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Abstract—Unmanned Aerial Vehicles (UAVs) are autonomous
devices employed as data collectors in precision agriculture to
support a large number of applications. These UAVs gather
data from on-the-ground wireless sensor networks, especially in
scenarios that lack any kind of fixed communication infrastructure
or where the available infrastructure does not fit the application
requirements. Sensors on the ground can store sensing data, and
in scenarios that do not require a real-time observation and
analysis of the data, like in smart farming, a drone can be used
maybe once or two times each day to collect and report the data
to a command-and-control center that use them directly, without
any other infrastructure (cloud or edges). In this paper, we study
analytically how close the drone, that uses a LoRa radio, needs
to fly over the sensors to collect data with a given quality of data
collection. This can be used to properly spacing the sensor on
the field at deployment time, to select among different type of
drones, and to properly solve some tradeoff related to field size
vs autonomy of the drones and the path used by the latter when
collecting the data.

Index Terms—Internet of Things; Precision Agriculture; Opti-
mal Data Collection; Drones; LoRa.

I. INTRODUCTION

The adoption of Internet of Things (IoT) technologies [1]
is a recent trend in precision agriculture [2], [3]. In fact, due
to the ability to combine sensing, actuation, processing and
Internet connectivity into low-cost devices, it is possible to
monitor the crops, the soil and the environment where they
grow with an unprecedented granularity. The consequence is
however the continuous streaming of sensor data that need to
be collected and analyzed, in order to be transformed into high-
level information that can be interpreted by the agronomists
and that can be used to activate the automatisms that feed and
assist the crops. On the side of the data analysis requirements,
the recent developments in artificial intelligence and data
analytics are already being explored by researchers to produce
novel models suitable to interpret such data and relate them
to key parameters of the crops [4]-[6]. On the side of the
data collection requirement however, the connectivity to the
Internet of IoT devices, which is provided by 4G/5G networks
in populated areas, cannot be given for granted in rural and
remote areas, which is the typical case in large-scale, precision
agriculture sites. A study on the coverage vs. costs provided
by different communication technologies can be found in [7].

Also for this reason, new connectivity services based on
long-range, low power technologies (such as LoRa [8]) have

appeared on the market'.

Typically, they exploit a fixed infrastructure of base stations
able to provide connectivity to IoT devices with very low
bandwidth requirements over a range much larger than usual
Wi-Fi, ZigBee or Bluetooth technologies (it can even reach
a few kilometers, depending on the shape and conditions of
the ground). An alternative approach is to replace the fixed
infrastructure of base stations with mobile base stations that
are carried by Unmanned Aerial Vehicles (UAV), hereafter
called “drones”. These vehicles have now reached a level of
reliability at affordable costs that make them appealing for civil
applications, and their market is growing fast, with exponential
growth expectations [9]. By means of drones, a single mobile
base station may provide connectivity to IoT devices over an
area that may otherwise require even several fixed base stations
to be covered.

In this paper we consider this latter approach, and we study
how an architecture comprising drones and sensors in the field
can be configured in order to reach minimum connectivity
constraints. We focus in particular on large row crop farming,
which are densely and regularly planted areas that can be
managed by machines across the entire field and that are widely
studied in the literature [10], [11].

In this context we consider a regular deployment of sensors
in the field (namely in a grid), which maps well over the
regular structure of the crops. We also assume that a drone
travels periodically over the field carrying a base station to
communicate with the sensors in the ground, and that it moves
along a predefined path to ensure uniform coverage of all the
sensors in the field. Under these assumptions we provide an
analytic model that can be used to configure the path of the
drone. The model can be used to determine the minimum-
maximum distance that should be kept between each sensor
and the drone, to guarantee a given probability of collecting
the sensor data. The analytic model is general and can be
adapted to different wireless technologies with different ranges
and throughputs. As a case study we analyze, by means of
simulation, the use of the model in a LoRa scenario, considering
different specifications of commercial drones and field sizes.

The rest of the paper is organized as follows. After reviewing
the related work in Section II, in Section III we dip into LoRa
to review the set of low-level parameters that an application
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designer needs to know as they impact significantly on the
communication performance. In Section IV we present a
data collection model to compute a regular deployment of
sensors on the target field that guarantees a given probability
of successful data communication between the drone and the
sensors through point-to-point communications. We study the
minimum-maximum distance for small and large deployments
and discuss the analytical results and their impact on the
drones autonomy and field size. In Section V we discuss
the conditions for deployments admissibility and evaluate
the feasibility of using LoRa as communication protocol for
the model described, as well as its performance in terms of
collisions and retransmissions. Finally, in Section VI we draw
the main conclusions and suggestions for further research.

II. RELATED WORK

In a typical organization, wireless sensor networks (WSN)
are organized as a multi-hop tree structure rooted in a device
called sink [12]. Each sensing device (node) thus occupies a
position in this tree, and acts as a router by forwarding towards
the sink all the data produced by the nodes in its subtree. This
network organization can be managed by simple protocols,
but it does not scale well because the nodes closer to the
sink in the network become overburdened by the flow of data
coming from the rest of the network and thus deplete faster
their batteries, thus implicitly producing a disconnection of the
network from the sink and thus making the WSN unavailable
[13]. A solution to overcome this problem consists in the use
of a controlled mobile sink (in practice a drone) that may
travel across the network to collect the data from the nodes
[14], [15]. A good survey of the literature on these approaches
can be found in [16] and [17], [18]. In the context of precision
agriculture [19], [2], the use of aerial observation, to better
understand and monitor large fields from altitude, is widely
practiced. In recent years, there has been an increasing interest
in employing UAVs instead of ground mobile sinks. In the
following we cover some works that use UAVs as a mobile
data sink.

