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Abstract: Due to the limitations of electromagnetic signals, underwater scenarios increase the
complexity of developing accurate navigation systems. In the last decades, Ultra-Short BaseLine
(USBL) positioning systems have been widely and efficiently used for Autonomous Underwater
Vehicles (AUVs) localization, endorsing to be a suitable solution to limit the navigation drift
without requiring periodic surfacing for Global Positioning System (GPS) resets. Typically, in
the localization context, USBL measurements are exploited as observations within the on-board
navigation filter where, most of the time, Extended Kalman Filter (EKF) or Unscented Kalman
Filter (UKF) solutions are employed. In a break-away from the above-mentioned approaches, in
this study, the localization task is solved as a Maximum A Posteriori (MAP) estimation problem.
The presented solution is validated through the use of data gathered in October 2020 during
EUMarineRobots (EUMR) tests in La Spezia (Italy) within the activities of the SEALab, the
joint research laboratory between the Naval Support and Experimentation Center (Centro di
Supporto e Sperimentazione Navale, CSSN) of the Italian Navy and the Interuniversity Center
of Integrated Systems for the Marine Environment (ISME).
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1. INTRODUCTION

In the last few years, the employment of Autonomous Un-
derwater Vehicles (AUVs) to perform dangerous and chal-
lenging missions has widely increased. Possible application
fields cover various areas of interest, from environment
monitoring to industrial and military operations. Further-
more, the demanded tasks for underwater operations have
become more challenging, leading to the development of
AUVs capable of performing interactive tasks, such as
maintenance and repair of seabed installations (Cieslak
et al., 2015) or unknown environment mapping (Vidal
et al., 2019). Consequently, the design of a high-accuracy
and robust navigation system is a mandatory requirement
to perform autonomous underwater missions.

Due to the limitations of electromagnetic signals, un-
derwater scenario poses relevant issues on developing an
accurate navigation system. The localization drift, which
negatively influences the achievement of the mission goals,
has to be bounded with periodic resurfacing operations to
obtain Global Positioning System (GPS) resets or with the
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employment of acoustic-based solutions, such as the Long
BaseLine (LBL) and the Ultra-Short BaseLine (USBL)
(Leonard and Bahr, 2016). As far as USBL is concerned,
previous works typically exploit Kalman Filter techniques.
While in Font et al. (2017) the authors present a two-paral-
lel Extended Kalman Filter (EKF') solution which fuses the
measurements provided by the vehicle on-board sensors
with the ones acquired by the USBL, in Morgado et al.
(2011) a linear time-varying Kalman filter is employed for
integrated USBL-Inertial Measurement Unit (IMU) navi-
gation. Wang et al. (2020) present a Strap-Down Inertial
Navigation System (SINS)/USBL in robust Kalman filter
framework. In Kim (2020), in a multi-AUV context, the
author employs an Unscented Kalman Filter (UKF)/EKF
fusion strategy to estimate both the navigation state and
the unknown marine currents. Furthermore, on-field lo-
calization experimental tests are reported in Caiti et al.
(2014) and Costanzi et al. (2017). In a break-away from
the above-mentioned approaches, Maximum A Posteriori
(MAP) estimation for AUV localization in the presence of
USBL observations is detailed in this work. Beginning from
the seminal works of Lu and Milios (1997) and Gutmann
and Konolige (1999), MAP estimation has recently become
the standard approach for modern Simultaneous Local-
ization and Mapping (SLAM) strategies (Cadena et al.,
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2016). Indeed, while fixed-lag smoothers and filtering so-
lutions restrict the inference within a window of the latest
states or to the latest state, respectively, MAP strategies
estimate the entire history of the system by solving a non-
linear optimization problem. Both fixed-lag smoothers and
filters marginalize older states, collapsing the correspond-
ing information (usually) in a Gaussian prior. This ap-
proach can lead to reduced robustness against outlier data
(Forster et al., 2016). Since MAP strategies can quickly
lead to an unsuitable approach for real-time applications,
the development of incremental smoothing techniques has
arisen as the state-of-the-art approach. Such techniques
can reuse previously calculated quantities when new mea-
surements or variables are added (Kaess et al., 2008),
(Kaess et al., 2012). Kaess et al. (2012) employs a Bayes
tree data structure to perform incremental optimization
on the factor graph. Also, the adopted solution possesses
the ability to identify and update only a small subset of
variables by accurately selecting the ones affected by the
new measurement. A complete review can be found in
Grisetti et al. (2020) and the references therein.

