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Abstract

We analyze the implications of strategic interactions between two heterogenous groups (i.e., young

and old, men and women) in a macroeconomic-epidemiological framework. The interactions between

groups determine the overall prevalence of a communicable disease, which in turn affects the level of

economic activity. Individuals may lower their disease exposure by reducing their mobility, but since

changing mobility patterns is costly each group has an incentive to free ride negatively affecting the

chances of disease containment at the aggregate level. By focusing on an early epidemic setting, we

explicitly characterize the cooperative and noncooperative equilibria, determining how the inefficiency

induced by noncooperation (i.e., failure to internalize epidemic extenalities) depends both on economic

and epidemiological parameters. We show that long run eradication may be possible even in the absence

of coordination, but coordination leads to a faster reduction in the number of infectives in finite time.

Moreover, the inefficiency induced by noncooperation increases (decreases) with the factors increasing

(decreasing) the pace of the disease spread.
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1 Introduction

Infectious diseases represent still today a major source of morbidity and mortality in both developing and

industrialized countries, crucially affecting their prospects for economic development (Lopez et al., 2006;

WHO, 2009). Through their effects on health conditions and thus the pressure on governments to finance

health policy, the impact on communicable diseases extends to macroeconomic outcomes affecting the labor

market, productivity, saving and investment decisions (Chakraborty et al., 2010; La Torre et al., 2020). The

analysis of such a health-economic relation is the focus on the economic epidemiology literature which seeks
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to understand the effectiveness of different policy tools in mitigating the economic consequences of infectious

diseases (Philipson, 2000; Gersovitz and Hammer, 2004), along with their implications on macroeconomic

dynamics and economic prosperity (Goenka et al., 2014; La Torre et al., 2020). Despite their differences

in the economic framework, these papers share the same epidemiological setting, given by the susceptible-

infected-susceptible (SIS) model, in which individuals are either susceptible to the disease or already infected

and infectives, without ever acquiring permanent immunity from infection (Hethcote, 2000; Kermack and

McKendrick, 1927). The SIS framework represents one of simplest models in mathematical epidemiology

and is widely applicable to a range of traditional diseases, such as the seasonal flu and the common cold, but

also to novel diseases such as COVID-19, since thus far there is no convincing evidence that after recovery

individuals may become immune from a second infection (WHO, 2020).

The ongoing COVID-19 pandemic is ravaging the entire planet showing more clearly than ever that

sudden and unforeseeable epidemic episodes can dramatically hit not only developing countries but even

the industrialized ones. The most widely used mitigation strategies (i.e., social distancing and lockdowns)

have not only generated beneficial effects on disease incidence and prevalence, but also devastating economic

consequences by forcing individuals and firms to limit their social contacts and interactions both on the

workplace and at home. These striking facts have spurred a growing interest in understanding the mutual

relation between epidemic and macroeconomic outcomes, and several works have explored the macroeco-

nomic implications of COVID-19 and the policy measures implemented to control it (Acemoglu et al., 2020;

Alvarez et al., 2020; Atkeson, 2020; La Torre et al., 2021). Most of the papers analyze policymakers’ optimal

response by determining from a normative point of view the public policy tools to employ in order to achieve

the first best outcome, while limited has been thus far the focus on individuals’ voluntary choices to reduce

their disease exposure. However, several works document that individuals have significantly reduced their

mobility in an attempt to decrease their contacts with potentially infective individuals (Chetty et al., 2020;

Glaeser et al., 2020). To the best of our knowledge, very few papers have tried thus far to characterize

individuals’ response to the level of disease prevalence, discussing how their behavioral change may improve

health outcomes at the cost of deteriorating the economic ones (Eichenbaum et al., 2020). In this paper we

wish to contribute to this literature by analyzing the behavioral response to disease prevalence of different

demographic groups and what the interaction between groups may imply for epidemic and macroeconomic

outcomes.

One of most evident and potentially long lasting economic consequences of COVID-19 concerns its

heterogeneous impact on different population groups. The widespread adoption of lockdown and social

distancing measures, including school closures and remote working arrangements, have generated important

labor market shocks leading to a substantial income reduction for a large share of the population resulting in

growing concerns for the future and a deterioration in mental health conditions (Codagnone et al., 2020; Liu

et al., 2020). The labor market and income consequences have been highly heterogeneous, hitting particularly

younger workers, those with precarious employment and from minority ethnic groups, along with individuals

employed in contact-intensive sectors precluded from remote working (Angelucci et al., 2020; Crossley et

al., 2021). Moreover, such economic impacts have also been highly heterogeneous across gender and age:

women have suffered more than men due to their traditional role as primary carer for children (Alon et

al., 2020; Hupkau and Petrangolo, 2020), while young people have suffered more than old individuals as

they have experienced more radical changes to their lives and have gained less from disease containment

measures (Belot et al., 2020; Glover et al., 2020). Apart from the direct and indirect implications of public

policy, also the mitigation strategies voluntarily employed within the population in order to reduce the risk

of disease exposure have been highly heterogeneous, and in particular women and the young have reduced

their mobility by larger amounts than men and the old, suggesting that overall gender and inter-generational

inequalities have been and may be widening during the COVID-19 crisis (Caselli et al, 2020). Understanding

thus how different demographic groups (i.e., men and women, young and old) may modify their behavior

following an epidemic shock is essential in order to shed some light on the possible consequences of the
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COVID-19 pandemic on social inequalities and to develop effective policy strategies.

In order to move forward in this direction we develop a macroeconomic-epidemiological model in which

two heterogeneous population groups decide how to voluntarily modify their behavior to lower their risk

to contract the disease. Specifically, individuals in each group choose the extent to which reducing their

mobility, but changing mobility patterns is costly since by affecting both production and leisure it decreases

consumption and the enjoyment of recreational services. Each group needs to balance the competing health

(i.e., decrease new infections) and economic (i.e., increase consumption and enjoy recreation) needs, moved

by an incentive to free ride in order to let the costly behavioral change fall on the other group, which may

result in a deterioration of the chances to contain the disease spread at the aggregate level. We focus on an

early epidemic setting in which the number of infectives follows an exponential dynamics and both groups’

susceptible shares is proxied by their relative population shares. This gives rise to a two-player differential

game in which players differ in some key epidemiological and economic factors and strategically interact in

the pursuit of their own self-interest. Differential games have been extensively employed to analyze a variety

of issues in environmental and natural resources management, industrial organization, epidemiology (Rel-

uga, 2010; Jorgensen and Zaccour, 2019; Marsiglio and Masoudi, 2021), but to the best of our knowledge

applications in economic epidemiology have not been discussed yet. Specifically, in our macroeconomic-

epidemiological differential game we analyze the players’ mobility choices and disease dynamics both under

cooperation and noncooperation, comparing the equilibrium outcomes under such different scenarios. We

characterize how the noncooperative and cooperative equilibrium outcomes depend on both economic and

epidemiological parameters, determining how such parameters impact the inefficiency induced by noncoop-

eration (i.e., the failure to internalize the epidemic extenalities that the two groups impose on each other).

