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Summary

Fatigue damage of bridge details is often increased in consequence of vehicle interactions. The
paper deals in a very general way with the problem of vehicle interactions. Interactions due to
simultaneity are solved in the framework of the queueing theory, while time independent
interactions are taken into account on the basis of rainflow or reservoir method concepts. Two
numerical examples illustrate the practical application of the procedure.

1. Introduction

The fatigue assessment of bridges requires the knowledge, for each detail sensitive to fatigue,
of the stress history o(t), representing the relationship between the time t and the stress ¢
induced by the vehicles crossing the bridge.

In ENV 1991 - 3 [1] five fatigue load models are given: models 1 and 2 are intended to be
used whether the fatigue life is unlimited and constant stress amplitude fatigue limit is given,
models 3 and 4 are intended to be used for fatigue life assessment with reference to S-N curves
given in design Eurocodes, while model 5, using actual traffic data, is the most general one.

In general, for fatigue verifications, fatigue model 2 gives more accurate results than fatigue
model 1 as well as fatigue model 4 gives more accurate results than fatigue model 3, provided
that the simultaneous presence of several lorries on the bridge can be neglected. On the
contrary, when the interaction of several lorries is relevant, fatigue models 2, 3 and 4, and, if
the recorded data refer only to individual vehicles, fatigue model 5 as well, can be used only if
supplemented by additional data. Clearly, the field of application of these fatigue models could
be sensibly enlarged through the definition of general methods allowing to take into account
the simultaneous presence of several vehicles on the same lane and/or on several lanes.

In the present paper the interaction between several vehicles is solved theoretically in the
framework of the queueing theory, considering the bridge as a service system, with or without
waiting queue, and the stochastic processes as Markov processes, so that the number of lorries
crossing the bridge simultaneously can be determined.

The case of several vehicles simultaneously present on the same lane 1s solved first, considering
the bridge as a single channel system with waiting queue, in which the waiting time, depending
on the number of requests in queue, and the number of requests in queue itself are limited,;
subsequently, the case of vehicles simultaneously present in several lanes is solved in an
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analogous way considering the bridge as a multiple channel system without waiting queue.
Applying these procedures, a modified load spectrum, lonely vehicles spectrum, depending on
traffic flow and on dimensions of the influence surface is obtained, whose members are single
vehicles and vehicle convoys travelling alone, in such a way that the complete stress history
can be considered as a random assembly of the individual stress histories induced by each
member of this load spectrum. Finally, a general procedure for the evaluation of the stress
spectrum is given, starting from the individual stress histories and using the reservoir or the
rainflow method, taking into account the possibility that maximum and minimum stresses are
induced by different individual members of the load spectrum.

Two numerical examples show the practical application of the method.

2. Simultaneous transit of several lorries

Let the load spectrum consisting in a set of q types of lorries and be Nj; the annual flow of the

q
i-th vehicle of the on the j-th lane. The total flow on the j-th lane is then N; = Z N

i=1
When the characteristic length L of the influence line increases, the simultaneous presence of
several lorries on the same and/or in several lanes must be taken into account. Under the
hypotheses that the vehicle flow follows a Poisson distribution and that the transit time ® on L
is exponentially distributed, the stochastic processes can be represented as Markov processes
[2], the bridge can be then considered as a service system and the problem of the simultaneous
transit of several lorries can be solved applying of the queueing theory [3], [4].

2.1. Simultaneous transit of lorries on the same lane

In order to evaluate the probability P, that n lorries are simultaneously travelling on L, the
bridge can be considered as a single channel system with waiting queue, in which the waiting
time, depending on the number of requests in queue, and the number of the request in the

queue itself are limited. In fact, because there is a minimum value for the time interval Tj
between two consecutive lorries, the waiting time for the i-th vehicle in queue is given by

T, = ® -1 T, and the number of requests in queue is limited to w = int(@ Ty 1) -1.

