
Trajectory Approximation of a Passively Actuated Solar Balloon in
Near-Earth Mission Scenarios

Marco Bassetto∗, Alessandro A. Quarta, Giovanni Mengali

Dipartimento di Ingegneria Civile e Industriale, University of Pisa, Italy

Abstract

The aim of this paper is to investigate the heliocentric motion of a passively actuated solar balloon placed at
a distance of about one astronomical unit from the Sun. The analysis exploits a recent thrust model, according
to which a solar balloon undergoes a passive control of its lightness number (that is, the ratio of the generated
thrust to the local weight of the entire spacecraft) in the form a proportional feedback controller of constant gain.
The spacecraft trajectory is obtained with a regularization of the equations of motion, in such a way that the
heliocentric dynamics of the passively actuated solar balloon becomes equivalent to that of a nonlinear oscillator
with a single degree of freedom. The approximate solution available for this type of nonlinear oscillator is then
used to accurately describe the heliocentric motion of the passively actuated solar balloon and to analyze a couple
of mission scenarios, that is, the execution of a phasing maneuver on an elliptical working orbit and the rotation
of the apse line of the osculating orbit.
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Nomenclature

a = semimajor axis, [au]
a = propulsive acceleration vector, [mm/s2]
ar = propulsive acceleration magnitude, [mm/s2]
{A, B} = constant coefficients
e = eccentricity
e = eccentricity vector
E = eccentric anomaly, [deg]
E = specific mechanical energy, [m2/s2]
El = Young’s modulus, [Pa]
f = natural frequency; see Eq. (32)
F = function of y; see Eq. (22)
g = auxiliary function; see Eq. (50)
G = primitive function; see Eq. (49)
h = auxiliary function; see Eqs. (4)
H = conserved quantity; see Eq. (23)

îr = radial unit vector
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ît = transverse unit vector
k = constant gain, [au−1]

k̃ = dimensionless gain; see Eqs. (11)
n = number of moles
O = Sun’s center of mass
p = semilatus rectum, [au]
P = balloon’s internal gas pressure, [Pa]
q = thickness of the shell, [m]
r = Sun-spacecraft distance, [au]
R = balloon’s radius, [m]
R = universal gas constant, [J/(K mol)]
r⊕ = reference distance, [au]
S = spacecraft center of mass
t = time, [years]
T = balloon’s internal gas temperature, [◦C]
T = polar reference frame
TI = inertial reference frame
u = radial component of the spacecraft velocity, [km/s]
V = balloon’s volume, [m3]
x = auxiliary variable; see Eq. (8)
y = auxiliary variable; see Eq. (12)
yC = center of oscillation
{α1, α2, α3, } = constant coefficients; see Eqs. (33)
β = lightness number
γ = E-sail performance parameter
εr = relative error in position
εt = relative error in time
θ = polar angle, [rad]
Λ = dimensionless constant coefficient; see Eq. (14)
µ� = Sun’s gravitational parameter, [km3/s2]
µ̃ = dimensionless gravitational parameter; see Eqs. (11)
ν = true anomaly, [deg]
ρ = Poisson’s ratio
τ = thermal expansion coefficient, [◦C−1]
φ = phasing angle, [deg]
∆ω = precession of the osculating orbit apse line, [deg]

Subscripts

eq = equivalent
f = final
max = maximum
min = minimum
0 = at t = t0
⊕ = at r = r⊕

Superscripts

· = derivative with respect to t
′ = derivative with respect to θ
∧ = approximate
− = limiting value
∼ = at r = r̃
? = target value
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1. Introduction

A solar balloon is a spherical solar sail consisting of a thin shell inflated with a suitable gas and externally
coated with a highly reflective material. The original concept of a solar balloon dates back to 1960 and is
related to NASA’s Project Echo [1, 2, 3], the first ever passive communications satellite experiment, which
was also useful for evaluating the perturbative effects of the solar radiation pressure in a low-Earth orbit [4];
see Fig. 1.

(a) Tensile stress test in a dirigible hangar. Image
Credit: NASA

N.A.S.A.

41m

(b) Characteristic dimensions.

Figure 1: NASA’s solar balloon Echo II

Like a Sun-facing solar sail, a solar balloon can only generate an outward radial propulsive acceleration,
which means that its thrust vector is always aligned with the local Sun-spacecraft (or radial) direction and
points away from the Sun. In a heliocentric mission scenario, the working principle of a passively actuated
solar balloon (PASB) is based on the alternate expansion and contraction of the thin shell when the balloon
either moves towards the Sun or away from it, respectively. More precisely, when it shifts towards the Sun,
the PASB undergoes an expansion due to the increase in temperature, which in turn raises the area exposed
to the Sun and so increases the solar radiation pressure force. Vice versa, a displacement away from the
Sun reduces the exposed area and decreases the magnitude of the generated thrust. Like a flat solar sail,
the performance of a solar balloon may be described by the lightness number β, a dimensionless positive
parameter defined as the ratio of the propulsive acceleration magnitude to the local Sun’s gravitational
acceleration. In this paper, the lightness number is assumed to be a constant parameter. Actually, due to
thermal degradation effects, its value tends to decrease over time and to progressively reduce the performance
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of the solar balloon [5, 6, 7]. Moreover, this work does not even consider wrinkles and creases, which may
be seen as degrading effects as well [8].

The peculiarity of a PASB is that it undergoes a so-called “passive β-control” in the form δβ = −k δr,
where δβ is the change in lightness number, k is a positive gain, and δr is the spacecraft displacement along
the Sun-spacecraft line [9]. In principle, a sort of “active β-control” could be obtained with a suitable device
capable of inflating/deflating the solar balloon, or by coating its external surface with materials that can
vary their reflectivity in a controlled way. In this regard, a possible option is to coat the external surface
with electrochromic materials, that is, materials with the capability of changing their optical characteristics
upon the application of an electrical voltage [10, 11, 12, 13, 14].

