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Abstract

Updating industrial facilities in order to increase the level of automation and digitalization

to match Industry 4.0 paradigms has become essential for many companies. Following such

trend, this paper presents a Real-Time Optimization (RTO) algorithm that plays a central role

in a larger project framework devoted to highly interconnect different network components of

an Italian chemical industrial site. The proposed methodology aims at best managing the pro-

duction rates of various products in order to fulfill a sales plan organized to satisfy numerous

client requests. The considered model takes into account both batch and continuous processes,

as well as salable and non-storable products. The algorithm structure relies on the use of a

non-linear optimization scheme and on the concepts of batch scheduling. Different features of

the proposed methodology have been tested on real plant data showing how the predicted fore-

cast always improved the initial operation plan, by considering both aspects of feasibility and

†A preliminary version of this work has been presented in Vaccari et al. 1.

1



economic nature. The use of the proposed algorithm assures the basis for fully integrating the

control systems and the selling department of the facility in a more interactive and responsive

manner.

1 Introduction

Within Industry 4.0 paradigms, both process simulation and simulation-based optimization have

acquired a relevant role in the definition of the so-called virtual twin of the physical process2. In

this context, mathematical modeling is not anymore dedicated to describe an industrial process, but

also any product or a service on top of which specific analyses and/or suitable strategies have to

be performed3. Another important aspect recently taken into consideration involves maintaining a

reliable model by monitoring the process with the appropriate strategies of data collection4,5. Even

though the Industry 4.0 paradigms have been formulated quite recently, the approach which deals

with process simulations and optimization is nowadays well-establish and goes under the name

of Real-Time Optimization (RTO)6. The RTO methods exploit process measurements to run an

optimization framework that often, but non mandatorily, relies on a (possibly inaccurate) process

model and data extrapolated from measurements. Due to their versatility, process industry appli-

cations of RTO strategies nowadays are multiple and can be found in different fields, as managing

energy consumption efficiently7 or optimizing batch and continuous operations8.

The specific set of application of RTO methodologies oriented to optimally manage large and

complex industrial facilities, takes the name of process scheduling. Finding the optimal produc-

tion strategy to fulfill the sale requirements by solving scheduling problems is the typical objective.

Such field of RTO finds applicability both on continuous and batch plants. Mixed Integer Linear

Programming (MILP) models have been often used in scheduling problem of batch reactor plants9,

but also to deal with inventory management in refinery operations,10 or with the organization of

a petroleum transportation system11. For example, cyclic scheduling and operation of optimal

multistage continuous plants are treated in Alle and Pinto 12. A global optimization algorithm is
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here used to relax the nonconvexity present in the proposed mixed-integer nonlinear programming

(MINLP) formulation. Scheduling has also been integrated with control via multiparametric pro-

gramming by considering both continuous and binary decisions13. A surrogate model and offline

maps of optimal scheduling are employed to operate the controller. Reactive scheduling has also

been studied via MILP algorithms for short-term problems14. The algorithm robustness is tested

against unit shutdown and orders modification on a large-scale industrial batch plant. Simultaneous

batching and scheduling in complex multiproduct plants has also been addressed by Sundaramoor-

thy and Maravelias 15.

If merging RTO and control with supply chain higher level layers initially involved heavy com-

putational costs due to millions of variables,16 tremendous developments in efficient large-scale

NonLinear Programming (NLP) algorithms have led to an increase of applications in the chemical

industry17. Pontes et al. 18 described RTO strategies, both static and dynamic, to be implemented

in industrial polymerization process. The authors showed how the proposed methodologies im-

prove the process economic performance, rather than using traditional industrial practices. Krish-

namoorthy et al. 19 proposed hybrid versions of RTO in order to overcome the limiting factor of its

implementation in the industrial plants, that is, waiting for steady-state conditions. Moreover, RTO

techniques have been seen as a key instrument to success in the increasing competition of refining

industries, allowing one to optimize performance while fulfilling safety constraints20. RTO and

predictive control have also been integrated. For example, this happened in a petrochemical plant

to improve the automation level of the styrene production subject to disturbance and plant-model

mismatch21.

While petrochemical and refining industries have accepted RTO in the past few years, its ap-

plication to different chemical processes is still limited. To overcome this, Hernandez et al. 22

proposed an RTO scheme applicable to a complex catalyzed process showing operational improve-

ments despite modeling errors. A recent application on the bioethanol production showed that the

use of closed-loop dynamic RTO in the ethanol distillation process can improve the profitability

of this product as an environmentally friendly fuel23. Another RTO example managing the op-
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erability of hybrid energy systems to minimize operating costs while fulfilling all electrical and

thermal load requirements can be found in Vaccari et al..24 When planning to optimally manage

a large chemical plant, many different aspects can be important to optimize. To this aim, Wang

and Wang 25 proposed a multi-objective multi-factorial optimization model which takes account of

product quality, production capacity and energy consumption.

Therefore, the main objective of the present work is to build an RTO scheme, according to the

paradigms of Industry 4.0, to optimize a set of production rates of different products in a chemical

plant facility. The minimization of an economic objective function is constrained by feasibility of

product stocks and fulfillment of a complex and variable sales plan. It has to be noted that the

current work is not only a mere extended version of what discussed in Vaccari et al. 1, but presents

a more comprehensive formulation oriented to best fit company needs and constraints.

The rest of the paper is organized as follows. Section 2 presents the problem description,

generalities and main components. A more detailed definition of variables, constraints, and a

formalization of the proposed methodology is illustrated in Section 3. Description of a suitable

preliminary scheduling for batch products, details about the optimization objective function and

other algorithm implementation features can be found in this section. A real case study from

an Italian inorganic chemical industry, together with results and discussion about the methodology

test, is showed in Section 4. Section 5 then concludes the paper underlining the main achievements.

2 Problem definition

The problem considered in this work is to model and optimally schedule the production plan of

an Italian industrial site of the inorganic chemical sector. The maximum horizon along which the

optimization problem is developed is a week long, since after seven days it is neither safe nor

convenient to forecast production. This work is part of a larger competitive project addressed to

enhance the factory management of Altair Chimica SPA (later on cited as Altair), including aspects

of automation, digitalization, machine learning and process computerization. The project aims at
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fully integrating the proposed RTO system with the Distributed Control System (DCS) and the

local area network (LAN) of the industrial site through a specifically designed interface26.

A block diagram of the project architecture that identifies the position of the developed RTO

system among the other players of the industrial site is shown in Figure 1. The acquisition of

production data takes place through a specifically developed dynamic connection between the DCS

and the management system, in which client orders are entered. An additional connection, under

definition, will allow the management system to automatically receive client orders, avoiding the

manual entry phase, currently in place. The proposed RTO system can acquire input data from the

DCS and give its outputs to DCS itself at fixed times; therefore, the optimization system occupies

a hierarchically superior level to (basic and advanced) controllers and works as a fully automatic

operator.