Under the assumption that each Tij is distributed with an exponential law whose parameter is

0; = Tfl , the problem can be solved in a closed form (see [3] and [4]). The probability Py, to

have n vehicles on the lane, i.e. n-1 requests in queue, is then given by
-1
i-1
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P, ={—- H a+zq’j . 1+—+z & -la- a+Z(pj , for 2<n<w,
=1 ¢

A 5=l s=1 j=l

where & represents the lorry flow density and o = ®'. The annual number of interactions
between n vehicles ij, .., i, on the j-th lane can be then obtained substituting these formulae in
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the general expression N,; - iy gty el e K. o mibere indicates the
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sum over all the possible choices with repetitions of n elements between a collection of q.
In the practice, the problem is reduced to the simultaneous presence of two lorries r and t, so
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annual number of interactions results N, 4 ; = 5 — . Whena
@rare) 3{TT, )
q2 s=1
| | o o | N;-3
single vehicle model is given this formula simplifies further in Ny 1) j = ————_

2.2. Simultaneous transit of lorries on several lanes

Under the aforesaid hypotheses, the simultaneous transit of lorries on several lanes can be
solved in an analogous way considering the bridge as a multiple channel system without
waiting queue where new requests are refused if all channels are occupied. The probability P,
to have simultaneously vehicles on k lanes, i.e. k occupied channels, can be then obtained

k

N
m 1
solving a system of the Erlang type [3], [4], [5] so thatitis P, = E kl-(z ll'l _J ,
o -K! \jzoQ& -1!

0<k<m, being p the density of the total flow N" and o =©7". Substituting in the general

K
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k

sum over all the possible choices of k elements between a collection of m, it is possible to
derive the annual number of interactions of k lorries, i; on the h;-th lane,....., ix on the hy-th

formula N; i n, .
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only the case of two lorries r and t simultaneously present on h-th and j-th lanes is relevant, so
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uz 2 I.li o Nh + N
or, simply, when a single vehicle is considered, N, : = . . 1
1

2.3. Evaluation of the time independent load spectrum

In conclusion, using the procedures described in points 2.1. and 2.2., it is possible to obtain a
suitably modified load spectrum, the lonely vehicles spectrum (1. v. s.), whose components are
individual vehicles and vehicle convoys travelling alone on the bridge.

Generally, the evaluation of the 1. v. s. requires the application of both procedures: the
simultaneous presence of several lorries on the same lane is considered first, so that it is
possible to obtain for each lane a new load spectrum, formed by individual vehicles and vehicle
convoys travelling alone on the lane, to be used to solve the multilane case.

3. Time independent interactions

When the |. v. s. is known, it is possible to consider the complete stress history as a random
assembly of the individual stress histories induced by each member of the 1. v. s. itself. But,
unfortunately, as it is well known, the stress spectrum depends on the cycle counting method
and cannot be determined, in general, as a pure and simple sum of the individual stress spectra.
In fact, it can happen that the maximum and minimum stresses are induced by different
members of the |. v. 5., so that it is necessary to consider time independent interactions too.
When the reservoir or the rainflow methods are employed, the problem can be solved in the
general case [3], [4]. The demonstration of the procedure is out of the scope of the present
paper and it will be reported only the main results.

Using reservoir or rainflow counting methods it can be proved that two individual stress
histories G5 and Oa, interact if and only if maxc, < maxcp, and minG,, < min Ca,

Of Maxc, 2 maxo, and mnoc, >minG A, If the couples of interacting histones are
J

sorted in such a way that the corresponding Ac ., are in descending order , it is possible to

evaluate the number of the combined stress histories as well as the residual numbers of each
individual stress history in a very simple recursive way.
In general, an individual stress history can interact with several others, so that the number of

combined stress histories N;j;, obtained as h-th combination of the stress history o A, and as k-

(h“l)N,,(k“l)N
. . L , where =H.
(h'l)Ni+(l"1)Nj !

th combination of the stress history ¢ A, is given by N =

and &-UN j are the number of the individual stress histories 5, and © a, Dot yet combined

and being (O)Ni =Ny, and (O)Nj = NAJ_ the number of repetitions of 6, and Ca, induced

by the Lv.s.. The actual number of the individual stress history 5 which don’t combines with

other stress histories is given by ' N;=(“N; = 3" (N + Nj;), being the sum extended to all
k=i
the stress histories o4 which are able to combine with 6, itself.

In this way it is possible to derive, in conclusion, a new modified load spectrum whose
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members, represented by the original individual vehicles, by the vehicle convoys determined
according to point 2. and by their time independent combinations, are interaction free, so that it
can be defined as interaction-free vehicle spectrum (1. v. s.).

4. Numerical examples

In order to illustrate some practical applications of the formulae derived before, two simple
exercises are developed in the following. The first one concerns the evaluation of the maximum
length of a single lane for which the presence of several lorries can be disregarded, while the
second one shows how the A-factors for the multilane effect can be calibrated, in view of the
fatigue assessment of steel bridges, using fatigue model 3 of ENV 1991 - 3. In the exercises a
slope of the S-N curve m=5 is considered, while the flow rates are evaluated assuming 280
working days per year.