For practical purposes, a PASB is a promising option to stabilize an Earth-Sun L1-type artificial equi-
librium point with a passive β-control, provided that k is greater than a minimum threshold value [9]. This
problem has been also recently addressed by Vulpetti et al. [15], who investigated the possibility of obtaining
an early warning of solar storms caused by coronal mass ejection by means of a satellite maintained at an
artificial equilibrium point using a solar sail. In the context of PASBs, Aliasi et al. [16] investigated the
feasibility of stabilizing a collinear artificial Lagrangian point at linear order. It was found that a PASB
can only stabilize L1-type artificial equilibrium points sufficiently close to the Sun. However, since these
equilibrium points require considerable values of β (i.e., values that are beyond the current level of tech-
nological development) and high operational temperatures [16], they are not accessible in practice. In fact,
typical values of β are much smaller than unity; see for example some solar sail-based missions such as the
JAXA’s Interplanetary Kite-craft Accelerated by Radiation Of the Sun (IKAROS) [17, 18, 19], the NASA’s
NanoSail-D2 [20], or the Planetary Society’s LightSail 1 [21, 22] and LightSail 2 [23], for which the order of
magnitude of β ranges between 10−3 and 10−2. Instead, L1-type equilibrium points not so close to the Sun
cannot be stabilized due to the limitations on k. The actual value of k depends on a number of parameters
such as the Poisson’s ratio, the Young’s modulus, the thermal expansion coefficient of the shell material, and
the physical and molecular characteristics of the enclosed gas. According to Ref. [16] the required values of
k could be obtained with thermal expansion coefficients that are well beyond the current technology level.
On the other hand, all those problems may be overcome with an active control of the lightness number. In
this regard, Aliasi et al. [24], investigated the control of artificial Lagrangian points in the Alpha Centauri
A and B star system by means of an actively actuated solar balloon. With a linear stability analysis, the
authors [24] showed that, in some cases, the artificial equilibrium points can be stabilized with a simple
feedback control law based on an active β-control.

The aim of this paper is to analyze the heliocentric motion of a PASB starting from the propulsive
acceleration model proposed in Ref. [16]. In particular, the trajectory analysis is carried out through a
regularization of the equations of motion, which allows the PASB dynamics to be made equivalent to a
nonlinear oscillator with a single degree of freedom [25, 26]. An approximate solution, originally found
by Nayfeh and Mook for this type of nonlinear oscillator [27], is here exploited to accurately describe the
heliocentric trajectory of a PASB. Moreover, a set of mission scenarios are analyzed within the limits of
applicability of the adopted thrust model [16]. The novelty of this paper is twofold. First, we provide an
analytical approximation of the heliocentric trajectory of a PASB. In particular, through a suitable change
of variable, the heliocentric dynamics of a PASB is shown to be similar to that of a spinning Electric
Solar Wind Sail (E-sail) with a Sun-facing attitude [28, 29, 30]. Secondly, we explore the capabilities of a
PASB in a couple of near-Earth mission scenarios different from the generation of an artificial equilibrium
point [15, 31, 32].

The paper is organized as follows. Section 2 deals with the mathematical model that is used for describing
the orbital dynamics of a PASB in a near-Earth mission scenario. Section 3 presents the approximate
heliocentric trajectory and Section 4 discusses its validation through a comparison of the approximate
results with those obtained by a numerical propagation of the equations of motion. Section 5 investigates
the performance of a PASB in two mission scenarios, that is, a phasing maneuver on an elliptical working
orbit and the rotation of the apse line of the osculating orbit. Finally, Section 6 contains some concluding
remarks.
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2. Mathematical model

Consider a PASB S that, at the initial time t = t0 , 0, is covering a heliocentric parking orbit of semilatus
rectum p0 and eccentricity e0 < 1. Introduce a heliocentric polar reference frame T (O; îr, îθ), where the
origin O coincides with the Sun’s center of mass, îr is the radial (i.e., Sun-spacecraft) unit vector, while îθ
is the transverse unit vector, which lies on the parking orbit plane and points in the same direction as the
inertial velocity of the PASB. The spacecraft position is described through the orbital radius r and the polar
angle θ, that is, the angle (measured counterclockwise on the orbital plane) between the Sun-spacecraft unit
vector r̂ and the Sun-spacecraft line at the initial time t0; see Fig. 2.
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Figure 2: Reference frame and parking orbit characteristics.

2.1. PASB thrust model

The propulsive acceleration vector provided by a PASB may by written as

a = ar îr with ar , β
µ�

r2
> 0 (1)

where µ� ' 1.3271 × 1011 km3/s2 is the Sun’s gravitational parameter. The value of the lightness number
β depends on a number of physical characteristics such as the total spacecraft mass, the optical properties
of the reflective film, and the actual diameter of the balloon. Using the simplified mathematical model
described in Ref. [16], the lightness number of a PASB can be written as a function of r as

β = β⊕ − k (r − r⊕) (2)
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Figure 3: Conceptual sketch of the PASB behaviour in a near-Earth mission scenario.

where r⊕ , 1 au is a reference distance and β⊕ > 0 is the lightness number when r = r⊕. Figure 3 shows a
conceptual sketch of the behaviour of a PASB, where ∆r , |r − r⊕|.

Note that, in principle, Eq. (2) contemplates negative or null values of β when

r ≥ β⊕ + k r⊕
k

(3)

Since those values are not physically feasible, the trajectory analysis must be limited to the cases in which β >
0. Also recall that the thrust model can only be applied to heliocentric distances of about one astronomical
unit [16].

