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ABSTRACT: We present the implementation of a fully coupled
polarizable QM/MM/continuum model based on the AMOEBA
polarizable force field and the domain decomposition implemen-
tation of the conductor-like screening model. Energies, response
properties, and analytical gradients with respect to both QM and
MM nuclear positions are available, and a generic, atomistic cavity
can be employed. The model is linear scaling in memory
requirements and computational cost with respect to the number
of classical atoms and is therefore suited to model large, complex
systems. Using three variants of the green-fluorescent protein, we
investigate the overall computational cost of such calculations and
the effect of the continuum model on the convergence of the
computed properties with respect to the size of the embedding. We
also demonstrate the fundamental role of polarization effects by comparing polarizable and nonpolarizable embeddings to fully QM
ones.

1. INTRODUCTION
In the years, multiscale models have acquired huge importance
in the modeling of complex systems, and nowadays, they play a
fundamental role in computational chemistry. Whenever the
process under the study is localized on a specific region of the
system and at the same time is tuned by the environment, the
choice of describing the “active” part using an accurate
quantum mechanical (QM) method and the rest of the system
using a cheaper classical model has been shown to be very
effective and reliable. Among the multiscale models, two main
strategies have been widely applied. In the first approach, the
environment retains its atomistic nature and each atom is
represented with a particle, which behaves according to a
simplified classical model, for instance, molecular mechanics
(MM).1−5 In the second approach, instead, the environment is
replaced with a featureless continuum, characterized only by a
few macroscopic properties. This is the case of the polarizable
continuum models (PCMs).6−8 Models of the first kind are
particularly suited for the description of specific interactions
(such as hydrogen bonds and coordinations) and anisotropic
environments, such as the inner region of proteins. However,
for proper modeling of the long-range electrostatic inter-
actions, a large amount of MM atoms have to be included in
the calculation.9 Models of the second kind, on the other hand,
naturally take into account both long-range electrostatic effects
and statistical sampling. However, their description of the
specific short-range interactions is missing.
A possible strategy to further improve the modeling is

carried out by combining atomistic and continuum approaches

in a multilayered fashion. This strategy is promising because it
benefits from the strengths of the two kind of models, allowing
for a good description of the specific interactions and a cheap
and simple description of the long-range electrostatic. The
continuum model used for modeling of the outer shell must be
particularly efficient for dealing with the increased number of
atoms with respect to a standard QM/continuum calculation.
Several implementations have been proposed in the

literature combining different nonpolarizable and polarizable
MM formulations with different formulations of continuum
models.10−14 In our research group, we combined an induced
point dipole polarizable model with the integral equation
formalism of PCM (IEF−PCM)15 and with the domain
decomposition COSMO (ddCOSMO)16,17 for energies
only.18,19

In this work, we go a step ahead with respect to these
previous developments, by presenting a fully polarizable three-
layer QM/MM/continuum approach, in which the atomistic
MM shell is treated with the polarizable AMOEBA force
field,20,21 and the continuum one with ddCOSMO. The
present implementation is fully linear scaling in computational
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cost with respect to the number of MM atoms and includes
energies, linear response properties, and analytical gradients.
To the best of our knowledge, this is the first three-layer model
that includes analytical gradients with respect to both QM and
MM nuclear positions, using a cavity of molecular shape and
scaling in a full linear way.
The paper is organized as follows. In Section 2, we derive

the equations that define the three-layer model using a
Lagrangian formalism. Then, we present the application to
ground-state energy and forces within a self-consistent field
formalism and to excitation energies and properties within the
linear response approach, respectively.
In Section 3, we apply the newly implemented three-layer

model to the study of geometries and excitation energies of
three variants of the green fluorescent protein (GFP). These
systems have been extensively studied using hybrid QM/MM
approaches, which highlighted the sensitivity of their optical
properties to short- and long-range electrostatic interac-
tions.22−26 Here, we compare the three-layer model with a
two-layer model on ground-state geometries and transition
energies and dipoles. Moreover, we also investigate the effect
of the polarizable force field by comparing a description based
on AMOEBA with one based on a nonpolarizable force field.