Figure 1: Block diagram of the local computer system. Dotted lines are for connections under
definition.

Various (nP) products of interest of the company are considered in this work. The starting mod-

eling idea for the optimization problem is the weekly production plan designed by the operators of

selling department on the basis of the various sales according to client requests. Let us introduce

some notation and name x j, with j = 1,2, ..., the hourly production column vector of product j,

i.e. x j = [x0
j , ...,xi

j, ...,xnh−1
j ] ∈ Rnh , where nh is the total number of hours to be optimized, e.g.,

nh = 24×7 = 168 h is the optimization horizon length for a week (nd = 7).

Sales plans of each product are input data obtained from the selling department of the company

and used within the optimization problem as parameters. For each day considered in the opti-
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mization, let us define the selling time as τd, with d = 1,2, ...,nd , and let us establish that a sale

is satisfied if and only if the stock of the considered product j contains enough material at time

τd . From this definition, it follows that the sales vector of product j assumes the following form:

S j = [S0
j , ...,Si

j, ...,Snh−1
j ] ∈ Rnh in which the only non-zero components are the ones for i = τd .

Stocks of each product are calculated within the optimization algorithm as functions of sales

and production rates, and they are, as well, bounded by physical constraints. Analogously to

production rates, let us define the initial stock of the product j as σ0
j ∈ R and its evolution over

time is obtained by mass balance as follows:

σ
i+1
j = σ

i
j +

L j

∑
k=1

xi
j,k−Si

j−a j(x)i +E i
j ∀ i = 0, ...,nh (1)

The stock σ j depends linearly also on the function a j(x), named self-consumption, because some

of the products are consumed within the industrial site to obtain other chemicals. Note that σ0
j is

a parameter within the optimization problem, as it represents the initial stock value of product j

before the optimization horizon. Its value is read directly from the DCS at the moment in which

the optimization is intended to start. Moreover, some of the products can be obtained in multiple

production lines, that is, L j different production rates contribute to the same stock σ j. Another

possibility for storable products is to have external provision of raw materials (E j), that are then

transformed to final products of interest for the industrial site. From a modeling point of view, since

the generic raw material comes from other suppliers and, therefore, its orders are still handled by

the management system, it is convenient to represent its provision in a similar way as done for the

sales plan.

On the other hand, some products cannot be stocked within the industrial site due to specific

safety or logistic reasons. Since they may not be provisioned or sold either, they must be consumed

within the facility. Hence, their material balance equation (1) reduces to:

0 =
L j

∑
k=1

xi
j,k−a j(x)i ∀ i = 0, ...,nh (2)
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Another important note is that some of the considered products are produced by means of batch

reactors. This implies that the corresponding hourly production rate x j can assume only a limited

number of values. In particular, it is zero throughout most of the optimization period and then

assumes a certain positive value for a few specific times. Let us identify the number of batch

products as nB, where nB < nP.

Therefore, the scope of the presented methodology is to find the best production schedule for

all the nP products, by minimizing operating costs and the summation of stocks of certain products

while fulfilling all the various constraints. In the process control field, this indeed represents an

RTO-level decision, since its main purpose is to communicate the various set-points to be used in

the control layer, e.g. DCS.

3 Proposed methodology

In this section, the various features of our RTO scheme for optimizing the production plan and

based on algorithms developed in Python, are presented and detailed.

3.1 Data, variables and constraints

The hourly production rates of the various products are treated as optimization variables sub-

ject to different bound constraints. Let us identify the optimization variable vector with x =

[x1
T , ...xT

j , ...,xT
nP−nB

]T ∈ Rnx , where nx = (nP−nB)nh.

Input data and parameters of the problem are sale vector S j and initial stock value σ0
j of each

product. These quantities are used, in particular, to build the material balances of all the chemicals

treated in the facility and hence involved in the algorithm. Additional both linear and non-linear

relations implying different components of x, and safety considerations represent the problem con-

straints. Minimum and maximum values for bound and process constraints have been set as con-

stant. Initialization values for the optimization variables are taken from the weekly production plan

designed by hand by the selling department.
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3.2 Scheduling procedure for batch products

As anticipated in Section 2, the company produces also nB different products in batch reactors.

In Section 1, it has been underlined how batch scheduling is a necessary step when dealing with

chemical plant optimization27,28. A comprehensive review on batch process scheduling can be

found in Méndez et al. 29. The different typologies of batch products considered here are named B,

i.e. B1, ...,Bl, ...,BnB . Despite usually batch products result from multiple batch operations, we un-

derline that each considered batch products Bl is here obtained via a single reaction operation. The

correlated service operations are not here considered and, for this reason, the associated specific

reaction time tBl is comprehensive of service time (tserv
Bl

). We assume that each reactor produces an

amount WBl that depends on the type of Bl , so that the corresponding “hourly production rate” can

be calculated as follows: xBl =
WBl
tBl

with l = 1, ...,nB. Note that these hourly production rates are

not considered as optimization variables in order to avoid dealing with a mixed-integer problem,

where batch and continuous productions are simultaneously optimized. Therefore, a specific, pre-

liminary optimization procedure for batch products has been implemented inspired by the General

Precedence (GP) notion29.

The nr batch reactors available at the plant facility in which product Bl can be produced are

named R1, ...,Rr, ...,Rnr . Since they can be employed simultaneously and at any time during the

day, a criterion for scheduling their operation is needed. The criterion chosen is rather simple,

yet effective, for the company needs and it is based on the sales plan of each Bl . The underlying

idea can be expressed by the sentence the first needed is the first to be produced. Practically,

the procedure scans every selling times τd of each Bl and registers the corresponding sale. Then,

depending on the current stock value recalculated at each iteration, the production of product Bl

related to its sale request is scheduled or not. In order to make a comparison with the selling

times τd , another time variable is defined: the reactor time (TR1, ...,TRr , ...,TRnr
), which is linked

to the reactor employment and, indicating the last time instant a reactor is used, allows us to track

the production assignment. The reactor time starts from zero for an unemployed reactor, and

grows depending on the production schedule for the considered reactor, that is, the more a reactor
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Table 1: Sales plan example for batch products. Sτd
Bl

are tons of Bl requested by the client on day d.