We show that in all scenarios the burden of reducing mobility patterns falls more strongly on the group

characterized by a smaller population share and lower adjusted productivity (i.e., lower share of time allo-

cated to labor activities), and cooperation helps redistributing this burden between groups. We also show

that long run eradication may be possible even in the absence of coordination but coordination leads to a

faster reduction in the number of infectives in finite time, and that the distortion induced by noncooperation

increases with the factors increasing the pace of the disease spread (i.e., the infectivity rate) and decreases

with those reducing it (the recovery rate and the adjusted productivity parameter).

Our paper makes thus a number of novel contributions to literature. To the best of our knowledge, it is

the first work analyzing strategic interactions between groups in a differential game setting in the context

of macroeconomic epidemiology. Moreover, it develops a tractable framework which, given the specific

linear-quadratic structure of the problem under an early epidemic stage assumption, allows for closed-form

solutions explicitly determining the players’ optimal closed-loop strategies and the optimal evolution of

disease prevalence. This permits us to derive interesting (and to some extent surprising) conclusions: (i)

eradication may be possible even in the absence of coordination, meaning that despite their free-riding

incentives the strategic interactions between groups may not preclude the achievement of the long run

eradication goal; (ii) the burden of implementing behavioral changes to limit the spread of the disease

affects different groups unequally, and specifically the impact of such a burden depends on key groups’

demographic and economic characteristics. Such results have important policy implications which can inform

policymakers’ efforts to mitigate the heterogeneous economic consequences of infectious diseases between

different population groups.

The paper proceeds as follows. Section 2 introduces our macroeconomic-epidemiological differential game

in which individuals of two groups decide the extent to which reducing their mobility in order to lower their

infection risk and such a choice affects also their consumption and recreation. Section 3 characterizes the

cooperative and noncooperative equilibrium outcomes, deriving explicitly the players’ mobility reduction

choices in both frameworks and relying on numerical experiments to compare the cooperative and nonco-

operative solutions. Section 4 analyzes the special case in which heterogeneity between the groups is ruled

out in order to derive explicitly some results which would otherwise be obtained only through numerical
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analysis. Section 5 as usual presents concluding remarks and highlights directions for future research. All

mathematical technicalities are presented in the appendix A.

2 The Model

We consider a macroeconomic-epidemiological differential game in which two groups (i.e., young and old, men

and women) by interacting with each other determine the overall prevalence of a communicable disease and

thus the level of economic activity. Individuals may lower their risk to contract the disease by reducing their

mobility, but since changing mobility patterns is costly each group has an incentive to free ride negatively

affecting the chances of disease containment at the aggregate level. A similar setting has been recently

analyzed in La Torre et al. (2021) in a single group context to determine the optimal social distancing

policy, abstracting thus from a game structure and the implications of strategic interactions on disease

dynamics and macroeconomic outcomes.

2.1 The Epidemiological Framework

We consider a two-group SIS framework in which the individuals of each group can be either infectives or

susceptible to the disease, but they cannot acquire permanent immunity. Abstracting from vital dynamics,

the total population N is assumed to be constant and to be composed by individuals of group i and group

j only: N = N i +N j . In the following we shall present the model’s structure and equations only for group

i, but the same structure and equations apply symmetrically to group j. Individuals in group i, N i, can be

either healthy but susceptible to infection Sit or infectives who can transmit the disease by getting in contact

with suceptibles (of both groups) Iit : N
i = Si + Ii. The interactions between susceptibles of a group and

infectives of both groups determine the evolution of susceptibles and infectives for a given group. For the

sake of simplicity, independently of the group they belong to, infectives spontaneously recover at the rate

δ > 0, and susceptibles become infective by interacting with infectives at the rate α > 0, measuring the

number of social contacts required to give rise to a new infection. Therefore, for group i, given its initial

levels Si0, I
i
0 ≥ 0, the dynamics of susceptibles and infectives is given by the following equations:

Ṡit = δIit − αSit

(
Iit + Ijt
N

)
(1)

İit = αSit

(
Iit + Ijt
N

)
− δIit , (2)

with j 6= i. Note that in the above equations the total number of infectives Iit + Ijt which can generate new

infections is normalized by the total population size N to represent that the patterns of social interactions

between individuals tend to remain stable over time and do not change with the level of disease prevalence

(Goenka et al., 2014). Since N i = Si + Ii, it follows that one of the two equations above is redundant and

thus it is possible to focus only on one of them. By focusing on infectives, from Si = N i− Ii we can simplify

the above system as follows:

İit = α(N i − Ii)

(
Iit + Ijt
N

)
− δIit . (3)

By defining the share of infectives, susceptibles and population out of the total population for each group

as ii = Ii

N , si = Si

N and ni = N i

N respectively, we can recast the evolution of infectives in group i as follows:

i̇it = α(ni − iit)(iit + ijt )− δiit. (4)
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The expression above, which applies symmetrically also to group j, suggests that the evolution of infectives

in both groups depends on the same parameters and the total number of infectives between groups deter-

mines the disease incidence in each group. From a mere epidemiological perspective, the two groups are

homogeneous apart from their relative population shares, that is ni and nj = 1− ni are the only source of

heterogeneity between groups as all other parameters (α and δ) are assumed to be the same for both groups.

2.2 The Macroeconomic Framework

We now extend the above epidemiological framework to account for how individuals’ decisions to lower

their infection exposure may impact disease dynamics and macroeconomic outcomes. Specifically, in order

to reduce the number of persons they get in contact with, individuals may decrease their mobility (i.e.,

working from home rather than on the workplace and meeting friends virtually rather than in person)

by a certain share 0 < ui < 1 lowering thus the degree of infectivity and disease incidence, but also

their productivity both in the production and leisure sectors (i.e., most production processes and leisure

activities require face-to-face interactions and despite online interactions are possible they often are less

effective than the physical ones). Individuals exogenously split their unitary time endowment between

working in the production sector and enjoying leisure, resulting in the production of goods and recreational

services respectively. Firms produce competitively the unique consumption good by employing labor while

recreational services are produced as a side-effect of leisure activities. Only susceptibles work and enjoy

leisure while infectives are quarantined and receive income support financed via income taxes levied on

susceptibles. Households entirely consume their disposable income as follows: cit = qit − τ , where ct denotes

consumption, qt income and τ > 0 a lump-sum tax used to provide income support to infectives. The

consumption good is produced through a linear production technology depending only on the amount of

time allocated to labor, and individuals’ reduction mobility choices negatively affect productivity as follows:

qit = βφi(1 − uit)sit, where β > 0 measures the productivity and 0 < φi < 1 is the share of time allocated

to labor activities. The share of non-working time 0 < 1 − φi < 1 is allocated to leisure through which

recreational services are produced (and instantaneously enjoyed), and also in this case individuals’ reduction

mobility choices negatively affect productivity as follows: rit = θ(1−φi)(1−uit)sit, where rit is the recreational

service output and θ > 0 is the productivity parameter. Individuals’ change in mobility patterns generates

thus a personal loss xit equal to the consumption and recreational losses given by: xit = uitq
i
t + uitr

i
t. The

disease dynamics is described by the following SIS equation: i̇it = α(1−uit)sit(iit+ ijt )− δiit where individuals’

reduction mobility choices by lowering potentially infectious contacts slow down the disease transmission.