In Wang et. al [20] an entire framework called FPPWR
(Fast Path Planning with Rules) is proposed, it solves the
problems of nodes positioning, anchor points searching, path
planning of the UAV, and data collection. They evaluated the
performance of their proposal by studying the time required to
collect all data, the flight path distance, and the volume of data
collected. In [21] the authors consider how to optimize the data
collection time for multiple drones, when data transmission
time should be respected. They propose a predefined route
scheme and formulate it into the problem of route selection
and communication association, that is solved with a log(m)-
approximation ratio using a greedy algorithm, where m is the
number of cluster-heads. They show that the proposed greedy
heuristic is 154% at most and 145% on average of optimal
solution. In [22], it is assumed that the UAV flies horizontally
with a fixed altitude, and their authors study energy-efficient
UAV communication with a ground terminal, optimizing the
UAV’s trajectory, the communication throughput and the UAV’s
energy consumption.

In [23] the authors study the problem of maximizing the
throughput of the down-link channel (so the focus is more
related to different application scenarios than data collection),
by proper scheduling and UAV’s trajectory planning. They
formulated a mixed integer non-convex optimization problem
and solved it efficiently. In [24] the authors propose the use of
drones and LoRa to collect data from sensors, they change the
default Aloha MAC in LoRaWan with a time-scheduled policy
to reduce the probability of packet collisions. Their simulations
show that a drone can collect the data produced by 80 sensors
in a day (5760 bytes) in an area of 1.5km? without packet
collisions. In [25], [26] the authors assume that sensors are
deployed randomly on a field and the data are preliminary
collected by a set of cluster heads, it is also assumed that
the communication area of different cluster heads do not
overlap. The problem of computing the optimal (minimum
latency) trajectory for a drone through all cluster heads, in
order to collect all data from them, has been studied. The
drone could move freely in the area, the number and locations
of the cluster heads, and the amount of data to be transferred,
from them to the drone, are known ex ante. The problem
of minimizing the latency from the start of the drone to its
return to the base reduces to two sub-problems: an extension
of the TSP to obtain the optimal circuit through the cluster
heads, and the computation of the minimum hovering time
for each cluster head so that all data can be transmitted to the
drone; since the problem is clearly NP-Complete, two different
approximation algorithms are presented. In [27] the authors
study how to dynamically control the speed of the drone in
order to maximize the data collection efficiency, while reducing
the access congestion for the UAV-based base stations.

Another relevant aspects, that also concerns the use of drones,
is related to cyber attacks and security. For these aspects we
refer the reader to the literature [28], [29].

The problem of data collection using LoRa has been faced
up in several works. In a typical deployment, the LoRa
gateway is a fixed device installed on a radio mast or antenna
tower connected to the power line, and the sensors transmit
data towards the gateway in one hop, thus implementing
a simple tree topology of depth 1 (also known as a start
topology), that may cover distances of up to around 15 km
in open areas as reported in [30], and which is sufficient
for most large deployments. as reported in [30], which is
sufficient for most large deployments. However, even these
long distances could not be enough to interconnect end devices-
to-gateways at rural areas that lack any network infrastructure,
at outdoor areas with obstacles between the end devices and
gateways (where the wireless signal strength may be reduced
resulting into data losses and communication errors) and at
indoor scenarios. In such scenarios two main alternatives have
been studied: mesh networks as opposite to star topologies
and mobile gateways, typically based on UAVs. In [30] the
authors address real experiments for three mobile scenarios,
where a LoRa device is installed on a rotary lathe, on a
dash board of a car and on a boat, respectively, to measure
the LoRa/LoRaWAN performance (packet delivery ratio and
coverage) under different effects and velocities. Their results
conclude that for speeds larger than 40 km/h, the LoRa



performance deteriorates while for low-speed mobility (lower
than 25 km/h), the communication is still sufficiently reliable.

Many other works in the literature have analyzed the
LoRa/LoRaWAN performance on different real and simulated
scenarios in terms of packet delivery ratio, maximum number
of sensors supported by a gateway (scalability), coverage
range, network density and collisions. For example, in [31] the
authors question the scalability provided by LoRa and study
its behavior by means of a customized simulator LoRaSim
when different network settings are considered. They report
that, for a typical smart city deployment (with a selected
conservative transmission settings and one only gateway) with
sensors sending 20 bytes packets each 16 minutes, a gateway
can support 120 sensors per 3.8 ha, which is insufficient for
future IoT deployments. These results are, however, very far
from the theoretical results provided in [32]-[34].

In most of work above, we noted an emphasis in optimizing
the communication from the sensors to the drone, in the
scenario that the sensors are limited in power. In our scenario,
if the sensors are equipped with an energy-harvesting device
they are not battery limited, hence it is the drone that becomes
the bottleneck from the energy point of view. Moreover, the
application of WSNs in precision agriculture requires that the
deployment is planned beforehand with an agronomist that is
the main responsible to set the best position of the sensor in
the field. As we see in Section IV we assume that sensors are
deployed regularly in a grid, since it is a common and quite
practical assumption for this scenario.

III. LORA SPECIFICATIONS AND CONSTRAINTS

LoRa (Long Range) [8] is one of the enabling technologies
for Low-Power Wide Area Networks (LP-WANSs) [35], which
are characterized by a long range communication, a low data
rate and a low energy consumption. LoRa is especially targeted
for connecting devices in applications that need to send small
amounts of data a few times per day over long distances (in the
order of kilometers), which fits well with very diverse outdoor
monitoring scenarios, as for instance, precision agriculture. In
a typical precision agriculture setting, a single device may
embeds several different transducers for the monitoring of the
crops and of the soil, and it may transmit all the sampled data
into one single LoRa frame, provided it does not exceeds the
maximum allowed payload. Note that the actual payload size
depends on the LoRa configuration and may range from a
few tens to a few hundreds of bytes, and may thus contain
several sensed data. The reader can consult the work in [36]
for a comparison between LoRa and other communications
technologies for LP-WANSs as are SigFox and NB-IoT. The
next subsections describe briefly the LoRa specifications and
its major constraints. Note that we do not cover the details of
LoRaWan, a network specification that use the physical layer,
in the rest of the paper we refer only to LoRa and do not use
the LoRaWAN layers.