τ1 τ2 τ3 τ4 τ5

B1 0 Sτ2
B1

0 0 0
B2 Sτ1

B2
0 0 0 Sτ5

B2
B3 0 Sτ2

B3
Sτ3

B3
0 Sτ5

B3

is employed the greater is its TRr . If a reactor is in use and not available since the start of the

optimization horizon, the corresponding future TRr and the product Bl in production have to be

known. Even though this second information is not directly needed for the scheduling procedure,

it will be used later on in the optimization problem. The scheduled batch is placed always in the

reactor that has the lowest TRr . When for the product Bl is required more than one batch to cover the

sale, the sequencing procedure schedules the first batch in the selected reactor, and then scans all

the reactor times to see which one is the smallest. Therefore, with this logic, each reactor schedule

is filled with production stages in a homogeneous way, employing all the reactors, possibly, at the

same time. When more than one product Bl is required on a single τd , the sale of the one with

the longest reaction time tBl is the first to be addressed. Only after its fulfillment, the sales of the

products with smaller tBl are tackled.

Here follows a simple example to better clarify the implemented procedure. Let us consider the

5 day sales plan for three types of products as reported in Table 1. We first scan the actual reactors

activity and check which ones are available and which ones are operating. Let us assume that both

R1 and R2 are currently busy in producing B2 and B3, respectively. Hence, the initial situation can

be represented as TR1 > 0, TR2 > 0, TR3 = 0. Depending on when the production in R1 and R2 is

scheduled to finish, the corresponding stocks of B2 and B3 are updated. In this way we can consider

the proper stocked amount of each product when checking for covering the sales. The first sale

concerns B2 on day 1: the production in R1 is assumed to finish on day 1, so that the updated stock

of B2 is sufficiently high to cover Sτ1
B2

and no new batch is scheduled. Referring to the example of

Table 1, Figure 2 shows a simple diagram furtherly explaining the scheduling criterion. For the
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Figure 2: Scheme for reactor scheduling criterion. Times TRr are represented by the end of the
solid box. The daily selling times τd are indicated by vertical red dashed lines on top of which
the sales to be matched are evidenced. The asterisk on tBl identifies an ongoing production not yet
finished when the optimization began.
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sake of simplicity, only three reactors are here considered, i.e. nr = 3. Moving to day 2 of the sales

plan, two products are requested, B1 and B3, and, since tB3 > tB1 , we start from B3. After checking

its stocks updated with the production in R2 finished on day 2, we assume that the product amount

is enough to cover for Sτ2
B3

. Moving on to analyze B1 stock, we assume that Sτ2
B1
−σ0

B1
≤WB1 so that

only 1 batch to produce B1 is needed. In order to place the B1 production, we check which reactor

has the lowest reactor time tR, hence we employ R3 and update its time: TR3 = 0+ tB1 . On day 3

of the sales plan, we need (after checking its stock) to schedule another production of B3 in order

to cover Sτ3
B3

. As previously seen for B1, we start by analyzing the reactor times and, consequently,

placing the production in R1, as shown in middle panel of Figure 2. Hence, the updated reactor

times are: TR1 = t∗B2
+ tB3,TR2 = t∗B3

,TR3 = tB1 . The last sale on day 5 requests more than one

product, specifically B2 and B3. From stock calculation, four batch productions of B2 and one of

B3 are needed. As done in day 2, we start by placing the one batch of B3 (since tB3 > tB1) in R2,

and update the reactor times. Only then, we place the first two batches of B2 in R3, the third one

in R1 and the fourth one again in R3. Note that every time a batch is scheduled the reactor times tR

are updated and the procedure looks always for the smallest one. This is why the four batches of

B2 are scheduled in such alternated way (see bottom panel of Figure 2).

Finally, all the sales are satisfied if TRr ≤ τd ∀ d = 1, ...,nd ∧ r = 1, ...,nr, otherwise an auto-

matic message to the operator is sent. With the nr reactor schedules completed, it is possible to

calculate the “hourly production rate” of batch products xP, and, consequently, evaluate their con-

tribution to the hourly self-consumption function a j(·) of other substances for the whole optimiza-

tion horizon. This let us define nB nh parameters used within the constraint set of the optimization

problem.

3.3 “ON-OFF" switching procedure for production lines

In the real plant operation, each production line has evidently two operability modes: “ON", that

is, the line is running within a range, between a minimum and a maximum production capacity,

and “OFF" when the line is shut down for logistic or safety reasons. In such a framework, there are
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different ordinary and/or abnormal situations for which a line could be switched off. Obviously,

for the production lines currently under maintenance, the problem to deal with is much simpler as

it is only required to collapse the production capacity range to zero. Conversely, safety reasons

are not to be predicted most of the time, that is, avoiding overfilling product storage tanks may be

obtained in practice by switching off the corresponding line. In addition, in normal operations of

the plant, there are periods along the year when the general production has to be reduced as a direct

consequence of a lower market demand. However, in our problem formulation the production rates

are bottom limited by a minimum value that for most of the products is strictly greater than zero.

Hence, when a scenario in which the algorithm decides to impose minimum rates occurs, the stocks

could still be overfilled due to the lack of sales. This is particularly crucial when the initial stocks

σ0
j are quite high.

Hence, in order to represent the production lines behavior at best, several optimization variables

should be in principle binary and not continuous within the optimization space. Moreover, since

in this work we aimed at developing a tool able to handle quite large problems, this would have

implied MINLP problems in several hundreds/thousands of variables, which cannot be efficiently

tackled by off-the-shelf solvers. Therefore, in order to avoid such algorithm structure, a specific

procedure to check whether some production line is to be shut down or not has been formulated as

in Procedure 1.

For each product j, this procedure firstly acquires all the information about the sales plan vector

(S j), the initial stock (σ0
j ), the lower and upper stock bounds (σmin, j, σmax, j) and the lower bound

for the production rate (xmin, j = [x0
min, j, ...,xi

min, j, ...,xnh−1
min, j]). Hence, the stock profile along the

simulation horizon σ j is calculated with the given xmin, j. Then, if there is at least one time instant

i+ in which the stock exceeds its maximum bound (line 4 in Procedure 1) both the lower and the

upper bounds on the production rate are set to zero from there to the end, as displayed in lines 5-6

of Procedure 1. This allows the production rate to be at zero and avoids an overload of the storage

tanks. The reason why also the production rate upper bound (xmax, j) is set to zero is twofold:

firstly, we need to simulate a switched-off line, and secondly to avoid a non-zero production rate
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Procedure 1 “ON-OFF" switch for production lines

Require: S j,σ
0
j ,σmin, j,σmax, j,xmin, j = [x0

min, j, ...,xnh−1
min, j], xmax, j = [x0

max, j, ...,xnh−1
max, j]

1: Evaluate σ j(xmin, j)
2: while not σmin, j ≤ σ i

j ≤ σmax, j ∀ i = 0, ...,nh do
3: for i+ = 0 to nh do
4: if σ i+

j > σ i+
max, j then

5: xmin, j = [x0
min, j, ...,xi+−1

min, j,0,0...,0]