Rearranging Eq. (22) of Ref. [16] when r ' r⊕, the dimensionless product k r⊕ may be written as

k r⊕ =

(
h̃+ τ T̃

1 + 3 h̃

)
β̃

r̃/r⊕
with h̃ ,

1− ρ
El

P̃ R̃

2 q
(4)

where the superscript ∼ indicates that the generic variable corresponds to when r = r̃. In Eq. (4), ρ is
the Poisson’s ratio, El is the Young’s modulus, P is the pressure of the enclosed gas, R is the balloon
radius, q is the shell thickness, τ is the thermal expansion coefficient of the shell material, and T is the gas
temperature. The latter, in turn, depends on the incoming solar thermal power and on the optical properties
of the reflective surface (through the absorption and emissivity coefficients) and affects the gas pressure P ,
the balloon’s radius R, and, ultimately, the value of h; see Eq. (4).

For example, Aliasi et al. [16] estimated that k r⊕ ' 2.6× 10−4 when the shell is made of Kapton (that

is, when ρ = 0.34, El = 2.5 × 109 Pa, and τ = 2 × 10−5 ◦C−1), P̃ R̃/ (2 q) = 7 × 104 Pa, T̃ ' 252 ◦C,

r̃ = 0.9804 r⊕, and β̃ = 0.05. Note that, because of the assumption of perfect gas [16], the number of moles
n may be calculated from the knowledge of the balloon’s radius as

n =
P̃ Ṽ

R T̃
(5)

where Ṽ , 4π (R̃)3/3 is the balloon’s volume and R ' 8.3145 J/(K mol) is the universal gas constant. Using

the data of Ref. [16] and assuming R̃ = 20.55 m and q = 18µm (the design parameters of NASA’s Echo

II [33]), we get P̃ ' 0.1226 Pa and n ' 1.0193 mol. Instead, when r̃ = r⊕ (i.e., β̃ ≡ β⊕), R̃ = 20.55 m,

6



n = 1 mol, T̃ = 250 ◦C−1, q = 18µm, and the shell is made of Kapton, we get k r⊕ ' 5× 10−3 β⊕. Although
k r⊕ depends on many parameters, such as the shell material, the size of the PASB, the optical properties
of its external surface, and the properties of the enclosed gas, without loss of generality we can reasonably
assume that the product k r⊕ can vary between 0 and β⊕/100. In particular, the limiting case k = 0
models the behaviour of an ideal Sun-facing solar sail or a Smart Dust [34, 35, 12] with constant optical
properties [7, 36, 37].

2.2. PASB equations of motion

Since a solar balloon can only generate an outward radial propulsive acceleration, the semilatus rectum
p of the osculating orbit is a constant of motion (i.e., p = p0 for all t ≥ t0). Accordingly, the equations
describing the heliocentric motion of a PASB at a distance of about one astronomical unit from the Sun are

ṙ = u , u̇ = −µ�

r2
+
µ� p0
r3

+ ar , θ̇ =

√
µ� p0

r2
(6)

where the dot symbol denotes a derivative taken with respect to the time t, u is the radial component of
the spacecraft velocity, and ar is given by Eq. (1). Equations (6) are completed by the initial conditions

r(t0) = r0 ,
p0

1 + e0 cos ν0
, u(t0) = u0 ,

√
µ�

p0
e0 sin ν0 , θ(t0) = 0 (7)

where ν0 is the spacecraft true anomaly on the parking orbit at t0; see Fig. 2. According to Eqs. (6),
the dynamics of a PASB is equivalent to that of a spacecraft subject to a continuous radial propulsive
acceleration, which is inversely proportional to the orbital radius. In this case, the resulting trajectory may
be conveniently analyzed with an approach useful for investigating the effect of a conservative perturbative
radial acceleration on the motion of a spacecraft in a two-body gravitational field. In particular, the next
section deals with a regularization of the two-body motion [25, 26, 38], through which Eqs. (6)-(7) are
rewritten in the form of an equivalent nonlinear oscillator with a single degree of freedom.

2.3. Regularization of the equations of motion

Equations (6) are rearranged in a more compact form by introducing the auxiliary dimensionless variable
x < 1, defined as

x , 1− p0
r

(8)

and using θ as the independent variable. The transformation defined in Eq. (8) is consistent with the
regularization of the two-body motion described by Burdet and Ferrándiz [25, 26]. In the past, the same
change of variables has been successfully exploited to analyze the trajectory of a spacecraft subject to a series
of radial and tangential impulses [39], to a constant radial propulsive acceleration [40], or to the propulsive
acceleration provided by a Sun-facing E-sail [29, 30].

From Eqs. (6) and (8), the radial velocity u and its time derivative u̇ can be written as

u =

√
µ�

p0
x′ , u̇ =

µ�

p20
(1− x)

2
x′′ (9)

where the prime symbol denotes a derivative taken with respect to the polar angle θ. Bearing in mind
Eqs. (8)-(9), Eqs. (6)-(7) give

x′′ = 1− µ̃− x− k̃

1− x
, x′(0) = x′0 , e0 sin ν0 , x(0) = x0 , −e0 cos ν0 (10)

where {µ̃, k̃} are two dimensionless constants of motion, defined as

µ̃ , 1− β⊕ − k r⊕ , k̃ , k p0 (11)

The first of Eqs. (10) may be further simplified by introducing the auxiliary variable y < 1, defined as

y ,
x+ µ̃− 1

µ̃
(12)

7



so that the PASB dynamics reduces to

y′′ = −y +
Λ

1− y
, y′(0) = y′0 ,

e0 sin ν0
µ̃

, y(0) = y0 , 1− 1 + e0 cos ν0
µ̃

(13)

where Λ ≤ 0 is another constant of motion, given by

Λ , − k̃

µ̃2
(14)

which ranges (depending on the value of k) between a minimum negative value and zero. Figure 4 shows
the variation of min(Λ) as a function of p0 and β⊕ when k r⊕ ∈ [0, β⊕/100]. Note that, as long as p0 ' r⊕, it
is found that |Λ| � 1 for all values of β⊕ consistent with the current level of technological development [17,
18, 19, 20, 21, 22, 23]. This result will be useful later to obtain a simplified expression of the heliocentric
trajectory of a PASB in a near-Earth mission scenario.
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Figure 4: Variation of min(Λ) as a function of p0, β⊕, and k r⊕ ∈ [0, β⊕/100].