While filtering approaches for AUVs localization in the
presence of USBL measurements have been in-depth an-
alyzed (such as, to name a few, EKF and UKF), MAP
estimation still represents an interesting field of research.
Specifically, the main contributions of this work are:

e the development of a MAP estimator tailored to AUV
localization in the presence of USBL observations;

e the post-processing validation of the presented solu-
tion through the use of real data gathered during at
sea experiments. In detail, within the positional part
of the here presented MAP estimator, a simplified
dynamic motion model is employed together with
USBL and Depth Sensor (DS) observations;

e the evaluation of the presented approach both in
terms of localization accuracy and computational
burden. As far as localization performance is con-
cerned, a Doppler Velocity Log (DVL)-based Dead
Reckoning (DR) strategy is employed as a bench-
mark.

The paper is organized as follows: the data acquisition
process is detailed in Section 2, whereas Section 3 involves
the MAP estimation theory. Section 4 is dedicated to the
description of the here presented strategy. Last, Section 5
draws conclusions.

2. DATA ACQUISITION

A data acquisition campaign took place at sea in La
Spezia (Italy) within the activities of the SEALab, the
joint research laboratory between the Naval Support and
Experimentation Center (Centro di Supporto e Sperimen-
tazione Navale, CSSN) of the Italian Navy and the In-
teruniversity Center of Integrated Systems for the Marine
Environment (ISME) in October 2020. The operational
area is an artificial basin confined between two piers. The
depth within the basin ranges from 3 m to 15 m. Thus,
due to the very shallow water, the scenario is challenging
from an acoustic point of view. The marine robotics assets
involved two heterogeneous vehicles, namely an AUV and
an Autonomous Surface Vehicle (ASV). The former is
FeelHippo AUV, a lightweight vehicle developed by the

Department of Industrial Engineering of the University of
Florence (UNIFI DIEF). In contrast, the latter is Mobile
Gateway Buoy 300 (MGB300), a torpedo-shape ASV de-
signed and realized by the Italian company Graal Tech
Srl. The main physical characteristics of FeelHippo AUV,
together with its localization-related sensors are listed in
Tab.1. Concerning MGB300, specific information is not
available. However, a GPS, an IMU, and an USBL are
installed on board.

Table 1. FeelHippo AUV main characteristics
and sensor-set.

Physical characteristics

Autonomy [h] 2-3
Controlled DOFs 4
Max. longitudinal speed [m/s] 1.0
Max. lateral speed [m/s] 0.2
Max. depth [m] 30.0
Dimensions [m] 0.6x0.64x0.5
Dry mass [kg] 35

Main sensors

IMU Orientus Advanced Navigation
Fiber Optic Gyroscope (FOG) KVH DSP 1760

DVL Nortek DVL1000 DVL

GPS U-blox NEO-7P

Depth Sensor (DS) integrated within the DVL

Acoustic modem EvoLogics S2CR 18/34

Mobile Gateway Buoy

Fig. 1. The test architecture, where Mobile Gateway Buoy
MGB300 (lower right image) and FeelHippo AUV
(lower left image) are involved, is reported in the
upper figure.

