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A B S T R A C T   

Computational models that generate synthetic heart rate variability (HRV) series constitute important tools for 
the assessment of the effect of autonomic nervous system activity on cardiovascular control, and for the eval
uation of novel algorithms using synthetic data. A widely used technique for synthetic HRV generation is the 
integral pulse frequency modulation (IPFM) model; however, IPFM relies on the HRV spectral paradigm, which 
cannot separate sympathetic and vagal oscillations that are overlapped in the low-frequency band 
(0.04–0.15 Hz). To overcome this limitation, a novel IPFM-inspired model driven by cardiac sympathetic and 
vagal dynamics estimated from HRV is proposed, where our recently developed sympathetic and para
sympathetic activity indices that rely on orthonormal Laguerre expansions of the RR interval autoregressive 
kernels are exploited. The performance of the proposed model is evaluated by comparing the synthetic vs. real 
RR interval series in a simulation study involving postural changes, with real HRV data gathered from 10 healthy 
subjects. Moreover, the performance of the proposed model is compared with that of the standard IPFM to 
discern different autonomic control states associated with resting and postural changes. The results confirm that 
the proposed physiologically inspired model adequately predicts RR intervals during resting and postural 
changes. The proposed model clearly outperforms the standard IPFM method, considering both median error, 
and maximum error. The developed model provides valuable insights for a better understanding of the sym
pathovagal activity in the analysis of heartbeat dynamics.   

1. Introduction 

Heart rate variability (HRV) is associated with variations in the in
tervals between subsequent heartbeats or equivalently in the instanta
neous heart rate (HR). The computational analysis of cardiac activity 
through HRV has been acknowledged as a standard in both research and 
clinical practice [1–3]. The advantages of HRV analysis is mainly 
attributed to its easy and non-invasive application to assess meaningful 
physiological and pathological correlates of several HRV markers [4–6]. 
HRV studies have also enabled physiological characterisation of life 
processes, such as emotions [7–10], attention and decision making [11], 
and physical exercise [12], thereby prompting the development of 
commercial devices to derive HRV markers [13]. 

Heartbeat generation has generally been described as a result of 
continuous interactions within the autonomous nervous system (ANS), 
specifically its sympathetic and parasympathetic branches [14]. More
over, such interactions with the central nervous system (CNS) are crucial 

for heartbeat dynamics through the neurovisceral regulatory system 
activity involved in several physiological processes [15]. This interde
pendence is often defined as the brain–heart interplay [16,17]. 

In the context of HRV analysis, computational modelling has been 
employed to generate synthetic series of heartbeat dynamics, which help 
to understand and exploit ANS dynamics in different health and disease 
conditions [18]. Among the different models that have been proposed to 
generate phantom ECGs or HRV series, one of the popular schemes is 
integral pulse frequency modulation (IPFM), whose initial formulation 
was proposed in 1975 [19], with several variations since then [20–23]. 

IPFM-based models draw analogies between information trans
mission from the ANS and heartbeat generation, where the estimate of 
the controlling signal can be obtained from the latter [24]. These models 
are developed under the hypothesis of the existence of a heart function as 
a real-time modulation function representing stimulation of the sino
atrial node, which is directly related to heartbeat generation [25]. The 
advantages of the IPFM-based models for studying heartbeat dynamics 
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include their simplicity and real-time capacity for assessing heart 
modulations, particularly on the sinoatrial node, which is of interest in 
pathological conditions [20]. The modulation function in IPFM models 
considers the HRV spectral components as the inputs to an integrator 
that generates the heartbeats [18,20,26]. The derivation of these 
markers enables estimation of the sympathetic and parasympathetic 
activity by HRV spectral integration at low frequencies (LF: 
0.04–0.15 Hz) and high frequencies (HF: 0.15–0.4 Hz), respectively [27, 
28]. However, it has been demonstrated that the spectral components of 
the ANS series generating heartbeats cannot be estimated from HRV 
spectral analysis. Moreover, the HRV spectral approach is susceptible to 
biased measurements of ANS activity given that the fixed subdivisions in 
defined frequency ranges (LF and HF), or their ratio, cannot successfully 
measure the ongoing sympathetic and parasympathetic activity fluctu
ations [29,30]. Some studies have suggested alternative spectral HRV 
analysis to better capture ANS dynamics [31,32], nevertheless, the 
standard spectral approach comes with limitations given that sympa
thetic and parasympathetic activities partly overlap in the LF frequency 
range [1]. 

