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Abstract 
Motivation: Genome-wide association studies (GWAS) have identified thousands of common trait-
associated genetic variants but interpretation of their function remains challenging. These genetic var-
iants can overlap the binding sites of transcription factors (TFs) and therefore could alter gene expres-
sion. However, we currently lack a systematic understanding on how this mechanism contributes to 
phenotype.  
Results: We present Motif-Raptor, a TF-centric computational tool that integrates sequence-based 
predictive models, chromatin accessibility, gene expression datasets and GWAS summary statistics to 
systematically investigate how TF function is affected by genetic variants. Given trait associated non-
coding variants, Motif-Raptor can recover relevant cell types and critical TFs to drive hypotheses re-
garding their mechanism of action. We tested Motif-Raptor on complex traits such as rheumatoid ar-
thritis and red blood cell count and demonstrated its ability to prioritize relevant cell types, potential 
regulatory TFs and non-coding SNPs which have been previously characterized and validated. 
Availability: Motif-Raptor is freely available as a Python package at: 
 https://github.com/pinellolab/MotifRaptor. 
Contact: lpinello@mgh.harvard.edu 
Supplementary information: Supplementary data are available at Bioinformatics online. 

 

1 Introduction  
 
Transcription factors (TFs) are DNA-binding proteins that recognize short 
DNA sequences and are critical for dynamic gene regulation (Lambert et 
al., 2018). The rate of gene transcription is controlled by TFs in a cell type-
specific fashion to regulate specific pathways and guide stages of devel-
opment (Whyte et al., 2013). TF binding sites have been characterized by 
in-vitro binding assays (e.g. HT-SELEX or PBM) as well as in-vivo 
through DNA foot-printing and chromatin immunoprecipitation (ChIP) 
(Lambert et al., 2018). The TF-DNA binding pattern (often referred as a 

TF motif) can be described and predicted by several models. The simplest 
and most common is the Position Weight Matrix (PWM), a matrix that 
encodes the nucleotide preferences at each position of putative binding 
sites.  

Several studies have reported that genetic variants can enhance or dis-
rupt TF-DNA binding affinity (Wienert et al., 2015; Weinhold et al., 
2014; De Gobbi et al., 2006). Genome-wide association studies (GWAS) 
have uncovered thousands of genetic variants (SNPs) associated with 
complex traits or human disease (Buniello et al., 2019). Despite these ef-
forts, functional studies to prioritize potential causal variants have lagged 
behind (Gallagher and Chen-Plotkin, 2018), resulting in a limited inter-
pretation of the underlying pathophysiology mechanisms connecting 
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variant to phenotype. A few missense SNPs can alter the function of a 
given TF by affecting its coding sequence, protein structure and therefore 
DNA binding capability, especially for Mendelian disease (Barrera et al., 
2016). For common diseases and complex traits, the great majority 
(>90%) of associated SNPs are in non-coding regions and mainly in 
DNase I-seq-based hypersensitive sites. These SNPs correspond to func-
tionally relevant non-coding regions such as enhancers and promoters 
(Maurano et al., 2012). This observation suggests that chromatin state al-
terations and gene deregulation may be mediated by SNPs that modulate 
TF binding activities. In other words, genetic variants in these non-coding 
regions may perturb TF recognition sequences to enhance or disrupt TF-
DNA binding events ultimately changing the downstream gene expression 
programs  (Deplancke et al., 2016). Even if single non-coding SNPs may 
only moderately alter binding sites and are underpowered to explain gene 
expression programs, statistics on a set of SNPs modulating common TF 
binding sites could be significant enough to reveal the convergent regula-
tory mechanism in complex traits. The method we present is based on this 
key idea. 

Despite the fact that several approaches have been proposed to explore 
how TF binding sites could be affected by genetic variants, challenges re-
main. The next paragraphs provide a short summary and the rationale be-
hind the development of Motif-Raptor. Supplementary Material Section 
1 provides an extended discussion of these methods and their limitations, 
while the next paragraphs provide a short summary and the rationale be-
hind the development of Motif-Raptor. First, current availability of ChIP-
seq data unfortunately limit the  utility of tools such as MMARGE  (Link 
et al., 2018), GERV (Zeng et al., 2016), DeepSEA (Zhou and 
Troyanskaya, 2015), Basset (Kelley et al., 2016), IMPACT (Amariuta et 
al., 2019), RegulomeDB (Boyle et al., 2012) and HaploReg4 (Ward and 
Kellis, 2012). In fact, these tools are extremely powerful and practical only 
when genome-wide maps of TF occupancy and/or chromatin marks in rel-
evant cellular contexts are available. We therefore found a unique value 
proposition in developing a framework to accommodate scenarios in 
which only PWM models and gene expression data are available. Second, 
available models based on ChIP-seq or PWM data do not systematically 
provide a global ranking and the significance of the TFs based on all trait-
associated variants, rather a per SNP scoring. In fact, current methods 
based on PWM and/or DNase I-seq data, such as Combined Annotation 
Dependent Depletion (CATO) (Maurano et al., 2015), CENTIPEDE 
(Pique-Regi et al., 2011; Moyerbrailean et al., 2016), Affinity Testing for 

regulatory SNPs (atSNP) (Zuo et al., 2015), do not provide a procedure to 
formally test the global effect of a set of GWAS variants on the set of 
overlapping TF binding sites. To solve this limitation we propose here a 
novel genome-wide statistic to prioritize putative causal TFs based on the 
entire set of binding sites and overlapping variants rather than single loci. 
Third, these methods do not consider linkage disequilibrium (LD) for the 
tagged loci by the GWAS-associated variants. This is important given that 
several non-causal SNPs have similar association scores as the true causal 
ones and that this potentially confound the analysis. In fact, these false 
positives can dilute our power of detecting the true mechanisms behind 
the causal variants. Our approach tries to account for this problem based 
on the two following strategies. By relying on cell type specific chromatin 
accessibility regions, we are already reducing the space of variants in each 
LD block. To implicitly account for local LD structure, we sample our 
background set of chromatin accessibility regions in close proximity of 
the regions that are specific for each cell type. With these strategies we 
mitigate the problem by specifically looking for variants within regions 
that are cell type specific. To our knowledge, among available tools only 
SLDP (Reshef et al., 2017) overcomes this problem and offers a genome-
wide significance score for each TF, based on the directional modulation 
of TF binding sites by SNPs. Another tool, GREGOR (Schmidt et al., 
2015), also explicitly accounts for LD structure to assess the enrichment 
on sentinel SNPs in arbitrary genomic regions (for example to prioritize 
cell types based on cell type specific annotations). Supplementary Mate-
rial Section 1 provides an extended discussion of these methods and their 
advantages and limitations while a formal comparison of Motif-Raptor 
with SLDP, GREGOR and other similar tools is presented in section 3.4 
and Supplementary Material Section 4. 