Individuals seek to minimize the personal cost from their behavioral change, which is given by the discounted

sum (ρ > 0 is the rate of time preference) of the instantaneous losses. The instantaneous loss function is

assumed to depend on the total spread of the disease iit+i
j
t and the personal loss due to the reduced mobility

xt = [βφi+θ(1−φi)]uitsit and to take a quadratic non-separable form as follows (La Torre et al., 2020, 2021):

`i(iit + ijt , x
i
t) =

(iit+i
j
t )

2[1+(xit)
2]

2 , penalizing deviations from the disease-free status (i.e., iit + ijt = 0) and from

the no-personal-loss scenario (i.e., xit = 0).

By recalling that sit = ni − iit, the decision problem of group i can be summarized as follows:

min
uit

Ci =

∫ ∞
0

(iit + ijt )
2
[
1 + (ξi)2(uit)

2(ni − iit)2
]

2
e−ρtdt (5)

s.t. i̇it = α(1− uit)(ni − iit)(iit + ijt )− δiit (6)

i̇jt = α(1− ujt )(nj − i
j
t )(i

i
t + ijt )− δi

j
t (7)

0 ≤ iit, i
j
t ≤ 1 (8)

ii0 > 0, ij0 > 0 given (9)

where ξi = βφi + θ(1 − φi) measures the total time-allocation-adjusted productivity of group i in the

production and leisure sectors, which in the following we shall refer to as “adjusted productivity” for the
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sake of expositional simplicity. From an economic perspective the two groups differ only by the parameters

ξi and ξj via their different time allocation between sectors: as the productivity parameters β and θ are

assumed to be homogeneous between groups, the only source of heterogeneity is represented by the groups’

time allocation. For the sake of simplicity we assume that for each group the productivity is higher in the

production than in the leisure sector (i.e., β > θ) such that its adjusted productivity and sectoral time

allocation ξi and φi (and the same is true for ξj and φj) are positively related.

2.3 The Early Epidemic Framework

Since policymakers take time to understand how to respond to a new epidemic outbreak, every epidemic

dynamic is characterized by an early phase in which the disease spreads freely across the population and

individuals’ behavioral reactions to the disease prevalence represent the main form of response to the epi-

demic. In our analysis we specifically focus on this setting which seems to best fit our model’s assumptions

in which the effects of public policy (in the form of prevention or treatment interventions) are completely

ruled out. In an early epidemic phase the number of infectives tends to grow at a constant rate and thus

the disease dynamics can be described by a linear differential equation by proxying both groups’ susceptible

shares by their relative population shares, sit = ni− iit ' ni and sjt = nj − ijt ' nj (Chowell et al., 2016; Ma,

2020; La Torre et al., 2021). Under such an assumption, the group i’s problem boils down to the following:

min
uit

Ci =

∫ ∞
0

(iit + ijt )
2
[
1 + (ξi)2(uit)

2(ni)2
]

2
e−ρtdt (10)

s.t. i̇it = αni(1− uit)(iit + ijt )− δiit (11)

i̇jt = αnj(1− ujt )(iit + ijt )− δi
j
t (12)

0 ≤ iit, i
j
t ≤ 1 (13)

ii0 > 0, ij0 > 0 given (14)

The optimization problem above states that the total disease prevalence drives the personal cost associated

with individual mobility choices and the disease incidence for each group which ultimately determines the

group-specific level of disease prevalence. Since for each group, both in the objective function and in the

dynamic constraints, what really matters is the total disease prevalence, by defining it = iit + ijt and by

recalling ni + nj = 1, we can recast group i’s problem as follows:

min
uit

Ci =

∫ ∞
0

i2t
[
1 + (ξi)2(uit)

2(ni)2
]

2
e−ρtdt (15)

s.t. i̇t = [α(1− uit)ni + α(1− ujt )nj − δ]it (16)

0 ≤ it ≤ 1 (17)

i0 > 0 given (18)

Note that such an early epidemic setting assumption, jointly with our specification of the instantaneous

loss function, provides our model with a linear-quadratic structure which allows for closed-form solutions

explicitly determining the closed-loop strategies of the two groups and the evolution of disease prevalence.1

In the optimization problem above, equation (16) states that the total disease prevalence grows at a rate

determined by the net infectivity rate (i.e., the infectivity rate adjusted for each group’s mobility choices and

relative population shares) and the recovery rate. This is strictly related to the concept of basic reproduction

1In the absence of a linear quadratic structure and of C1-regularity of the function satisfying the Hamilton-Jacobi-Bellman

equation (HJB), obtaining closed-form solutions would not be possible. If this is case we might rely either on a numerical

approach or on the notion of viscosity solution. Different from numerical approaches, the viscosity solutions theory permits

to guarantee existence and uniqueness (via comparison principle) of the solution for problems which do not allow for classical

closed-form solutions (Crandall and Lions, 1983; Crandall et al., 1984, 1987).
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number, R0, which measures the average number of secondary infections produced by a typical infectious

individual introduced into a completely susceptible population (Hethcote, 2000). Indeed, as extensively

discussed in mathematical epidemiology the long run disease dynamics crucially depends on whether the

basic reproduction number is larger or smaller than one, and in our setting such a parameter turns out to

be given by the following expression:

R0 =
α(1− uit)ni + α(1− ujt )nj

δ
. (19)

If R0 < 1, that is the net infectivity rate is smaller than the recovery rate, the disease will naturally die

out over time, while if R0 > 1, that is the net infectivity rate is higher than the recovery rate, the disease

will spread and will affect a larger and larger share of the susceptible population over time. In the case of

an epidemic outbreak of a disease characterized by a high R0, individuals’ mobility reduction choices by

lowering the net infectivity rate can effectively decrease the basic reproduction number below unity allowing

to achieve a disease eradication in the long run. In the following we shall assume that in the absence of

behavioral changes (i.e. uit = ujt = 0) the disease prevalence will naturally tend to increase over time (i.e.,

R0 > 1, which occurs whenever α > δ), and in such a setting we wish to understand whether individuals’

unregulated decisions to reduce their mobility (i.e. uit, u
j
t > 0) may eventually reverse the disease growth

pattern and lead in the long run to disease eradication (i.e., bringing R0 below unity). In particular, we

wish to explore whether free riding opportunities between groups may preclude the possibility of eradication

along with how heterogeneity between groups (driven by differences at epidemiological or economic levels,

captured by the groups’ population size, ni vs nj , and adjusted productivity, ξi vs ξj , respectively) may

affect the equilibrium outcome.