More recent developments have shown that instead of analysing HRV 
in the spectral domain, alternative expansions of the RR series, such as 
the Laguerre expansion, may enable understanding cardiac dynamics 
better than under classical HRV analysis methods [33,34]. New indices 
derived from the Laguerre expansion, namely the sympathetic activity 
index (SAI) and parasympathetic activity index (PAI), have been re
ported to accurately estimate variations of the sympathovagal tone in 
healthy subjects [35]. These biomarkers have been proven to be accu
rate even in pathological conditions, particularly in patients with 
congestive heart failure [36], where the sympathetic nerve functions are 
altered [37]. 

In light of these promising novel sympathovagal measurements and 
the lack of a computational model for heartbeat dynamics to accurately 
account for the separate activity of the ANS branches, we propose a 
physiologically inspired HRV-dynamic generative model based on the 
standard IPFM model with SAI and PAI. We then validate the proposed 
model by estimating the ANS components in a group of healthy subjects 
under the tilt-table protocol, which is a standard for eliciting ANS effects 
[12,38–41]. Experimental results show that the proposed model could 
accurately generate physiological series under various conditions, while 
outperforming the original IPFM model. 

2. Materials and methods 

2.1. Experimental protocol 

We used a publicly available dataset of postural changes in the ex
periments to validate the proposed method; this dataset can be down
loaded from https://physionet.org/content/prcp/1.0.0/ [42,43] and 
comprises time series information from 10 healthy subjects (5 males and 
5 females, age 28.7 ± 1.2 years on average) recorded with a one-lead 
ECG while undergoing the tilt-table test. The subjects were initially 
asked to remain in a horizontal supine position and to move to a vertical 
position with the help of either the tilt-table or by self-stand up. The 
subjects were part of six sessions that were sorted randomly between 
resting periods: two stand up, two slow tilt (50 s from 0 to 70◦), and two 
fast tilt (2 s from 0 to 70◦), while remaining in each condition for 
approximately 3 min. The entire protocol lasted between 55 and 75 min 
for each subject. 

2.2. Estimation of sympathetic and vagal activity from heartbeat 
dynamics 

The R-peaks from the subject ECGs were detected automatically with 
the Pan–Tompkins method [44], and we consecutively corrected the RR 
series, for misdetections or ectopic beats, using a point-process algo
rithm [45]. The sympathetic and parasympathetic activity were 

gathered from a model for sympathovagal estimation based on the 
Laguerre expansions, as proposed in [35]. In brief, the series of RR in
tervals were convolved with a set of Laguerre functions φj, as shown in 
Eq. (1), where j represents the jth order Laguerre filter, and k is the kth RR 
interval: 

Lj(k) =
∑k− 1

n = 0
φj(n)⋅ RR(k − n − 1) (1) 

Therefore, the RR series can be expanded using the convolved 
Laguerre functions L(k) = [L0(k), L1(k), ... , L8(k)]T, and the theoret
ical autoregressive model can be used to separate the sympathetic and 
parasympathetic components as follows: 

RR(k) = g0(k) +
∑1

j = 0
g1, j(k)⋅ Lj(k) +

∑8

j = 2
g1, j(k)⋅Lj(k) (2) 

The time-varying Laguerre coefficients g(k) =

[g0(k), g1, 0(k), ... , g1, 8(k)]T are modelled according to a dynamic sys
tem that fulfils Eqs. (3) and (4). 

g(k) = g(k − 1) + εg(k) (3)  

RR(k) = L(k)T g(k) + εRR(k) (4)  

where εg is the state noise and εRR is the observation noise. The co
efficients are then estimated using a Kalman filter with a time-varying 
observation matrix [46], and SAI and PAI are finally estimated as 
shown in Eqs. (5) and (6). 