To address above limitations of current approaches, we developed Mo-
tif-Raptor, an approach that integrates TF binding motif databases, cell 
type-specific chromatin accessibility and gene expression to prioritize TFs 
whose function may be modulated by genetic variants associated with dif-
ferent traits. Motif-Raptor provides a cell type-specific TF-centric analysis 
with associated statistics, comprehensive reporting and visualization func-
tionalities. This tool can facilitate the discovery and interpretation of the 
action of non-coding variants on key regulators of complex traits. 
  

Figure 1. Summary of Motif-Raptor analysis workflow. Three steps are performed: (1) characterize relevant cell types based on the enrichment of phenotype associated 
SNPs in chromatin accessible sites, (2) find TFs with binding sites that are significantly modulated by genetic variants in these cell types and (3) identify and visualize 
individual TF-SNP regulation events. 
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2 Methods 

2.1 Motif-Raptor overview 
Motif-Raptor takes as input: GWAS summary statistics for a given trait 

or disease, TF binding models (PWM), chromatin accessibility, and tran-
scriptomic data. It produces as output a ranked list of the putative trait-
associated TFs whose binding sites are modulated by genetic variants in 
relevant cell types. In addition, for each variant intuitive visualization to 
explore external annotations and the potential involvement of co-factors 
are offered.  Briefly, the analysis performed by Motif-Raptor consists of 
three main steps: (1) characterize relevant cell and tissue types, (2) find 
significant TFs in these cell types and (3) identify and annotate critical TF-
SNP regulation events (Figure 1). Motif-Raptor is an open-source com-
mand line utility built with Python and Cython to achieve both portability 
and efficiency. 

2.2 Quantification of the effects of genetic variants on 
TF binding 

The prerequisite to quantifying the effects of genetic variants at a given 
TF binding site, is to first assess the binding affinity of this TF, given a 
generic DNA sequence. Motif-Raptor implements a scoring procedure as 
proposed in Motif Occurrence Detection Suite (MOODS) (Korhonen et 
al., 2017, 2009) however we specifically adopt different data structures 
(see section 2.3) to efficiently calculate genome-wide and threshold free 
scans of all the binding sites overlapping a set of SNPs in order to effi-
ciently compute the modulation scores and the null models required to test 
its significance, as described below. Briefly, given a genomic target se-
quence, 𝑆 = {𝑆!} of length 𝑚, and a position weighted matrix, 𝑀 for a 
given TF of length 𝑚, the matching score 𝑀(𝑖, 𝑆!) represents the likeli-
hood at position 𝑖	(1 ≤ 𝑖 ≤ 𝑚) of observing the nucleotide 𝑆! ∈
{𝐴, 𝑇, 𝐶, 𝐺}. The binding score, 𝐵𝑆 is derived from 𝑀(𝑖, 𝑆!) as a log-like-
lihood over the entire binding region from independent multinomial-dis-
tributed random variables. It is then corrected to account for genome-wide 
(or region-specific) nucleotide frequency, 𝐵(𝑆!), as follows: 
𝐵𝑆(𝑆,𝑀) = 𝑙𝑜𝑔∏ "(!,%!)

'(%!)
(
!)* = 8 (𝑙𝑜𝑔(𝑀(𝑖, 𝑆!)) − 𝑙𝑜𝑔(𝐵(𝑆!)))

(
!)*  (1) 

Based on this scoring procedure, we derive a disruption score, 𝐷𝑆 to 
model the potential effect of genetic variants on a given binding site as 
follows. Given a SNP within a target sequence, 𝑆 assuming only two hap-
lotypes, we will use 𝑆+,- and 𝑆./0to denote the two different alleles, i.e. 
reference and alternative, respectively. These alleles can be scored with 
equation (1), above. To make our scoring efficient, we restrict our compu-
tation onto a region, R of length 2𝑚 − 1 centered around the target SNP. 
This enforces that any sequence,	𝑆 corresponding to a putative binding site 
of length 𝑚 and spanning this SNP is contained within R. We consider in 
each region, R for both the reference and the alternative allele, the best 
putative binding position, 1 ≤ 𝐾 ≤ 𝑚 using the following equation: 

𝐾 = 𝑎𝑟𝑔 max
*121(

(𝐵𝑆(𝑆2:24(5*+,- , 𝑀), 𝐵𝑆(𝑆2:24(5*./0 , 𝑀)) 	  (2) 

The disruption score at the optimal binding position, 𝐾 on this SNP is 
then defined as follows: 
𝐷𝑆(𝑆,𝑀) = ∆𝐵𝑆 = 𝐵𝑆(𝑆6:64(5*./0 , 𝑀) − 𝐵𝑆(𝑆6:64(5*+,- , 𝑀)    (3) 
The sign and amplitude of the disruption score is informative on the 

directionality and strength of a putative TF-SNP modulation event. A pos-
itive score suggests that a SNP may enhance the binding affinity, while a 
negative score may reduce it. Considering that different TF binding motifs 
have various lengths and specificity, this binding score cannot be used di-
rectly, therefore we rescale it by considering the sequence with the highest 
binding affinity accordingly to this model, as follows: 

