves satisfactory predictions in which the low resistivity rectangle is correctly 573 

located and the actual resistivity values are retrieved. Differently, when severe coherent noise 574 

contamination in the data adds to prior model errors higher than 15 % (Tests 15 and 16), the actual 575 

resistivity distribution and the geometries of the subsurface model are not retrieved by the CNN 576 

inversion. In these cases, the observed data are poorly predicted.  577 

Figure 18 summarizes the results of Tests 1-16 and represents the L2 norm difference between the 578 

true model and the CNN solution. As previously mentioned, the CNN inversion seems to be quite 579 

robust in case of erroneous assumptions on the noise statistic unless significant underestimations of 580 

the coherent noise occur (Tests 4, 7, and 8).  Differently, the quality of the CNN predictions is much 581 
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more affected by errors in the assumed prior model. The CNN results are poor in case of significant 582 

overestimations of the S/N ratio and for errors higher than 15 % in the prior model assumptions (e.g., 583 

Tests 11, 12, 15, and 16). 584 

Parameters Test 13 Test 14 Test 15 Test 16 

Uncorrelated noise 

standard deviation 

20 % of n 30 % of n 40 % of n 50 % of n 

Correlated noise 

standard deviation 

10 % of n 20 % of n 30 % of n 50 % of n 

Error on the prior 

mean  

5 % of m 10 % of m 15 % of m 20 % of m 

Error on the prior 

standard deviation 

5 % of s 10 % of s 15 % of s 20 % of s 

Table 5: Error on the assumed noise and model statistics for Tests 13-16. n indicates the 585 

standard deviation of the noise-free observed dataset; m and s are respectively the mean and 586 

the standard deviation of the prior model used in the learning phase. The range values of the 587 

correlated noise are 3 and 8 m along the vertical and horizontal directions, respectively.  588 

 589 

Figure 17: a) The true models for Tests 13-16. Note the different color scales. b) CNN 590 

predictions for different tests. c) Comparison between the observed data (blue curves) and 591 

the data derived from the CNN prediction for different tests (red curves). 592 
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 593 

Figure 18: L2 norm differences between the true model and the CNN predictions for the 16 594 

inversion tests.  595 

APPLICATION TO FIELD DATA 596 

We apply the implemented CNN inversion to field data acquired by a permanent monitoring 597 

system installed along a river embankment. In this work, we limit to invert a single dataset and we 598 

refer the reader to Hojat et al. (2019b) for more information about the study site. The electrode layout 599 

is buried in a 0.5 m-deep trench and thus we used the data corrected for the effect of the soil overlaying 600 

the electrodes (Hojat et al. 2019c; Hojat et al. 2020). The inversion covers an area that is 94 m long 601 

and 14 m deep and was discretized with rectangular cells with dimensions of 1 m and 2 m along the 602 

vertical and horizontal directions, respectively. A few comparison measurements were performed in 603 

the reconnaissance phase of this project to compare the Wenner, Wenner-Schlumberger, and dipole-604 

dipole arrays. Having obtained similar results, the Wenner array was selected to ensure a good signal-605 

to-noise ratio (Dahlin and Zhou 2004). Therefore, the acquisition layout comprises a Wenner 606 

acquisition geometry with 48 electrodes with unit electrode spacing of 2 m. This configuration results 607 

in 705 resistivity values to be estimated from 360 data points. To define the a-priori distribution we 608 

exploit both the available geological information about the investigated area and the multiple data 609 

and the associated inverted resistivity sections obtained during the permanent monitoring. In 610 

particular, we expect a clay body hosting a more permeable layer constituted by sand and gravel 611 

located at around 2-3 m depth. Therefore, we assume two different facies (i.e., facies A and B) 612 

associated with the clay and sand formations and characterized by low and high resistivity values, 613 



 