2. THEORY AND IMPLEMENTATION

In this section, we derive the theory for the three-layer QM/
AMOEBA/ddCOSMO model by deriving the equations for
the energy and the energy gradients within a self-consistent
field (SCF) QM framework.
A description of QM/ddCOSMO and QM/AMOEBA

implementations can be found elsewhere.27−29 Here, it is
sufficient to recall that AMOEBA is a force field, which models
the electrostatics by endowing each MM atom with a set of
fixed multipoles (charge q, dipole μs, and quadrupole Θ) and
an isotropic polarizability, the latter giving rise to the induced
dipoles (μd). The matrix, which defines the polarization linear
system, is indicated with T. The embedding energy is
computed as an interaction of the densities (q, μs, Θ, μd)
with appropriate electrostatic properties of the QM density ρ.
On the other hand, ddCOSMO is a continuum solvation

model, which solves the Poisson equation for a molecule
placed in a cavity within a conductor. Given a representation of
the solute’s electrostatic potential (Φ), ddCOSMO finds a
representation of the reaction field due to the conductor (X),
which can be used to compute the solvation energy as the
electrostatic interaction between X and an appropriate function
of the solute electrostatic density (Ψ). The ddCOSMO matrix
is indicated with L. The quantities X, L, Φ, and Ψ are
discretized over a basis of spherical harmonics with maximum
angular momentum max; however, the electrostatic potential of
the solute (V) is initially computed on a set of grid points, and
only afterward, Φ is assembled using a numerical quadrature.
The grid points are defined according to a Lebedev grid with
Ngrid points per sphere.
For the coupled case, we start the derivation from the

general Lagrangian reported in ref 29. Considering that neither
ddCOSMO nor AMOEBA is variational,30 the AMOEBA/
ddCOSMO Lagrangian requires a total of six sets of degrees of
freedom: the AMOEBA induced dipoles (μd), the AMOEBA
Lagrange multipliers (μp), the ddCOSMO solution and
Lagrange multiplier coupled with μd (respectively, Xd and
Sd), and finally those coupled with μp (respectively, Xp and Sp).
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(1)

The first term is the self-interaction of the AMOEBA fixed
multipoles (where M stands for the collection of q, μs, Θ). The
three following terms are the interactions between the fixed
multipoles and the QM density (ρ); V, E, and G, are
respectively, the electrostatic potential, field and field gradient.
The fifth term is the interaction of the induced dipoles with the
QM and M densities. The sixth term is the ddCOSMO energy,
i.e., the interaction of the reaction potential X with the QM
and M densities, and the following one is the interaction
between the induced densities of ddCOSMO (Xd and Xp) and
AMOEBA (μd and μp). Finally, the last three terms are the
constraints that enforce, respectively, the AMOEBA linear
system (the term including the matrix T) and the ddCOSMO
linear systems (for the d and p degrees of freedom of
AMOEBA). The matrix Ξ, applied to the induced dipoles,
represents their potential in the spherical harmonics basis used
for ddCOSMO, and the matrix Ω, applied to the induced
dipoles, is equivalent of computing Ψ(μ).
By differentiating eq 1 with respect to all the degrees of

freedom, we get the coupled polarization equations. The first
three coupled linear systems are obtained by imposing
stationarity with respect to μd, Xd, and Sd
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The second set is obtained by imposing stationarity with
respect to μp, Xp, and Sp
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Once the linear systems are solved, in Lagrangian 1, many
terms cancel out, and a simpler expression for the energy is
obtained. We choose to simplify the two ddCOSMO
constraints while leaving the AMOEBA constraint, as it results
in a simpler expression. However, the latter constraint can be
further rewritten so that it is easier to compute, by noting that
Tμd − E(ρ) − Ed(M) = −1/2f(ϵ)(Ω†Xd + Ξ†Sd). The
expression for the energy thus reads
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2.1. Energy and Linear Response. When coupled to a
SCF method (either Hartree−Fock or density functional
theory), a multiscale approach must provide at each QM
iteration the embedding energy and its derivative with respect
to density matrix elements, which is the contribution to the
Fock (Kohn−Sham) matrix. The latter derivative can be
obtained by differentiating the Lagrangian 1 with respect to a
density matrix element Pμν

P
q V E G

E f X X

f S S

, , ,

1
2

,
1
4

( ) ,

1
4

( ) ,

p

s

d p d

p d

μ

μ μ ε

ε

∂
∂

= ⟨ ⟩ − ⟨ ⟩ + ⟨Θ ⟩

+ ⟨ + ⟩ + ⟨ + Ψ ⟩

− ⟨ + Φ ⟩

μν
μν μν μν

μν μν

μν (5)

In this expression, all the terms are contractions between a
density and an electrostatic property due to the density of
atomic orbitals μ, ν.
Algorithm 1 provides a schematic view of the steps required

to perform an SCF calculation. At each QM iteration, given a
QM density, first its electrostatic properties are computed and
then the induced densities are found by solving the linear
systems 2 and 3. Once these are found, the energy is computed
using 4. Finally, the contributions to the Fock (Kohn−Sham)
matrix are assembled according to eq 5.