In particular, when Λ = 0 (that is, when k = 0, k̃ = 0 and µ̃ = 1 − β⊕), Eq. (13) describes a harmonic
oscillator with unitary natural frequency, the solution of which is

y = −β⊕ + e0 cos ν0
1− β⊕

cos θ +
e0 sin ν0
1− β⊕

sin θ (15)

In that case, the PASB behaves like a Sun-facing solar sail and the spacecraft trajectory relative to the Sun
is a conic section. Indeed, from Eq. (15)

r =
peq

1 + eeq cos νeq
(16)

with

peq ,
p0
µ̃

, eeq ,

√
e20 + β2

⊕ + 2 e0 β⊕ cos ν0

1− β⊕
, νeq , θ + arctan2 (e0 sin ν0, β⊕ + e0 cos ν0) (17)

is the polar equation of a conic section with semilatus rectum peq, eccentricity eeq, and true anomaly νeq.
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In the general case when Λ < 0, Eq. (13) states that the polar form of the PASB heliocentric trajectory
(i.e., the function r = r(θ)) can be obtained by analyzing an equivalent nonlinear oscillator with a single
degree of freedom (i.e., the state y). According to Nayfeh and Mook [27], the first of Eqs. (13) describes
the oscillation of a moving wire with constant mass m and length L, which is crossed by a steady electrical
current i1. The wire is constrained by a linear elastic spring with constant stiffness kel and is subject to the
(attractive) magnetic force exerted by a fixed wire of equal length and crossed by a steady electrical current
i2 flowing in the opposite direction than i1. The situation is illustrated in Fig. 5, where l is the rest spring
length, d > l is the (constant) distance between the left constraint and the fixed wire, and s ∈ [−l, d − l)
represents the displacement of the moving wire.

l

s

i1 i2

d

m

spring

fixed
wire

moving
wire

k

L

Figure 5: Current-carrying wire subjected to the magnetic force of a current-carrying conductor and to the restoring force of
a spring. Adapted from Ref. [27].

The dynamics of the oscillating wire of Fig. 5 is described by the second-order differential equation [27]

d2σ

dζ2
= −σ +

λ

1− σ
(18)

where

σ ,
s

d− l
, λ ,

µ0 i1 i2 L

2π kel (d− l)2
, ζ ,

√
kel
m
t (19)

and µ0 ≡ 4π × 10−7 H/m is the vacuum permeability. Since λ is a negative constant (because the two
currents i1 and i2 have opposite signs), Eq. (18) is formally equivalent to the first of Eqs. (13). The
analytical results for this particular nonlinear oscillator [27, 41, 42] may therefore be used to describe the
heliocentric trajectory of a PASB. Note also that Eqs. (13) are formally equivalent to Eqs. (4) of Ref. [29],
that is

x′′ = −x+
γ

1− x
, x′(0) = e0 sin ν0 , x(0) = −e0 cos ν0 (20)

which represent the heliocentric motion of a Sun-facing E-sail, where γ , ac r⊕ p0/µ� ≥ 0 is the E-sail
performance parameter (being ac the E-sail characteristic acceleration), while x is defined as in Eq. (8).
Despite such an analogy, the resulting trajectories will be different because of the opposite sign of the
forcing terms (in fact, γ ≥ 0 and Λ ≤ 0) and, also, since y 6= x; see Eq. (12).
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2.4. Characteristics of the equivalent nonlinear oscillator

The first integral of the (autonomous) differential equation (13) is

(y′)2

2
+ F (y) = H (21)

where

F (y) ,
y2

2
+ Λ ln (1− y) (22)

is a dimensionless function of y, while H is a constant of motion that depends on the initial conditions and
on the physical properties of the PASB, viz.

H ,
(y′0)2

2
+
y20
2

+ Λ ln (1− y0) (23)

Note that Eq. (23) reduces to

H =
1

2

(
1− 1

µ̃

)2

− Λ ln (µ̃) (24)

when the parking orbit is circular (i.e., when e0 = 0) and, as such, y′0 = 0 and y0 = (1− 1/µ̃); see Eqs. (13).
The left-hand side of Eq. (21) is therefore a conserved quantity of the dynamical system described by

Eqs. (13). Since (y′0)2/2 is always non-negative, the function F (y) ranges between a minimum, that is,

Fmin , H −max
{

(y′)
2
/2
}

and a maximum, that is, Fmax = H. In particular, the expression of Fmin may

be calculated by enforcing the necessary condition

∂F (y)

∂y
= 0 (25)

from which

y = yC ,
1

2
−
√

1

4
− Λ (26)

so that

Fmin =
1

2

(
1

2
−
√

1

4
− Λ− Λ

)
+ Λ ln

(
1

2
+

√
1

4
− Λ

)
(27)

The graph of the function Fmin = Fmin(Λ) is reported in Fig. 6, which clearly shows that Fmin < 0 (or
Fmin = 0) when Λ < 0 (or Λ = 0).