A. The LoRa physical layer

LoRa uses a wide range of license-free sub-gigahertz radio
frequency bands and operates in different bands in different

regions depending on the local regulations. For example, in
Europe, LoRa operates in the 863 to 870 Mhz band and in
United States it operates in the 902 to 928 Mhz frequency
band. The frequency band is divided in channels, their number
depends in turn on the specific local regulations. In Europe, for
example, there exist a total of 10 channels, three of which must
be implemented by the LoRa end-devices. These channels are
868.10, 868.30 and 868.50 Mhz, each one with a bandwidth
of 125 Khz and a variable bitrate between 0.3 and 5 Kbps.

LoRa uses a proprietary spread spectrum modulation named
Chirp Spread Spectrum (CSS), where each bit of payload is
represented by multiple chirps. In LoRa terms, the amount
of spreading code applied to the original data signal is called
the spreading factor (SF). LoRa modulation has a total of
six spreading factors (SF7 to SF12). The larger the spreading
factor used, the farther the signal will be able to travel and
still be received without errors by the RF receiver, but also the
lower bit rate and the larger energy consumption.

Another parameter is the coding rate (CR), which is the
error correction coding given as A/B, where A is the data
block length (A=4) and B is the codeword length; available
rates are 4/5, 4/6, 4/7 and 4/8. The data transmission rate (DR)
is the amount of data transmitted by unit of time (bps) and it
depends on the SF, bandwidth, and CR as expressed by DR =
SFx fs—”; x CR, and it ranges between 0.3 and 27 Kbps.

The transmission power ranges between 5 and 23 dBm,
where higher power increases the energy consumption. Finally,
LoRa specifies the packet format, which is composed of three
elements: a preamble (8 symbols by default), an optional
header, a variable-length payload and a CRC (1 byte). The
preamble enables the receiver to synchronize with the incoming
data; the header if exists, includes metadata to inform the
CR, the payload length and payload CRC presence. The
payload includes the data coded at the CR specified. Note
that varying the spreading factor (SF) changes the range of
communication between two devices; therefore, in rest of the
paper, any change in the communication range between the
drone and a sensor deployed on the field, directly expressed
as a distance in km, can be interpreted as a proper choice
of SF in the LoRa radio of both devices, that is able to
support that minimum range, if the value exists. The Table
below (from https://lora-developers.semtech.com/) provides
some combination of SF, Bit Rate, Range, and Time on air of
a packet.

(For UL at 125 KHz) (Depends on Terrain) for an 11-byte payload
SF10 980 bps 8 km 371 ms
SF9 1760 bps 6 km 185 ms
SF8 3125 bps 4 km 103 ms
SF7 5470 bps 2 km 61 ms

B. Limitations on the duty cycle

Theoretically, hundreds of devices (sensors and gateways)
could use the same channel for data transmission. In order to
make a equitable sharing of the channel between the radio-
based devices, the governments have regulated, among other
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TABLE I
MOST IMPORTANT SYMBOLS USED IN THE PAPER WITH THEIR
UNITS.
N number of sensors -
g distance between sensors meters
T field width (¢ multiple) meters
y field heigth (g multiple) meters
r range of wireless comm. meters
A transmission period seconds
A drone autonomy seconds
D path-length of the drone meters
v=D/A | drone’s velocity m/s
d in-range distance meters
T =d/v | drone time of flight over the sensor | seconds
Pk probability of receiving a packet 0,1)
k drone-sensors distance \ meters

parameters, the maximum duty cycle (DC), i.e. the fraction of
time during which a device using unlicensed bands can occupy
a channel [37]. In Europe, the ETSI EN300.220 standard
defines the maximum limits of DC for each sub-band in the
spectrum. For example, in the 863 to 870 Mhz frequency band,
these limits range between 0.1% and 10%. The duty cycle
limit applies to the total transmission time in the period of
reference of one hour. For example, with a DC of 1% a LoRa
device (both a sensor and a gateway) can transmit up to 36
seconds per hour in each sub-band for each end-device.

In practice, each application may specify the transmission
mode by defining the most adequate SF, bandwidth and CR
and compute, in advance, the maximum time of transmission
for their messages (airtime) based on the calculations of LoRa
modulation [38]. This limitation of the duty cycle may reduce
not only the suitability of LoRa for some IoT applications
(e.g. the ones that require real-time data transmission at high
frequencies or the transmission of huge amounts of data) but
it may also reduce the amount of sensors that a gateway can
successfully support. In Section V, we will use also a LoRa
simulator to test the feasibility of using LoRa radios for the
data transmission following the model described in the next
section.

IV. THEORETICAL MODEL AND ANALYSIS

Let us consider a field of size x - y, where a set of N
sensors are deployed in a grid, at a distance g from each
other (we assume that x and y are both multiple of g), and
N = §+ 1 g)ng 1). The sensors collect micro-climatic
data and data about the state of the soil and surrounding
plants. We assume that sensors are wireless-connected, battery-
powered, and (possibly) energy harvesting [39], so that they
do not require deployment of wired infrastructures as they are
completely autonomous. The data collection is performed by
a drone that acts as data mule and gateway of the network. It
swipes the field according to a predetermined flight plan and
it collects the available data from the sensors that are into its
communication range. We assume that this range is such that
the drone can communicate with sensors placed up to distance
r from its projection on the ground. A summary of the symbols
and parameters used in this work is presented in Table I

Fig. 1. The picture is centered on the drone that moves vertically with constant
speed v. A sensor remains into the communication range for time 7" = d/v.
The distance 0 < k < r from sensors to drone is the optimal distance that
maximize the packet reception probability.