The QM/AMOEBA/ddCOSMO model has been extended
to the description of excited states in the linear response
formalism. The excitation energies and transition densities are
found as the eigenvalues and eigenvectors of the Casida’s
equations.31 In the case of a polarizable embedding, the orbital
rotation Hessian is modified by a contribution which is the
second derivative of Lagrangian 1 with respect to density
matrix elements Pia and Pjb, where the indices run on occupied
(I and j) and virtual (a and b) molecular orbitals. The second
derivative reads
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In this expression, μia, Xia, and Sia are the partial derivatives of
the corresponding polarization densities induced with respect
to the density matrix element Pia.

2.2. Forces. Once the ground-state calculation has been
performed, and the ground-state QM density is available, the
forces can be computed. Their expression can be derived by
taking the gradient of Lagrangian 1. Here, it is convenient to
distinguish between QM atoms (R) and MM atoms r
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In these expressions, several terms make up the plain QM/
AMOEBA gradients, which have been discussed elsewhere.28

So we limit the discussion only to the novel contributions and
the modified ddCOSMO gradient expressions.
For ddCOSMO, we recognize two kinds of terms, those

involving a geometrical derivative and those involving a
derivative of the RHS.17,32 For the first kind of contributions,
the expressions are not modified with respect to a regular QM/
ddCOSMO calculation: the cavity is now made of QM and
MM spheres, but the geometrical relationships are the same
and hence these terms are computed in the same way. The ∂Φ
term is peculiar because it contains both the derivative of the
potential and that of the characteristic function U. For this
reason, it is convenient to split the two contributions into an
electrostatic derivative Φ(U, ∂V) and a geometrical derivative
Φ(∂U, V), respectively. Using these considerations, eq 7 can be
recast as
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In this expression, we recognize the QM/AMOEBA gradient

( )R
AMOEBA∂ ), the geometrical contributions to ddCOSMO

gradients (second and third terms), the contribution from the
gradient of Ψ, and finally two contributions from the gradient
of the electrostatic potential (fifth and sixth terms).
The same considerations can be used to recast also eq 8 in a

form that highlights the different kinds of contributions
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The first term is the QM/AMOEBA gradient, and the second
and third terms are the ddCOSMO geometrical contributions.
The fourth term contains the derivative of Ψ, and finally the
last two terms contain the derivative of the electrostatic
potential.
The AMOEBA contributions to the gradients AMOEBA are

computed in the same way as in a QM/AMOEBA gradient
calculation,28 and then, they are added to the total gradients.
With respect to a standard QM/ddCOSMO implementation,
there are a few technical differences concerning the geo-
metrical contributions: in this case, there are two contractions
(Sd with Xp and μp and Sp with Xd and μd) instead of one (S
with X), and the potential contains also contributions from the
fixed multipoles and induced dipoles. As anticipated, the
distinction between QM and MM spheres in this case is not
relevant as the gradient terms are computed in the exact same
way for both of them, as discussed in refs 17 and 32. Finally,
contributions involving the gradients of Ψ and Φ require some
extra steps and are discussed below.
The gradient of Ψ for the QM density has been already

discussed in previous works,27 whereas the MM case is tackled
as follows. First, we recall that the expression for Ψ at a given
sphere i is a linear function of the multipoles at i and does not
explicitly depend on the position of any sphere.33 For this
reason, its gradient with respect to an MM atom is zero in the
case of point charges and induced dipoles, as point charges and
induced dipoles do not depend on atom positions. On the
other hand, fixed dipoles and quadrupoles are obtained with a
rotation operation, which translates them from a molecular
frame (the one used in the parametrization) to a laboratory
frame (the one used in the calculation). In this case, the
rotation matrices depend on the position of the atoms, and
hence, the contributions to the gradient are non-zero. A
detailed derivation of the expression for the rotation matrices is
provided in a previous work.34