From a physical point of view, the function F = F (y) is minimum when the absolute value of the radial
velocity is maximum (and, therefore, the radial acceleration is zero), while it is maximum when the radial
velocity is zero (and, therefore, the absolute value of the radial acceleration is maximum). In other words,
the motion of the PASB, both when described on the plane of the dimensionless variables or on the (r, θ)
plane, is constrained within an annular region. The values of y that delimit the motion are the solutions of
the equation F (y) = H, that is

y2

2
− y20

2
+ Λ ln

(
1− y
1− y0

)
− (y′0)2

2
= 0 (28)

which may be solved either numerically or graphically. This means that the trajectory of a PASB is bounded
as long as Eq. (2) holds.

Note that the condition (3) is equivalent to

y ≥ ȳ , 1− k̃

µ̃ (1− µ̃)
< 1 (29)

The previous trajectory analysis is therefore valid when y < ȳ, that is, when β > 0. Moreover, the constraint
on the maximum allowable value of y involves a constraint on Fmax, that is, on the constant H. As a matter
of fact, y < ȳ implies

H < H̄ ,
1

2

[
1− k̃

µ̃ (1− µ̃)

]2
+ Λ ln

[
k̃

µ̃ (1− µ̃)

]
(30)
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In other terms, if the initial conditions and the physical properties of the PASB are such that H ≥ H̄, then
the thrust model is no longer valid as it would predict negative values of β.

3. Analytical approximation of heliocentric trajectory

The transformation of the PASB dynamics into an equivalent nonlinear oscillator allows an accurate
approximation of its heliocentric trajectory to be obtained. This is made possible by paralleling the procedure
suggested by Nayfeh and Mook [27], that is, by substituting y = yC + δy into the first of Eqs. (13) and
expanding the resulting equation in a Taylor series about δy = 0. The resulting approximate solution is

y ' ŷ , yC +A cos (f θ +B)− A2 α2

2α1

[
1− cos (2 f θ + 2B)

3

]
(31)

where yC is given by Eq. (26), while f is the (approximate) natural frequency of the equivalent nonlinear
oscillator, that is

f ,
√
α1

(
1 +A2 3A2 α3

8α1
− 5A2 α2

2

12α2
1

)
(32)

with {α1, α2, α3} defined as

α1 , 1− Λ

(1− yC)
2 , α2 , − Λ

(1− yC)
3 , α3 , − Λ

(1− yC)
4 (33)

Since Λ < 0 and yC < 0, the coefficients α1, α2, and α3 are all strictly positive. The constants A and B must
be determined from the initial conditions (the last two of Eqs. (13)) by numerically solving the following
system of nonlinear equations

1− yC −
1 + e0 cos ν0

µ̃
−A cosB +

A2 α2

2α1

[
1− cos (2B)

3

]
= 0 (34)

e0 sin ν0
µ̃

+Af sinB +
A2 α2

3α1
sin (2B) = 0 (35)
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where we point out that the constant A is also implicitly contained in f ; see Eq. (32). Figure 7 shows the
variation of f with k r⊕ when r0 = r⊕, e0 = 0, and β⊕ = 0.1. It can be seen that the natural frequency
of the equivalent nonlinear oscillator is close to unity, which corresponds to when the PASB behaves like a
Sun-facing solar sail; see Eq. (15).
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Figure 7: Variation of f with k r⊕ when r0 = r⊕, e0 = 0, and β⊕ = 0.1.

When A and B have been numerically found from Eqs. (34)-(35), the (approximate) polar form of the
heliocentric trajectory is obtained from Eqs. (8)-(12), viz.

r ' r̂ , p0/µ̃

1− ŷ
≡ p0/µ̃

1− yC −A cos (f θ +B) +
A2 α2

2α1

[
1− cos (2 f θ + 2B)

3

] (36)

This last equation allows the velocity components of the PASB to be written as a function of θ. In fact,
bearing in mind the first of Eqs. (9) and Eq. (12), the radial (u) and transverse (r θ̇) components of the
spacecraft velocity are

u =

√
µ� p0 r

′

r2
, r θ̇ =

√
µ� p0

r
(37)

where

r′ ' r̂′ , p0 y
′

µ̃ (1− y)
2 ≡

−p0 f
[
A sin (f θ +B) +

A2 α2

3α1
sin (2 f θ + 2B)

]
µ̃

{
1− yC −A cos (f θ +B) +

A2 α2

2α1

[
1− cos (2 f θ + 2B)

3

]}2 (38)

Finally, the approximate expression of time, referred to as t̂, may be obtained as a function of θ by evaluating
the integral

t ' t̂ , 1

µ̃2

√
p30
µ�

∫ θ

0

{
1− yC −A cos (f ξ +B) +

A2 α2

2α1

[
1− cos (2 f ξ + 2B)

3

]}−2
dξ (39)
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3.1. Case of circular parking orbit

In the special case of a circular parking orbit, the pair {A,B} can be analytically calculated as in Ref. [30],
where the solutions reported in Ref. [29] are applied to study the phasing maneuvers of a Sun-facing E-sail
orbiting around the Sun. More precisely, if e0 = 0, Eq. (35) is solved with B = 0, whereas Eq. (34) does not
contain f , which in turn depends on A. Substituting B = 0 into Eq. (34) we get

A =
3α1

2α2
−

√
9α2

1

4α2
2

− 3α1

α2

(
1− yC −

1

µ̃

)
(40)