In order to put our paper in perspective it may be useful to comment on our model’s assumptions and

implications. (i) We consider an infinite horizon framework as in similar macroeconomic-epidemiological

settings it has been shown that the disease is likely to persist in the long run reaching an endemic state (La

Torre et al., 2021), and thus it makes sense also for single individuals to plan their behavioral response to the

level of disease prevalence accordingly. However, since individuals are short sighted and short lived, consid-

ering such an infinite time horizon may lead our conclusions to put excessive weight on far distant events and

outcomes, which in reality would have a much lower impact on single individuals’ decisions. (ii) Different

forms of public policy and their implications on disease prevalence and incidence are completely ruled out to

focus only on individuals’ change in their behavioral patterns to contrast and limit the spread of the disease.

In reality public policy clearly plays an important role in the management of epidemic episodes by driving

individuals’ behavioral response and imposing stringent regulations (i.e., social distancing, lockdowns, travel

bans), thus abstracting from the analysis of the interaction between public policy and individuals’ mitigation

strategies precludes us from analyzing several aspects of the health-economic relationship highlighted by the

recent COVID-19 experience at world level. (iii) The absence of disease-induced mortality and heterogene-

ity between groups in several epidemiological and economic parameters limits the ability of our model to

capture the peculiarities of the COVID-19 epidemics which has given rise (either directly or indirectly) to

significant increases in mortality rates and significantly different impacts between groups (i.e., young vs old,

men vs women).

3 Equilibrium Outcomes

We now analyze separately the scenarios in which the two groups’ individuals do not and do cooperate in

their mobility choices in order to compare the noncooperative and cooperative outcomes and analyze the

implications of heterogeneity between groups in key epidemiological and economic characteristics.
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3.1 Noncooperation

In a noncooperative framework, the group i solves problem (15) - (18) by taking the behavior of the other

group j as given, meaning that each group cares only about its own personal cost. It is possible to show

(the proofs of all the propositions and results are presented in appendix A) that the following result holds

true.

Proposition 1. Suppose that 0 < α − δ < Aiα2

(ξi)2
+ Ajα2

(ξj)2
and Aiα

(ξi)2
< ni < 1 − Ajα

(ξj)2
. The noncooperative

Cournot-Nash mobility reduction choice for groups i and j, along with the total infectives dynamics are

respectively given by:

(uit)
N =

Aiα

ni(ξi)2
∈ (0, 1) (20)

(ujt )
N =

Ajα

nj(ξj)2
∈ (0, 1) (21)

iNt = i0 e

[
α−A

iα2

(ξi)2
−A

jα2

(ξj)2
−δ

]
t
, (22)

where Ai > 0 is given by (51) and Aj > 0 is symmetrically determined. Furthermore, the total number of

infectives monotonically falls over time, as i̇Nt < 0.

Provided that some technical conditions hold true, Proposition 1 determines in closed-form the expression

for the mobility reduction choices of both groups and the dynamics of the total infectives. The mobility

reduction choices of both groups turn out to be constant over time and large enough to reverse the disease

growth pattern and lead to a monotonic reduction in the number of infectives. This means that, despite

free-riding incentives noncooperation ensures that the basic reproduction number in (19) is smaller than

unity. For each group, the mobility reduction rule monotonically decreases with its own-population share:

since the population share of a group determines the cost of behavioral changes for that specific group, a

higher own-group population share directly lowers its incentive to implement such changes. Apart from this

intuitive result, we cannot say much about the effects of other epidemiological and economic parameters on

the two groups’ mobility reduction rules as the expressions in (20) and (21) are particularly cumbersome,

due to the fact that the parameters Ai and Aj are the solutions of fourth-degree equations. Therefore, in

the following we will proceed by presenting some numerical examples to visualize the impact of the main

parameters on such variables.

We rely on COVID-19 data based of the Italian experience during the first epidemic wave to calibrate

the model and present a real-world numerical example. Specifically, Italian estimates show that R0 = 2.79

and the recovery time is about three weeks, which imply that δ = 0.0476 and α = 0.1328 (Remuzzi and

Remuzzi, 2020; La Torre et al., 2021). The sources of heterogeneity, n and ξ are instead set arbitrarily

and changed within a relevant parameter range to ensure that the required technical conditions are met. In

particular we set ξj = 15, and when we vary ξi we also set ni = 0.4, while when we vary ni we set ξi = 1.6.

We thus assume, without loss of generality, that group i is characterized by a relatively lower population

share and a lower adjusted productivity than group j.

Figure 1 shows the impact of the group i’s adjusted productivity parameter, ξi (top panels), and popu-

lation share, ni (bottom panels), on the mobility reduction rule for group i (left panel), for group j (middle

panel) and for the difference between them (right panel). We can observe that, intuitively (ui)N falls with

ξi while (uj)N increases with it: a higher adjusted productivity parameter for group i, on the one hand,

increases group i’s cost of implementing behavioral changes lowering its incentive to reduce its mobility

and, on the other hand, it increases group j’s behavioral changes to compensate for the reduction in the

behavioral changes of group i. We can also note that the mobility reduction rule is larger for group i, and

this is due to the fact that the adjusted productivity is lower for this group which thus has relatively stronger

incentive than group j to implement behavioral changes, which also explains why (ui)N −(uj)N falls with ξi.
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Figure 1: Effect of the group i’s adjusted productivity parameter, ξi (top), and population share, ni (bottom),

on the mobility reduction rule: (ui)N (left), (uj)N (center), (ui)N − (uj)N (right), under noncooperation.

The figure shows also that, as expected, (ui)N falls with ni while (uj)N increases with it: the former result

is consistent with what we have discussed earlier, while the latter follows from the fact that nj = 1 − ni.
Exactly as we have discussed for the adjusted productivity, the mobility reduction rule is larger for group i,

since it is characterized by a smaller population share than group j, and (ui)N − (uj)N falls with ni.

Therefore, we can conclude that the burden of reducing mobility patterns falls more strongly on the

smaller group and the group with lower adjusted productivity (i.e., the group which allocates a lower share

of its time endowment to labor activities). If we interpret the two groups as men and women, our results are

consistent with the empirical evidence suggesting that women have suffered the most from the behavioral

changes required to reduce the risk of infection from COVID-19. Indeed, the smaller working group in

the population of most industrialized countries is represented by women, who also are those relatively less

involved on the workplace due to their traditional role as primary carers for children. If we instead interpret

the two groups as young and old, our results suggest that it is not possible to determine which group might

suffer the most from the required behavioral changes to contain the COVID-19 epidemic, as young represent

the smaller group in the working population but also that with higher involvement in labor activities.