Regarding the gradient of Φ, we recall that contractions in
the form ⟨S, Φ(U, ∂V)⟩ are not evaluated in the ddCOSMO
basis, but instead, they are recast as an interaction between
pseudo-charges ξ at the grid points and the derivative of V at
the grid points, so that it is possible to exploit the properties of
the Coulomb kernel to ease the computation.
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(11)
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Without going into details of the ddCOSMO theory, which
can be found elsewhere,27 it is sufficient to recall that the
pseudo-charges ξ depend on the quantity S and on geometrical
parameters. The sum i runs on the spheres, whereas the sum n
runs on the sphere-based grid points, ri

n is the position of grid
point n on sphere i. With this premise, the gradient
contributions of eqs 9 and 10 take the following form
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where the notation V[q](r) means electrostatic potential from
sources q computed at r, and E is the electric field. In this
expression, the gradient is computed with respect to the atom k
which can either be a QM or MM atom. In the former case,
however, a fixed multipole at position k is missing and the
second contribution is zero. A similar expression can be written
also for the dipoles and the quadrupoles
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where G and H are, respectively, the electrostatic field gradient
and field hessian. With respect to eq 12, we note additional
terms stemming from the rotation matrices containing the
derivatives of the rotation matrices ∂Rμs and ∂RΘ.34 Finally, we
note that eq 13 holds also for the induced dipoles, but in that
case, the term from the rotation matrices is missing.
2.3. Linear Scaling Implementation. The model was

implemented into a locally modified version of the Gaussian 16
suite of programs,35 which, we recall, is also coupled to the
Tinker package,36,37 so that we can perform multiscale
molecular dynamics and geometry optimizations using the
AMOEBA force field.38−40 The new implementation general-
izes the previous QM/ddCOSMO and polarizable QM/MM
implementations, so that the solute in the ddCOSMO
calculation is made of both QM and MM atoms.
The implementation is based on three main driver routines,

one for the SCF, one for the linear response, and one for the
forces. Furthermore, it allows for a linear scaling computational
cost by using the fast multipole method implementation
presented in ref 41. The SCF code implements all the steps
reported in algorithm 1. The linear response code is a modified
version of the SCF routine: the linear response eigenvalue
problem is solved using an iterative Davidson diagonalization
which requires only performing matrix−vector products
between the matrix defined in eq 6 and the transition
density.42 The result of the matrix−vector product is
equivalent to the Fock matrix element reported in eq 5, with
the difference that in this case, the indices refer to molecular
orbitals, the starting density is a transition density and there are
no contributions from nuclei and fixed multipoles.

The implementation has to be able to deal with large
systems, for instance, chromophores embedded in proteins
with thousands of MM atoms, which requires its computa-
tional cost to scale linearly with respect to the number of MM
atoms. To achieve a fully linear scaling implementation in the
number of MM atoms, each step of the computation has to be
implemented and formulated in a linear scaling fashion. This is
the case for the solution of the ddCOSMO steps: thanks to the
sparsity of L and to the use of an iterative solver, the
ddCOSMO linear system can be solved in N( )MM operations.
This is also the case for interactions between the QM atoms
and the MM atoms or interactions between the QM atoms and
the cavity points and for the computation of Ψ, its gradient,
and the coupling terms Ωμ and Ω†X.
The remaining terms are in principle quadratically scaling in

the number of MM atoms. In this case, the first step for
achieving a linear scaling implementation is to rewrite these
terms as either electrostatic properties at the MM atoms of a
density defined on the MM atoms or as interactions between a
target density and an electrostatic property of a source density
(where both the source and target densities are defined on the
MM atoms). Among the former terms, we have the
computation of the right-hand sides [Ep(M), Ed(M), and
Φ(M)], the coupling terms (Ξμ and Ξ†S), and the matrix−
vector products involved in the dipole linear systems (Tμ).
Among the latter terms, we find the contractions appearing in
the energy expression 4 and in the forces expressions eqs
12−14.
As an example, we report here the steps required to

transform contributions Ξμ and Ξ†S into the computation of
an electrostatic property of some charge distribution, which
can be accelerated using the fast multipole method. The
definition of a matrix element of Ξ is as follows
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where and m are the spherical harmonic indexes, i is the index
of the spheres, j is the index of the dipoles, Win are the weights
associated with the numerical quadrature, Y mn is a given
spherical harmonic function evaluated at point n, finally ri

n and
rj are, respectively, the positions of grid point n on sphere i and
of dipole j. Because the algorithm does not require the explicit
matrix, but only to evaluate its effect on S and μ, it is possible
to reorder the sums in such a way that an electrostatic property
appears. For the direct action of the matrix, we write
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where we recognize the potential of all the dipoles V[μ] which
has to be computed at all the grid points and in principle is a

N( )MM
2 scaling contribution. Once this quantity is

assembled, the remaining numerical quadrature can be
performed in a N( )MM step. For the action of the transpose,
instead, we write
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Also, in this case, the effect of the matrix is rewritten as a two-
step process: first the pseudo-charges ξin are assembled in a

N( )MM step, and then, the field of ξ at all the targets rj has to
be computed, which is a N( )MM

2 step.