6: xmax, j = [x0
max, j, ...,xi+−1

max, j,0,0...,0]
7: end if
8: break
9: end for

10: Evaluate σ j(xmin, j)
11: for i∗ = 0 to nh do
12: if σ i∗

j < σ i∗
min, j then

13: Calculate Hrec =

⌈
σ i∗

min, j−σ i∗
j

x0
min, j

⌉
14: xmin, j = [x0

min, j, ...,xi+−1
min, j,0, ...,0,xi∗−Hrec

min, j ...,xnh−1
min, j]

15: xmax, j = [x0
max, j, ...,xi+−1

max, j,0, ...,0,xi∗−Hrec
max, j ...,xnh−1

max, j]
16: end if
17: break
18: end for
19: Evaluate σ j(xmin, j)
20: end while
21: return xmin, j, xmax, j
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lower than the original minimum. Once xmin, j is updated, it is applied to recalculate σ j. This

time we check if there is at least one time instant i∗ in which the stock goes below its minimum

bound (line 12). If this is case, from the time instant i∗ the production line has to be switched-on

again and original xmin, j and xmax, j have to be reinstated somehow. At this point, line 13 shows the

calculation of the maximum number of hours Hrec needed to recover the missing stock σmin, j−σ i∗
j ,

in which dze represents the ceiling operator applied to a real number z.

Therefore, the recalculated lower and upper bounds for the production rate are displayed in the

lines 14-15. The procedure is iterative and stops when no issues about σ j are found, i.e. σmin, j ≤

σ i
j ≤ σmax, j ∀ i = 0, ...,nh. If no feasible configuration is found, an error is risen and the sales

plan has to be reformulated. Clearly, this procedure actually applies only to those products with a

non-zero xi
min, j. The final (eventually) recalculated xmin and xmax then enter into the optimization

problem as decision variable bounds as illustrated in Section 3.4. Finally, note that Procedure 1

and the scheduling procedure for batch operations, described in Section 3.2, let us avoid binary

variables that would have required a mixed-integer formulation of the optimization problem.

3.4 Optimization problem

The problem to be solved is a NonLinear Program (NLP) with the following general structure:

min
x

f (x) (3a)

subject to:

xmin ≤ x≤ xmax (3b)

cmin ≤ c(x)≤ cmax (3c)

ceq(x) = 0 (3d)

in which x ∈ Rnx , ceq(x) refers to the material balance of nns non-storable products and to further

nonlinear constraints that are better explained below, while c(x) refers to bound constraints on

stocks plus other process constraints. Non-linearity of the optimization problem derives from
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modeling refinements of some peculiar process dynamics. In particular, in order to avoid the

case in which one piece of equipment is used to synthesize simultaneously two different products

( j1, j2), an exclusivity constraint between two optimization variables is introduced:

0 = xi
j1xi

j2 ∀ i = 0, ...,nh (4)

We underline that, as written, equality (4) violates constraints qualifications30. To this aim, the

actual implementation of the exclusivity constraint is described by (5):

xi
j1xi

j2 ≤ ε ∀ i = 0, ...,nh (5)

where ε is a small real number (magnitude 10−7).

Moreover, we also note that equality (4) can be reformulated into binary variables by intro-

ducing at least nh additional variables, hence defining a MILP problem. Despite this enlarges the

possibilities to explore for the future research by exploiting well-known solvers (eg. GuRoBi,

CPLEX), this is actually out of the scope of the current work, that is, we maintain a NLP formula-

tion.

The objective function f (x) to minimize is continuous, linear in x and is defined according to

the company needs, as detailed in Section 3.5.

Since sales misplacement can generate infeasible solutions, a smooth replacement for f (x) in

(3) is considered:

min
ξ

f (x)+µ

(
∑

i
si +∑

i
si +∑

i
seq,i +∑

i
seq,i

)
(6a)
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subject to:

ξmin ≤ ξ ≤ ξmax (6b)

cmin− c(x)− s≤ 0 (6c)

c(x)− cmax− s≤ 0 (6d)

−ceq(x)− seq ≤ 0 (6e)

ceq(x)− seq ≤ 0 (6f)

s,s,seq,seq ≥ 0 (6g)

in which

ξ = [xT ,sT ,sT ,sT
eq,s

T
eq]

T , ξmin = [xT
min,0

T ,0T ,0T ,0T ]T , ξmax = [xT
max,∞

T ,∞T ,∞T ,∞T ]T (7)

where ξ is the augmented decision variable; µ is a positive scalar penalty factor for the slack

variables, assumed the same for all, for the sake of simplicity; ∞ is a vector of “infinity” and

0 is a vector of zeros. The slack variables s,s,seq,seq are defined by the maximum deviation

from the corresponding imposed constraint over the time horizon. Their dimensions are: s,s ∈

RnP−nB+noc ,seq,seq ∈ Rnns , where noc is the number of further process constraints. Thus, prob-

lem (6) is the one actually solved within the algorithm, and by construction it admits always a

feasible solution. Furthermore, an initialization procedure for the slack variables has also been

finalized in order to make the starting point always numerically feasible. This approach helps also

in terms of reduction of computational costs. For this reason, a post-processing analysis of the

optimization result is needed in order to verify if all the hard constraints are fulfilled, as detailed in

Section 3.6.

Since the horizon length nh is not a fixed parameter, it can be set also shorter in order to rerun

a forecast that ends on the same day, but using updated parameters data. This is the case, for

example, when the sales plan is changed along a week due to new client requests or sudden offer

withdrawals. It can also happen that due to unexpected plant operation variations, some product
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stock values face significant changes that could not been taken into account during the forecast.

For this reason, it is suitable to rerun the algorithm in order to obtain an updated optimal operation

indication on a shorter horizon. In this way, a closed-loop like behavior of the algorithm can be

tested offline at first, and then online directly via the DCS in the final phase of the project.

3.5 A multi-purpose objective function

As explained in Section 3.4, the objective function of problem (6) is based on the company needs,

optimal practices and economic goals. To this aim, defining a single-purpose function would mean

disregarding some key concepts. Hence, a multi-purpose objective function is considered. In

particular, the different components of f (x) are grouped into two main parts. The first one ( fσ (x))

is the summation of stocks of certain products at the end of the optimization horizon. This takes

account of a specific plant strategy, that is, to have the minimum amount of certain key products

in a specific period of the week, month or year. The second part ( feco(x)) represents the economic

expenses linked to the electrical energy consumption of the facility. Since the considered chemical

processes are great consumers of electrical energy, analyzing the energy price variation along time

allows one to encourage production at lower costs. The electrical energy prices, in Italy, can be

found in the so-called National Unit Price (PUN) Index that gives hourly prices for the current day.

Nevertheless, the optimization based on the PUN can only be performed on the first day considered,

given the daily variability of the data and the impossibility of a reliable forecast for future days.