Turning to a more detailed description of the accom-
plished experimental test, MGB300 was hovering on a
fixed point on the surface, and FeelHippoAUV performed
an autonomous lawnmower path at a constant depth of
4 m. In order to reduce the acoustic noise produced by
the thrusters mounted on FeelHippo AUV, the desired
longitudinal cruise speed was set at a low value (0.2 m/s).
The vehicle navigated resorting to a simple DR strategy,
where DVL readings were integrated exploiting the atti-
tude estimator developed by the authors in Costanzi et al.
(2016). Meanwhile, MGB300 ASV was able to actively
localize (with respect to itself) FeelHippo AUV during the
mission exploiting the USBL device installed on board.
Moreover, combining the GPS signal and the attitude
information coming from the IMU integrated within the
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USBL device, MGB300 was able to compute the position of
FeelHippo AUV in geodetic coordinates. Such coordinates,
at which a unique ID is assigned, were sent to the AUV via
the underwater acoustic channel. Thanks to a specifically
designed communication protocol, the AUV was able to
associate the received position measurement to the cor-
rect acquisition time. Furthermore, by exploiting the same
communication channel, the protocol allowed transmitting
messages necessary to control and monitor the AUV. Fig.1
depicts the described ASV-AUYV architecture and it shows
the two vehicles during these experiments at sea.

3. MAXIMUM A POSTERIORI ESTIMATION

MAP estimation provides the most likely state set x =
{x1,X2,...,xp} of the modeled system given a set of
measurements z = {z1,2a,...,Zx}. This problem can be
graphically represented using factor graphs (Kschischang
et al., 2001), (Dellaert et al., 2017). A factor graph is a
bipartite graph that possesses two types of nodes: variables
and factors. Assuming the conditional independence of
measurements, which is encoded in the connectivity of
the factor graph, the MAP estimation problem can be
formulated as:

N
x* = argmax p(x) [ [ p(zi/x) (1)

where p(z;|x) is the likelihood distribution. It is worth
noting that in general z; is conditioned on a subset
of the variables C x. For what concern the likelihood
distribution, as reported in Eq.2, an additive Gaussian
noise is assumed in all measurements models.
p(zix) = N(h;(x), %) (2)
where h;(x) is the measurement function, which maps
the state estimate x into a predicted value z; of the
measurement z;. Instead, ¥; is the covariance matrix,
which summarizes the uncertainty of the measurement
model. Under these assumptions, the MAP estimation can
be simplified in a non-linear least squares problem:
N
x* = argmin > [|hy(x) — 22, (3)
x i=1
where
(%) — 213, = (hi(x) —2:) TS (hi(x) —2:)  (4)

K3

is the Mahalanobis distance.

The non-linear problem can be solved through standard
methods, such as the Gauss-Newton or Levenberg-Mar-
quardt algorithms, which iteratively converge to the solu-
tion by solving the linear approximation of the non-linear
system. Given an initial state estimate x", the linearized
measurement equation is:

oh;(x)
0x

where Ax = x — x” is the state update. Substituting
this approximation in Eq.3, the system can be solved in
terms of the variable Ax. The current update Ax* is
employed to propagate the estimation, whose value is used
as linearization point for the next algorithm step. More
information can be found in Grisetti et al. (2020).

The above optimization is valid when the state is defined
over an Euclidean domain. However, as detailed in Section

hl(X) = hi(XO + AX) ~ hi(xo) +

Ax  (5)

x0

4, the presented MAP estimation problem is defined over
elements of SE(3), leading to an optimization problem
that involves quantities that live on a smooth manifold. A
complete treatment goes beyond the scope of this study
and more information can be found in Absil et al. (2007)
and Chirikjian (2011).

4. PROBLEM DEFINITION AND
POST-PROCESSING VALIDATION

The details concerning the estimator are given in Section
4.1, whereas the results are described in Section 4.2. Last,
in Section 4.3, a brief computational burden analysis is
shown.