Since y′0 = 0, Eq. (28) gives the extreme values of y as the solutions of the following equation

y2

2
− y20

2
+ Λ ln

(
1− y
1− y0

)
= 0 (41)

which is solved for

y = y0 , y ' yC −A−
A2 α2

3α1
> y0 (42)

where the upper bound is obtained by calculating the maximum of Eq. (31) with B = 0. To summarize,
when the parking orbit is circular, the heliocentric trajectory of a PASB is bounded within an annular region,
that is, r ∈ [rmin, rmax], where

rmin = r0 , rmax =
r0/µ̃

1− yC +A+
A2 α2

3α1

(43)

Figure 8 shows the variation of rmax/r0 as a function of k r⊕ and r0 when β = 0.1. It is worth noting that
the value of rmax/r0 is independent of r0 when k = 0. Moreover, it is easy to verify that, when k = 0,
rmax/r0 = 1/(1 − 2β⊕). This occurs because k = 0 implies µ̃ = (1− β⊕), yC = 0, α1 = 1, α2 = 0, and
A = β⊕/(β⊕ − 1); compare Eq. (15) with e0 = 0 and Eq. (31) with f = 1 and B = 0.
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Figure 8: Variation of rmax/r0 as a function of k r⊕ and r0 when β = 0.1.
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3.2. Simplified trajectory equation

A substantial simplification of the approximate trajectory of a PASB can be obtained by observing that
α2/α1 and α3/α1 are typically much smaller than unity. In fact, they may be written as a function of Λ as

α2

α1
=

Λ(
1

2
+

√
1

4
− Λ

) (
2 Λ− 1

2
−
√

1

4
− Λ

) (44)

α3

α1
=

Λ(
1

2
+

√
1

4
− Λ

)2 (
2 Λ− 1

2
−
√

1

4
− Λ

) (45)

which are plotted in Fig. 9 for Λ ∈ [−10, 0].
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Figure 9: Variation of ratios α2/α1 and α3/α1 as a function of Λ.

According to Fig. 9, the ratio α2/α1 (or α3/α1) has a global maximum when Λ ' −1.2071 (or Λ '
−0.5428) and its corresponding value is approximately equal to 0.1716 (or 0.1134). However, since |Λ| � 1,
then {α2/α1, α3/α1} ' −Λ and the term A2 α2/ (2α1) in Eq. (31) may be neglected, while the natural
frequency of the equivalent nonlinear oscillator (see Eq. (32)) can be simplified as

f '
√
α1 ≡

√
1− 4 Λ(

1 +
√

1− 4 Λ
)2 (46)

which is an explicit function of Λ. Neglecting the term A2 α2/ (2α1) in Eq. (31) allows Eqs. (36)-(38) to be
rewritten in a more compact form as

r̂ ' p0/µ̃

1− yC −A cos (f θ +B)
, r̂′ ' −p0 f A sin (f θ +B)

µ̃ [1− yC −A cos (f θ +B)]
2 (47)

from which the extremes of the Sun-spacecraft distance are given by

rmin = min

(
p0/µ̃

1− yC ±A

)
, rmax = max

(
p0/µ̃

1− yC ±A

)
(48)
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In this case, the computation of the integral in Eq. (39) is remarkably simplified. In fact, neglecting the
term A2 α2/(2α1), the antiderivative of the integrating function in Eq. (39) is

G(θ) =
2Ag

f
[
A2 − (yC − 1)

2
]

[(yC −A− 1) g2 +A+ yC − 1]
+

+

2 (yC − 1) arctan

(
−g
√
yC −A− 1

yC +A− 1

)
f
[
(yC − 1)

2 −A2
]3/2 (49)

where

g = g(θ) , tan

(
f θ +B

2

)
(50)

Therefore, the flight time may be approximated as

t ' t̂ ,

√
p30
µ�

G(θ)−G(0)

µ̃2
(51)

3.3. Orbital parameters of osculating orbit

Consider now the evolution of the orbital parameters of the osculating orbit, that is, the evolution of
semi-major axis and eccentricity and the rotation of the apse line. The osculating semi-major axis may be
obtained from the equation of the specific mechanical energy E as

a , −µ�

2 E
(52)

where

E ,
u2 + (r θ̇)2

2
− µ�

r
=
µ�

r

{
p0
2 r

[
1 +

(
r′

r

)2
]
− 1

}
(53)

from which its approximate expression is

a ' â ,
r̂4

2 r̂3 − p0 [r̂2 + (r̂′)2]
(54)

where r̂ and r̂′ are given by Eqs. (36)-(38), respectively, or by Eqs. (47) when A2 α2/(2α1) is neglected. The
eccentricity of the osculating orbit is accurately approximated as

e ' ê ,
√

1− p0
â

=

√
r̂4 − 2 p0 r̂3 + p20 [r̂2 + (r̂′)2]

r̂2
(55)

Finally, the rotation ∆ω of the apse line corresponds to the rotation of the eccentricity vector e. The
components of the eccentricity vector in an inertial reference frame TI may be approximated as

[e]TI ' [ê]TI ,
p0
r̂

(r̂′/r̂) sin θ + cos θ
sin θ − (r̂′/r̂) cos θ

0

 (56)

from which
∆ω ' ∆ω̂ , arctan2 [sin θ − (r̂′/r̂) cos θ, (r̂′/r̂) sin θ + cos θ] (57)

Note that, since the functions r̂ and r̂′ are periodic with respect to θ with a period Θ = 2π/f , the variations
of â, ê, and ∆ω̂ are also periodic with respect to θ with the same period.
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4. Model validation

This section discusses the validation of the analytical approximation of the heliocentric trajectory, both
in its complete form of Eq. (36) and in the simplified one obtained by neglecting A2 α2/(2α1); see the first
of Eqs. (47). Such a validation is performed by comparing the approximate results with those obtained by
numerically integrating Eqs. (13) with a variable order Adams-Bashforth-Moulton PECE solver [43] with
absolute and relative errors equal to 10−12.