In addition, an ad hoc procedure was also set up to pre-process the raw PUN data. According to

the company specifications, the hourly PUN data have been divided into three groups of at least

six hours each in order to limit the operational variation. This makes possible to identify three

daily bands, each characterized by an average energy price and therefore to weigh accordingly the

production of certain products during the day within the objective function. The procedure for

identifying the three bands is automated by choosing as a criterion the minimization of the sum

of the three variances. Nevertheless, it should be noted how the proposed optimization problem

is still able to account for the hourly energy data, that is, the daily bands identification reflects a
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simplified approach of the main general one.

In this way, the formulated objective function can evaluate both the economic and practical

feasibility aspects of the plant operations. To avoid problems due to the non-uniformity of the

units of measure involved in the objective function, as the stock term is measured in tons, while

the energy term (PUN) is usually expressed in e/MWh, a normalization is applied. Therefore, the

final objective function is expressed as:

f (x) =
(1−α)

α1
fσ (x)+

α

α2
feco(x) (8)

where α ∈ [0,1] is a weight, chosen by the operator, that shifts the focus of the function to be

more “energy-oriented" (α→ 1) or more “storage-oriented" (α→ 0), while α1 and α2 are the two

suitable scaling factors.

3.6 Post-processing analysis

Given ξ ∗ the optimal solution of Problem (6), we need to check whether the values of the slack

variables (s,s,seq,seq) are null or not. If, at least, one component of the slack variables is positive,

one or more constraints along the weekly horizon is violated, that is, Problem (3) is not feasible.

In this work, we consider two types of constraint violations: admissible or inadmissible.

The first category identifies the so-called soft constraints, the ones that when violated do not

imply issues of safety or physical infeasibility. This is the case of non-critical products which,

when missing, can be replaced by others without particular problems (e.g., by dilution or mixing

of available products) or complaints from clients. The drawback of such product replacement can

be a small economic loss, hence, even if these constrain violations are not harmful, they should be

avoided or limited as much as possible. This is the reason why there is no distinction in constraints

treatment in the algorithm itself, but just on the post-processing analysis of the optimization re-

sults. Therefore, when soft constraints are violated the operator still receives a warning as output

message, but the sales plan can be left unchanged and the solution accepted.
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Whereas, hard constraints are related to physical impossibilities or unsafe operations, that is,

their violations are inadmissible. The levels of storage tanks represent the simpler example of this

type of constraints. When the stock value overpasses the maximum limit, containers are spilling

materials, that is, for sure a dangerous scenario. On the other hand, negative values of stocks

simply are not picturing a real situation. Despite that, an additional threshold of 1 ton has been

considered for violations of storage tank bounds, in order to avoid generating messages (flooding

alarms) perceived as false alert state by the operator. Another alert scenario is when electrical

devices are not working in the voltage ranges imposed by ordinary factory configuration. In these

cases, the operator receives an error message, indicating which constraint(s) is (are) violated, and

suggesting a change in the sales plan in order to obtain an acceptable solution.

Independently from the post-processing analysis, the final output communicated to the oper-

ator is threefold: the optimal solution of Problem (6), the stocks forecast along the optimization

horizon, and, if present, the error/warning messages. As a matter of fact, in the current phase of

the project, the algorithm is intended to work as a decision supporting tool in background mode,

that is, the company operators always take the final decisions.

4 Industrial case study

An application example to real data and sales plan from Altair is now presented and discussed. Al-

tair offers products and services for the inorganic chemistry and oenology industry, always taking

into account process efficiency, energy saving, environmental sustainability and its renewability.

A simplified process scheme is shown in Figure 3.

4.1 Case study description

The considered products, divided by category, are:

• 13 continuous products: HCl(a), HCl(b), HCl(c), FeCl(a)3 , FeCl(b)3 , NaClO, NaOH(a), NaOH(b),

KOH(a), KOH(b), KOH(s), K2CO(aq)
3 , K2CO(s)

3 ;
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• 1 non-storable and non salable product: Cl2;

• 3 batch products (chloroparaffins): Cl-Par(a), Cl-Par(b), Cl-Par(c).

Among the continuous-time productions there are some peculiarities. Three products, HCl(a),

FeCl(b)3 and KOH(b), consist of two production lines each, i.e. LHCl(a) = L
FeCl(b)3

= LKOH(b) = 2,

where both lines contribute to the same storage tanks. Consequently, this implies two sets of nh

optimization variables for this kind of products. Moreover, the second line of FeCl(b)3 needs an ex-

ternal raw material to operate, that is, exhausted chloridric acid, E-HCl; therefore, the optimization

variable x
FeCl(b)3 ,2

has to satisfy the balance equation (1) with the provision of E-HCl as constraint.

In addition, since E-HCl does not have a production rate associated, it is not part of the deci-

sion variables, but it is a parameter in Problem (6) and its stock values are included as inequality

constraints. A proportionality factor (0.783) links x
FeCl(b)3 ,2

with the consumption rate of E-HCl.

In addition, the second production line of KOH(b) and the one of NaOH(b) use the same piece of

equipment, an evaporator; therefore, these products cannot be obtained simultaneously as they need

to fulfill the exclusivity constraint (4). This is the main reason for the NLP nature of Problem (6).

Moreover, some chemicals shown in Figure 3 are not included in the optimization problem, since

their consumption (NaCl, KCl, H2O) or production (H2) can be derived from the other substances

considered. According to our notation, the number of variables we take into account is: nP = 20,

nns = 1, nB = 3. Moreover, the reactors available for the batch products, are three, i.e. nr = 3. The

reaction times for the three chloroparaffins is the same, i.e. tCl-Par(a) = tCl-Par(b) = tCl-Par(c) = 31h,

and so it is their productivity per batch (WCl-Par(a) =WCl-Par(b) =WCl-Par(c) = 12 t).

Given the structure of the optimization problem, it is clear how its overall dimension depends

on the horizon length, from nx = 17×168 = 2856 for a 7 day optimization, to nx = 17×24 = 408

for 1 day forecast. In addition to the nP− nB− nns = 16 constraints on product stocks, further

process and safety constraints (noc = 7) are to be considered. Hence, the total number of constraints

along the optimization horizon ranges from over 1000 for a 1 day simulation to over 8000 for a

week long forecast. Clearly, the computational cost of the optimization is also greatly dependent

on the selected horizon length: from a couple of seconds for a 1 day simulation to 10-15 minutes
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Figure 3: Simplified process scheme of the Altair case study.

for a week long forecast. More detailed examples can be found in Sections 4.2.2 and 4.3.2.

In order to handle the dimensionality and nonlinearity of the problem, the optimization algo-

rithm has been equipped with a solver widely used and validated in the literature for large linear

and non-linear programming problems, IPOPT31, and a symbolic framework offered by CasADi32.