Since the drone passes occasionally over the sensors, each
sensor is programmed to log the sensed data in its memory,
to aggregate and compress these data, and to transmit the data
when the link with the drone is available. We assume that the
sensors and the drone are only weakly synchronized, hence
the sensors have knowledge of the approximate time of the
next flight of the drone, so that they can activate their wireless
interfaces when the drone is expected to come. Once activated,
they start transmitting periodically their data (according to the
duty cycle they can sustain with their radio interface) and stop
transmitting either if the drone acknowledges their transmission
or when the time frame in which the drone is flying over them
ends. Since the sensors are not synchronized among themselves,
collisions in transmission are also possible. If at the end of the
transmission time frame a sensor was unable to send its data
to the drone, it will try to send the data again at the next flight
of the drone, along with the new data sensed meanwhile.

Usually the sensors have a low duty cycle, within which
each sensor transmits its data with a period A. In order to
transmit successfully data, the sensor must be in the range of
the drone flying over it. The drone has an autonomy of flight
of A hours; hence, letting D be the distance covered in its
flight plan its average speed is v = %. Hereafter, we assume
the drone always moves at constant speed v. Note that v, D
and A are not free variables but are, in fact, constrained. For
example, D depends on the size of the field and on the flight
plan (in turn also dependent on the wireless coverage of the
drone), the autonomy depends on the size of the battery that
can be carried by the drone and on its consumption, while
the speed depends on the technical specifications of the drone,
but it is also limited by the maximum speed that allows the
wireless interface to successfully communicate.

While swiping the field, a radio link of length r does not
guarantee that we can successfully receive a packet from all
sensors in that range, since the delay and the probability of
collisions between packets of different sensors must be taken
into account. In the following, we study the upper bound &
(k < r) to the minimum distance between the drone and a
sensor such that the probability of receiving a packet pj can
be maximized (we also call k£ the maximum minimum distance
of the drone from the sensors). In particular, we analyze the
relationship between k and the other parameters in the model,
by providing proper bounds to the probability p; with respect



to k. Figure 1 shows the relationship between k and the time
of flight of the drone over a sensor, for a given k < r the
drone flies over such a sensor for a time 1" = % which is
the time elapsed from when the drone gets in range with the
sensor, to the time in which it gets out of range. Since the
distance® d is 2v/r2 — k2 we have that the time of flight over
the sensor is 7" = % = Mivﬁ_kz and during this period the
sensor transmits up to ¢, times, where ¢, > | % | times, which
we lower bound with ¢, > % —1.

Considering that the sensors that transmit the data to the
drone are not synchronized, it is possible that some communi-
cations collide. This is especially true when the transmission
range is very large (this is the case if LoRa is used for example),
and thus the number of sensors within the transmission range
of the drone is also very large. Furthermore, packet loss is
possible due to environmental conditions; we model packet
loss with the parameter p. that expresses the probability that
a packet transmitted by a sensor is not received by the drone
(see Figure 13 for plots of p. in LoRa). Consequently, the
probability pj can be estimated as:

pr=1-—pl/A-1 (1)

In general, to assess the value of parameter k, we need
to meet the requirement that the probability of successful
transmission is at least’ p/, i.e. pp > p’. Recalling that
ty > %—1, follows that 1—vaA_1 >p = pz/A_l <1-p.
Introducing T = 2‘47”5”“2, under the constraint p;, > p’

follows:

T  2AV7r? —k? < log(1 —p') 1
A DA —  logpe +
Note that if &k is very close to r then the time T (numerator
above) decreases. Hence, as k approaches r, T' goes to 0 and
so does pi. On the other hand, when £ is small and v is limited,
the length of the path D increases (it is inversely proportional
to k intuitively, if the drone flights closer to the sensors, the
path length increases) and, based on the autonomy of the drone,
it could be infeasible to cover all its length. So, the goals of
maximizing p; and minimizing the path length D are mutually
contrasting, and we need to study an optimal trade-off among
the two. From inequality (2) follows that:

o
\/r2—k2ZU-A<IOg(1 p)+1)

2log p. 2

2)

and solving for £ we obtain:

log(l—p)  1\\°
k S r2 — v-A M + =
2log p. 2
The maximum of & is obtained from the bound above with
V = Umagz, With U4, be the maximum speed determined both

by the drone specs or by the specs of the communication
interfaces that may not work well at higher speeds. Figure 2

3)

2We assume that the drone flights linearly over short distances so we can
always approximate d with a linear segment, so we are disregarding turns off
the drone.

3In a single pass of the drone over the sensor, as in the flight plan the drone
may pass over the same sensor more than once.
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Fig. 2. Maximum value of k as a percentage of the communication range 7.

shows the maximum k as a percentage of r when: v,,4, =
11.11 m/s = 40 km/h, A = 60s, p = 0.98 and p. equals to
1%, 5%, 10%, 15% for different curves. We see that when r
is small, in particular below 1km, the maximum value of &
could be even lower than half the range. The value of & is
also a decreasing function of p., on the other hand, when r
increases over 2 km, k is over 80% of r since the negative
part inside the square root is a constant, and it is negligible
as r increases. The gap in the lower left part of some curves
is where k is not defined: when r is too small, the expression
inside the root is negative. Until this point we do not have
specified the flight path followed by the drone. In the next
subsections, we improve the details of our model. To explicitly
introduce the relation between the path length D and k, we
define two simple flight plans, one for very large fields and
one for medium/small fields.

A. A model for large fields

In large fields we assume that ¢ < r < z and g < 7 < y,
which can be obtained if the field is big as compared to the
transmission range. This condition in practice can be obtained
also if the field is not so big but the transmission range is small
(for example when WiFi is used to communicate between the
drone and the sensors). The assumed flight plan follows a
conventional plan suitable to cover a regular distribution of
the sensors in the field. It has the same starting and end point,
so that the drone can return to the base after the flight. An
example of such a flight plan is shown in Figure 3, it is a
back-and-forth or zig-zag path, studied in several papers (see
[40], [41]).