𝐵𝑆(78(𝑀) = max
%!∈{.,0,;,<}

8 (𝑙𝑜𝑔(𝑀(𝑖, 𝑆!)) − 𝑙𝑜𝑔(𝐵(𝑆!)))
(
!)*     (4) 

𝐷𝑆(78(𝑀) = max
.!"'!∈{.,0,;,<}

| 𝑙𝑜𝑔D𝑀(𝑖, 𝐴!)E − 𝑙𝑜𝑔D𝑀(𝑖, 𝐵!)E |      (5) 

After this operation, the binding and disruption scores are within [0,1] 
and [-1,1], respectively. Based on these two scores, we then define a space 
called B-D (Binding and Disruption). This space can be used to visualize 
and summarize the effect of TF-SNP events globally across factors and 
conditions. In this B-D space, we are interested in events that are close to 
the distal corners from the origin, i.e. (1,1) or (1,-1), since they represent 
strong binding and large modulation, mediated by genetic variants. We 
formalize this intuition by combining the two scores into a single score, 
the modulation score (MS) as follows: 

𝑀𝑆(𝑆,𝑀) = F '%(%,")
'%#$%(")

G × F	 >%(%,")
>%#$%(")

	G         (6) 

Intuitively, the modulation score represents the rectangular area spanned 
by the scaled disruption score and the scaled binding score. Large absolute 
modulation scores (distal corners from the origin in the B-D space) corre-
spond to meaningful modulating events. However, to quantify whether a 
set of GWAS-associated SNPs are significantly disrupting a TF it is nec-
essary to model the distribution of the modulation scores using an appro-
priate null model. We investigated if MS distributions can be modeled 
with parametric functions, however no distributions fit satisfactorily the 
observed data.  

Therefore, we propose an estimation of a null model based on the cen-
tral limit theorem that is complete, i.e. based on a complete enumeration 
of all the putative binding sites across the genome. In fact, owing to the 
efficient data structures and related algorithms proposed in this paper, Mo-
tif-Raptor can compute efficiently, genome-wide SNP-based binding 
scores and disruption scores for all available SNPs and TFs without using 
pre-determined scores, p-value cutoffs, or computationally intensive shuf-
fling procedures. This is a key contribution for building exact null models, 
since the complete enumeration of all the endogenous binding sites and 
the estimation of their modulation by observed genetic variants cannot be 
performed efficiently with current available tools as discussed in the next 
sections. 
Finally, to provide a ranked list of TFs we define a TF score based on the 
combination of its cell type specific expression and modulation score in 
chromatin accessible regions. This is an important step, given that several 
TFs share similar motifs but are expressed and work in different cellular 
contexts. For each cell type 𝐶 and motif 𝑀 the TF-score is defined as: 

TF-𝑆𝑐𝑜𝑟𝑒(𝑀, 𝐶) = 𝐸𝑃(𝑀, 𝐶) 	× (1 − 𝑚𝑖𝑛𝐹𝐷𝑅(𝑀, 𝐶)) (7) 
This score is bounded in [0,1], 𝐸𝑃(𝑀, 𝐶)	is the expression percentile and 
𝑚𝑖𝑛𝐹𝐷𝑅(𝑀, 𝐶) the corrected p-value for the significance of the modula-
tion score comparing the distribution of 𝑀𝑆 in cell type specific chromatin 
accessibility peaks with the genome wide distribution. 
 The efficient calculation of the 𝑀𝑆 genome-wide is presented in the next 
two sections and  more details on the overall scoring and ranking proce-
dure are presented in Supplementary Material Section 2. 

2.3 Ultra-fast SNP-based genome-wide motif scanning 
As discussed above, to build a null model for our proposed B-D space 

and modulation score, it is necessary to perform a complete enumeration 
of all putative TF binding sites in the genome and calculate their potential 
modulation by overlapping SNPs not associated with a phenotype. Fast 
tools such as FIMO (Grant et al., 2011) and MOODS (Korhonen et al., 
2009) can be used to enumerate all binding sites of a TF motif in a reason-
able time, however they are not designed to efficiently compute the mod-
ulation of binding affinity introduced by a set of SNPs (Zuo et al., 2015). 
To filter putative false positives and/or improve computational efficiency, 
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these tools rely on a small pre-specified significance level (p-value or q-
value), however this is problematic for two reasons. First, they may ex-
clude weak but true binding events (i.e. false negatives) that could bias our 
estimation of the complete empirical distribution of the modulation scores. 
Second, it is neither practical nor reasonable to fix the same threshold for 
different TF motifs given that they generally have different lengths and 
complexities. atSNP (Zuo et al., 2015), a genome-wide SNP-specialized 
tool solves the first problem by proposing a specialized procedure to esti-
mate the p-value of binding efficiently. However, it does not provide an 
efficient threshold-free scanning technique.; a key requirement for a com-
plete null model estimation as discussed in the results section (and shown 
in Supplementary Figures 1 and 2). 

Motivated by above limitations, we developed a threshold-free algo-
rithm to scan motifs and calculate their modulation scores (4)-(6) effi-
ciently. Our algorithm avoids redundant calculations by using two key 
data structures, a suffix array (SA) and a longest-common-prefix (LCP) 
array (Holmes and Gusfield, 1999; Kasai et al., 2001; Puglisi et al., 2007; 
Gusfield, 1997) that index the genome. This allows detection and skipping 
repeated portions of the genome that are responsible for redundant calcu-
lations (Figure 2).  

To develop and test our approach we used the human reference genome 
(hg19), 719 TF PWM models from the JASPAR2018 vertebrates database 
(Khan et al., 2018) and the genetic variants from the 1000 Genomes pro-
ject (phase3 Europeans) (Auton et al., 2015). However, our approach is 
generalizable to any reference genome, TF motif database or genetic var-
iants.  