SAI (k) =

[

Ψs0 +
∑2

j = 1
Ψsj ⋅ g1, j− 1(k)

] /

RR(k) (5)  

PAI (k) =

[

Ψp0 +
∑7

j = 1
Ψpj ⋅ g1, j+1(k)

]

⋅ 2RR(k) (6)  

Here, Ψsj and Ψpj are the generalised values for the sympathetic and 
parasympathetic kernels with numeric values of Ψsj = {39.2343, 
10.1963, -5.9242} and Ψpj = {28.4875, -17.3627, 5.8798, 12.0628, 
5.6408, -7.0664, -5.6779, -3.9474}. For a comprehensive description of 
the model generation and parametrisation, please see [35]. The SAI and 
PAI computation is freely available online at https://www.saipai-hrv. 
com. 

2.3. IPFM model driven by sympathovagal dynamics 

We propose a physiologically inspired model for heartbeats genera
tion, which does not require training or parameter’s fitting. Heartbeat 
generation models are based on the integration of a modulation func
tion, i.e., an IPFM model. Here, we compare the use of two IPFM models: 
a standard approach based on the classical HRV spectral estimates, and a 
new approach based on SAI and PAI metrics for sympathovagal 
dynamics. 

The IPFM models are grounded on a heartbeat generation function x 
(t) is modelled as a sum of Dirac functions δ(t) that are activated at the 
instances of heartbeat occurrences tk: 

x(t) =
∑N

k = 1
δ(t − tk) (7) 

The beat-to-beat generation comprises an integration within the in
terval from tk to tk+1 on a modulation function of autonomic activity 
m(t). When the integral function reaches a threshold (equal to 1), the 
heartbeat is generated, as shown in Eq. (8), where μHR corresponds to the 
mean HR (expressed in Hz) of the time window in which heartbeats are 
being modelled. 
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1 =

∫tk+1

tk

[ μHR + m(t) ] dt (8) 

The model considers that the first heartbeat occurs at t = 0, and the 
integrator over time is reset to 0 when the threshold is reached. Thus, the 
IPFM model generates heartbeats at fixed frequencies defined by the 
mean HR, and the time-varying disruptions of the HR are defined by the 
sympathetic and parasympathetic inputs in m(t). The modulation func
tion m(t) is the model component estimated through two different ap
proaches in this study: Standard IPFM model, and Sympathovagal 
modulation model. 

2.3.1. Standard IPFM model 
We considered the IPFM model proposed by Brennan et al. [26] that 

describes the modulation function m(t) as a summation of two oscillators 
representing the sympathetic and parasympathetic autonomic outflows, 
though grounded in the HRV spectral paradigm: 

m(t) = CS(t) ∙ sin(ωs t) + CP(t) ∙ sin(ωp t) (9)  

where ωs and ωp are the central frequencies in rad/s, and CS and CP are 
the time-varying coupling constants of the sympathetic and para
sympathetic activity, respectively. 

The coupling constants are defined parametrically from the Poincaré 
plot [26] as follows: 

[
CS
CP

]

=
1
γ

⎡

⎢
⎢
⎢
⎢
⎣

sin
(
ωp

/
2μHR

)
ωs μHR

4 sin(ωs / 2μHR)

−
̅̅̅
2

√
ωs μHR

8 sin(ωs / 2μHR)

− sin(ωs / 2μHR) ωp μHR

4 sin
(
ωp

/
2μHR

)

̅̅̅
2

√
ωp μHR

8 sin
(
ωp

/
2μHR

)

⎤

⎥
⎥
⎥
⎥
⎦

[
L
W

]

(10)  

γ = sin(ωp
/

2μHR) − sin(ωs
/

2μHR) (11)  

where L and W are the length and width of the Poincaré plot, respec
tively. For the purpose of this study, the IPFM model was simulated 
using a 15 s long time window with an 80 % overlap to estimate the 
coefficients. The central frequencies used were ωs = 2π ∙ 0.1 rad/s and 
ωp = 2π ∙ 0.25 rad/s. 