Note that, for the sake of simplicity, in the rest of the section
we assume that 57 is integer and odd, so that the flight plan of
the drone is a straightforward generalization of that shown in
Figure 3. Note also that the flight plan can be easily generalized
to the case in which 57 is even. If the drone follows the path in
Figure 3, the distance traveled by the drone can be computed
as follows: The number of movements of the drone along

the y-axis are: w;k% +1 = i The total distance covered
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Fig. 3. An example of a zig-zag or serpentine path followed by the drone.
The sensors are spaced regularly in the field every g meters, the domain is
oriented such that < y and the path follow a direction along the .

by the drone along the y-axis (parallel to the y-axes) is thus
55 (y — 4k) 4 4k; The distance covered by the drone along the
x-axis (parallel to the x axis) is: 2(x — 2k) = 2z — 4k, hence:
D = & (y — 4k) + 4k + 2¢ — 4k = ZL.

Taking the distance as a constant, we can express the speed
of the drone as v = 5%, and introducing T = %, from (2) we
obtain:

2 _ L2 o/
4kAVr? — k ZA<1og(1 p)+1):>

zy log pe
zyA (log(1—p')
kvVr2 — k2> 1
" — 4A ( log pe. +
Letting h = %42 (M + 1), follows k*—k2r24+1h2 <

4A log pe
0. Considering the constraint » > k£ > 0, must be:

2 _ 4 2 2 4 _ 2
Y it el vgﬁlhgkg 24Vt —4n? \/24’1 @

Now, to maximize p;r we need to take th62valuze of k that
L. .. . 4A(r2—2k?) Lo
maximizes 1. The first derivative of T is Pl w}nch is
null for k£ = :N:L2 (under the constraint 7 > k > 0). Since T'
grows in the range [0, %], k= % corresponds to a maximum

of T', and the value of k that maximizes py, is hence:

r r2 +/rt —4n2 T 5)
Ey — s _ﬁ (

So, the optimum value of k is a very simple function of
r, and insensitive to other parameters of the model. There
are some additional considerations. This model determines the
value of k£ aiming at maximizing the probability that the drone

k = min

receives the transmission from each sensor with a single pass.

Actually, for many sensors the drone actually does two passes
(remember that the actual transmission range is r > k), which
means that the probability of receiving the data will be, in

general higher. Secondly, the model disregards the fact that
the time of flight above the sensors that are at the turns of the
drone (the corners of the flight plan) will be smaller than for the
other sensors (this means that these sensors will have a smaller
probability of successful transmission). Under the assumption
that the field is big as compared to the transmission range, the
number of sensors in this situation is small. Furthermore, this
can be dealt with by letting the drone slow down its speed
during the turns, so to give more time to these sensors to
communicate. Again, under the assumption that r < z,y the
effect of these slow-downs would be negligible on the model.
In the next model, for small fields, we instead analyze this
effect in more detail.

B. A model for small fields

When the field is small, for example, when the communi-
cation range r between the sensors on the ground and the
drone is very large and is close to at least one of the two
dimensions x or y, i.e. = and y are comparable to k < r,
a more accurate model is possible. In this model, the drone
performs a rectangular path, as shown in Figure 4 above, and
we consider the case y = min(z,y) ~ r, the path length is
2 % (x — 2k) + 4k for a total distance D = 2z. Note that in
this case we bound the height of the domain by y < 4k to
ensure an appropriate coverage also of the central part of the
field. Similar to the previous model we have the problem of
the sensors that are at the corner of the field, that can be at
distances greater than k. We solve this problem altering the
time velocity of the drone.

For what concerns the time of flight of the drone on the
sensors, if we exclude the sensors that are close to the corners
of the field, we have that T = 2+/r2 — k2 /v. For the sensors
that are closer to the corners instead, and especially for those
that are exactly at the four corners, the time of flight is shorter
to compensate to the larger distance to the drone. The situation
of these sensors is shown in the bottom part of Figure 4.

Considering the sensor at the corner, the distance covered
by the drone while in range of this sensor will be d' =
2vr% — k2 — 2k, and the time of flight 7 = 2Vr*=F=2k —
T— % In order to provide the same coverage of these sensors
as well, we assume that the drone stops in each corner for a
time equal to 2k /v, so to ensure a time of flight of those sensors
of at least T'. To consider these delays into the drone flight
autonomy, assuming the drone moves at the slowest possible
speed v to cover the entire distance within A (note that this is
desirable because a lower speed favors a longer time of flight
over the sensors and thus a higher probability of receiving the

transmissions), we have: A = 2£ 4+ 4% and then v = 2%%8’“.
In summary we have:
e D=2x
_ 2x48k
o V==
e pe/57 <1 p and then § > 180=0 4y
From which, introducing 7', we obtain:
@ > é M +1 (6)
(x+4k) — A 1og pe
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Fig. 4. top) Example of a reduced field to be covered by a drone. The

rectangle is created with parameters: * = 22k, and y = 4k so N = 36.
bottom) Distance d’ inside the range of a sensor at the corner of the field.

Leting b = 4 ("2 + 1), follows (1642 + 1)k? +
8xh%k + h22% — r? < 0. Considering that 7 > k > 0 and that
h > 0, the latter equation has two real solutions (k1, ko) and
the admissible values of k are in [k1, k2]. Also in this case,
the value of k that maximizes py is the one that maxirglizes T,
considering that the first derivative of 7" is — %, by
means of a simple analysis (and assuming « > 4k), we observe
that T is decreasing for k£ € [0, r]. Hence the maximum of

probability py is reached when k = ky:

_ —dxh® 4 \/(16h% + 1)r% — 22h?

k
! 16h2 + 1

(7

V. SIMULATIONS AND EVALUATION

We validate our approach and the model by means of
simulation. Firstly, in Section V-A we evaluate analytically
the two models for large and small fields previously described
in order to determine how the parameters of the models can be
optimized. Secondly, in Section V-B we look for commercial
drones to validate their suitability as data collectors in our
scenario, and then we face up the usage of LoRa as physical
layer technology to evaluate by simulation its performance
in terms of collisions and successful reception probability for
several deployments and LoRa configurations.
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Fig. 5. Large Fields: Probability pj, as a function of k plotted for different
values of p.. Others parameters: » = 2km, k* = 1414.2km, x = 8484m,
y = 11312m, A = 1 hour, vmax = 40km/h.