4.1. Evaluation of the critical length of one single lane

Let L the span of a simple supported beam, it is required to evaluate, for the bending moment
at midspan, the value of L for which the interactions on a single lane become significant.
Numerical calculations are developed referring to fatigue model 3 (single vehicle model) of
ENV 1991 - 3, considering four different annual flows: N;=2.5x103; N,=5.0x103; N3=1.0x
10%; N,=2.0x106.

Let v=13.889 m/sec the lorry speed and T =1.5 sec the intervehicle interval; the annual
numbers of interacting vehicles, determined using the formulae of point 2.1., depending on the
annual flow and on the span L, are summarized in table 1.

Using these results and taking into account the relative positions of the two lornes along the
lane, the equivalent stress range A, has been found.

The ratios 7&‘=Aceq/Acl, being Ao, the equivalent stress range determined disregarding

interactions, are reported in table 2 (for L=40 m and L=50 m it results R ~1).

Ny | N, | N3 | N,
L=40m | 1190 | 4729 | 18566 | 71605
L=50m | 1690 | 6670 | 25987 | 98813
L=60m | 2165 | 8515 | 32940 | 123618
L=75m | 2858 | 11177 | 42796 | 157689
L=100m | 3978 | 15423 | 58110 | 208240

Table 1 - Number of interactions (1 lane)

N, | Ny | N3 | N,
L=60 m | 1.002 | 1.004 | 1.007 | 1.013
L=75m | 1.007 | 1.014 | 1.027 | 1047
L=100m | 1.013 | 1.025 | 1.045 | 1.076

Table 2 - A" values (1 lane)

The results, which appear in good agreement with the numerical simulations, show that the
critical length is generally equal to 100 m, unless for high flows, when it reduces to 75 m.

4.2. Calibration of A-factor for multilane effect
The formulae derived in point 2.2. are used to show how to calibrate of the A-factor for the

multilane effect of fatigue load model 3 [1].
In this case as well, reference is made to the bending moment at midspan of a simple supported
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beam. Varying parameters are the span L and the vehicle flow, N;=2.5x103; N,=5.0x105,
N;=1.0x10%; N,=2.0x10°, which is considered to be the same on each lane.
The annual number of interactions, found with v=13.889 m/sec, is reported in table 3.

N, N, N; Ny N, | N, | N5 | N,
L=10m 1846 7331 28901 | 112358 L=10m j 1.156 | 1.162 | 1.174 | 1.197
L=20m 3666 14450 56179 | 212764 L=20m | 1.162 | 1.174 | 1.197 | 1.234
L=30m 5458 21367 81966 | 303028 L=30m | 1.168 | 1.186 [ 1.217 | 1.264
L=50 m 8967 34626 | 129532 | 458712 L=50m | 1.180 | 1.207 [ 1.250 | 1.310
L=75m | 13213 50200 | 182480 | 617280 L=75m | 1.194 | 1.230 | 1.283 | 1.351
L=100m | 17312 64766 | 229356 | 746264 L=100m | 1.207 | 1.250 | 1310 | 1.381
L=150 m| 25100 91240 | 308640 | 943390 L=150m| 1.230 [ 1.283 | 1.351 [ 1.423
L=200m | 32383 | 114678 | 373132 [ 1086953 L=200m| 1.250 | 1.310 [ 1.381 | 1.450
Table 3 - Interacting vehicles (2 lanes) Table 4 - A-factors (2 lanes)

Taking into account the interactions as well as all the relative positions of the two lorries, the
equivalent stress ranges Ac, have been determined under the assumption that the lanes have

the same influence. Being Ac, the equivalent stress range induced by one lane flow only, the
required A-factors, reported in table 4, are given by Ac,/Ac;. The reference value for A,
which corresponds to zero interactions, is 1.149.

The results demonstrate that A is a quasi-linear function of @ - N, which can be expressed as

L-N

A =1149- [1.03 +0.01- O‘J , where L 1s iIn m and v in my/sec.

vl

5. Conclusions

The interaction between the vehicles belonging to a load spectrum is solved in general way,
taking into account all types of interactions, depending or not on the time. The solutions given
in sequence in the paper allow to attain, through a step by step procedure, to an interaction-
free vehicle spectrum (i. v. s.), formed by vehicles or vehicle convoys which cannot interact.
The solutions of two simple but important problems show the practical application of the
methods outlined in the paper.
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