3.2 Cooperation

The noncooperative framework earlier discussed is clearly not optimal as it does not minimize the joint

social cost for the two groups, since the groups do not internalize the externality that their mobility choices

impose on each other through the epidemic dynamics. In order to determine such a social optimum, we now

focus on the cooperative setup assuming that the two groups agree to mutually determine their behavioral

changes. The cooperative problem can be stated as follows:

min
uit,u

j
t

Ci + Cj =

∫ ∞
0

i2t

[
2 + (ξi)2(uit)

2(ni)2 + (ξj)2(ujt )
2(nj)2

]
2

e−ρtdt (23)

s.t. i̇t = [α(1− uit)ni + α(1− ujt )nj − δ]it (24)

0 ≤ it ≤ 1 (25)

i0 > 0 given (26)

9



Similarly to the noncooperative case, also in a cooperative setting it is possible to prove the following

result.

Proposition 2. Suppose that ρ < α− δ and (ξj)2

2α[(ξj)2+(ξi)2]
(c+ Ψ) < ni < 1− (ξi)2

2α[(ξj)2+(ξi)2]
(c+ Ψ). The coop-

erative mobility reduction choice for groups i and j, along with the total infectives dynamics are respectively

given by:

(uit)
C =

(ξj)2

2niα[(ξj)2 + (ξi)2]
(c+ Ψ) ∈ (0, 1) (27)

(ujt )
C =

(ξi)2

2njα[(ξj)2 + (ξi)2]
(c+ Ψ) ∈ (0, 1) (28)

iCt = i0 e
1
2

(ρ−Ψ)t (29)

where c = 2α− 2δ− ρ > 0 and Ψ =
√
c2 + 8α2((ξj)2+(ξi)2)

(ξj)2(ξi)2
> −c. Furthermore, the total number of infectives

monotonically falls over time, as i̇Ct < 0.

Provided that some technical conditions are met, Proposition 2 determines in closed-form the expression

for the mobility reduction choices of both groups and the dynamics of the total infectives. As in the nonco-

operative case, individuals’ mobility change is constant over time and large enough (ensuring that the basic

reproduction number is smaller than unity) to achieve disease eradication in the long run, but different from

the previous case we can now analytically determine the impact of the main parameters on such variables.

In particular, we can show that each group’s mobility reduction choice monotonically increases with the

infectivity rate and the other group’s adjusted productivity parameter, it monotonically decreases with the

recovery rate, its own adjusted productivity parameter and its own population share. All these results are

intuitive. A higher infectivity (recovery) rate increases (decreases) the speed of disease spread and thus

provides single groups with stronger (weaker) incentives to modify their behavior to reduce their exposure

to infection. A higher own adjusted productivity parameter increases the group’s cost of implementing

behavioral changes and thus it directly lowers its incentive to reduce its mobility. A higher other group’s

adjusted productivity parameter instead increases the group’s behavioral changes to compensate for the

reduction in the behavioral changes of the other group. A higher population share by increasing the group’s

cost of implementing behavioral changes it lowers its incentive to reduce its mobility.

By relying on the same parameter values earlier employed, Figure 2 confirms these results by showing

that the mobility reduction rule for group i decreases with group i’s adjusted productivity parameter and

population share, while group j’s increases with them. As in the noncooperative case, the mobility reduction

rule for group i is larger than group j, and (ui)C−(uj)C falls with both ξi and ni. Exactly the same comments

earlier discussed under noncooperation apply.

3.3 Noncooperation vs Cooperation

The difference between the cooperative and noncooperative mobility reduction choices, (uit)
C − (uit)

N and

(ujt )
C − (ujt )

N , determine the size of the distortion imposed by free-riding (i.e., the absence of cooperation)

on epidemic dynamics. Given the cumbersomeness of the noncooperative mobility rules it is not possible

to analytically determine the determinants of such a distortion but we will need to proceed via numerical

analysis to investigate the role of the main model’s parameters.

Figure 3 shows how the size of the distortion for group i (left panels) and for group j (right panels)

depends on the group i’s adjusted productivity (top panels) and population share (bottom panels). As

expected, we can observe that the distortion is positive for both groups as the failure to internalize the

epidemic externalities induce each group to modify their behavioral patterns by a lower amount than what

would be optimal. Moreover, the distortions for the two groups respond in a different way to a change in

10



Figure 2: Effect of the group i’s adjusted productivity parameter, ξi (top), and population share, ni (bottom),

on the mobility reduction rule: (ui)C (left), (uj)C (center), (ui)C − (uj)C (right), under cooperation.

Figure 3: Effect of the group i’s adjusted productivity parameter, ξi (top), and population share, ni (bottom),

on the distortion induced by noncooperation, (uit)
C − (uit)

N (left), and (ujt )
C − (ujt )

N (right).

the parameters ξi and ni: (uit)
C − (uit)

N increases with ξi and falls with ni, while (ujt )
C − (ujt )

N decreases

with ξi and rises with ni. These results are consistent with what we have discussed in the noncooperative

and cooperative equilibrium outcomes: under noncooperation an increase in ξi pushes group i to reduce its

behavioral change and dump the burden to group j; under cooperation such free-riding effects are internalized

by redistributing this burden between groups, such to demand an increase in the efforts by group i (and a

decrease in those by group j) as ξi increases; this is entirely reflected in the size of the distortion. A similar

argument explains the response of the distortions for the two groups to a change in ni.

The fact that the distortion induced by free-riding is positive allows us also to comment on the effective-

ness of the noncooperative and cooperative strategies to contain the disease spread. Indeed, even if long run

(i.e., asymptotically) eradication is possible both under noncooperation and cooperation, since the mobility

11



reduction rule is higher under cooperation it follows that the number of infectives will decrease more rapidly

(in finite time) when the groups coordinate their efforts. Therefore, in order to achieve effective disease

containment it is essential to design appropriate policies to favor cooperation between different population

groups.

4 Symmetric Equilibrium

In a symmetric equilibrium the two groups are exactly identical and thus all source of heterogeneity are

ruled out, that is ξi = ξj = ξ and ni = nj = 0.5. In this setting it is possible to derive a more intuitive

analytical expression in the noncooperative equilibrium which allows us to perform an explicit analysis of

the differences and determinants of both the noncooperative and cooperative equilibria. The noncooperative

and cooperative equilibria under symmetry are characterized in the next proposition.