A. Analysis of Cases and Application of the Model

In the following we report some analysis of the two models
described in Section IV-A and IV-B for different scenarios.
We start with large fields, then move to small ones. In all the
analysis the range of communication is considered a constant
and set to » = 2km, a conservative value for technologies like
LoRa. Enlarging the communication range does not alter the
qualitative analysis that is obtained here. The parameter p’ that
affects the expected bound on the probability pj; of receiving
a packet from the sensors to the drone, is always set to 0.98.

The plot in Figure 5 represents the values of pj, as a function
of k obtained with different values of p.. The values of z,y
are set to be multiple of 2k, the optimal value of k is equal to
1414.2km that is 70% of r, and represented in the figure as
k*. The others two solutions computed in (4) are shown at the
intersection of the curves with the horizontal line with py =
p' %100 = 98%, we call these two values kyin, and k. in the
following. We note from the plots that increasing p. decreases
the values of pj as expected, but only marginally at k*, this
effect is more emphasized for k. that even if suboptimal will
play an important role in practical application as we will see.
Choosing k = k* guarantees that p; is maximized but it also
affects the path length of the drone, and thus the required flight
autonomy to cover the field.

Figure 6 shows the minimum flight autonomy A as a
function of k£ (note that for each value of = in the legend,
we set y = 2x). The figure shows that the autonomy of the
drone increases when k decrease and for k£ = k* it exceeds 300
minutes (5 hours), a value that is far greater than the higher
autonomy of most commercial drones (see Table II). Note also
that, in practical applications, it is important to distinguish
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Analysis of the minimum autonomy of the drone, as a function of k

between k£ and 7. In fact, the minimum autonomy that could
be obtained by setting £ = r would be much lower, but it would
not take into account the real path that must be followed by the
drone in order to guarantee the desired probability of collecting
the data from the sensors. This effect is particular noticeable
for large fields, since the slope of the curve for larger values
of z is steeper.

From all the analysis done so far, we see that setting k = k*
has several limitation in practice, specifically, if we fix the
domain size, the minimum autonomy required for the drone is
too high, this can be approached in different ways. A possibility
is the use of multiple drones, splitting the domain in smaller
parts, another possibility is to consider the data collection phase
to be composed of several flight missions that alternate between
different part of the domain, still using a single drone. However,
a simple solution is also to increase the value of k over k* as
much as possible, i.e. taking k = kn.x. In Figure 7, we plotted
the values of kp,x as a function of the autonomy of the drones
(in minutes), for different field size, moreover, we can compare
the values in the curves, with the values required if we used
k = k* represented as dots at k* = 1414.2. From the plot, we
see clearly that using the maximum value for k, reduces the
autonomy required to cover a field of 19kmx38km from 382
minutes to 210 minutes, a gain of more than 54%.

Now we study the case of small fields, using Equation 7. In
this case we set the autonomy of the drone to A = 40 minutes
and A = 60 sec. We set p’ = 0,98 and r = 2 km as in the
previous case. Figure 8 shows k£ as a function of z. Specifically,
the curves represent k as a percentage of r for values of p.
ranging from 1% up to 25%. As expected, the plot shows that
if we consider x constant, when pj increases, k decreases (so
increasing the time spent in the range of a sensor); the same
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Fig. 7. Analysis of the value of k£ with different field side = with y = 2x as
a function of the autonomy of the drone.
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Fig. 8. Values of the maximum-minimum distance k as a function of the field
side length x.

effect can be seen if we increase the side of the domain x. The
plot in Figure 9 shows that the time 7" that the drone spends
in the range of a single sensor decreases as k increases, but
as we see in the next section, it is still sufficiently large with
respect to the time required by a packet to be transmitted in
LoRa. The time is also a decreasing function of z, since a
bigger domain requires an increased velocity of the drone to
complete the path.

Finally Figure 10 plots p;, for different values of k and for
different packet collision probabilities p.. The values of the
optimal values for k for different values of p., obtained using
equation 7 are annotated in the plot. As we see from the plot,
pi decreases with increasing p. and with increasing k, here
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the different model shows a higher sensibility to the value of
k, and the optimal values of k ranges from 883 = 44% of r
to 1672 = 83% of 7.

To conclude, we observe that in small fields we can use
lower values of k£ depending on the values of p., in order
to optimize py, the reduction in k, increases the path length,
but since here we are not particularly limited by the drone’s
autonomy, there is much more flexibility in the choice of k.

B. Case Studies Simulation

We now assess the suitability of the specifications of typical
commercial drones and of LoRa radio interfaces for the data
collection process described in Section IV. To this purpose, we
analytically determine the packet transmission times and the
maximum density of the sensors (that is, the maximum number
of sensors in a transmission range) that can be served by a
drone. Finally, we evaluate by simulation the performance of

LoRa in terms of collisions and successful reception probability
for several deployments and LoRa configurations.

1) Admissibility Conditions: As described in Section 1V,
given a field and a drone defined by the tuple (z-y,r, A, A), we
may compute the corresponding optimal deployment defined
as (k, N,v, D). Such a deployment is admissible, that is, the
sensors in the field are all covered by a drone, if two conditions
hold: 1) v < vz, 1.€ the velocity must be in the range of
velocities supported by the drone, and the maximum speed
allowed by the wireless interface to successfully communicate
(in LoRA, for example, and according to [34] this value is
40km/h); and 2) the time required to cross the path should
be lower then A (the autonomy of the drone, as provided in
the drone specifications), that is, % < A. Table II reports the
specifications of some current commercial drones. Note that the
size of the field is, therefore, the key factor that determines the
admissibility condition, since it affects directly the parameters
v and D.