The two parts of the selected objective function f (x) are defined as follows:

fσ (x) = σ
nh

HCl(a)
+σ

nh

HCl(b)
+σ

nh

HCl(c)
+σ

nh
NaClO +σ

nh
E-HCl (9)

feco(x) = γ

(
PUNI

iI

∑
0

x(i)
KOH(a) +PUNII

iII

∑
iI+1

x(i)
KOH(a) +PUNIII

24

∑
iII+1

x(i)
KOH(a)

)
(10)

in which, the stock-oriented term fσ (x) includes the stocks of HCl(a), HCl(b), HCl(c), NaClO and

E-HCl on the last day of the optimization horizon; while the economical term feco(x) is the sum

of three different sets of hourly production rates of KOH(a) on the first day of optimization, each

weighted by the corresponding mean band price of PUN. The indices “I, II, III” in (10) represent
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the three periods of the day in which the PUN index is divided according to the procedure described

in Section 3.5, PUNz with z = 1,2,3 is the corresponding mean energy price, and, finally, γ is a

conversion factor with dimensions MWh
ton/h . Let us underline how the definition of functions (9)

and (10) is linked to a specific profit strategy defined by Altair on the basis of the last three years of

productivity, inventory management and client order dispatch organization. Hence, other economic

factors, as chemical prices or conversion factors, are not explicitly included.

In order to fully understand the complexity of the problem, some aspects need to be clarified.

Chlorine Cl2 is non-storable, thus non salable, albeit produced by some products and consumed by

others, i.e. Eq. (2) becomes xi
Cl2

= aCl2
(x)i, ∀ i = 0, ...,nh. Its self-consumption function, aCl2(·),

has positive terms corresponding to those products that generates Cl2 and negative ones for the

chemicals which consume it. Mass balances and reaction stoichiometry allow one to calculate the

specific constants used to link each term of aCl2(·) to Cl2 production rate.

As explained in Section 3.2, the batch products (Cl-Par) do not enter directly in the optimiza-

tion problem. Nevertheless, since they are chlorine consumers, their contribution to aCl2(·) needs

to be calculated. The preliminary chloroparaffins production schedule, once defined, gives the

number of reaction batches needed to satisfy the sales plan. This information, together with the

known reaction time tCl-Par required per each batch, allows the calculation of the chlorine requests

schedule along all the optimization horizon. Therefore, taking into consideration only the effective

reaction time, i.e., tCl-Par− tserv
Cl-Par, the hourly consumption of Cl2 is computed from mass balances.

Sodium and potassium hydroxide solutions (NaOH(b), KOH(b)) are obtained by concentration

from NaOH(a) and KOH(a), respectively; hence the self-consumption function plays also an impor-

tant role into the mass balance equations of these products. The four products are still considered,

stored and sold separately with different destinations, but their stock values are linked through

function a j(·).

In addition, the considered problem has three soft constraints: sales for missing HCl(a) can be

covered by both HCl(b) and HCl(c) after dilution, while sales for missing HCl(b) can be covered

only by HCl(c), still after dilution; a similar logic lets FeCl(b)3 (high-purity) to be sold directly as

22



FeCl(a)3 (low-purity) with a little profit loss. Apart from stock bounds and nonlinear exclusivity

constraint, many other hard constraints are to be satisfied for these replacements to be feasible:

sum of stocks of three concentration levels of HCl, sum of stocks of the two higher concentrated

HCl ((b) and (c)), sum of stocks of two qualities of FeCl3. In addition, since NaOH(a) and KOH(a)

are produced in electrolysis cell from NaCl and KCl, respectively, electrical bounds on working

conditions have to be considered as well.

4.2 Case 1: receding horizon optimization

4.2.1 Case description

Since sales plan updates or unpredictable (eventually emergency) situations may happen and affect

stocks level of certain products, it is a good practice to perform receding horizon optimization in

order to follow the evolution of the plant conditions and apply more suitable control actions. In

the considered example, one week is firstly optimized; then, from a 7 day prediction, the horizon

is reduced to reach a one day ahead forecast, by moving ahead the starting time and keeping fixed

the final one. As example and for synthesis purposes, Table 2 shows the initial stock values and

the sales plans for the product KOH(b) for all the optimization horizons taken into consideration.

Note that those in Table 2 are just part of all the parameters used in the optimization Problem (6)

for each simulation.

Table 2: Initial stock and sales plans for the product KOH(b) along the week for different horizon
lengths; σ0

KOH(b) and SKOH(b) are expressed in tons.

Horizon length σ0
KOH(b) Sτ1

KOH(b) Sτ2

KOH(b) Sτ3

KOH(b) Sτ4

KOH(b) Sτ5

KOH(b) Sτ6

KOH(b) Sτ7

KOH(b)

7 days 630 13 0 299 182 143 104 130
4 days 700 − − − 182 143 104 130
3 days 600 − − − − 143 130 130
2 days 570 − − − − − 104 143
1 day 540 − − − − − − 130

The sales of KOH(b) are a typical example of how the sales plan can change during the same
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week. In order to be more visually clear, the sales in Table 2 span from day 1 to day 7 for all

the optimization horizons. The horizon gets shorter while going down the table rows and each

optimization uses Sτ1
j as parameter, that is, the first day of the 1 day optimization corresponds

to the seventh day of 7 day one. As the objective of this first example is to stress the receding

horizon feature of the proposed algorithm, the chosen objective function to be minimized is fully

stock-oriented, that is, f (x) = fσ (x) as α = 0.

4.2.2 Results

Table 3: Optimization results. Initial and final values of objectives function, number of violated
constraints (ng,viol(x)) and computational times; in and opt represent the initial condition and opti-
mal solution found by Problem (6).

7 days 4 days 3 days 2 days 1 day
in opt in opt in opt in opt in opt

Φ(ξ )[ton] 1.7×106 102.9 1.8×106 117.5 1.7×106 117.3 1.6×106 397.5 2.8×105 109.4
f (x) [ton] 43.1 96.16 15.04 96.16 132.1 98.2 206 107.3 153 109.4
ng,viol(x) 430 27 315 26 177 19 104 25 31 0

ts[s] 617 56.4 97.5 7.2 2.4

The optimization results for the receding horizon example are summarized in Table 3. The

main indices adopted to evaluate the performance of the proposed methodology are here illus-

trated. The first index Φ(ξ ) represents the augmented objective function in (6a). Its initial values

(in) are so high because of the initial values of slack variables that compensate for the different

constraint violations. In general, also the optimized value (opt) of Φ(ξ ) is not so small due to

some residual, usually soft, constraint violations. As a matter of fact, it can be seen how the initial

very large values of Φ(ξ ) most of the times reflect into very small values of f (x). On the con-

trary, the optimized value of f (x) is more or less the same for the first three optimizations, while

it is increasing for shorter horizons. This is mainly due to the fact that the objective function (9)

consists of minimizing the stocks of specific products at the end of the horizon. Therefore, when a

change in the sales plan of the products directly involved in (9) occurs, it may result into an initial

stock higher than the one forecasted in the previous optimizations with longer horizons. In this

case study, the product NaClO shows a sale reduction along the week, which implies increased
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residual stock values at the end of the horizon for the 2 day and 1 day optimizations.