We first retrieve all SNPs and their flanking sequences from the ge-
nome. Suppose we have N SNPs and the flanking sequence around each 
SNP is of length 2𝑚 − 1 (block size). We fetch all blocks,  𝑆+,- and 𝑆./0, 

paste them back to create a single sequence, and record their original ge-
nome positions. In this way we create one unique long pseudo-genome 
having length 2× (2𝑚 − 1) × 𝑁, which we denote hereafter as 𝑃. Then 
SA and LCP array for the sequence P are constructed. SA stores the alpha-
betically sorted list of all suffixes of 𝑃 and LCP stores, for each pair of 
adjacent suffixes in SA, the length of their longest common prefix. The 
construction of the SA and of the LCP array takes linear time in the total 
length of the pseudo-genome, hence O(𝑚 ∗ 𝑁) time (Kasai et al., 2001; 
Puglisi et al., 2007).  

Technically, we scan these substrings according to their lexicographic 
order, dictated by the suffixes in 𝑆𝐴, which they prefix. Let us assume that 
we are at iteration ℎ of this scanning process and that we have inductively 
computed in an auxiliary array BS[1:𝑚], the binding scores between the 
motif 𝑀 and the first m characters of the suffix of P which starts at SA[ℎ −
1](recall that m is the length of the motif M). Clearly, BS[𝑚] is the binding 
score for the position SA[ℎ − 1] in P against the entire motif M. Initially, 
the array BS is pre-filled with m zeroes. At the next iteration ℎ, the algo-
rithm needs to maintain the induction by computing the array BS[1:𝑚] for 
the first 𝑚 characters of the next suffix SA[ℎ]. Interestingly enough, this 
computation can take advantage of the current values stored in BS[1:𝑚] 
which refer to SA[ℎ − 1] and of the value stored in LCP[h]. Indeed, if the 
length of the common prefix between SA[ℎ − 1] and SA[ℎ] is 𝑗 = LCP[ℎ], 
then updating of the binding scores can start from position, 𝑗 + 1 since we 
know that the binding scores in BS[1: 𝑗] remain the same given that 
SA[ℎ − 1] and SA[ℎ] share the first 𝑗 characters, for which we have al-
ready computed the binding scores, BS[1: 𝑗].  

In detail, we have that for 𝑗 + 1 ≤ 𝑥 ≤ 𝑚, we can compute 
𝐵𝑆[𝑥] = 𝐵𝑆[𝑗] +8 (𝑙𝑜𝑔(𝑀(𝑖, 𝑆!)) − 𝑙𝑜𝑔(𝐵(𝑆!)))

8
!)?4*   (8) 

To map the binding score 𝐵𝑆[𝑚] relative to an m-long substring of 𝑃, 
aligned with the motif M, back to the SNP site, we resolve the SNP posi-
tion and the binding position using the following equations: 

𝑆𝑁𝑃# = ⌊𝑆𝐴[ℎ]/(2𝑚 − 1)⌋       (9) 
𝑏𝑖𝑛𝑑𝑖𝑛𝑔@!AB = 𝑆𝐴[ℎ]	𝑚𝑜𝑑	(2𝑚 − 1)       (10) 

Not all m-long prefixes of 𝑃’s suffixes are substrings of the original 
genome since 𝑃 is constructed by concatenating blocks centered at SNP-
sites. Therefore, we further expedite our calculations by excluding cross 
block sequences. 

With these new data structures and score design, we can efficiently cal-
culate binding and disruption scores genome-wide for each TF (and shown 
in Supplementary Figure 1 and 2). This allows to estimate complete null 
models for each TF and easily assess their significance as discussed in the 
next sections. 

2.4 Efficient assessment of motif modulation score sig-
nificance 

In this section we introduce the procedures to assess the significance of 
a given TF based on a set of trait-associated SNPs and on the correspond-
ing modulation scores. 

Given a set of target SNPs (T), i.e. top ranked SNPs in GWAS summary 
statistics, we want to ask if the motif modulation score distribution on 
these target SNPs 𝒟"%(𝑇) is significantly different from the background 
SNPs 𝒟"%(𝐵) (genome-wide) or not. To assess the distribution difference 
between target and background sets we propose a non-parametric test with 
null hypothesis 𝐸D𝒟"%(𝑇)E = E(𝒟"%(𝐵)). One might consider a naïve 
approach to implement this test based on a simple re-sampling procedure. 
However, this will require the generation of thousands of samples for hun-
dreds of TF motifs; this approach is time consuming and thus impractical. 
We instead reasoned that, based on the central limit theorem (CTL), the 
distribution of the sample mean for B will converge to a normal 

Figure 2. Data structures used to obtain an efficient scanning procedure 
in Motif-Raptor. Scanning and score calculation using a suffix array (SA) 
and the longest-common-prefix array (LCP). 
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distribution. Enabled by the SA-based procedure described in section 2.3 
we can efficiently calculate the genome wide population mean and stand-
ard deviation. It is therefore straightforward to derive a computationally 
efficient procedure to test the null hypothesis that  𝐸D𝒟"%(𝑇)E =
E(𝒟"%(𝐵))	(Supplementary Figure 3B). In fact, the sample mean will 
have a normal distribution with mean E(𝒟"%(𝐵))	and variance 
Var(𝒟"%(𝐵))/𝑁CB5@7(DEB			regardless of the underlying modulation score 
distribution. Based on this assumption we tested enhanced binding 
(𝐸D𝒟"%(𝑇)E>	E(𝒟"%(𝐵)), disrupted binding ((𝐸D𝒟"%(𝑇)E<	E(𝒟"%(𝐵)), 
or both. This identification of significant shift of modulation score distri-
butions builds the foundation of characterizing significant TFs given a set 
of trait-associated SNPs. In fact, owing to the efficient data structures and 
related algorithms proposed in this paper, Motif-Raptor can compute effi-
ciently, genome-wide SNP-based binding scores and disruption scores for 
all available SNPs and TFs without using pre-determined scores, p-value 
cutoffs, or computationally intensive shuffling procedures (see also Sup-
plementary Material Section 2.4). 