Once all the N( )MM
2 steps have been rewritten in terms of

an electrostatic property of a given density, the fast multiple
method can be employed to reduce the computational cost
associated with the computation of the electrostatic property.
In this work, we adapted the previous implementation41 to
handle also the computation of electrostatic properties of
densities defined on the cavity points at the MM atoms and the
properties of densities defined on the MM atoms at the cavity
points. We achieve therefore linear scaling in all the operations
related to the embedding for the computation of both energies
and forces.

3. APPLICATION TO GFPS
The QM/AMOEBA/ddCOSMO model presented in the
previous sections was applied to the study of the absorption
energies of three different variants of the GFP, namely, the
mTFP0.7 (hereafter mTFP), Dronpa, and PhiYFP proteins.
In all these systems, the chromophore is a modified tyrosate
residue condensed with the two adjacent residues, namely, a
glycine residue and another residue specific to the GFP variant:
alanine for mTFP, cysteine for Dronpa, and threonine for
PhiYFP. A representation is provided in Figure 1. The

different structure of the chromophore combined with a
different local environment tune the spectroscopic properties
of the three GFP variants.43−46 The chosen GFP variants span

the broad variation of excitation energy of GFP-like fluorescent
proteins containing the same 4-(p-hydroxybenzylidene)-5-
imidazolinone chromophore in the anionic protonation state:
mTFP and PhiYFP are among, respectively, the most blue-
shifted and most red-shifted variants, while Dronpa is the
intermediate between the two. The measured excitation
energies of 2.74, 2.46, and 2.36 eV are experimentally observed
for mTFP,47 Dronpa,48 and PhiYFP,49 respectively.
To test the newly proposed QM/AMOEBA/ddCOSMO

model, we performed a series of calculations on systems of
increasing size for the three GFP variants and compared them
against different models.
In the following sections, we use the term three-layer to

indicate the QM/AMOEBA/ddCOSMO model and two-layer
to indicate the QM/AMOEBA model.

3.1. Computational Details. As a starting point, we used
the structures from a previous work.25 They are obtained from
protein data bank structures 2OTB,47 2Z1O,50 and 4HE449 for
mTFP, Dronpa, and PhiYFP, respectively. The proteins are
solvated in a water box (a 75 Å truncated octahedron
containing about 9500 water molecules) with Na+ and Cl− ions
in a 0.1 M concentration, with an excess of Na+ to neutralize
the negative charges of the proteins. From these, we generated
systems of increasing size by selecting the chromophore and all
the residues within fixed distances from it. Given two residues
we used the minimum distance between them as a distance
definition. Two different strategies were used for the
generation of the systems: in one strategy, we selected shell
radii from 2 to 25 Å evenly spaced by 1 Å, thus obtaining both
neutral and charged structures, whereas in the other strategy,
we selected only shell radii that allowed for a total net charge
of zero (we recall that the QM part is negatively charged).
Supporting Information provides a more detailed description
about the resulting neutral structures: a table summarizes the
shell radii, the number of atoms in the MM shells, and the
fraction of protein residues included in a given shell, and a
figure provides a graphical representation of the smallest
neutral structures for the three systems. Figure 2 shows three
example structures for the mTFP system.
In all cases, the QM subsystem included the chromophore

and the carbonyl and N−H moieties of the linked amino acids
(Figure 1). A link atom scheme was used to account for the
QM−MM covalent bonds, by placing a hydrogen atom along
the QM−MM bond at 1.0 Å from the QM heavy atom.
Overpolarization of the QM density was prevented by
removing the electrostatic parameters from MM atoms in
position 1, 2 and 1, 3 with respect to the QM atom at the
interface. The total charge of the cropped MM residue was
then set to the appropriate integer value by redistributing the

Figure 1. Structure of the chromophores for the investigated systems.
The parts in gray depict the atoms of the linked residues, which have
been added to the QM part.

