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One-dimensional spin-1/2 fermionic gases with two-body losses:
Weak dissipation and spin conservation
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We present a theoretical analysis of the dynamics of a one-dimensional spin-1/2 fermionic gas subject to
weak two-body losses. Our approach highlights the crucial role played by spin conservation in the determination
of the full time evolution. We focus in particular on the dynamics of a gas that is initially prepared in a Dicke
state with a fully symmetric spin wave function, in a band insulator, or in a Mott insulator. In the latter case,
we investigate the emergence of a steady symmetry-resolved purification of the gas. Our results could help with
the modelization and understanding of recent experiments with alkaline-earth(-like) gases like ytterbium and
fermionic molecules.
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I. INTRODUCTION

Experiments with ultracold gases are often regarded as
paradigmatic studies of closed many-body quantum systems
[1], yet they always suffer from the continuous leakage of
particles into the vacuum chamber. In general, losses are
responsible for decoherence and for the disappearance of
quantum coherence [2]. Several studies have pointed out that
they can also induce interesting effects: they can be used
as a diagnostic tool for strong correlations [3–6], they can
purify and cool the gas [7–10], and they can induce strong
quantum correlations [11–15]. These effects are just a simple
instance of the fact that in most situations the coupling to
an environment, if properly engineered, can be beneficial and
can be exploited for quantum technology purposes [16–20].
The correct theoretical modelization of the quantum dynamics
induced by losses has thus emerged as an important problem
and has recently attracted widespread attention [21–26].

Fermionic gases trapped in one-dimensional systems and
subject to two-body losses feature a class of highly entangled
stationary states with a fully symmetric Dicke-like spin wave
function that could have important scientific and technological
applications [27]. They have been the object of several exper-
iments with molecular [28,29] and atomic gases [30], which,
however, have not been able to certify the properties of the
realized stationary state. Spin is conserved during the dissipa-
tive dynamics, and this is crucial for determining the steady
properties. Various theoretical articles have addressed several
aspects of the model and its dynamics [26,31], but the impact
of spin conservation on the full dynamics, beyond determining
its stationary properties, has not been understood yet.

In this article we present a simple theoretical framework for
describing the lossy dynamics of a one-dimensional fermionic

*leonardo.mazza@universite-paris-saclay.fr

gas with two-body losses that takes into account the exact
conservation of spin. Even though most of the attention so
far has focused on the strongly dissipative regime, we address
here the weakly dissipative limit, which does not spoil the
appearance of the highly entangled stationary states. We high-
light the crucial role played by spin in causing a nontrivial
relaxation dynamics that affects, in a qualitative way, the
long-time behavior. The simplicity of the approach is a first
step towards the modelization of experimental data, which
could be obtained using alkaline-earth (e.g., strontium) or
alkaline-earth-like (e.g., ytterbium [30]) atoms in the excited
metastable state. We expect that our results may open the
path to the realization of a consistent theory for the fermionic
dynamics in the Zeno limit, which was recently done for
bosons [24].

This article is organized as follows. In Sec. II we describe
the setup. In Sec. III we derive a dynamical equation for
the evolution of the particle density. Next, we compare our
theoretical predictions with numerical simulations for three
different classes of initial states: Dicke states with a fully sym-
metric spin wave function (Sec. IV), band insulators (Sec. V),
and Mott insulators (Sec. VI). In Sec. VII we discuss the
effect of weak interactions. Finally, in Sec VIII we draw our
conclusions.

II. THE SETUP

We consider a gas of spin-1/2 fermions trapped in a one-
dimensional optical lattice with two-body contact interaction
and two-body on-site losses. We introduce the fermionic oper-
ators ĉ(†)

j,σ , which satisfy canonical anticommutation relations,
and the Hamiltonian of the Hubbard model, which describes
the gas in the single-band approximation:

Ĥ = −J
∑

j

∑
σ=↑,↓

(ĉ†
j,σ ĉ j+1,σ + H.c.) + U

∑
j

n̂ j,↑ n̂ j,↓. (1)

2469-9926/2021/104(5)/053305(12) 053305-1 ©2021 American Physical Society

https://orcid.org/0000-0003-0456-6119
https://orcid.org/0000-0002-9222-1913
https://orcid.org/0000-0001-9301-1638
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.053305&domain=pdf&date_stamp=2021-11-08
https://doi.org/10.1103/PhysRevA.104.053305


ROSSO, ROSSINI, BIELLA, AND MAZZA PHYSICAL REVIEW A 104, 053305 (2021)

Here, J is the hopping amplitude, U is the interaction strength,
and n̂ j,σ = ĉ†

j,σ ĉ j,σ is the spin-resolved on-site lattice density
operator.

The presence of local two-body losses is accounted for by
the jump operators L̂ j = √

γ ĉ j,↑ĉ j,↓, where γ is the loss rate.
The dynamics of the full density matrix ρ(t ) is described by a
Lindblad master equation:

ρ̇(t ) = − i

h̄
[Ĥ , ρ(t )] +

∑
j

L̂ jρ(t )L̂†
j − 1

2
{L̂†

j L̂ j, ρ(t )}, (2)

where [·, ·] denotes the commutator and {·, ·} denotes the
anticommutator. In the experimental situations that we want
to model [30], i.e., those in which losses are intrinsic, the ratio
γ /U is determined by atomic (or molecular) properties and is
of the order of unity; the ratio γ /J is instead tunable at will
by modulating the strength of the optical lattice potential. We
note that there are experiments in which the ratio γ /U can be
tuned at will by means of, for instance, laser light, as was done
in Ref. [32].