2.5 Main steps in running Motif-Raptor 
The analysis performed by Motif-Raptor consists of three main steps as 

illustrated in Figure 1. In step 1, to characterize different cell type specific 
regulatory programs and regions, we collected expression and chromatin 
accessibility data for 83 distinct cell/tissue types from the ENCODE pro-
ject (Davis et al., 2018) (see Supplementary Material Section 2.1 and 
Supplementary Figure 3A). Then for each trait, we partitioned the 
GWAS summary statistics into top hits and non-hits and applied an en-
richment test in cell-type specific chromatin open regions to rank the most 
associated cell types (see Supplementary Material Section 2.2-2.3). In 
step 2, to rank and uncover potential causal TFs for each of the prioritized 
cell types obtained in step 1 we calculate the TF-score presented in section 
2.32.2 (and detailed in Supplementary Material Section 2.4). 

Finally, in step 3, we provide several visualization strategies to explore 
single TF-SNP events. This includes a radar plot for each pair of TF-SNP 
to visualize the binding or SNP features, and two additional plots to 

Figure 3. Cell type association and specific TF identification for Rheumatoid Arthritis. (A) The top associated cell types are CD8+ and CD4+ cells (blue bars 
represent p-values, and the red line represents the proposed cutoff at 5%); (B,C) Modulated TFs in CD8+ T cells and (D) Top 10 TFs ranked by the TF-score; (E) 
NFKB1 modulation score distribution in CD8+ T cells; (F) Radar plot for rs7528684; SNP centered features to assess its potential  mechanism are presented and  
based on available annotations or models; (G) B-D plot for rs7528684 to investigate potential cooperative factors (the duplicated NFKB1 corresponds to two different 
PWM models i.e. MA0105.1 and MA0105.2); (H) rs7528684 is enhancing the binding of NFKB1 based on its PWM. 
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explore potential co-factors for given SNP and other modulated SNPs for 
a given TF (see Supplementary Material Section 2.5). 

3 Results 

3.1 Study on rheumatoid arthritis 
Rheumatoid arthritis (RA) is a common autoimmune disease in humans. 
A GWAS study on RA explored >100,000 individuals, profiling ~10 mil-
lion SNPs; this identified 98 potential causal genes on 101 risk loci (Okada 
et al., 2014). In this study, 26,285 SNPs were significantly associated to 
this phenotype (p-value<5x10-8). Although the activation of some tran-
scription factors is critical in RA (Okamoto et al., 2008), a systematic 
analysis of how associated genetic variants globally alter TF binding sites 
is lacking. Notably, ~25% (6494) of these SNPs overlap at least one 
DNase I-seq peak in the 83 cell types collected. Applying Motif-Raptor to 
these SNPs, we uncovered significant (corrected p<0.05) and relevant cell 
types, the top three being CD8+ T cells, CD4+ T cells, and T cells, with 
log-odds 4.18, 3.74, 4.25 (Figure 3A). Importantly, in support of our re-
sults, previous studies have shown the importance of T lymphocytes, B 
lymphocytes, dendritic cells, plasma cells, mast cells and osteoclasts in the 
RA synovium (Tran et al., 2005; Matsumoto et al., 2006).  
  Next, using the most significant cell type, CD8+ T cells, we identified 34 
TF motifs of factors that have relatively high expression specific to this 
cell type (transcription factor expression levels with FPKM>2, expression 
percentile>0.8) with a statistically significant modulation of binding by 
genetic variants associated in RA as well as in cell type-specific DNase I-
seq peaks (Figure 3B,C and Supplementary Table 1). The obtained mo-
tifs were ranked by combining expression specificity and FDR, as de-
scribed in section 2.2 (Figure 3D). Based on these criteria, RUNX3, 
ARNTL, NFKB1, were the top 3 enhanced TF motifs, meaning they 
gained binding affinity from overlapping SNPs. ARID5A, GFI1, PRDM1 
are top 3 disrupted TF motifs, meaning they lost binding affinity from 
overlapping SNPs. STAT4 and STAT1 show instead a dual behavior - 
they are both enhanced and disrupted. In fact, the distribution of the mod-
ulation score shows a bimodal distribution.   

The role of GFI1, a transcriptional repressor (Kim et al., 2014; Huang 
et al., 2005; Pinello et al., 2014), STAT4 (Remmers et al., 2007; Korman 
et al., 2008), and NFKB1 (Makarov, 2001; Simmonds and Foxwell, 2008; 
Liu et al., 2017) in RA have been extensively studied. To explore the in-
formative potential of the cell line ranking obtained in the first step, we 
performed a similar analysis on the CD4+ cell type, the second-most sig-
nificant cell type associated with RA (Supplementary Figure 4A,B). We 
identified 47 TFs, 22 of which overlapped with the ones recovered in the 
CD8+ cell type (Supplementary Figure 4C). RUNX3, ARNTL, NFKB1, 
ARID5A, GFI1, STAT4 were also significant in CD4+ cells. Conversely, 
PRDM1, a known repressor in CD8+ cells, was specific to this cell type, 
suggesting it may play a distinct role in CD4+ cells (Rutishauser et al., 
2009; Fu et al., 2017). Their putative target gene expression was plotted 
in (Supplementary Figure 4D), indicating NFKB1 may activate rela-
tively lowly-expressed genes. 

Enabled by the visualizations generated in the final step of Motif-Rap-
tor, the opposite binding modulation of NFKB1 and ARID5A is evident 
(Figure 3E, Supplementary Figure 5 and 6A). Specifically, NFKB is 
primarily enhanced while ARID5A is primarily disrupted (Figure 3E, 
Supplementary Figure 5A). It is known that both NFKB1 and ARID5A 
promote autoimmunity and auto-inflammation response regulated closely 
through separate mechanisms (Puel and Casanova, 2018).  