2.3.2. Sympathovagal modulation model 
We model the modulation function m(t) as a linear combination of 

the sympathetic and parasympathetic activity, which can be quantified 
through SAI and PAI, and their respective coupling coefficients with the 
CNS, expressed as CSAI and CPAI: 

m(t) = CSAI(t) ∙ SAI(t) + CPAI(t) ∙ PAI(t) (12) 

The model considers the same hypothesis for heartbeat generation as 
that expressed in Eqs. (7) and (8). In this model CSAI and CPAI are esti
mated using a sliding time window by a generalised linear model 
regression with the constant term omitted for fitting. Regression was 
performed using a 15 s long time window with an 80 % overlap, to es
timate the coefficients. The time series were evenly sampled using spline 
interpolation with a 10 Hz sampling frequency, and the resulting RR 
series data from the model were re-centred to the original mean RR 
duration. 

2.4. Statistical analysis 

The two models of the synthetic RR series, that are, the proposed 
sympathovagal modulation model (SVMM) and standard IPFM model as 
presented in [26], were compared for the absolute percentage errors. 
Particularly, the model performance was evaluated using the percentage 
error of the generated RR series with respect to the original RR series, as 
shown in Eq. (13). This operation was performed for each experimental 
session, and the results are shown through Bland–Altman plots for all the 

experimental sessions. 

Error % =

(
Mean RRoriginal − Mean RRsynthetic

Mean RRoriginal

)

⋅100 (13) 

To statistically evaluate the performance of the two models in 
discerning resting and postural changes, we used a 2-sided non- 
parametric Wilcoxon signed-rank test for paired samples. The same 
statistical analysis was used to compare the estimated coefficients from 
the model as well as the SAI and PAI values. Time-varying information 
for all the estimated beat-to-beat features was condensed as the average 
value for each experimental session, and the group-wise descriptive 
measures are expressed as median absolute deviation (MAD). 

3. Results 

3.1. Model performance 

We first calculated the SAI and PAI series using the RR intervals over 
the entire experimental session. Then, the synthetic RR series data were 
computed by implementing the proposed SVMM. Fig. 1 presents an 
example time series from a subject, specifically the original RR series 
and synthetic one obtained using SVMM, for both the fast tilt and pre
ceding resting phases. As can be observed, the synthetic RR series fol
lows the trend of the original RR dynamics. 

The SVMM performance was then evaluated for all subjects after the 
first set of each experimental session (i.e., rest, stand up, slow tilt, and 
fast tilt). Fig. 2 shows the performance of the proposed model in a 
Bland–Altman plot, where the X-axis presents the grand averages of the 
RR intervals for the original and synthetic data in a specific experimental 
session. The Y-axis represents the percentage error of the synthetic RR 
interval with respect to the original. The synthetic series has a grand 
average error of -0.97 % compared to the original RR series, with a 
median of -0.89 %; this means that the synthetic RR intervals are on 
average less than 1% shorter than the original ones. It can also be 
observed that the results associated with the four different experimental 

Fig. 1. RR series for one subject during change from rest to fast tilt: original RR 
series (top) and synthetic RR series (bottom). 
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sessions do not differ in terms of dispersions in the Bland–Altman plot. 
Table 1 reports the group-wise median values for the three experi

mental sessions for the original and synthetic RR values. It should be 
noted that to better appreciate the changes in the RR interval durations 
in the various experimental sessions, we also represent the median 
values associated with the preceding resting phases. Table 1 indicates 
that all postural changes cause significant decreases in the mean RR 
durations and consequently increases in the heart rates. 

The p-values obtained via statistical analyses (i.e., Wilcoxon non- 
parametric test for paired samples) are in the range of 0.002–0.0039. 
Choosing an overall significance of α’ = 0.05 and applying the Bonfer
roni correction for six multiple comparisons, we obtained the signifi
cance threshold at α = α’/6 = 0.0083. Thus, all the postural changes, 
both for the analysed synthetic SVMM and original RR series data are 
statistically significant with respect to their preceding resting phases; 
specifically, postural changes were shown to shorten the RR intervals. A 
stronger effect, followed by a lower p-value, is obtained when the 
postural change is performed with the assistance of the tilt-table, both 
for slow and fast variations, compared to the active stand up phase. 