The accuracy of the analytical approximation is measured by the relative error in orbital radius, that is,
by evaluating the function εr = εr(θ), defined as

εr ,
|r − r̂|
r

(58)

where r (or r̂) is the value of the Sun-spacecraft distance at a given θ evaluated through the numerical
integration of the equations of motion (or using the approximate model). Note that r and r̂ are calculated
with the same initial conditions (e0, p0, and ν0) and the same performance parameters (β⊕ and k) of the
PASB.

Figure 10 shows the maximum value of εr(θ) as a function of ν0 during 10 revolutions around the Sun
(i.e., for θ/Θ ∈ [0, 10]), when e0 = e⊕ , 0.0167086, p0 = r⊕ (1 − e2⊕), β⊕ = 0.1, and k r⊕ = 10−3. Such
a situation corresponds to a deployment of the PASB on a parabolic escape orbit relative to the Earth.
In particular, Fig. 10(a) shows max(εr) when r is calculated through Eq. (36), whereas Fig. 10(b) shows
max(εr) when r is given by the first of Eqs. (47). In both cases the maximum relative error is very small as
it never exceeds 1.6× 10−5.

Figure 11 shows the maximum relative error during 10 revolutions around the Sun, when e0 = 0 and p0 =
r⊕, as a function of β⊕ ∈ [0, 0.1] and k r⊕ = {10−4, 2× 10−4, 5× 10−4, 10−3}. Although max(εr) increases
with β⊕ and k r⊕, it never exceeds 1.2 × 10−5. In conclusion, Figs. 10-11 confirm that the approximation
given by the fist of Eqs. (47) is very accurate.

Finally, the accuracy of the estimate of t, obtained from Eq. (51), has been investigated by numerically
solving the differential equation

t′ =

√
p30/µ�

µ̃2 (1− y)
2 (59)

In this case, the relative error in terms of flight time εt = εt(θ) is defined for t > 0 as

εt ,

∣∣t− t̂∣∣
t

(60)

Figure 12 shows the function εt = εt(θ) for θ/Θ ∈ (0, 10] when e0 = e⊕, p0 = r⊕ (1 − e2⊕), ν0 = 90 deg,
β⊕ = 0.1, and k r⊕ = 10−3. Note that εt never exceeds 1.7× 10−5.

Figure 13 shows the parking orbit and the propelled trajectory when p0 = r⊕ (1 − e2⊕), e0 = e⊕, ν0 =
90 deg, β⊕ = 0.1, and k r⊕ = 10−3. The numerical solution is plotted with a solid black line, while the
approximate one is drawn with a dotted red line. Notably, the two trajectories are substantially coincident.

5. Mission applications

Since the propulsive acceleration model described by Eqs. (1)-(2) is valid when r ' r⊕ [16], the choice
of the mission scenarios must necessarily consider the limits of applicability of the thrust model itself. In
particular, we will assume that the parking orbit is nearly circular (i.e., e0 � 1), r0 ' r⊕, and β⊕ � 1.
These hypotheses guarantee that r ' r⊕ for all t ≥ t0.

To simplify the following analysis, we will also consider the simplified case in which the heliocentric
trajectory is given by Eq. (47). Two mission applications are studied, that is, the execution of a phasing
maneuver on an elliptical working orbit and the rotation of the apse line of the osculating orbit. It is
worth noting that the possible applications of a PASB are limited by the fact that a solar balloon can only
generate a purely radial thrust. However, unlike a solar sail, no attitude correction maneuver is necessary
since the balloon generates a radial thrust whatever its orientation is. Nonetheless, the analyzed mission
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Figure 10: Maximum relative error in orbital radius during 10 revolutions around the Sun, when e0 = e⊕, p0 = r⊕ (1 − e2⊕),

β⊕ = 0.1, and k r⊕ = 10−3, as a function of ν0.

scenarios are useful for several practical purposes. A phasing maneuver might be useful, for example, when
its aim is to place a spacecraft in the L4 or L5 Lagrangian point of the Sun-[Earth+Moon] system for the
exploration of the Trojan asteroids [44]. An artificial precession of the apse line might instead be useful for
the generation of Earth-following orbits, which are practical for solar activity monitoring and near-Earth
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as a function of θ/Θ ∈ (0, 10].

object surveillance [45, 46].

5.1. Phasing maneuvers

A phasing maneuver consists in changing the angular position of a spacecraft along an elliptical working
orbit in such a way that, at the end of the maneuver, the spacecraft true anomaly is different from the one
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it would have as a result of the gravitational action of the primary body alone. The use of a propellantless
propulsion system is a convenient way of performing such a mission. Suffice it to mention the work by
McInnes [47], who investigated the azimuthal repositioning of payloads in a heliocentric circular orbit using
a solar sail, or the paper by Bassetto et al. [35], who analyzed the phasing maneuver of a solar sail along
an elliptical heliocentric orbit, where the phasing orbit is composed of two symmetric logarithmic spiral
trajectories connected with a single coasting arc. The same problem was also addressed in an optimal
framework in Ref. [48], where the spacecraft primary propulsion system is a solar sail, and in Refs. [49, 50],
where the spacecraft is propelled by an E-sail. In terms of control law, the simplest way to perform a phasing
maneuver is to accomplish it by applying a purely radial thrust, as illustrated in Ref. [30] in the case of a
spacecraft equipped with a Sun-facing E-sail.