4.1 Problem definition

The state of the system at instant ¢ is defined as a complete
pose € SE(3). Mathematically:

T, = {fr" ﬂ |Ri€ SO(3).t; € RS, (6)

where R is the rotation matrix and t represents the
translation part. The optimization on smooth manifold,
such as SE(3) elements is implemented in the GTSAM
library, employed as back-end for the localization problem
(Dellaert, 2012). Let us define the set of poses at time
k with Xy, such that X = {T4,},_o . Considering a
transformation from z; to x; with covariance ¥; ;, and
constrained with a measurement z; ;, Eq.4 for SE(3)

2
elements becomes H Log (TZ_ﬁTa‘TiszJ’ . In contrast,

i,

(2%

for a measurement z; that indicates a pose prior on z;
with covariance ¥;, Eq.4 is || Log (szszi) @ Log(+)
maps from the manifold to an element of the SE(3)
Lie Algebra where, for the sake of brevity, a minimal
vectorized representation is used to describe an element
of the Lie Algebra. The above-mentioned logarithmic map
and the exponential map are discussed in Wang and
Chirikjian (2008), and Dellaert et al. (2017). The presented
MAP estimator can resort to:

e DS measurements at an approximate frequency of 4
Hz;

e GPS data at 10 Hz and USBL observations at non-
fixed frequency;

e Roll, Pitch and Yaw (RPY) information provided at
10 Hz by the attitude estimator developed in Costanzi
et al. (2016);

e a simplified dynamic model of the AUV motion (as
described in the authors’ previous work Franchi et al.
(2020)) available at 10 Hz that provides an estimate
of the vehicle speed.

The above-mentioned information has been encoded as
measurement factors to constraint the optimization, whose
solution represents the MAP estimate. Inspired by West-
man and Kaess (2019), the following factors have been
included:

e a relative 4D pose-to-pose constraint on x, y, and z
translation and yaw rotation, denoted as XYZ —Y;

e an unary 2D constraint on pitch and roll rotations,
indicated as RP;
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e an unary 1D constraint on z translation, represented
with Z;

e an unary constraint on x and y translation exploiting
GPS and USBL observations, denoted as XY gps and
XYusBL, respectively.

A naive implementation of the estimator would consist
in adding a state node at the frequency of the attitude
estimator and the model (10 Hz), leading to a waste of
resources. The implemented approach adds a new state
only when at least one observation from USBL, GPS
or DS is available. The link between adiacent nodes is
maintained by collapsing the relative motion XYZ-Y in
a single compound constraint, where simple DR is per-
formed between the two consecutive nodes. A graphical
representation of the factor graph is given in Fig.2. For

RP RP Z RP RP Z

K XYZ 7 YXYZ 7 Y XYZ 7 \V

XYeps

XYeps

XYuspL

XYuspL

Fig. 2. The factor graph employed to constraint the
optimization. It can be noted how a new state is added
only when at least one observation from USBL, GPS,
or DS is available.

the ease of explanation, let us represent a pose T, with a
vector [Xy,, Ye., Zao,, 6z, 0., 10.] | € RS that encodes the
state at the generic instant. Mathematically, at time k, the
optimization problem can be written as:
k-1
X . 2
X = arngln Z(Hf (Xie1,2;) © 0i—17i||20.
K ‘-

i=1

1,i

XYZ-Y factor
2
+ g (z:) ©7ills,,)
—_——
RP factor

2 2
+ 3 lh (@) =zl + D (@) = wills,,

Z factor XYysgL factor

+ 3 (@) = gill %y, + | Teo © Toprar
i€G

|2
o

XY aps factor prior factor

{f()7 20171,1'}7 {g(')v Em}ﬂ {h(')v Ezi}v {l(')v Eui}v {l(')7 Egz‘}
are the measurement function and covariances associated
to the XYZ —-Y, RP, Z, XYyspL, and XYgps factors,
respectively. Z, U, G are the set of nodes for which DS,
USBL, and GPS measurements occur, respectively. Teprion
is the prior on the first pose, which is necessary to anchor
the state evolution to a global coordinate frame. 0;_1;
and r; represent, on SE(3), the observations for the XYZ-
Y and RP part, respectively, z; € R is the depth mea-
surement, and u; € R?, g; € R? are the USBL and GPS
observations, respectively. Last, © encodes the logarithmic
map of the relative transformation between SE(3) ele-

2
ments H Log (TﬁiiorTm)’

functions are:

. In Eq.7, the measurement
0
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f(xi—hxi) = [Xzi—li sz‘—u Zzi—l,i %i_l,i ]T
g(@:) = [9e 0] @)
hxs) = [Zs,]"

i) = [Xe, Yo ]
Generally speaking, USBL observations are not imme-
diately available for the localized vehicle. However, by
streaming the absolute acquisition time together with the
absolute coordinates, the USBL message, once available,
can be adequately accounted. To this end, the association
is performed by finding the nearest node on the graph to
the current USBL observation. The distance is evaluated
by looking at the absolute time of each node in the graph.
Given the average rate of the DS, which is around 4 Hz,
and considering the low dynamics involved, the presented
strategy seems sufficient for this study. In addition to
this, it is well-known that USBL observations can typically
present outliers. Therefore, an outlier rejection step is fun-
damental. In this study, the Mahalanobis distance between
the measurement and its expected value is considered:
l2uspr — wills?, 9)
where u; € R? is the USBL observation acting on node
%, zZusepr € RZ is its expected value, and ¥; is the
associated covariance calculated as ¥ = HY, HT +X,..
Yz, represents the marginal covariance of the associated
state, H encodes the measurement model (which is linear
in this study), and ¥,,, is the measurement covariance. It
can be shown that in the Gaussian case, Eq.9 follows a
x2 distribution with ¢ = dim(u;) = 2 that denotes the
degrees of freedom. If the measure is consistent, given a
confidence level of 95 %, the one-side acceptance region
for Eq.9 becomes [0;5.99] In other context, the following
test is known as Normalized Innovation Squared (NIS) test
(Bar-Shalom et al., 2004).

4.2 Post-processing validation

The real data acquired with the setup described in Section
2 have been used as input to implement the estimator
delineated in Section 3. Concerning the implementation,
a C++ Robot Operating System (ROS) (Quigley et al.,
2009) architecture has been employed with the GTSAM
library (Dellaert, 2012) as back-end for localization solu-
tion. More information can be found in Kaess et al. (2008),
Kaess et al. (2012). iISAM2, which is the last evolution of
the incremental smoothing and mapping solution devel-
oped in GTSAM, permits to identify and update only the
small subset of variables affected by a new measurement,
which is typically small, and therefore to limit the com-
putational burden of the estimation, offering a trade-off
between accuracy and efficiency. Some remarkable iSAM2
real-worlds implementation in the robotics field can be
found in Forster et al. (2016) and Westman and Kaess
(2019).

In order to evaluate the performance of the here presented
localization solution, the DR strategy employed by Feel-
Hippo AUV during the underwater tests has been used
as benchmark. It is worth pointing out that while on
the surface, FeelHippo AUV resorted to raw GPS fixes.
Although the DR strategy is prone to accumulate drift
over time (being not an absolute ground-truth), for short
missions, due to the presence of top-of-the-line sensors
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(the single-axis FOG and the DVL), the strategy can be
deemed as a reasonable benchmark. In the following, the
DR strategy (with GPS fixes when the vehicle is on the
surface) will be identified as Benchmark Path (BP).

With regards to localization accuracy, the following met-
rics have been employed:

€ = ||T - (10)

MAP;"'y

BPTY
k2

i=k—1

. €;
Lo O (1)
where ¢; € RT is, at the instant i € N, the navigation
error in the horizontal plane; indeed, the presence of the
DS provides direct measurements of the depth both for
DR and MAP strategy; therefore, the study on vertical
direction can be neglected. M, e and M, pow indicate

€L =

the position of the vehicle on the horizontal pléme accord-
ing to the BP and to the MAP estimator, respectively.
In addition to this, € € R indicates the mean of e; for
i =0,...,k—1. The results are depicted in Fig.3 and Fig.4
and are summarized in Tab.2. In order to provide more

BP
MAP
USBL inlier
Diving
Resurfacing

North [m|

East [m]

Fig. 3. The navigation results. In red, the BP, whereas in
blue the proposed MAP estimator. Last, in green, the
USBL measures considered as inliers.