3.2. Comparison with standard IPFM model 

We compared the performance of the synthetic RR series obtained 
with the SVMM against the classical IPFM model [26]. In Table 2, the 
group-wise percentage errors for the SVMM and parametric IPFM model 
are reported. The performance of the RR series can be observed as 
percentage errors of the original data for the two models, which remain 
below 6.31 % under all experimental conditions. The relative error 

range for the IPFM model is 0.04–6.31 %, which is wider than the 
0.02–3.37 % range of the SVMM. 

3.3. Sympathovagal components analysis 

Both the models compared here rely on the estimation of parameters 
quantifying the sympathetic and parasympathetic time-varying activity. 
The time courses of these parameters are remarkably altered by the 
postural changes of the subjects. 

Fig. 3 presents an example time series from a subject, where the grey 
areas represent posture change phases and white areas represent resting 
phases. The five panels of the figure present the time courses of the 
original RR series, SAI, PAI, CSAI, and CPAI separately. Fig. 3 shows a 
clear decrease in the RR interval when a posture change is noted; this 
change is derived from a simultaneous increase in the sympathetic ac
tivity, measured with the SAI, and decrease in parasympathetic activity, 

Fig. 2. Bland–Altman plot of the percentage error between real and SVMM synthetic RR measurements.  

Table 1 
Mean of the RR intervals under the three types of postural changes, and p-values from statistical comparisons between the posture changes and preceding resting 
phases.   

Original RR (s) SVMM synthetic RR (s)  

Rest Posture change p Rest Posture change p 

Stand up 0.86 ± 0.09 0.78 ± 0.06 0.0039 0.87 ± 0.08 0.78 ± 0.06 0.0039 
Slow tilt 0.87 ± 0.08 0.78 ± 0.07 0.0020 0.87 ± 0.08 0.77 ± 0.07 0.0020 
Fast tilt 0.85 ± 0.08 0.78 ± 0.05 0.0020 0.85 ± 0.08 0.78 ± 0.04 0.0020  

Table 2 
Absolute percentage errors with respect to the original RR series for the SVMM 
and IPFM model.   

SVMM (%) IPFM (%) 

Absolute error Overall range 0.02–3.37 0.04–6.31 

Absolute error Median ± MAD 

Overall error 0.89 ± 0.57 1.09 ± 0.52 
Rest 1.39 ± 0.38 1.25 ± 0.40 
Stand up 0.74 ± 0.66 1.03 ± 0.76 
Slow tilt 0.99 ± 0.39 0.92 ± 0.57 
Fast tilt 0.55 ± 0.48 1.02 ± 0.55  
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measured with the PAI. Both CSAI and CPAI show decreases for all posture 
change phases during shorter RR intervals. 

Tables 3 and 4 summarise the group-wise averages of the coefficients 
quantifying ANS branch activity, that is, SAI, PAI, CSAI, CPAI, (results 
related to SAI and PAI are in Table 3, and those related to CSAI and CPAI 
are in Table 4). The variations induced by postural changes with respect 
to the preceding resting phase can be observed both in terms of absolute 
values and statistical comparisons via the Wilcoxon signed-rank test. 
The changes from rest to tilt, both slow and fast, are always statistically 
significant (i.e., p-values < 0.0083); only the CSAI index has a p-value 
greater than 0.002. Conversely, group-wise changes from rest to stand 
up do not show significant variations in the computed model 
components. 

4. Discussion 

In this study, we propose a physiologically inspired SVMM for HRV 
that is able to generate realistic synthetic data. The proposed model 
considers the cardiac sympathetic and parasympathetic activity as in
puts, quantified through SAI and PAI series, to generate synthetic RR 
series as the output, and it was developed on the basis of the standard 
IPFM model. We validated the proposed model on a publicly available 
HRV dataset with information from 10 subjects who underwent postural 
changes from horizontal to upright positions during the experiments 
[43]. The synthetic HRV series were generated using the proposed 
model with high consistency and real RR intervals for all the 

experimental conditions. Results showed that the synthetic data closely 
reproduced the trends of the original RR series with low error (overall 
median error < 0.9 %). Only three points surpassed the Bland-Altman 
plot lower limit; as these points were related to different experimental 
phases (rest, stand-up and fast tilt), the SVMM model’s performance 
does not change as a function of the experimental conditions. The results 
from the SVMM were consistent with those reported in the literature and 
showed significant decreases in the RR intervals during postural changes 
[12,38–41]; these results were also confirmed by comparisons with 
synthetic RR series generated with the IPFM model (see Fig. 1 and 
Table 1). 