Typically, a phasing maneuver is designed by first selecting the phasing angle and then by determining
the required thrust profile and flight time. In our case, the aim is to find the relationships among β⊕, k,
p0, the duration tf of the phasing maneuver, and the phasing angle φ. Here, tf corresponds to the length
of propelled trajectory and coincides with the minimum time interval that the PASB takes to come back to
the initial orbit after t0. The initial orbit is restored when a = a0, e = e0, and ∆ω = 0. Therefore, tf may
be approximated with Eq. (51), that is

tf '

√
p30
µ�

G(Θ)−G(0)

µ̃2
(61)

where

Θ ' 2π
√
α1
≡ 2π√

1− 4 Λ(
1 +
√

1− 4 Λ
)2 (62)

depends on Λ, that is, on {β⊕, k, p0}. The corresponding phasing angle φ is given, as an implicit function
of {β⊕, k, p0, e0, ν0}, by

φ ' Θ− (νf − ν0) (63)
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where νf is the solution of an inverse Kepler’s problem, that is√
a30
µ�

(Ef − e0 sinEf − E0 + e0 sinE0)− tf = 0 (64)

where

E0 , 2 arctan

[√
1− e0
1 + e0

tan
(ν0

2

)]
, Ef , 2 arctan

[√
1− e0
1 + e0

tan
(νf

2

)]
(65)

are the eccentric anomalies at the initial time and at the end of the phasing maneuver, respectively. Note
that the difference (νf − ν0) must range within the interval [0, 2π) rad. Finally, it is worth noting that the
flight time and the corresponding phasing angle are obtained assuming a single period of the equivalent
nonlinear oscillator. However, multiple phasing angles may also be achieved by simply considering two or
more periods of the equivalent oscillator.

5.2. Precession of the line of apsides
According to Eq. (57), the effect of the propulsive acceleration produced by a PASB determines a rotation

of the apse line of the osculating orbit. Note that Eqs. (6) do not take into account perturbative forces that,
through a little change in the spacecraft states, may cause a rotation of the apse line of the osculating orbit.
For this reason, the only force capable of rotating the apse line of the osculating orbit is the propulsive one
generated by the solar balloon. Since the propulsive acceleration cannot be set to zero, a rotation of the apse
line of the osculating orbit requires the balloon to be released at the end of the maneuver. In particular,
it is interesting to evaluate the apse rotation when, after a leg of propelled trajectory, the initial values of
semilatus rectum and eccentricity are restored. Over one period of propelled trajectory this obviously occurs
when θ = {0, Θ}, that is, at the initial time or at the end of the propelled arc, but these are not the only
possible cases. In fact, assuming {e0, ν0} 6= 0, there is a value of θ (that is, θ? ∈ (0, Θ)) such that the
corresponding values of p, e, and r are equal to the initial ones and, at the same time, ∆ω 6= 0.

It can be verified that, when θ = θ?, then r′(θ?) = −r′(0) = −r′(Θ). With reference to the first of

Eqs. (47), the approximate value of θ? (i.e., θ̂?) must satisfy the following equality

A cos
(
f θ̂? +B

)
= 1− yC −

1 + e0 cos ν0
µ̃

(66)

In general, Eq. (66) admits two solutions, that is

θ̂?1 =
1

f

{
arccos

[
1

A

(
1− yC −

1 + e0 cos ν0
µ̃

)]
−B

}
(67)

θ̂?2 =
1

f

{
2π − arccos

[
1

A

(
1− yC −

1 + e0 cos ν0
µ̃

)]
−B

}
(68)

which give real values if

−1 ≤ 1

A

(
1− yC −

1 + e0 cos ν0
µ̃

)
≤ 1 (69)

In fact, the use of the approximate relation (66) makes the solutions (67)-(68) complex for certain
combinations of e0 and ν0. When the inequality (69) is not met, the solutions (67)-(68) cannot be used,
and an estimate of θ? must be obtained numerically. However, Eqs. (67)-(68) give complex numbers in the
proximity of the perihelion or aphelion of the parking orbit, that is, when ν0 ' {0, 180}deg. If, instead,
the condition (69) is satisfied, the choice of the right value of θ? must be made according to the following
scheme

θ̂? =


min

(
θ̂?1 , θ̂

?
2

)
if sin ν0 > 0

max
(
θ̂?1 , θ̂

?
2

)
if sin ν0 < 0

(70)

For example, Fig. 14 shows the variation of θ̂? as a function of ν0 when a0 = r⊕, e0 = {e⊕, 2 e⊕, 3 e⊕},
β⊕ = 0.1, and k r⊕ = 10−3. Figure 15 illustrates the corresponding (approximate) precession of the line of

apsides, which is obtained by substituting θ̂? into Eq. (57). By way of example, a precession of −90 deg of
the line of apsides is obtained with a swept angle of about 19 deg and starting from ν0 ' 251 deg.
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6. Conclusions

This paper has analyzed the heliocentric motion of a passively actuated solar balloon placed at a distance
of about one astronomical unit from the Sun. The heliocentric trajectory has been found by exploiting the
possibility of reducing the spacecraft two-dimensional dynamics to an equivalent nonlinear oscillator with
a single degree of freedom. The approximate solution available for such a nonlinear oscillator is able to
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accurately describe the motion of the passively actuated solar balloon. Finally, two mission scenarios of
practical interest have been discussed with the aid of the approximate model.

The simplified mathematical model allows the designer to explore a large number of passively actuated
solar balloon-based mission scenarios with a negligible computational cost and an accuracy consistent with
a preliminary mission phase. The main drawback of the proposed set of analytical expressions is related to
the intrinsic limits of the employed thrust model. In this sense, a natural extension of this work is to look
for a more refined thrust model, capable of describing the passively actuated solar balloon dynamics even
when the distance from the Sun deviates significantly from one astronomical unit. A further improvement
of the analysis is to evaluate the performance of an active β-control.
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