32 

 

respectively. The prior facies probabilities are equal to 𝑝(𝛑 = facies 𝐴) = 0.85 and 𝑝(𝛑 =614 

facies 𝐵) = 0.15, where 𝛑 indicates the facies variable. Differently from the previous examples, we 615 

now assume a non-parametric prior model that properly takes into account the expected facies 616 

dependency of the resistivity values. This prior can be written as follows: 617 

𝑝(𝛒) = ∑𝜔𝑘

𝐾

𝑘=1

𝑝(𝛒|𝛑𝑘),    (7) 618 

where K=2, 𝜔1 = 0.85, and 𝜔2 = 0.15. In this application, the extensive geological information 619 

available helped us in the definition of an appropriate prior model. The prior can be computed, for 620 

example, by applying the kernel density estimation algorithm (Parzen, 1962) to the available data 621 

about the study area (core samples, and resistivity models inverted at different times). We also assume 622 

a 2-D stationary Gaussian variogram model with vertical and lateral ranges equal to 2 m and 6 m, 623 

respectively. Figures 19a and 19b represent the prior assumption on the resistivity values, whereas 624 

Figures 19c and 19d illustrate the assumed lateral and vertical correlation functions coding the 625 

Gaussian variogram. Note that due to the limited variations of the resistivity values, no logarithmic 626 

transformation is applied here. 627 

 628 

 629 

Figure 19: a) Expected frequency of occurrence of the two facies in the investigated area. 630 

Facies A and B refer to clay and sand/gravel, respectively. b) Non-parametric marginal prior 631 
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distribution for the resistivity values (dotted black curve). The red and green curves show 632 

the non-parametric components associated with each facies. c), and d) normalized spatial 633 

correlation functions coding the expected variability along the lateral and vertical directions, 634 

respectively. 635 

We take the previously trained network, but given the different prior assumptions, transfer learning 636 

is used to update the network weights. Indeed, transfer learning avoids retraining a network from 637 

scratch when it is applied to different datasets. This approach takes a pre-trained network and uses it 638 

as a starting point to learn a new task. Fine-tuning a network with transfer learning is usually much 639 

faster and easier than training a network with randomly initialized weights, thereby allowing a quick 640 

transfer of the learned features to a new task using a smaller number of training examples. When 641 

using transfer learning, it is important to decide which part of the already trained CNN model must 642 

be updated and this usually depends on the difference between the target and the training data (Park 643 

and Sacchi 2020). After some tests (not shown here for brevity) we decided to update only the 644 

parameters associated with the second convolutional block and the fully-connected layer. To this end, 645 

we generate from the prior 500 training examples (Figure 20), while 50 models form the validation 646 

ensemble. The Direct Sequential Simulation (DSS) method is used to generate the training and 647 

validation datasets, whereas the same FE code previously employed in the synthetic experiments is 648 

used to compute the associated datasets.  649 

To set the optimal number of DCT coefficients to retain we use the same strategy previously described 650 

in the synthetic experiments. In this case, it turns out that 15 and 10 DCT coefficients along the first 651 

and second DCT dimensions explain almost the total variability of the generated models (Figures 652 

21a-d), whereas 200 DCT basis functions are enough to accurately approximate the pseudo sections 653 

(Figure 21e). Therefore, the DCT reduces the 705-D uncompressed model space to a 150-D 654 

compressed space, while the 360-D data space is reduced to a 200-D space. 655 

 656 
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 657 

Figure 20: Some examples of resistivity models drawn from the prior distribution. 658 

 659 

Figure 21: a)-d) Examples of explained model variability as the number of DCT coefficients 660 

along the 1st and 2nd DCT dimension increases. a), b), c), and d) illustrated the explained 661 

variability for four different models extracted from the prior distribution. In each plot, the 662 

numerical value with coordinates (x, y) indicates the explained variability if the first x, and 663 

y DCT coefficients along the 1st and 2nd DCT dimensions, respectively, are used for 664 

compressing the resistivity model. In all cases, it emerges that 15 DCT coefficients along 665 

the 1st dimension and 10 along the 2nd dimension explain almost 100 % of the variability of 666 

the uncompressed resistivity models. e) Explained variability as the number of DCT 667 

coefficients increases for the data associated with the four resistivity models considered in 668 
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a)-d). Different colors refer to different data. It results that 200 coefficients explain almost 669 