The results obtained by each optimization are always numerically feasible due to Problem (6)

definition, but different messages are produced. Only the 1 day optimization achieves a solution

that is feasible also for Problem (3). As a matter of fact, ng,viol(x) is the total number of constraints

violated for Problem (3) (c(x) and ceq(x)), and, as explained in Section 3.6, this number accounts

for both soft and hard constraints. In particular, for all the optimizations but the 1 day one, there

are two kinds of soft constraint violations: the first one signals that the stock of HCl(a) is under the

minimum bound considered, while the second one alerts that also the stock of HCl(b) is under the

same circumstances. However, the values of total stocks of HCl and sum of stocks of HCl(b) and

HCl(c) are always acceptable. Only in one occasion, the 2 day optimization (in bold in Table 3), the

lack of HCl(a) and HCl(b) cannot be recovered by dilution of HCl(c) and thus two hard constraints

are not fulfilled. In order to better understand, the time trends of the stocks for the three dilution

levels of HCl, the total stock and the sum of types (b) and (c) are shown in Figure 4. It can be seen

how both HCl(a) and HCl(b) are missing at different hours, but only with the 2 day optimization

(red line in Figure 4) the total stock and the cumulative stock σHCl(b)+σHCl(c) are going under their

minimum bound at the 144th hour (that is, the 21st hour in the 2 day optimization). In this case,

being the initial stocks read directly by the DCS, the operator can communicate the algorithm result

to the selling department and then request for a possible sale reorganization of HCl(a), HCl(b) or

HCl(c) in order to have a feasible solution also for the 2 day optimization.

The last row of Table 3 includes the computation time ts, comprehensive of the batch scheduling

and optimization stages. Simulations are performed on a macOS, CPU 2.6 GHz Core i5 (I5-

4278U), 8GB DDR3. It can be noted how the computation time drastically decreases by shortening

the optimization horizon, spanning between 10 min for a 7 day optimization to less than 3 s when

dealing with 1 day forecast. This is mainly due to the dimension variability of the problem and

especially to the increase/decrease of the nonlinear constraints. Since a possible re-run of the

algorithm may be necessary due to sales plan updates, it is important that, especially the short

horizon optimizations, can be executed fairly quickly.
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Figure 4: Stocks behavior for the three dilutions of HCl (first three panels) and their sum (last two
panels).
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Finally, Figure 5 shows the optimal trends, production rate and stock, for the product KOH(b).

The corresponding initial conditions and sales plans are reported in Table 2. It can be observed

Figure 5: Production rate (top) and stock behavior (bottom) for the product KOH(b).

that a 3 day jump occurs between the 7 day and the 4 day optimizations, as the stock forecast

at the hour 72 with the 7 day optimization is quite far from the actual initial stock of the 4 day

one. The production rate is more or less constant for the 7 day optimization, while the 4 day ones

has higher values due to the second line activity increase. Note that the spikes within the trends
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of production rates are due to numerical problems due to the exclusivity constraint on x(i)
NaOH(b)

and x(i)
KOH(b),2

. Anyway, these are still not significantly impacting the stock value behavior as it is

usually characterized by a saw-tooth shape, that is, stock time trend shows a cyclic behavior with

a linear slow increase and then a sudden decrease as a corresponding sell occurs. Another aspect

to note for the 1 day and 2 day optimizations, is a rounded profile of the production rate. This can

be explained considering the actual initial stock for the considered two cases that is higher than the

corresponding one calculated for longer horizons. This lets the production rate to be lower, so that

the stock profile slowly increases until reaching the value needed to fulfill the last sale. In order to

Figure 6: 7 day stock profiles from Figures 4 and 5 with red bars indicating the product demand
per each sale. All the values are in tons.
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make more clear the link between the sales plan and the stock profiles, Figure 6 shows the stock

profiles seen in Figures 4 and 5 with the addition of red bars indicating the product demand per

each sale. For the sake of clearness, only the 7 day results are plotted. When looking at Figure 6,

the relation between the saw-thoot profile of the stock and the sale modeled to be accounted only

on the selling time τd appears clear.

4.3 Case 2: multi-purpose objective function

4.3.1 Case description

The purpose of this second section is to better analyze what happens when a multi-purpose ob-

jective function is considered, that is, not only the stocks of certain products are minimized, but

also the electrical energy costs due to the electrolysis reactions are taken into account. The hori-

zon length optimization is now fixed and we intend to study how the different objective functions

influence the algorithm outcome and performance. For the sake of simplicity and clearness, our

focus is on the 3 day optimization. The PUN index considered and its division into three groups

made by the automatic procedure explained in Section 3.5, are shown in Table 4. The three periods

of the day have been identified in order to have the most distance between the mean prices of each

group. The minimum number of hours per each group is six and, according to the values of the

PUN given, the procedure has calculated to expand the central group to its maximum: 12 hours.

Once three mean-levels of PUN are obtained, the multi-purpose function is defined as in (8), (9)

and (10), and the scaling factors are set as α1 = 100 ton, α2
γ
= 7000 e ton

MW . Different optimizations

are thus performed varying the parameter α .

4.3.2 Results

Three values of α are here considered: 0, 0.5, 1. The optimization results for α = 0.5 and α = 1

are reported in Table 5. For the sake of comparison, the values for α = 0 are taken from the 3

day column of Table 3. Note that the value of f (x) for non-zero α is of two order of magnitudes
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Table 4: PUN index values, division into groups and mean prices for each group.

Hour PUN [e/MWh]
12:00 AM 30.00


PUNI

= 26.48 e/MWh

1:00 AM 27.12
2:00 AM 25.88
3:00 AM 24.40
4:00 AM 24.43
5:00 AM 27.04
6:00 AM 30.00



PUNII
= 29.71 e/MWh

7:00 AM 32.91
8:00 AM 32.94
9:00 AM 32.98

10:00 AM 30.43
11:00 AM 28.46
12:00 PM 27.65
1:00 PM 26.58
2:00 PM 26.33
3:00 PM 27.34
4:00 PM 28.77
5:00 PM 32.11
6:00 PM 37.16


PUNIII

= 39.87 e/MWh

7:00 PM 43.63
8:00 PM 42.78
9:00 PM 42.00

10:00 PM 39.82
11:00 PM 33.82
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lower; this is due to the normalization and to the factors α1, α2. In addition, the number of violated

constraints for the optimal solution is reduced with respect to the case for α = 0. This is still due to

the objective function composition and order of magnitude. However, all the constraints violated

for both α = 0.5 and α = 1 optimizations are still the soft ones and do not impact the sales plan.