Next, we focused our attention on the SNPs with the largest effects 
based on the modulation scores and visual inspection of the B-D plots 
(with the caveat that this may lead to false positives since no significance 
is assigned to individual SNPs). For NFKB1, we recovered rs7528684, a 
SNP with a large disruption score that overlaps a site with a high binding 
affinity (Figure 3F-H and Supplementary Figure 6A). Several studies 
have reported that this SNP reflects the association of FCRL3 with RA 
(Jiang et al., 2012; Eyre et al., 2006; Zhao et al., 2013) and increases the 
binding affinity of NFKB1 (Zhao et al., 2013). Using a radar plot, Motif-
Raptor integrates and visualizes several publicly available scores includ-
ing phastCons, (Siepel et al., 2005), CADD (Combined Annotation De-
pendent Depletion), (Rentzsch et al., 2019), and CATO (Contextual Anal-
ysis of TF Occupancy), (Maurano et al., 2015). PhastCons estimates evo-
lutionary conservation based on multiple alignments), CADD assesses the 
deleteriousness of SNPs and insertion/deletions variants, and CATO as-
sesses how variants in accessible sites disrupt TFs. (Figure 3F). The SNP-
specific B-D plot for rs7528684 allows us to uncover additional TFs that 
might cooperate with NFKB1, even if modulation of their binding site is 
not significant in a genome-wide context (Figure 3G). For example, 
RELA shows a strong binding and disruption for this SNP. RELA has been 
reported as an important partner of NFKB1 (Handel et al., 1995; Makarov, 
2001), forming a heterodimer as the NFKB complex in RA (Oeckinghaus 
and Ghosh, 2009). Contrasting this example, ARID3A is disrupted at the 
same SNP site, potentially suggesting competitive binding with NFKB1 
dictated by the presence of a particular allele.  

For ARID5A, we found that rs17425622 has the strongest disruption 
score (Supplementary Figure 5A,B and 6A), also a relatively high 
CADD score but low conservation based on the phastCons (Supplemen-
tary Figure 5B). The B-D plot for this SNP shows a potential cooperative 
effect between ARID5A and SRY proteins, despite modest expression 
(Supplementary Figure 5C).  

Based on the output of Motif-Raptor, we also performed downstream 
analyses to explore the potential effects of the genetic variants that modu-
late the binding sites of NFKB1 and ARID5A on gene expression. We 
studied the relative gene expression level of the potential target genes (de-
fined by proximal genes), regulated by of NFKB1 and ARID5A. NFKB1 
may activate relatively lowly-expressed genes compared with ARID5A, 
which may repress already highly expressed genes (Supplementary Fig-
ure 4D). However, this trend is not general for other TFs as it depends on 
the nature of the TF (i.e. an activator or repressor). To explore potential 
gene ontology (GO) terms for these target genes, we performed a GO en-
richment analysis (Mi et al., 2013) (Supplementary Figure 7). The most 
enriched terms are related to antigen processing and presentation and T 
cell immune functions, providing a potential mechanism of action for 
these genetic variants.  

Finally, we explored factors for which the binding sites are significantly 
modulated in CD8+ and CD4+ cells but with a modest or low cell type-
specific expression (expression percentile from 25% to less than 80%) 
(Supplementary Figure 8). SP3, TCFL5 and TFDP1 show this pattern in 
both CD8+ and CD4+ cells. For instance, when we inspect the B-D plots 
and score distributions (Supplementary Figure 8C,D) from CD8+ cells, 
the statistical effect of the score shifting to enhance the TFDP1 binding 
events is quite dramatic. From the SNP-specific B-D plot for the most sig-
nificant SNP rs1611742 we observed a possible interaction of TFDP1 with 
SP3 and factors from the E2F family (Supplementary Figure 8E). To 
support our hypothesis, previous studies have shown an in vivo coopera-
tive binding of TFDP1 and the E2F family (Helin et al., 1993; Wu et al., 
1995). Notably, TFDP1 stimulates E2F dependent transcription which 
correlates with IL-6 immune response in RA patients (Zhang et al., 2018). 
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In contrast, we did not find prior literature supporting roles of SP3 and 
TCFL5 in RA. 

3.2 Study on red blood cell count 
Red blood cell (RBC) count is one of the blood indices that can reflect 
normal or dysregulated hematopoiesis. GWAS data for the RBC count 
was downloaded from a meta-analysis of 173,480 European ancestry in-
dividuals in three large-scale UK studies (Astle et al., 2016). In this study 
28,722 SNPs were significantly associated to the RBC count (p-
value<8.31x10-9) and ~23% (6710) of SNPs overlap with at least one 
DNase I-seq peak in the 83 cell types used. 

As previously suggested in other studies (Reshef et al., 2018), to better 
recover signals across the genome, we performed our analysis with and 
without removing the MHC (Major Histocompatibility Complex) region 
from chromosome 6 (hg19:chr6:28,477,797-33,448,354). This region 
contains several highly polymorphic genes important for the adaptive im-
mune system that may mask signals not associated with immunity.  

Using Motif-Raptor, we first identified the most highly-associated cell 
types based on the enrichment of genetic variants in cell type-specific 
chromatin accessibility peaks. The most significant cell type is K562 with 
585 SNPs in unique peaks (log-odds 1.99,p-value<10-30 Fisher’s exact 
test).  Although K562 is a cancer cell line, it recapitulates some aspects of 
erythropoiesis. One example of this is the specific expression of the 
erythroid-specific master regulators (Pinello et al., 2018; Ulirsch et al., 
2016). We also uncovered T47D cells, cerebellum cells, CD8+T cells, and 
trophoblast cells in the top 5 associated cell types (Supplementary Figure 
9A).  

Next, using the same strategy illustrated before (transcription factor ex-
pression levels with FPKM>2, expression percentile>0.8) we uncovered 
and ranked 26 TF motifs that are modulated in K562 cells [Supplementary 
Table 2]. The most enriched were TAL1-GATA1 and HLTF ( 𝑚𝑖𝑛𝐹𝐷𝑅 
<0.1) (Supplementary Figure 9B). These two factors were also enriched 
when the MHC region was included, suggesting recovery of signals inde-
pendent of including this region. The modulation score distributions for 
TAL1-GATA1 and HLTF show a negative shift (Supplementary Figure 
9 C,D and Supplementary Figure 6B), suggesting that the genetic vari-
ants associated with the RBC count may disrupt the binding sites of these 
TFs. Tal1 and Gata1 have been previously reported as key master regula-
tors for erythropoiesis (Cantor and Orkin, 2002; Ulirsch et al., 2016). To 
our knowledge, the association of HLTF with this process is novel and 
further investigation may be prudent. 