100 % of the variability. 670 

 671 

 672 

Figure 22: a) Resistivity model predicted by the trained CNN before the application of 673 

transfer learning (TL). b) Predicted pseudosection computed on the model shown in a). c) 674 

Observed pseudosection.  675 

 676 

 677 
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 678 

Figure 23: a) The model estimated by the gradient-based least-squares inversion. b) The 679 

predicted model provided by the CNN inversion. c) The standard deviation map estimated 680 

through 10000 MC simulations. 681 

 682 

As an example, Figure 22a shows the CNN prediction before transfer learning. The poor match 683 

between the observed and predicted pseudosections (Figures 22b and 22c) is an indication of the low 684 

accuracy of the result. In particular, the overprediction of the observed apparent resistivity values 685 

proves that the model of Figure 22a tends to overpredict the resistivity over the study area. Figure 686 

23a shows the result provided by a local least-squares inversion approach (Loke, 2018), whereas 687 

Figure 23b illustrates the model estimated by the implemented CNN algorithm after transfer learning. 688 

The similarity of the two inversion outcomes proves the reliability of the final solution and also 689 

confirms the suitability of the proposed algorithm for real data applications. The slightly lower spatial 690 

resolution of the CNN prediction is again related to the DCT compression of the model space. As 691 

expected from previous inversion results obtained in the same area and from the available geological 692 

information, both algorithms predict a high resistivity body around 2 m depth (associated with 693 

sand/gravel) hosted in a low resistivity medium (clay). Different from the local approach, the 694 

implemented inversion also provides an estimate of the uncertainty affecting the retrieved solution 695 

that is represented in Figure 23c in the form of a standard deviation section. As expected, the 696 
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shallowest part of the subsurface is characterized by the lowest uncertainty while the ambiguity 697 

increases within the high resistivity formation, at the lateral edges and deepest part of the model due 698 

to the lower illumination. Some examples of the 10000 MC realizations used to numerically compute 699 

the standard deviation section are shown in Figure 24. Note that all the realizations univocally predict 700 

a high resistivity body located around 2 m depth. Figure 25 compares the observed data and the two 701 

pseudosections computed from the model estimated by the local inversion and from the CNN 702 

solution. Both inversions provide similar predicted data characterized by a good match with the 703 

measured pseudosection. The significant improvement of the match between the observed data and 704 

the pseudosection computed on the model estimated after transfer learning highlights both the 705 

importance of the prior assumptions for proper training and that transfer learning can be conveniently 706 

applied when the statistical properties of training and target sets differ.  707 

 708 

 709 

Figure 24: Some examples of MC simulations used to compute the standard deviation shown 710 

in Figure 23c. 711 

 712 
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 713 

Figure 25: a) Observed pseudosection. b) Pseudosection predicted by a local least-squares 714 

inversion. c) Pseudosection computed on the solution provided by the CNN inversion. 715 

 716 

DISCUSSION 717 

On the one hand, deriving accurate model estimations with a limited computational effort is one 718 

of the crucial requirements of ERT inversion, and thus deterministic methods are often preferred to 719 

probabilistic inversion approaches. On the other hand, MCMC algorithms provide accurate 720 

uncertainty appraisals but their applicability to ERT is often hampered by the considerable number 721 

of forward evaluations needed to attain stable posterior estimations. In this context, the popularity of 722 

machine learning approaches has motivated us to develop an alternative inversion strategy 723 

characterized by a modest computational demand while being robust and also capable to provide 724 

quantifications of the uncertainties affecting the final solution. Our efforts were particularly devoted 725 

to combining the regression capability of CNN and the compression ability of DCT. The use of DCT 726 

reduces the dimensionality of the input and the output of the network, thereby reducing the 727 

complexity of the CNN architecture as well as the computational cost of the training phase. The 728 

choice of the number of DCT coefficients to approximate the data and the model should always 729 

constitute a compromise between the desired spatial resolution, and the dimensionality reduction of 730 

the parameter space. However, our examples showed that such a threshold level can be accurately 731 

determined from the resistivity models and the associated data drawn from the prior assumptions.  732 