Proposition 3. Suppose that α− 2δ < ρ < α− δ and ξ2 > 4α
2δ−α+ρ , and define c = 2α− 2δ − ρ > 0. Then,

in a symmetric equilibrium:

• the noncooperative Cournot-Nash mobility reduction choice for both groups i and j, along with the total

infectives dynamics are respectively given by:

uNt = (uit)
N = (ujt )

N =
1

3α
(c+ η) ∈ (0, 1) (30)

iNt = i0 e
1
6

(c+3ρ−2η)t > 0, (31)

with η =
√
c 2 + 12α2

ξ2
, and the total number of infectives monotonically falls over time, i̇Nt < 0;

• the cooperative mobility reduction choice for both groups i and j, along with the total infectives dynamics

are instead respectively given by:

uCt = (uit)
C = (ujt )

C =
1

2α
(c+ η̃) ∈ (0, 1) (32)

iCt = i0 e
1
2

(ρ−η̃)t > 0, (33)

with η̃ =
√
c 2 + 16α2

ξ2
, and the total number of infectives monotonically falls over time, i̇Ct < 0.

Provided that some technical conditions hold true, Proposition 3 shows that both under noocooperation

and cooperation the mobility reduction choices are large enough to reverse the disease growth pattern and

lead the total number of infectives to monotonically decrease over time in order to achieve in the long

run complete disease eradication. We can also note that the noncooperative and the cooperative rules

depend in the same way on the model’s parameters. Specifically, it is straightforward to show that they

both monotonically increase with the infecvity rate α, and monotonically decrease with the recovery rate δ

and the adjusted productivity parameter ξ. All these results are intuitive and consistent with what earlier

discussed in the non-symmetric case. A higher infectivity (recovery) rate increases (decreases) the speed

of disease spread and thus provides single individuals with stronger (weaker) incentives to modify their

behavior to reduce their exposure to infection. A higher ξ increases the cost of implementing behavioral

changes and thus it directly lowers their incentive to reduce their mobility.

Proposition 3 allows us also to directly compare the noncooperative and the cooperative rules for the

mobility reduction choices and for the evolution of the total infectives share. Indeed, straightforward algebra

suggests that the size of the distortion imposed by noncooperation is given by the following expression:

uCt − uNt =
c

6α
+

√
c2

4α2
+

4

ξ2
−

√
c2

9α2
+

4

3ξ2
> 0, (34)
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which is strictly positive as expected. As discussed in the nonsymmetric case, even if long run (i.e., asymp-

totically) eradication is possible both under noncoperation and cooperation, since the mobility reduction

rule is higher under cooperation it follows that the number of infectives will decrease more rapidly (in fi-

nite time) when the groups coordinate their efforts. Indeed, as confirmed by the following expression, the

difference between the cooperative and noncooperative number of infectives is strictly negative:

iCt − iNt = i0

[
e

1
2

(ρ−η̃)t − e
1
6

(c+3ρ−2η)t
]
< 0,

suggesting that the effects due to the distortion induced by noncooperation are reflected also in the epidemic

dynamics. Moreover, is possible to show that the distortion in (34) depends on the main parameters exactly

in the same way in which the noncooperative and the cooperative mobility reductions rules do, that is it

monotonically increases with the infectivity rate, and monotonically decreases with both the recovery rate

and the adjusted productivity parameter. This suggests that these parameters have a relatively stronger

effect on the noncooperative rules than on the cooperative ones, and thus their difference perfectly mimics

their behavior. Therefore, factors increasing the pace of the disease spread (the infectivity rate α) widen the

wedge between the cooperative and noncooperative solutions, while factors decreasing its pace (the recovery

rate δ and the adjusted productivity ξ) reduce it.

From Proposition 3 we can also determine the evolution of the infectives in the two groups. Indeed, by

replacing the expression for the total number of infectives in (11), since the mobility reduction rules uNt and

uCt are constant over time, we obtain:

(iit)
N =

αn(1− uNt )(ii0 + ij0)
1
6(c+ 3ρ− 2η) + δ

[
e( 1

6
(c+3ρ−2η)+δ)t − 1

]
e−δt + ii0e

−δt (35)

(iit)
C =

αn(1− uCt )(ii0 + ij0)
1
2(ρ− η̃) + δ

[
e( 1

2
(ρ−η̃)+δ)t − 1

]
e−δt + ii0e

−δt, (36)

in the noncooperative and cooperative cases, respectively. By substituting the total number of infectives

in (12) and repeating the calculations, we obtain the same expression with swapped superscripts i and j.

With some algebra it is possible to show that, as expected, the difference between the cooperative and

noncooperative infective shares is strictly negative:

(iit)
C − (iit)

N = n(ii0 + ij0)
[
e(

1
2

(2δ+ρ−η̃)−δ)t − e(
1
3

(α+2δ+ρ−η)−δ)t
]
< 0,

that is the effects due to the distortion from free-riding affects not only the dynamics of the total infectives

but also the evolution of the number of infectives in each single group.

5 Conclusion

The ongoing COVID-19 epidemic is ravaging the entire world showing more clearly than ever than health

and macroeconomic conditions are mutually related. Apart from its dramatic consequences on economic

production capabilities and the increase in mortality, the most striking effect of the epidemic is related

to its highly heterogeneous impacts on different population groups (young and old, men and women).

In order to shed some light on the possible determinants and implications of such heterogeneous effects,

we develop a two-group differential game in which the interactions between groups determine the overall

prevalence of an infectious disease, which in turn affects the level of economic activity. Individuals may

lower their disease exposure by reducing their mobility, but since changing mobility patterns is costly each

group has an incentive to free ride negatively affecting the chances of disease containment at the aggregate

level. We determine and compare the groups’ mobility choices, along with their implications on disease

prevalence, under noncooperation and cooperation, quantifying the inefficiency induced by the failure of

single groups to internalize the externality that their mobility choices impose on each other through the
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epidemic dynamic. We show that in all scenarios the burden of reducing mobility patterns falls more

strongly on the group characterized by a smaller population share and lower adjusted productivity (i.e.,

lower share of time allocated to labor activities), but cooperation leads to a redistribution of the burden

between groups. We also show that long run eradication may be possible even in the absence of coordination

but coordination leads to a faster reduction in the number of infectives in finite time, and that the wedge

between the cooperative and noncooperative solutions increases with the factors increasing the pace of the

disease spread (i.e., the infectivity rate) and decreases with those reducing it (the recovery rate and the

adjusted productivity parameter).

To the best of our knowledge, this is the first paper analyzing the implications of strategic interactions

between groups in a macroeconomic-epidemiological setup. For the sake of analytical tractability we have

developed a stylized early-epidemic framework abstracting from several key elements (i.e., disease-induced

mortality, heterogeneity in the disease transmission and recovery between groups, public heath policy mea-

sures) of the COVID-19 epidemic experience. Extending the analysis to account for such factors, which

would enrich our framework and increase its ability to provide real world policy recommendations, is left for

future research.