Next, we focused our attention on identifying the SNPs with the largest 
effects based on the inspection of the B-D plots and modulation score 
rankings. From the B-D plots, the top SNPs for HLTF and TAL1-GATA1 
are rs10758656 and rs145910606 (Supplementary Figure 6B). As illus-
trated in the radar plot, the SNP rs10758656 for HLTF is instead predicted 
to be deleterious based on the CADD score. However, it has a low conser-
vation (low phastCons and UCE scores), suggesting this element may be 
important only in the human RBC (Supplementary Figure 9E) trait. The 
SNP rs145910606 is evolutionarily conserved based on the phastCons and 
UCE scores. Its disruption is predicted to be deleterious based on the 
CADD score (Supplementary Figure 9F). The CATO score was not 
available for these two SNPs (this annotation is available only for a subset 
of SNPs and TF motifs).  

The co-binding and therefore co-disruption of TAL1 and GATA1 (this 
motif may correspond to other GATA family members) are shown on the 
B-D plot and motif logos for both rs10758656 and rs145910606 (Supple-
mentary Figure 9G-J). These SNPs significantly disrupt the GATA1 mo-
tif - rs10758656 is an A to G mutation and rs145910606 is a deletion 

overlapping the GATA sequence. Further inspection of the B-D plot for 
rs10758656 (Supplementary Figure 9G) shows a potential co-binding of 
HLTF with GATA family factors. Importantly, we validated these poten-
tial co-binding effects on reference alleles through available ChIP-seq data 
for  TAL1, GATA1 and HLTF in K562 cells (Davis et al., 2018; Pope et 
al., 2014), and verified that both SNPs are in chromatin-accessible regions 
(Supplementary Figure 10). These SNPs correspond to true binding 
events; in both cases they are within overlapping strong peaks for GATA1 
and TAL1, suggesting their co-binding at these locations. For rs10758656, 
HLTF shows a weak overlapping peak with the peaks of  GATA1 and 
TAL1. We checked the enrichment of the ChIP-seq peaks overlapping 
GWAS hits in K562-specific open-chromatin regions. GATA1 shows sig-
nificant enrichment in SNP hits (p-value=0.002, fold-change=1.69) as ex-
pected, but HLTF only shows significance when removing the overlap-
ping peaks with GATA1 (p-value=0.04 fold-change=2.25). These results 
using ChIP-seq peaks not only serve as in silico validation of our priori-
tized TFs, but also indicate that HLTF may bring regulations independent 
of GATA1 among top ranked SNPs. The data were downloaded from the 
ENCODE portal (Davis et al., 2018) with the following identifiers: 
ENCFF341UEE (TAL1) ENCFF389WLJ (GATA1) and ENCFF830OUU 
(HLTF).  

3.3 Robustness and generalizability of Motif-Raptor 
across traits 

To test the robustness of our procedure in recovering biological insights 
we performed additional analyses. First, we assessed the ability to recover 
relevant cell types and TFs as different numbers of SNPs were included 
corresponding to different thresholds for significance (up to a nominal p-
value of 0.05). These results are presented in Supplementary Material 
Section 4 and Supplementary Figure 11-14. Briefly we observed that the 
prioritized cell types and the significant TFs are still reported even when 
relaxing the proposed thresholds by the respective studies. However, it 
seems beneficial for the recovery of the TFs (at least for the traits we have 
analyzed) to relax the GWAS proposed threshold and include more SNPs. 
For example, for RBC, we can recover in addition to TAL1:GATA1 addi-
tional factors previously associated to erythroid biology in K562 (KLF1, 
several GATA1 motifs and GFI1B). This can be rationalized by the fact 
that our search space is limited to the chromatin accessible sites and by 
including more SNPs we may capture weaker signals that may still con-
tribute to the global modulation of these factors in these regions while 
controlling for potential false positives. 

Second to assess the quality of recovered cell types and TFs we com-
pared the results for related and unrelated traits. The idea here is that re-
lated traits may share similar biological mechanisms and therefore cell 
types and TFs while unrelated traits different ones. To this end we selected 
lupus (from UKBB v3), since it is more related to rheumatoid arthritis 
(RA) and autoimmunity, and total cholesterol (Hoffmann TJ et.al, Nature 
Genetics, 2018) is not related to RA nor red blood cell count. Briefly,  run-
ning Motif-Raptor on variants associated with lupus we can recover im-
mune related cell types (specifically, T cells) as we have also observed for 
RA (Supplementary Figure 11A and 13A) and identified overlapping 
immune related transcription factors, e.g. STAT1, GFI1, NFKB1 (Sup-
plementary Figure 11B and 13B). Running Motif-Raptor on total cho-
lesterol, we identified HepG2 and Ishikawa as the top two associated cell 
lines (Supplementary Figure 14A). Notably, HepG2, a liver derived line 
is commonly used to study the effect of genes or variants on cholesterol 
levels (HDL/LDL). Interestingly for this cell type we recovered factors 
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associated with the insulin pathway (e.g. HNF1A, ISL2, and MAFG), a 
pathway previously associated to cholesterol levels (Gylling et.al, Journal 
of Lipid Research, 2010). These analyses suggest that our procedure is 
robust and can prioritize relevant cell types and factors that may be impli-
cated in different traits and that it may be important to explore different 
significance thresholds to recover additional TFs for some traits. 