The implemented method does not require the regularization in its common-sense meaning (i.e. 733 

inclusion of model constraints into the error function). Instead, the network is trained on a data set 734 
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containing realistic subsurface scenarios and thus it learns how to reproduce a similar model that fits 735 

the input data. The main advantage of the CNN-based inversion is its high computational efficiency. 736 

Indeed, for all the examples discussed in this paper (CNN inversion, MCMC inversion, local 737 

inversion), we used Matlab codes running on a common notebook equipped with a quad-core intel 738 

Core i-7 7700HQ CPU@2.80 GHz with 16 Gb RAM.  739 

The implemented inversion consists of four stages: data and model generation, learning process, 740 

model prediction from a given input data, and Monte Carlo simulation for uncertainty quantification. 741 

Different geostatistical simulation algorithms can be used in the first stage to generate resistivity 742 

models according to the prior assumptions. This means that the method can be used with any 743 

analytical or parametric prior distribution and spatial correlation pattern provided that appropriate 744 

geostatistical simulation codes are available to generate the training and validation examples. For 745 

example, the assumption of a log-Gaussian stationary prior model in the synthetic examples allowed 746 

us to use the popular simple kriging method, but a more sophisticated approach (i.e., the Direct 747 

Sequential Simulation method; Soares 2001) was employed in the real data application in which we 748 

assumed a non-parametric prior.  749 

The first stage of data generation is the most computationally demanding even though it is perfectly 750 

parallelizable. The computing time for generating the ensemble of 20000 training examples was 751 

almost 6 hours for the synthetic experiments. The 10 learning processes related to the different 752 

network configurations shown in Figure 9 run in 20 minutes, approximately, whereas less than 2 753 

minutes are requested for training the selected network configuration. These very limited computing 754 

times are guaranteed by the DCT compression of both data and model spaces and allow a fast 755 

evaluation of the performances of CNNs with different architectures and parameter settings, thereby 756 

reducing the human effort required for the network configuration. The third phase of CNN inversion 757 

gives predictions in real-time. The MC approach for uncertainty propagation can be easily 758 

parallelized and it took only 60 seconds to generate the 10000 realizations used to compute the 759 

standard deviation shown in Figure 11e. Just for comparison, a single MCMC inversion running in 760 
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the reduced DCT space (see Figures 11c and 11f) takes almost ten hours. This computing time would 761 

dramatically grow for an MCMC inversion running in the un-reduced model space. Just for 762 

comparison, a gradient-based inversion runs in two minutes, approximately, on the same hardware 763 

previously mentioned.  764 

We also point out that the generation of the training examples is an embarrassingly parallel 765 

problem and its computing time can be dramatically reduced if a multi-core parallel architecture is 766 

employed instead of a common notebook. In addition, all the codes employed in this work were 767 

written in Matlab. Therefore, there is still room for a substantial decrease in the computational cost 768 

related to the data generation stage, for example by employing more efficient and scalable codes 769 

written in a lower-level programming language. Figure 9 also demonstrated that similar results can 770 

be obtained by employing only 10000 models for the training phase. This possibility halves the 771 

computing time of the data generation process. The CNN method can be also extended to 3D 772 

applications but in this case, faster forward modeling routines are needed to make the computing time 773 

of the generation phase affordable. Also note that the CNN inversion runs for any type of acquisition 774 

layout, provided that an appropriate forward modeling code is available to compute the apparent 775 

resistivity values from the subsurface resistivity model. 776 

As expected, our experiments pointed out that the quality of the predictions decreases if the 777 

statistical properties of the actual subsurface resistivity model and noise statics differ from those 778 

assumed in the learning phase. On the one hand, we have demonstrated that the CNN inversion is 779 

more sensitive to errors in the assumed prior resistivity model than to erroneous assumptions about 780 

the error statistic.  Moreover, we get reasonable results in most cases and only extremely wrong 781 

assumptions result in meaningless predictions. This demonstrates that the proposed CNN inversion 782 

is quite robust against realistic errors in the assumed noise and model properties.  783 