We compared the synthetic series generated using the proposed 
model with those obtained from the standard parametric IPFM model 
proposed by Brennan et al. [26]. The results show that the SVMM per
formance is comparable to that of the IPFM model, showing low per
centage errors under all experimental conditions; this indicates that the 
SVMM is a suitable alternative for physiological modelling of cardiac 
dynamics. Notably, the proposed SVMM is non-parametric, which is 
advantageous because fewer assumptions are required; moreover, it is 
inspired by other physiological processes comprising reliable and 
separate estimations of the sympathetic and vagal components [35]. The 
IPFM model used as a comparison depends on two parameters that are 
based on the geometry of the Poincaré plot, which may cause higher 
sensitivities to errors and artefacts [47]. The promising applicability of 
the proposed non-parametric method for synthetic RR series generation 
thus relies on the robustness of the model, which remains to be tested 

Fig. 3. Example changes in the HRV markers of one subject. The shaded areas correspond to posture changes. All measurements are in arbitrary units except where 
explicitly indicated. 

Table 3 
SAI and PAI computed for the three types of postural changes, and p-values from statistical comparisons between postural changes and their preceding resting phases.   

SAI PAI  

Rest Posture change p-value Rest Posture change p-value 

Stand up 50.61 ± 14.79 69.22 ± 5.80 0.1641 51.04 ± 7.63 42.99 ± 3.08 0.4961 
Slow tilt 56.40 ± 11.25 73.23 ± 13.01 0.0020 54.24 ± 7.03 43.84 ± 3.77 0.0020 
Fast tilt 58.24 ± 13.10 72.71 ± 10.04 0.0020 50.73 ± 4.47 43.60 ± 3.92 0.0020  
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under different experimental conditions. 
A limitation of this study is related to the restricted number of real 

HRV recordings on which the proposed model has been tested; however, 
it should be noted that our aim was to evaluate a new IPFM-based 
computational model that overcomes some limitations associated with 
the HRV spectral paradigm, and applications of this new modeling 
framework are part of our future endeavors. 

From a physiological point of view, the proposed model addresses 
the known problems of sympathetic and parasympathetic activity esti
mations from HRV [1,28–31,48]. Accordingly, the SVMM utilises the 
SAI and PAI markers, which have demonstrated more efficient capa
bilities for disentangling the sympathetic and parasympathetic activity 
compared to classical HRV spectral measures [35]. The proposed SVMM 
comprises a linear combination of the SAI and PAI. We evaluated these 
markers for their abilities to discriminate the variations between rest 
and postural changes, with significant results for slow and fast tilts, as 
expected from reported literature [12,38–41]. The coupling coefficients 
of the IPFM model have been shown to help uncover modulations be
tween the brain and heart dynamics [49]. Hence, enhanced modelling of 
cardiac dynamics may pave the way for further developments on un
derstanding the ANS and brain–heart interplay for specific components, 
directionalities, and latencies [16,49]. 

5. Conclusion 

The physiological modelling of bodily signals can help determine the 
underlying aspects of ANS dynamics for cardiovascular control in terms 
of the time-varying modulations of specific components that are of 
particular interest in pathological conditions [20]. The results presented 
herein indicate that synthetic data generation based on sympathovagal 
activity quantified through the SAI and PAI [35] may correspond with 
those for realistic HRV series, and this might enable the development of 
computational simulations aimed at a better understanding of the car
diovascular and physiological system dynamics. The proposed model 
can be considered as a new tool for the analysis of HRV that allows 
physiologically inspired computational modelling, which can help a 
better understanding of the sympathovagal balance dynamics in the 
future. 
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