3.4 Comparison of Motif-Raptor with available tools  
We compared Motif-Raptor with existing tools to perform similar tasks 

even if they cover only a single step of our proposed pipeline.  
First, we compared step 1 of Motif-Raptor, i.e. the recovery of cell types 

based on a set of SNPs in DHS sites, with GREGOR (Schmidt et al., 2015) 
a tool that can explicitly account for LD structure but that requires in input 
sentinel SNPs. We observed highly concordant results for both GREGOR 
and Motif-Raptor for all the 4 traits considered (Supplementary Table 7).   

Second, we compared step 2 of Motif-Raptor with tools to scan and 
recover TF binding sites (MOODS), calculate the disruption based on ge-
netic variants (atSNP), and/or test the disruption significance per SNP 
(atSNP) or globally (SLDP). Based on the computational requirements, 
features of currently available tools and the obtained results, we believe 
that this comparison illuminates the motivation behind development of 
Motif-Raptor (Supplementary Figures 1-2).   

Finally, to test the possibility of extending Motif-Raptor beyond TF 
PWM models, we considered for the calculation of the TF modulation 
score in step 2 precomputed DeepBind models (Alipanahi et al., 2015). 
DeepBind characterizes TF binding based on a convolutional neural net-
work. We were not able to justify the adoption of DeepBind models in 
place of PWMs in Motif-Raptor. For example, although we observed sim-
ilar results for RBC traits in terms of recovering Gata1, in RA the proposed 
DeepBind model for NFKB1 was not recovered (Supplementary Figures 
15-18 and Supplementary  Table 9). Nonetheless, we believe this inte-
gration example illustrates the key steps necessary to extend Motif-Raptor 
to integrate more powerful  models to predict TF binding affinity in addi-
tion to PWMs. 

These comparisons and testing results are presented in detail in Sup-
plementary Material Section 4. 

4 Discussion 
We have described Motif-Raptor, a computational toolkit to study the ef-
fect of genetic variants on transcription factor binding sites in non-coding 
regions. These variants are associated with traits and disease phenotypes. 
Motif-Raptor consists of three steps that allow users to find relevant cell 
types, cell type-specific regions and TFs, to inspect and annotate the SNPs 
with TF binding effects. Importantly, our analysis does not rely on ChIP-
seq tracks since they are not readily available for several cell type/TFs but 
on the more broadly available TF PWM models. Owing to the efficient 
algorithmic design, it allows to compute genome-wide null models for 
each TF, and exhaustively explore and quantify the relationship between 
SNPs and putative TF binding sites. Motif-Raptor leverages not only chro-
matin accessibility, but also gene expression data to filter out false posi-
tives. Further, Motif-Raptor integrates well-established annotations to 
score individual SNPs based on their conservation and deleteriousness.  

In running our proposed three-step procedure it is important to keep in 
mind the following considerations and limitations.  

First, the removal of MHC region as proposed elsewhere (Reshef et al., 
2018) could significantly alter results. The application of this strategy de-
pends on the phenotype. For example, SNPs associated with RA are 
known to be enriched in the MHC region and thus the inclusion of this 

region may be important to characterize single RA-relevant SNPs with 
strong effects (Weyand and Goronzy, 2000; Newton et al., 2004). On the 
other hand, removal of the MHC region may be desired to capture residual 
signals elsewhere in the genome. As for the RBC count, the inclusion or 
exclusion of this region seems unimportant as shown by the presented re-
sults. 

Second, our approach is helpful to investigate if cell type specific reg-
ulators may be significantly disrupted by trait- or disease- associated var-
iants. However, our approach may miss mechanisms shared across differ-
ent cell type/tissues. 

Third, while TF motif models (PWMs) are available for hundreds of 
TFs, their quality is highly variable, and our analysis might be affected. In 
addition, multiple models may exist for the same TF. For these reasons in 
Motif-Raptor we use the non-redundant JASPAR database where  the best 
motifs for each TF are selected and strict quality filters are applied by its 
curators. Also, these models assume independence between nucleotides, 
an assumption that is some cases an oversimplification (Korhonen et al., 
2017). However, future versions of this tool could be extended to incor-
porate more advanced and specialized motif models based on Support 
Vector Machines (SVM) (Mordelet et al., 2013), SNP effect matrix 
(SEMpl) (Nishizaki et al., 2020), or deep learning classifiers (Alipanahi 
et al., 2015; Movva et al., 2019).  

Forth, our tool measures the significance of the effect of genetic vari-
ants on the entire set of binding events for a TF rather than individual 
SNPs in an efficient and scalable manner. Despite the overall association 
of these SNPs with phenotypes through modulation of TF binding site, the 
individual SNP effect on the direction of the phenotype needs to be exam-
ined case by case, depending on whether a given allele might increase or 
decrease the risk. However, we provide external scores/annotations and 
interactive plots for individual SNPs to help explore the most promising 
variant(s) for experimental validation.  

Fifth, Motif-Raptor does not identify target genes and to assess poten-
tial involvement of recovered TFs in modulating the expression of putative 
target genes we used a simple but imperfect heuristic i.e. we mapped each 
modulated binding site to the closest gene and then averaged the expres-
sion of these genes. Imprecise regulatory element to gene assignment may 
lead to false positives and weaken the signal, therefore it may be important 
in the future to explore more sophisticated methods such as ABC (Fulco 
et al., 2019).  

Finally, we want to reiterate that Motif-Raptor was designed to priori-
tize TFs and provides only informative plots for individual SNPs in its 
current implementation. However, future extensions or downstream anal-
yses are required to assess the significance of individual SNPs and their 
putative target genes. Also Motif-Raptor doesn't implement any prepro-
cessing or filtering step for the summary statistic files in input, therefore 
despite the assumption that these files are comprehensive and accurate, the 
biological insights and the prioritized factors we can recover may depend 
on the quality of these files.  

In summary, Motif-Raptor is a computational toolkit to test the signifi-
cance of the effects of genetic variants from GWAS analyses on transcrip-
tion factor binding sites. We believe that its adoption will help the genomic 
community in prioritizing potential cell type-specific, causal variants from 
GWAS summary statistics and to generate important hypotheses and in-
sights to the mechanisms of action of genetic variants in complex disease. 
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