Transfer learning can be employed to update the internal network weights when the statistical 784 

properties of the target differ from those of the training examples, thus avoiding retraining the 785 

network from scratch when it is applied to different datasets. In the field data experiment, the 786 
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generation of the 550 examples for transfer learning took about 10 minutes, whereas less than a 787 

minute was needed for updating the network. However, even though transfer learning can be applied 788 

to adjust the network weights when the target properties differ from those of the training examples, 789 

an accurate estimation of the prior is always crucial to obtain a new training set that exhaustively 790 

captures the target properties.  791 

We finally point out that previous geological interpretations, borehole data, or other inversion 792 

results can be used in many applications to define the prior assumption because all such information 793 

gives a glimpse into the expected distribution of the resistivity values. The proposed approach could 794 

constitute a possible alternative to deterministic gradient-based approaches. For example, the CNN 795 

inversion can be particularly useful for monitoring applications. In this context, the vast amount of 796 

observed data, inverted models, and geologic information usually available can be exploited to derive 797 

a complete training set. The main benefit of the proposed approach over deterministic and MCMC 798 

inversions is that once the CNN is fully trained, it infers the resistivity values and the associated 799 

uncertainties from the monitoring dataset in real-time.  800 

A possible improvement could be replacing CNNs with residual neural networks (RNNs). 801 

Compared to standard CNNs, RNNs avoid the vanishing gradient problem and allow training a deeper 802 

network that potentially can better approximate a non-linear function linking the input and the output 803 

responses. We are now working on this research topic. 804 

 805 

CONCLUSIONS 806 

We proposed a CNN inversion that presents a possible alternative to deterministic or probabilistic 807 

ERT inversion approaches. Instead of minimizing an error function or sampling from a posterior 808 

probability density, the proposed approach employs a trained CNN to infer the subsurface resistivity 809 

model from the apparent resistivity pseudosection. We used a Discrete Cosine Transform (DCT) 810 

reparameterization of data and model spaces to reduce the computational effort of the training phase. 811 

In our case, the DCT constitutes an additional feature extraction tool that uses orthogonal basis 812 
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functions to compress the dimensionality of the input and output of the CNN. On the other hand, the 813 

DCT reparameterization also acts as a model regularization strategy that reduces the number of 814 

unknown parameters to be estimated. The implemented inversion also incorporates a Monte Carlo 815 

approach to properly propagate onto the CNN predictions both the noise affecting the observed data 816 

and the modeling error associated with the network approximation. The CNN inversion requires a 817 

relatively small data set for training and allows us to estimate the resistivity distribution and the 818 

associated uncertainty with high precision and orders of magnitude faster than MCMC algorithms.  819 

Our synthetic and real data experiments showed very promising results and demonstrated that a 820 

convolutional neural network can effectively approximate the inverse of a nonlinear operator that is 821 

very difficult and expensive to be computed analytically. The CNN+MC approach gives final model 822 

and data predictions comparable to those yielded by a deterministic inversion, but also provides quite 823 

accurate posterior model uncertainties that are similar to that estimated by a much more 824 

computationally demanding MCMC sampling. Our tests demonstrated that the CNN inversion is 825 

more sensitive to errors in the assumed statistical properties of the actual resistivity values rather than 826 

to errors in the assumed noise properties. The CNN achieves satisfactory predictions unless extremely 827 

wrong prior model statistics are employed for the training phase. However, transfer learning can be 828 

conveniently employed to rapidly update the internal network weights when the target and the training 829 

exhibit different statistical properties. 830 
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