Figure 2. Representations of three mTFP structures with shells of different radii (2.3, 9.8, and 22.1 Å). The QM part is represented in orange, the
MM protein in white, and the water molecules in cyan. The cavity is schematically drawn.
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excess or defect charge over the remaining atoms of the residue
itself.
The MM part was either described using the AMOEBA

polarizable force field21 or the AMBER ff99SB nonpolarizable
force field.51 In all the cases in which a bond between two
amino acids was cut by the cropping scheme, we did not
employ any special measure for the amino acid termination.
For the external ddCOSMO solvation shell, we used a static

dielectric constant of 15.0 and an optical dielectric constant of
2.0. The static dielectric constant is chosen to be in between
the typical values for the interior and for the exterior of the
proteins.52 The boundary between the QM/MM and the
continuum solvent was defined using a solvent accessible
surface. For ddCOSMO, we used max = 6 and Ngrid = 110. The
robustness of the results with respect to both the value chosen
for the dielectric constant and the discretization parameters
was tested; the results are given in the Supporting Information.
The QM part was described using the same methods as in the
reference paper:25 TDCAM-B3LYP/6-31+G(d) for excitation
energy calculations and PBE0/6-31G(d) for geometry
optimizations.
Excitation energy calculations were performed using the

modified Gaussian 16 suite,35 whereas geometry optimizations
were performed using the interface38,40 between Tinker36,37

and the modified Gaussian 16 suite.
In the geometry optimizations, we kept frozen all the MM

residues except those directly linked to the QM part.
3.2. Timings. As a preliminary analysis, we report on the

performance of the new three-layer model, compared with the
reference two-layer model. For these tests, we used max = 2
Ngrid = 26, as this choice reproduces the same results obtained
with finer discretizations, and spherical harmonics of at least
maximum angular momentum of 2 are required to properly
treat the AMOEBA quadrupoles. A benchmark of the results
against the discretization is provided in the Supporting
Information. All the calculations have been performed on
mTFP neutral structures of increasing size.
Figure 3A reports the timings required for the various steps

of the algorithm 1, measured at the first SCF iteration and the
average on every SCF iteration. As anticipated, all the steps are
linear scaling, with the exception of ddCOSMO which shows a
slope slightly greater than 1. The local functions Ψ(μ) and its
adjoint (AX) are cheap and linear scaling and indeed even for
the largest system only require 1 ms. All the electrostatic terms
(μ, Φ, and BS) are in principle quadratically scaling; however,
the FMM implementation effectively allows one to compute
them in a linear scaling regime, and for the largest system, they
require ∼1 s. Finally, ddCOSMO is the most costly step (due
to the microiterations): solving the linear system multiple
times requires ∼10 s for the largest system. The cost of each
ddCOSMO microiteration is linear; however, because the
number of microiterations depends on the system’s size,
ddCOSMO exhibits a slightly more-than-linear scaling. A plot
of the number of ddCOSMO microiterations required for
different shell radii is reported in the Supporting Information.
To further improve the overall performances, we use the

solutions of the previous iteration as guesses for both the
macro- and microiterations. For this reason, in Figure 3A, the
average timings are smaller with respect to those measured at
the first SCF iteration. Reducing the number of macro-
iterations reduces the average cost of all the steps; furthermore,
reducing the number of microiteration further reduces the
average cost of the ddCOSMO step.

Figure 3B reports the total time required for a ground state
(GS) forces calculation and a TDDFT calculation on mTFP
neutral structures. As expected, the more complex three-layer
model results in a more time-consuming calculation with
respect to the simpler two-layer one.
However, as we shall show in the following section, three-

layer calculations provide accurate results even on smaller radii
(<10 Å), whereas in the case of a two-layer calculation, a much
larger radius is required (∼15 Å for mTFP and Dronpa, ∼20 Å
for PhiYFP). By considering these two radii, we observe that
the two investigated models result in calculations with a similar
computational cost for the GS forces calculation, whereas for
the excited state calculation, the three-layer model is still
slightly more expensive.