2) LoRa Feasibility and Performance for Admissible Deploy-
ments : Let us assume the drone collects data from N sensors
in a field, by using a LoRa communication interface, and that
the sensors have a maximum duty cycle of 1%. Concerning
the feasibility of the LoRa communication interface to our
purposes, we assess two conditions: 1) the time for a packet
transmission is lower than the time in which a sensor remains
into the communication range of the drone, i.e., Tpocker < T
and 2) Tpacket * Npacket < Tairtime (remind that Tairtime is
limited to 36 seconds per hour with a DC = 1%). Note that we
assume that each sensor performs data aggregation and, thus
transmits one only packet of a certain payload during the flight
of the drone, i.e. npgcrer = 1.

Figure 11 presents the transmission times T}qcre: fOr packets
with payloads between 10 and 100 bytes (amount of data
that a node transmits in an only packet), different SFs and
a CR fixed to 4/5. As expected, these times grow with the
payload and SF, since the data size to transmit is larger. This
coincides with the numbers already reported in many papers
that analytically compute the LoRa performance [32], [42]:
a larger SF implies a longer transmission time and a longer
communication range. In fact, an SF ¢ allows to send 2 times
more bytes than an SF ¢ + 1 in the same time or, alternatively,
allows to reduce the time approximately to the half for a
same payload. A higher CR implies both a larger overhead
and a higher reliability of communications. Note that the times
Tpacker shown in the figure, hold the two conditions that ensure
the LoRa feasibility: 1) Tj),cres is always lower than the times
T provided in Figure 9 on the right, even for the smallest times
that correspond to the largest fields evaluated, with the largest
values of z,y and k; and 2) since we assume nNpgeker = 1
the second condition also holds. Note, however, that if the
sensor tries the continuous transmission of packets within the
same transmission period A and on the same channel (i.e.,
Npacket > 1), for instance due to retries as consequence of
collisions or packet losses, the maximum number of packets
transmitted should not exceed the upper bound defined in
Section III-B. We can conclude here, therefore, that LoRa may
be successfully adopted as a communication protocol for the
data collection process described in this work.



TABLE I

SPECIFICATIONS OF COMMERCIAL DRONES. LEGEND: ': DIAGONAL WEELBASE OR LXWXH DIMENSIONS; 2: WEIGHT INCLUDES
PAYLOAD. NA: NOT AVAILABLE.

Name Manufacturer Type Controller Dimensions! Battery Max Speed  Weight? Max. Flight Price
(mm) (mAh) (km/h) (Kg) Time (min)
eBee SQ senseFly Fixed Wing 1100 4900 LiPo 3S 110 1.25 55 12000$
Lancaster 5 PrecisionHawk Fixed Wing 1500 NA 79 3.55 45 25,000+$
Firefly6 BirdsEyeView Aerobotics Fixed Wing 1520 NA 64 4.5 50-59 8000%
AgDrone System HoneyComb Fixed Wing 1245 8000 3S LiPo 82 2.15 55 >10000%
Mavic 2 Pro DJI Quadcopter 322x242x84 3950 LiPo 4S 72 1.1 31 1499€
Phantom 4 DJI Quadcopter 370x325x220 6000 LiPo 25 72 1.58 28 1153€
3D IRIS+ 3D Robotics Quadcopter 550(L)x100(H) 5100 3S 39.6 1.48 20 750%
Aero Ready to Fly Intel Quadcopter 360(L)x222(H) 4000 Li-Po 4S 53.76 2.765 20 1099%
Autel EVO Autel Robotics Quadcopter 338 4300 Li-Po 72 1 30 1049%
Anafi Parrot Quadcopter 175x240x65 2700 2 cells 55 0.32 25 699%
HYBRiX-2.1 Quaternium Quadcopter 1630x913x509 Petrol/Battery 80 5 240 NA
H>Quad EnergyOR Quadcopter 1200 (diagonal) Fuel Cell/Battery NA 10 120 NA
MATRICE 600 PRO DJI Heptacopter 1668x1518x759 645 00 LiPo 6S 65 15.1 35 5699%
Xena OnyxStar Octocopter NA 10000/6S 50 5.6 37 NA
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Fig. 11. Packet transmission times for different payloads and SFs, taking  Fig. 12. Maximum number of sensors that can be covered by a single drone
CR=4/5. for different payloads and SFs, taking CR=4/5.

Let us denote with NV, the maximum admissible number
of sensors per transmission range r and let us assume, for
the sake of simplicity, that the drone uses for data collection
a single channel of 125 kbps. Concerning the maximum
density of sensors that the drone can serve, we estimate
the maximum amount of packets of a certain payload that
the drone is able to receive during its activity cycle (<1%)
under perfect synchronization, i.e. without overlapping among
packets. Figure 12 shows the maximum number of sensors
that can theoretically communicate with the drone, where each
sensor transmits exactly a data packet with different size data
using a CR=4/5. As expected, the widest coverage is achieved
when the payload is minimum and the SF is the lowest.
On the other hand, the coverage is minimum, with only 9
sensors, for the maximum payload and the highest SF=12. It
is clear, therefore, that an application designer should keep
the payload into the limits that ensure that N, sensors can be

heard simultaneously by a single drone

3) Collision Probability: To analyze the probability of colli-
sion p. we have used LoRaFREE* [43], a comprehensive LoRa
simulator written in Python that supports packet error model,
the orthogonality of SFs, the fading impact, the duty cycle
limitation at both the sensors and the gateway, retransmisions
and acknowledgments, and energy consumption profiling. For
our evaluation purposes, we modify this simulator to have an
adapted version that simplifies the process of data transmission
in order to transmit exactly one packet of data. We have also
adapted the target scenarios to simulate a square field of area
x -y where the sensors are regularly distributed on a square,
keeping a distance between each pair of sensors of g = 200
meters. In our experiments we assume that the drone is located
at the center of the square (0,0) and it has a radius of r. Table III
shows the number of sensors that drop within the radius r,