Moreover, the final objective function value is always less than the starting one. This is because

the economic part of the function is significantly decreased by the KOH(a) production rate update

on the first day of optimization.

Table 5: Optimization results for α = 0,0.5,1; in and opt represent the initial condition and optimal
solution found by Problem (6).

α = 0 α = 0.5 α = 1
in opt in opt in opt

Φ(ξ )[-] 1.7×106 117.3 1.7×106 13.11 1.7×106 12.77
f (x) [-] 132.1 98.2 0.99 0.84 0.65 0.50

ng,viol(x) 177 19 177 18 177 13
ts[s] 97.5 56.6 77.4

In order to better understand this behavior, the trends of the production rates of KOH(a) are

showed in Figure 7. It can be immediately seen how a non-zero α value is affecting the production

rate of KOH(a), that is, the primary variable linked to the actual consumption of energy in the

facility. Two optimizations with non-zero alpha have quite the same behavior in the first 24 hours

and present a peculiar profile in this time lapse. As one would expect a lower production rate when

a higher price is in force, the algorithm decides to do the opposite, by setting the rate at a value

even higher than the one with “non-economic" function. As a fact, staying for 18 hours at a rate in

the range 6.5−7 ton/day and only for the remaining 6 hours around 10 ton/day gives a total cost

of 3.5e against 1.5e. One more explanation can be given looking at the production of chlorine in

the first 24 hours. The zero value gives approximatively 136 ton of Cl2 against around 115 ton and

113 ton for α = 0.5 and α = 1 cases, respectively. This has an influence on all the other products

rates, but, since the material balance (2) for Cl2 is always satisfied and no other constraints are

violated, the algorithm behavior appears reasonable. Another peculiarity that can be observed in

Figure 7 affects the second part of the plot. As a matter of fact, around from the 45th hour, the
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Figure 7: Production rate behavior for the product KOH(a) with different values of α . Lower and
upper bounds are equal to 5 and 18, respectively.

trend for the α = 0.5 optimization tends to the one with zero α . This is because, despite the interest

in minimizing the electrical energy costs, the α = 0.5 optimization still wants to tackle the stock

minimization for the end of the horizon. As one should expect, a middle value of α reflects on an

average behavior between the two extremes. This offers for sure an advantage when forecasting

on short horizons, but it still can be useful for week-long prediction to understand how the plant

would behave. Table 5 shows how this flexibility in the objective function does not reflect into an

increase in the computational cost. On the contrary, the time employed for α = 0.5 is almost half

with respect to a “non-economic" function and one third less than the “pure-economic" one.

In order to better analyze the variability of the optimal objective function value, the Pareto

distribution of the objective function for different values of α is presented in Figure 8. From the

right panel of Figure 8, we can see how the the two parts of the objective function fσ (xopt) and

feco(xopt) are quite constant when varying α from 0 to 1. Hence, once a sales plan, initial stocks

and a PUN vector are given, α itself represents the main contributor to f (xopt) value. As a matter

of fact, as evidenced in the left panel of Figure 8, the relation between f (xopt) and α is an almost
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Figure 8: Pareto distribution of the objective function f (xopt) (on the left) and its two parts fσ (xopt)
and feco(xopt) (on the right) varying α value from 0 to 1.

perfect negative linearity. As already explained above referring to Figure 7, for α 6= 1, fσ (xopt)

is the dominant component of f (x) at the end of the optimization horizon, that is, just when the

stock of the products involved in its formulation are computed. On the contrary, feco(xopt) involves

only the PUN prices relative to the first day of the horizon length. This fact implies very similar

stock values at the end of the horizon for all α 6= 1, which leads to an almost constant value of

fσ (xopt). Nevertheless, as already shown by Figure 7 for α = 0 and α = 0.5, this does not mean

an overlapping behavior of the production rate along all the horizon length, but only at its end.

4.4 Summary and outlook

Given the results obtained and discussion presented, it is important to remark that, the objective

function is easily customizable to any new company request or interest and the output of the algo-

rithm can be directly implemented into IT systems of the industrial site. Hence, even though the

algorithm inputs arrive automatically from the DCS and the management system through a collec-

tion and store data framework, the final output of the RTO system is still analyzed offline by an
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operator. The two options available are: accepting the proposed solution and passing it to the con-

trol room; or communicating the algorithm result to the selling department in order to proceed for a

possible sale reorganization. It should be noted that, in a future release, the RTO algorithm will be

able to directly communicate with the management system and selling department. Nonetheless,

field measurements and other process variables and performance indices that are currently been

imported directly from DCS and stored in the above mentioned framework, are to be used not only

to run the optimization algorithm, but also to modify and possibly adaptively correct the underly-

ing model 26. Finally, it is important to underline that the objective function is easily customizable

to any new company request or interest.

5 Conclusions

A real-time optimization algorithm to best manage production rates based on the sales plan has

been presented. This work is part of a larger project involving the integrated digitalization of an

Italian industrial site according to Industry 4.0 paradigms.

The products considered are produced continuously or in batch reactors, can be stored and sold

to clients or must be consumed in real-time by other processes. The proposed algorithm imple-

ments a preliminary scheduling procedure to deal with batch productions, so to avoid a mixed-

integer optimization problem. A preliminary suitable scheduling criterion is defined and a cor-

responding procedure is developed. Once the best configuration is found, the batch production

schedule is passed to the optimization algorithm as a parameter. Another preliminary procedure

for setting the production lines switch-off is implemented and its mechanism illustrated. This al-

lows one to avoid the use of binary variables inside the optimization problem. In order to obtain

always a numerically feasible solution, a smooth version of a nonlinear problem has been formu-

lated. For this reason, a general and widely used NLP solver is adopted. A multi-purpose function

is implemented in the NLP in order to consider both best facility practices and energy costs linked

to operations. A post-processing analysis of the optimal solution gives a feedback to the operator
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who can accept or reject the suggested decision plan.

The algorithm has been successfully tested over real data of Altair, an Italian inorganic chem-

ical company. It has been shown how the possibility of applying a receding horizon approach

and/or a multi-purpose optimization, give significant enhancements to the production scheduling

and sales fulfillment. In this way, operators are helped in a demanding task otherwise manual,

time-consuming and highly subject to errors, and process managers are helped in better planning

plant operations. Nonetheless, the currently ongoing project, devoted to a full computerization and

digitalization of the facility, finds its kernel in the presented RTO system, taking advantage of its

high versatility and suitability to different plant conditions.
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