A Technical Appendix

A.1 Noncooperation

By defining V i the value function associated with the problem (15) - (18), the pair (it, u
i
t) is its solution if

V i solves the following HJB equation:

ρV i(it) + max
uit

{
− i

2
t

2

[
1 + (ξi)2(uit)

2(ni)2
]
−DV i(it)i̇t

}
= 0, (37)

whereDV i(it) is the first derivative of the value function V i with respect to it. The HamiltonianH(it, u
i
t, DV

i(it))

associated with the optimal control problem above is:

H(it, u
i
t, DV

i(it)) = − i
2
t

2

[
1 + (ξi)2(uit)

2(ni)2
]
−DV i(it)i̇t, (38)

and assuming V i(it) =
Aii2t

2
, Ai ∈ R, we can apply the first order condition ∂H/∂uit = 0. Hence, assuming

it 6= 0, we get:

uit =
Aiα

ni(ξi)2
. (39)

Similarly, the control of the group j obtained with similar reasoning as before yields:

ujt =
Ajα

nj(ξj)2
. (40)

By plugging the expressions of V i(it), (39) and (40) into (37) we get

α2(Ai)2

(ξi)2
+Ai

(
−2α+ ρ+ 2δ +

2Ajα2

(ξj)2

)
− 1 = 0. (41)

Now, denoting by c = 2α− 2δ − ρ, the solutions of (41) are the following

Ai =
(ξi)2

2α2

c− 2Ajα2

(ξj)2
+

√(
−c+

2Ajα2

(ξj)2

)2

+
4α2

(ξi)2

 , (42)

Ai =
(ξi)2

2α2

c− 2Ajα2

(ξj)2
−

√(
−c+

2Ajα2

(ξj)2

)2

+
4α2

(ξi)2

 . (43)
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By substituting (39) and (40) into (16) and by integrating with respect to t we get

it = i0 e

(
α− Aiα2

(ξi)2
− Ajα2

(ξj)2
− δ
)
t
. (44)

The trasversality condition reads as follows:

lim
t→+∞

e−ρtV i(it) = lim
t→+∞

e

(
2α− 2Aiα2

(ξi)2
− 2Ajα2

(ξj)2
− 2δ − ρ

)
t
Ai
i20
2

= 0, (45)

which is verified if and only if:

2α− 2Aiα2

(ξi)2
− 2Ajα2

(ξj)2
− 2δ − ρ < 0. (46)

It can be proved that (46) is satisfied with Ai as in (42).

By repeating the same analysis for group j following the same approach presented above for group i, we

assume that V j(it) =
Aji2t

2
, Aj ∈ R, where Aj is given by:

Aj =
(ξj)2

2α2

c− 2Aiα2

(ξi)2
+

√(
−c+

2Aiα2

(ξi)2

)2

+
4α2

(ξj)2

 (47)

At this point we need to determine the value of the coefficients Ai and Aj in order to obtain a unique

expression of the optimal dynamics it and of the controls uit and ujt . The system between (42) and (47)

reads as follows: 
Ai =

(ξi)2

2α2

c− 2Ajα2

(ξj)2
+

√(
−c+

2Ajα2

(ξj)2

)2

+
4α2

(ξi)2


Aj =

(ξj)2

2α2

c− 2Aiα2

(ξi)2
+

√(
−c+

2Aiα2

(ξi)2

)2

+
4α2

(ξj)2

 (48)

By plugging the expression of Aj in the first equation of (48) we get the fourth-degree equation:

3α4(Ai)4

(ξi)4
− 4α2 c (Ai)3

(ξi)2
+ (Ai)2

(
c2 +

4α2

(ξj)2
− 2α2

(ξi)2

)
− 1 = 0. (49)

whose solutions are given by the cumbersome expression below:

Ai =
1

6

{
2c(ξi)2

α2
±
√
Si ± 3

√
Li1 + Li2

}
, (50)

where

Li1 =
4c3(ξi)6

9α6Si
+

8(ξi)2
(
(ξj)2 − 2(ξi)2

)
9α2(ξj)2

,

Li2 =
4c(ξi)4

(
(ξj)2(cSi + 6)− 12(ξi)2

)
− S

(
f i + (pi)2/3

)
(pi)

− 1
3

9α4(ξj)2Si
,

Si =
2(ξi)2

(
2α2

(
(ξj)2 − 2(ξi)2

)
+ c2(ξj)2(ξi)2

)
+ f i(pi)

− 1
3 + (pi)

1
3

α4(ξj)2
,

f i = (ξi)4
((
c2(ξj)2(ξi)2 − 2α2

(
(ξj)2 − 2(ξi)2

))2 − 36α4(ξj)4
)
,

15



along with

pi = 6
√

3
√
gi + (ξi)6

(
− 224α6(ξj)6 − 6(ξi)4

(
4α3(ξj) + αc2(ξj)3

)2
+ (ξi)6

(
4α2 + c2(ξj)2

)3
+ 96α4(ξj)4(ξi)2

(
5α2 − c2(ξj)2

) )
,

where

gi = α4(ξj)4(ξi)12

(
256α6c2(ξj)2(ξi)2

(
2(ξj)6 − 3(ξj)4(ξi)2 − 3(ξj)2(ξi)4 + 2(ξi)6

)
− c8(ξj)8(ξi)8

+ 96α4
(
(ξj)4 − (ξj)2(ξi)2 + (ξi)4

) (
8α4

(
(ξj)4 − (ξj)2(ξi)2 + (ξi)4

)
+ c4(ξj)4(ξi)4

))
.

Among the four solutions (51) let us consider the one with all positive factors for being simultaneously

respected the transversality condition of Ai and Aj , that is:

Ai =
1

6

{
2c(ξi)2

α2
+
√
Si + 3

√
Li1 + Li2

}
. (51)

Then, we get the unique expression of Aj which coincide with the chosen Ai unless to exchange the role of

ξi and ξj . In conclusion, consider the chosen Ai (51) and the corresponding Aj we obtain the closed-form

expressions of the controls and the state variable, given by (20), (21) and (22), respectively.

A.2 Cooperation

By defining V the value function associated with the problem (23) - (26), the pair (it, u
i
t) is its solution if V

solves the following HJB equation:

ρV (it) + max
uit,u

j
t

{
− i

2
t

2

[
2 + (ξi)2(uit)

2(ni)2 + (ξj)2(ujt )
2(nj)2

]
−DV (it)i̇t

}
= 0. (52)

The Hamiltonian H(it, u
i
t, u

j
t , DV (it)) associated with the optimal control problem above is given by:

H(it, u
i
t, u

j
t , DV (it)) = − i

2
t

2

[
2 + (ξi)2(uit)

2(ni)2 + (ξj)2(ujt )
2(nj)2

]
−DV (it)i̇t. (53)

Assuming that V (it) =
Ai2t
2

, A ∈ R, we can apply the first order conditions to get the expression of the

controls, i.e., ∇H = 0 which is equivalent to impose that

(
∂H

∂uit
,
∂H

∂ujt

)
= (0, 0). Then we have

{
i2t (ξ

i)2(ni)2uit −Ait
(
αniit

)
= 0,

i2t (ξ
j)2(nj)2ujt −Ait

(
αnjit

)
= 0,

from which follows that 
uit =

Aα

ni(ξi)2
,

ujt =
Aα

nj(ξj)2
.