L L
300 400 500

Time [s]

L L
0 100 200

Fig. 4. Quantitative evaluation of the MAP estimator. In
the top figure (in blue), the error defined in Eq.10
is depicted. The spike around 500 s on the quantity
defined in Eq.10 is due to the resurfacing. In contrast,
in the bottom figure (in red), the error defined in
Eq.11 is presented. It can be easily noted how the
evolution of the error remains bounded thanks to
USBL observations.

insights on the evolution of the localization performance
during the mission, the metric in Eq.10 has been evaluated
in five different sub-trajectories (equally spaced) of the

Table 2. Navigation performance. “Max. error”
is the maximum of the metrics in Eq.10 during
the underwater mission. “Mean error” is the
mean as detailed in Eq.11 and calculated be-
fore resurfacing. “Res. error” is the distance (in
the horizontal plane) between the last position
estimated while the vehicle is underwater and
the first GPS position after resurfacing.

Max. error [m] [ Mean error [m] [ Res.error [m]
2.499 (@290.6 s) [ (0.833 @resurfacing) | 2.045

overall mission. To better catch the behaviour in each sub-
trajectory, an alignment translation has been computed
from the first state and the corresponding benchmark
of each sub-trajectory. The final results are presented in
Fig.5.

!

Translational error [m

4T
)

i
+

Distance traveled [m]

®—52m,210s
& 26m, 116 s

North [m]

®—78m,307s

&= 130 m, 519 s

-0+ ®— 104 m, 400 s

-30 -25 -20 -15 -10 -5 0 5 10 15
East [m)

Fig. 5. In the top figure, the error in Eq.10 is shown
as a series of boxplots for different sub-trajectories.
The box in the middle indicates the 25th and 75th
percentiles of the sample, respectively, and the red
line the median. Last, the whiskers identify, away from
the bottom or the top of the box, the most extreme
data values below 1.5 times the interquartile range.
In the bottom figure, the navigation path for the
MAP estimator where the points corresponding to the
traveled distance are made evident. The mission time
for those points is provided as well.

4.8 Computational burden analysis

As far as the computational burden is concerned, the
following points have been subject matter of the research
(it is worth highlighting that the simulations have been
performed on a laptop PC i7-6700HQ CPUQ@2.60GHz with
16 GB RAM):

e the execution time of the localization estimator, cal-
culated at each step;

e the CPU burden;

e the memory burden.

Concerning the CPU and memory burden, the output
of the command top, which is a task manager program
present in many Unix-like operating systems that provides
a dynamic real-time view of a running system, has been
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CPU usage
T T

S a0l

600 800 1000 1200 1400 1600
Tteration

200 400

Memory usage
i !

. . . . . .
x 0 500 1000 1500 2000 2500 3000
Tteration
Timing

0.02 -

0.01

Execution time [s]

50 100 150 200 250 300 350 400 450 500
Time [s]

Fig. 6. Computational burden analysis. In red and green
are indicated the mean and the median, respectively.
Concerning the CPU usage, when the top call pro-
vided zero output, the value was not stored.

recorded and stored around every 0.15 s. The results are
visible in Fig.6. It can be noted how the required resources
are limited for the employed laptop PC, suggesting the
feasibility for online tests on common AUV platforms.

5. CONCLUSIONS AND FUTURE WORKS

In the presented work, a MAP estimator tailored to
AUV localization in the presence of USBL measurements
has been developed and tested in post-processing. The
validation has been accomplished by employing a DVL-
based DR approach used as a benchmark. Turning to the
navigation performance analysis, the presented solution
has shown a promising localization behavior. In particular,
the maximum horizontal error with respect to the BP
results around 2.5 m; in contrast, GPS fixes obtained
after resurfacing indicate an absolute error of around 2
m. Furthermore, an analysis of the computational burden
has been undertaken, and its results suggest the feasibility
for online tests on common AUV platforms.

Future works will consist in employing raw data from
on-board attitude sensors (such as IMU and FOG), and
information from perceptual devices within the MAP
estimator. Moreover, on-line tests at sea will be performed
shortly to validate the hereby proposed approach. In this
context, the authors will plan ad-hoc missions, where
absolute positioning measurements (e.g., from the GPS)
could help to evaluate better the performance of the
method.
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