4LoRaFREE: https://github.com/kqorany/FREE
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TABLE III
SCENARIOS SIMULATED WITH LORAFREE.

x,ylkm] | 1 3 4 5 6 7 8 9

rlkm] 05 15 2 25 3 3.5 4 45
N 36 49 81 121 169 225 289 361
N, 16 29 49 81 113 149 197 253
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Fig. 13. pc (lower curves) and probability of successful reception (higher
curves) for the deployments in Table III.

denoted as N, for different fields. Note, therefore, that in our
simulation scenario not all sensors are covered by the drone
with a radius r, but the optimal paths for large and small
fields described in Section IV ensures a complete coverage of
sensors. Note, also, that this simulation scenario represents a
small fragment of the flight of the drone and, with its movement,
the drone enters similar fragments (squares).

In our simulations each sensor transmits one only packet in
each transmission period A, directly to the drone and in a single
hop, using an optimal LoRa radio configuration that selects
the lowest SF that guarantees the sensor has a higher received
signal strength indicator (RSSI) than the receiver sensitivity,
a CR=4/5 and a channel of 125 kbps. After transmitting the
packet, each sensor waits a time for an acknowledgment from
the drone; if ACK is received, the sensor waits for the next
transmission period; otherwise, it retransmits the packet.

A collision occurs at the receiver when two or more LoRa
packets overlap at time. We compute the probability of collision
p. as the quotient between the number of packets collided
and the total number of packets sent. We also compute the
probability of successful reception, that is computed as the
quotient between the number of successful received packets
and the total number of packets transmitted.

The number of packets successful received is affected both
by the number of collisions and the unconfirmed traffic (bad
formed packets that need to be disregarded, lost packets and
lost ack) that generate a new transmission of the original packet,
so the probability of successful reception is always lower than
(1 — p.). All simulations were repeated 5 times and, in the
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Fig. 14. Percentage of retransmissions for the deployments in Table III.

following, average values are shown.

Figure 13 shows the collision probability p. (lower curves)
and probability of successful reception (upper curves) reported
by the simulator for the deployments in Table III. As shown,
p. keeps always under 0.2, it increases with the number of
sensors until a certain point when this probability reduces
slightly due to the ratio between the number of collisions
and the total number of packets transmitted starts to decrease
(number of collisions does not increase significantly but the
number of packets transmitted is much higher). The probability
of successful reception drops (below 0.2 in the worst case)
when the number of sensors increases because the load of the
network grows, either with more packets and longer packets,
and therefore the probability of errors also increases (e.g. due to
not only collisions but packet losses or bad formed packets that
need to be disregarded). Note that for the smallest deployments
this probability is close to 1.0.

Since the probability of successful reception lower than (1 —
Pc), this means that, with the current network load managed,
the number of collisions is small and it does not represent
the main reason for packet retransmissions, which may be due
mainly to other causes as previously mentioned. This effect
can be observed in Figure 14, where we show the percentage
of retransmissions, which increases with the number of sensors,
computed as the quotient between the total number of packets
transmitted, i.e., original plus retransmissions, and the total
number of original packets. For a coverage of N, > 100 the
percentage of retransmissions is above 50% and for N, > 250
this percentage achieves 80%, which makes inefficient this
network configuration and suggests the need of adding one or
more gateways to balance the load network.

VI.

We address the problem of data collection from sensors for
precision agriculture by means of drones acting as data mules.
We consider a scenario in which the sensors are deployed in a
regular pattern, and the drone, that acts as a mobile gateway,
follows a pre-determined path to provide wireless coverage

CONCLUSIONS AND FUTURE WORK



of the field. This scenario gives rise to a complex trade-off
that we solve by introducing an analytic model, according to
which it is possible to relate the field parameters (e.g. the
field size) with the specs of the communication technology
and of the drone (e.g. radius, velocity, autonomy), in order
to determine the parameters of the drone path that achieve a
desired target probability of successful data collection. The
output of our model includes the optimal distance between
nodes, the time in which a sensor is in the range of the drone
for a successful communication, and the velocity that needs
to keep the drone to complete its flight plan. The analytic
model is general and can be adapted to different sort/long
range communication technologies and to different drone
specifications. In particular, it is built over few parameters that
are technology-dependent, namely the maximum drone speed
and autonomy, the duty cycle of the sensors and the range and
packet loss of the communications. These parameters can then
be set and analyzed one for all, as we showed in Section V,
for a given technology, to adapt the model. We assess the use
of the model in a scenario where the drone employs a LoRa
communication technology to interact with the sensors in the
field and show how the parameters can be optimized in this
case. As a final remark, note that our approach is not limited to
precision agriculture applications, but may be applied also to
other scenarios in in which sensors are deployed in a grid and
the data collection is executed by means of a drone that moves
along a pre-defined path on the field (similar requirements
may be found in the monitoring of large polluted areas for
example). However, if the sensors are deployed with a regular
structure different than a grid, and the drone moves along a
different path, the general methodology of our work remains
valid, although the equations would need to be adapted to the
specific case.

As further research we plan to analyze scenario with different
field shapes, flight plans for the drone, and different deployment
of the sensors. We also plan to investigate the feasibility of
combining the use of the drone with a classical scheme sense-
store-forward in the sensors. Other promising future works
concern the study of flight strategies for the drone in the context
of hybrid data collection architectures that combine drones and
fixed base stations, and also the study of flight plan strategies
that may meet time constraints in the data collection procedure,
so to enable not only off-line data analysis but also timely
actuation in response to the field conditions.
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