(54)

Note that in order to derive uit and ujt we suppose that it 6= 0. By plugging (54) in (24) and by integrating

with respect to t we get

it = i0e

(
α−Aα2 (ξi)2 + (ξj)2

(ξi)2(ξj)2
− δ
)
t
. (55)
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By plugging the expressions of V (it), u
i
t and ujt into the HJB (52) we obtain

α2

(
1

(ξj)2
+

1

(ξi)2

)
A2 + (−2α+ ρ+ 2δ)A− 2 = 0. (56)

Now, denoting by

c = 2α− 2δ − ρ, Ψ =

√
c2 +

8α2((ξj)2 + (ξi)2)

(ξj)2(ξi)2
,

the solutions of (56) are the following

A =
(ξi)2(ξj)2

2α2((ξi)2 + (ξj)2)
(c+ Ψ) , (57)

A =
(ξi)2(ξj)2

2α2((ξi)2 + (ξj)2)
(c−Ψ) . (58)

From the transversality condition we get which A as to be considered:

lim
t→+∞

e−ρtV (it) = lim
t→+∞

e

(
2α− 2Aα2 (ξi)2 + (ξj)2

(ξi)2(ξj)2
− 2δ − ρ

)
t
A
i20
2

= 0

if and only if

2α− 2Aα2 (ξi)2 + (ξj)2

(ξi)2(ξj)2
− 2δ − ρ < 0 (59)

It is easy to verify that (59) is satisfied taking A as in (57). In conclusion, by replacing (57) into (55) and

(54) we get the closed-form expressions of the controls and the state variable, given by (27), (28) and (29),

respectively. The derivatives of the cooperative rule for the mobility reduction choices for group i (those

for group j are symmetrically determined) with respect to the main parameters are given by the following

expressions:

∂(uit)
C

∂α
=

(ξj)2 (2δ + ρ)(c+ Ψ)

2α2 ni Ψ [(ξj)2 + (ξi)2]
> 0,

∂(uit)
C

∂δ
= − (ξj)2 (c+ Ψ)

αni Ψ [(ξj)2 + (ξi)2]
< 0,

∂(uit)
C

∂ξi
= −

(ξj)2
(

(ξi)4 Ψ (c+ Ψ) + 4α2[(ξj)2 + (ξi)2]
)

αni Ψ (ξi)3 [(ξj)2 + (ξi)2]2
< 0,

∂(uit)
C

∂ξj
=

(ξi)2(ξj)2

(
c

√
(2δ + ρ)(2δ + ρ− 4α) + α2

(
4 + 8

(
(ξj)2+(ξi)2

(ξj)2(ξi)2

))
+ (2δ + ρ)(2δ + ρ− 4α)

)
αni Ψ (ξj) [(ξj)2 + (ξi)2]2

+
4α2
(

(ξj)2 + (ξi)2(1 + (ξj)2)
)

αni Ψ (ξj) [(ξj)2 + (ξi)2]2
> 0,

∂(uit)
C

∂ni
= − (ξj)2(c+ Ψ)

2α(ni)2[(ξj)2 + (ξi)2]
< 0.

A.3 Symmetry

We now assume that V i = V j , which implies that Ai = Aj = A. In this setting the controls (39) and (40)

take the same form given by:

uit = ujt =
2Aα

ξ2
, (60)
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respectively. By plugging the expressions of V (it) =
Ai2t
2

and (60) into (37) we get:

3α2

ξ2
A2 + (−2α+ ρ+ 2δ)A− 1 = 0 (61)

Denoting by:

c = 2α− 2δ − ρ, η =

√
c 2 +

12α2

ξ2
,

the solutions of (61) are:

A =
ξ2

6α2
(c+ η) , (62)

A =
ξ2

6α2
(c− η) . (63)

The transversality condition is verified if and only if:

2α− 4α2

ξ2
A− 2δ − ρ < 0. (64)

It is easy to verify that (64) is satisfied taking A as in (62). In conclusion, we obtain the closed-form

expressions of the control and the state variable, given by (30) and (31), respectively. The derivatives of the

noncooperative rule for the mobility reduction choices with respect to the main parameters are given by the

following expressions:

∂uNt
∂ξ

= − 4α

ξ2
√
c2ξ2 + 12α2

< 0

∂uNt
∂α

=
(2δ + ρ)(c ξ +

√
c2ξ2 + 12α2)

3α2
√
c2ξ2 + 12α2

> 0

∂uNt
∂δ

= −2(c ξ +
√
c2ξ2 + 12α2)

3α
√
c2ξ2 + 12α2

< 0

In the cooperative case, the first order conditions of the Hamiltonian associated with (52) yield ∇H = 0

if and only if: 
uit =

2Aα

ξ2
,

ujt =
2Aα

ξ2
.

(65)

By substituting the expression of V (it) and (65) into (52) we have:

2α2

ξ2
A2 + (−2α+ ρ+ 2δ)A− 2 = 0. (66)

Denoting by:

η̃ =

√
c 2 +

16α2

ξ2
,

and taking c as before, the solutions of (66) are

A =
ξ2

4α2
(c+ η̃) , (67)

A =
ξ2

4α2
(c− η̃) . (68)
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As in the noncooperative case, it can be verified that the transversality condition requires to consider A as

in (67). Finally, the closed-form expressions of the control and the state variable are given by (32) and (33),

respectively. The derivatives of the cooperative rule for the mobility reduction choices with respect to the

main parameters are given by the following expressions:

∂uCt
∂ξ

= − 8α

ξ2
√
c2ξ2 + 16α2

< 0,

∂uCt
∂α

=
(2δ + ρ)(c ξ +

√
c2ξ2 + 16α2)

2α2
√
c2ξ2 + 16α2

> 0,

∂uCt
∂δ

= −c ξ +
√
c2ξ2 + 16α2

α
√
c2ξ2 + 16α2

< 0.

The derivatives of the distortion imposed by noncooperation (34) with respect to the main parameters

are given by the following expressions:

∂(uCt − uNt )

∂ξ
=

4α

ξ2

(
1√

c2ξ2 + 12α2
− 2√

c2ξ2 + 16α2

)
< 0,

∂(uCt − uNt )

∂α
=

2δ + ρ

6α2

(
1− 2ξ(2α− 2δ − ρ)√

(2α− 2δ − ρ)2ξ2 + 12α2
+

3ξ(2α− 2δ − ρ)√
(2α− 2δ − ρ)2ξ2 + 16α2

)
> 0,

∂(uCt − uNt )

∂δ
= − 1

3α

(
1− 2ξ(2α− 2δ − ρ)√

(2α− 2δ − ρ)2ξ2 + 12α2
+

3ξ(2α− 2δ − ρ)√
(2α− 2δ − ρ)2ξ2 + 16α2

)
< 0.
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