3.3. Electrostatics and Polarization. In this section, we
report a comparison of the excitation energies computed using
three-layer and two-layer models on the three GFPs using
model systems of increasing size (either obtained with the
strategy which gives neutral systems or with the general one).
The transition energies and transition dipoles calculated for the
first excited state are reported in Figure 4.
Considering first the results computed on neutral systems,

we observe that, for the three GFPs, the three-layer model

Figure 3. (a): Time required by the various steps reported in
algorithm 1, summed over the first SCF iteration (solid lines) and
averaged over all SCF iterations (dashed lines). These results are
obtained on mTFP neutral structures of increasing size. The gray
dotted lines report a slope of 1 in the log−log plot. (b) Total time
required for a TDDFT calculation (solid lines) and a GS forces
calculation (dashed lines) done for a QM/AMOEBA/ddCOSMO
and a QM/AMOEBA model. Also in this case, the results are
obtained on mTFP. To aid the comparison between the two- and
three-layer models, the shell radius at which we observed convergence
with QM/AMOEBA/ddCOSMO (10 Å) is marked with a dotted
gray vertical line. The corresponding QM/AMOEBA/ddCOSMO
timing is marked with a dotted green line for the TD-DFT calculation
and with a dotted red line for the forces.
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converges faster for both excitation energy and transition
dipole moment. Moreover, the three-layer model damps the
oscillations of the properties which are present in the results
obtained using the two-layer model. A shell radius of ∼5 Å in
combination with the three-layer model is enough to compute
converged properties for Dronpa and PhiYFP. On the other
hand, properties ofmTFP converge only with a radius of ∼9 Å.
This larger radius is required because of the peculiar
arrangement of charged residues close to mTFP chromophore.
Using the two-layer model, larger shell radii (15−20 Å) are
necessary to obtain converged results. Similar findings are also
found in the literature.9,12

Considering the results of all (neutral and charged) systems,
we observe much larger oscillations in the properties computed
using the two-layer model. These oscillations directly stem
from the unbalanced charge of the systems. However,
switching to a three-layer description greatly damps the
oscillations, and the obtained results do not differ significantly
with respect to those computed on neutral systems only.
To assess the role of polarization, we compared the results of

three-layer and two-layer calculations based on AMOEBA,
with results obtained using QM/MM/ddCOSMO, QM/MM,

QM, and QM/ddCOSMO. In this comparison, we limited the
analysis to neutral systems only. Due to the high computa-
tional cost, QM (and QM/ddCOSMO) calculations were
performed only for the smallest systems.
Figure 5 shows the excitation energy on the three GFPs for

the various models. First, we note that the effect of adding a
third continuum shell is similar for both AMOEBA and the
nonpolarizable MM description. In detail, we observe the same
deviations of the two-layer profile with respect to the three-
layer profile for both the polarizable and nonpolarizable cases.
When instead we compare AMOEBA and the non-

polarizable MM, we see important differences. In particular,
for Dronpa and PhiYFP, we observe that a nonpolarizable
environment blue-shifts the excitation energy, whereas a
polarizable environment red-shifts it with respect to the
vacuum. The addition of a third continuum shell partially
compensates for the lack of polarization in the atomistic MM
shell; this effect, however, is gradually lost when the shell
radius increases, until convergence with the QM/MM result.
Finally, we compared the results with the excitation energies

obtained from full QM calculations (possible only on the
smallest shells). The results show an almost quantitative

Figure 4. First excited-state properties for the three GFPs at different shell radii. The calculations were performed using both a QM/AMOEBA/
ddCOSMO and a QM/AMOEBA model. Calculations on neutral structures are reported using solid lines, whereas calculations done on generic
structures are reported using dashed lines. The reference values, computed using QM/AMOEBA on the complete systems, are reported as dotted
lines. Values at a shell radius of 0 Å are computed without MM atoms, so that the two models correspond to QM/ddCOSMO and QM models,
respectively.

Figure 5. Excitation energy computed using polarizable, nonpolarizable, and full QM models. The values at a shell radius of 0 Å report results
computed on systems not containing MM atoms, corresponding to QM/ddCOSMO and QM/vacuum cases. The black and cyan data report
results obtained using a QM description for all the atoms of the structure and in the cyan case in combination with ddCOSMO to improve TDDFT
results.
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agreement between the AMOEBA and full QM results,
whereas with the nonpolarizable embedding, the agreement
is lost. Also, in the mTFP case, where both the polarizable and
nonpolarizable embeddings are qualitatively similar, the
AMOEBA results are quantitatively closer to the QM results.
We also considered the case of three-layer and two-layer

calculations in which the AMOEBA polarizabilities are non-
zero only in a fixed shell around the QM region. The idea is to
recover the effect of the fully polarizable AMOEBA embedding
with a reduced computational cost. This analysis, however,
showed that the partially polarizable AMOEBA shell does not
lower significantly the computational cost neither for two-layer
nor for three-layer calculations. For this reason, the results and
the analysis are only reported in the Supporting Information.
3.4. Comparison with the Experiments. As a last

analysis, we investigated the role of the three-layer model on
geometrical properties and we compared the excitation
energies of the optimized structures with experiments. We
performed a series of geometry optimizations on the neutral
structures using the QM/AMOEBA/ddCOSMO model. Both
the optimization and excited-state calculations were repeated
using the two-layer model.
To compare the optimized geometries, we measured the

bond length alternation (BLA) using a definition obtained
from a principal component analysis done in a previous
work:53 its full expression is provided in the Supporting
Information. A plot of the BLA values obtained for different
shell radii is provided in Figure 6 for the three GFPs. For

Dronpa and PhiYFP, both the two-layer and three-layer
descriptions converge to a similar value, whereas for mTFP, we
observe a small discrepancy. In all the cases, the three-layer
model shows smaller fluctuations compared to the two-layer
model, and it converges faster.
A comparison of the excitation energies computed using the

two-layer and three-layer models against experimental values is
reported in Figure 7. We observe that the TDDFT/AMOEBA
description systematically overestimates excitation energies by
∼0.4 eV. To further improve this result, it is necessary to go
beyond TDDFT, as shown in ref 25. The description provided
by the three-layer and two-layer methods is similar, provided
that a large enough MM shell is used, with the only substantial
difference being the mTFP excitation energy, which is slightly
lower in the case of the three-layer method. This discrepancy
arises due to the different BLA of the optimized structures.

The higher sensitivity of the mTFP system to the
embedding model (in terms of both the shell radii and the
two- vs three-layer coupling) is due to its larger response to the
electrostatic field in the chromophore cavity,25,46 which in turn
can be explained by the larger driving force between the two
chromophore resonance forms.54 By contrast, the smaller
driving force in PhiYFP results in much reduced sensitivity
and hence faster convergence with the shell size. Overall, this
system-dependent sensitivity to the environment highlights the
importance of carefully taking into account the electrostatic
effects at both a short and a long range. The three-layer
approach describes both effects in a balanced and reliable way
already with relatively small embeddings.

4. CONCLUSIONS
We presented the theory and implementation of a fully
polarizable three-layer QM/MM/continuum approach, which
combines the AMOEBA force field and ddCOSMO. The
implementation can be used to perform ground-state SCF
energies and forces and linear response excited-state
calculations. The extension to excited-state forces will be the
subject of future development.
As a test case, we investigated the excitation energies of

three variants of the GFP by comparing the three-layer
approach with the corresponding two-layer QM/AMOEBA,
and both a three-layer and two-layer model based on a
nonpolarizable AMBER force field. For all the three systems,
the use of a polarizable force field is necessary not only to
improve the quantitative agreement with a full QM calculation,
but also to achieve a correct qualitative estimation of the effects
due to the protein. The effect of the third continuum shell is
instead similar on both descriptions, with the exception that,
for small-size systems, it compensates for the lack of
polarization in the MM shell. Moreover, the third continuum
shell leads to a faster convergence of the results against the size
of the MM shell, especially in the case of charged structures.
This lower sensitivity to the charge dispenses with the need of
selecting neutral subsystems and is useful, for example, when
averaging over the snapshots of a MD simulations, where
charged residues and ions can easily go in and out of a defined
shell.
To conclude, the QM/AMOEBA/ddCOSMO model

appears to be the best choice in all cases where only small
and/or non-neutral systems are available. In the other cases, its
application leads to results similar to a QM/AMOEBA
calculation at a comparable, or sometimes slightly higher,
computational cost. We believe that further investigation and
the development of new strategies to reduce the cost of the
three-layer model are therefore paramount to make it more
generally applicable. From this point of view, we believe that
one of the main issues of the present implementation is that
the molecular cavity used by ddCOSMO uses one sphere per
atom. Especially for calculations involving large MM
embeddings, this is certainly not an efficient choice.
Simplifying the cavity, adopting for instance a coarse-grained
definition where only heavy atoms or even the whole residues
are associated with spheres, can introduce major savings in the
three-layer model. A careful optimization of the radii of the
spheres can also ensure that the quality of the results is not
spoiled by the cavity’s simplification. The implementation of
ddCOSMO, and therefore of the QM/AMOEBA/ddCOSMO
model, using a more general molecular cavity is the subject of
active investigation.

Figure 6. BLA computed on optimized geometries. The results
obtained using QM/AMOEBA/ddCOSMO are reported as solid
lines, whereas those obtained using QM/AMOEBA are reported as
dashed lines.
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