We introduce the operator associated with the total spin

of the gas: �̂S = h̄
2

∑
j,σ,σ ′ ĉ†

j,σ �σσσ ′ ĉ j,σ ′ , where �σσσ ′ is a vector
whose components are the Pauli matrices. Since a two-body
loss does not change the spin of the gas along any direction
(the doubly occupied state has spin 0), the dynamics expressed
by Eq. (2) is spin conserving, and the expectation value of
the spin along any direction, �S · �n, is a constant of motion.
It follows that 〈Ŝ2〉 is also a constant of motion. The main
purpose of this article is to show how the presence of this
constraint influences the dynamics.

III. POPULATION DYNAMICS FOR WEAK DISSIPATION

We focus on the simplest experimental observable, N̂ =∑
j,σ n̂ j,σ , and characterize how the number of fermions

contained in the sample decreases in time because of loss
processes. We will use the notation 〈Â〉t to denote the time-
dependent expectation value of the observable Â, namely,
〈Â〉t � tr[ρ(t ) Â].

With simple algebraic passages, it is possible to show that
N (t ) � 〈N̂〉t obeys the following equation, which has an intu-
itive physical meaning:

d

dt
N (t ) = −2γ

〈∑
j

n̂ j,↑ n̂ j,↓

〉
t

. (3)

Since we cannot treat in an exact analytical way the right-hand
side (rhs) of this equation, we perform a series of approxima-

tions that are well justified in the limit of weak dissipation,
h̄γ 	 J . Note that this is also the limit of weak interac-
tions, U 	 J , and the first approximation that we perform,
discussed extensively in Sec. VII, consists of completely ne-
glecting interactions.

Using semiclassical reasoning, we observe that in the limit
h̄γ 	 J , losses act on timescales that are much longer than
those characterizing the unitary time evolution. In between
two loss processes, the long unitary dynamics acts and av-
erages out any time-dependent physical operator or correlator.
We thus employ a time-dependent stationarity condition and
assume that the system is always in a stationary state of the
Hamiltonian and that particle losses are responsible for a
dynamics that explores this subspace of the state space. This
theoretical approach follows from several ideas put forward in
the context of weakly dissipative systems [33,34], which have
been largely employed in recent theoretical studies of lossy
systems [23,24].

In practice, we focus on the operator that is responsible
for losses, 〈∑ j n̂ j,↑ n̂ j,↓〉t , and expand it in the basis of plane

waves, ĉk,σ = L− 1
2
∑

j e−ik j ĉ j,σ , which are the eigenmodes of
the free-fermion Hamiltonian dynamics, obtaining

1

L

∑
k,q,w,z

∑
n

δk+q−w−z,2πn〈ĉ†
k,↑ ĉw,↑ ĉ†

q,↓ ĉz,↓〉t . (4)

The Kronecker δ ensures that only momentum-conserving
correlators (modulus 2π ) are considered. The Hamiltonian
time evolution of the correlators in (4) is easily written:

〈ĉ†
k,↑ĉw,↑ĉ†

q,↓ĉz,↓〉t =e− i
h̄ (Ek+Eq−Ew−Ez )t 〈ĉ†

k,↑ĉw,↑ĉ†
q,↓ĉz,↓〉0,

(5)

where Ek = −2J cos(k) is the energy eigenvalue associated
with the kth mode of the free-fermion Hamiltonian. The re-
quest for the system to explore only stationary states requires
us to keep only the energy-conserving correlators because
their expectation value does not depend on time.

This leads to an expression that can be further simpli-
fied by taking into account the conserved quantity Ŝ2 (see
Appendix A for the explicit calculations):

Ṅ (t ) =−2γ

L

[
N (t )2

4
+ N (t )

2
+ VarNt

4
− 〈Ŝ2〉0

h̄2 − 〈�̂〉t

+ 〈
�̂ π

2

〉
t + 〈T̂u〉t

]
, (6)

with

VarNt = 〈N̂2〉t − 〈N̂〉2
t , �̂ =

∑
k

n̂k,↑ n̂k,↓, �̂ π
2

=
∑

k 
=q, k 
=π−q

ĉ†
k,↑ĉq,↑ĉ†

π−k,↓ĉπ−q,↓, (7a)

T̂u =
∑

δk∈[0, π
2 ]

(
ĉ†

π
2 +δk,↑ĉ− π

2 −δk,↑ĉ†
π
2 −δk,↓ĉ− π

2 +δk,↓ + ĉ†
π
2 −δk,↑ĉ− π

2 −δk,↑ĉ†
π
2 +δk,↓ĉ− π

2 +δk,↓ + H.c.
)
. (7b)

Equation (6) is the main result of our study: it highlights the
crucial interplay between the number of particles, its variance,
the spin of the gas, and various correlators of the gas in mo-
mentum space. In particular, �̂ is a density-density correlator;

�̂ π
2

takes into account correlators that are symmetric with
respect to the center of the band, located at k = ±π/2 (note
that in this operator momenta are defined mod 2π to restrict
them to the first Brillouin zone); and T̂u considers umklapp
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terms, where the difference in momenta is equal to ±2π . The
presence of the two latter operators is a lattice effect: the
symmetry of the band with respect to k = ±π/2 is not present
for a quadratic band in the continuum limit, where Ek ∝ k2;
similarly, umklapp processes exist only in discrete systems.

A. The thermodynamic limit

The terms which appear on the rhs of Eq. (6) have dif-
ferent scalings in the thermodynamic limit. We divide both
the rhs and left-hand side of Eq. (6) by L and focus on
intensive quantities, whose limit is finite in the thermody-
namic limit, which we simply indicate as limL→∞. We define
the lattice density n(t ) = limL→∞ N (t )/L, the lattice spin
density s2

0 = limL→∞〈Ŝ2〉0/L2, and the correlator σπ
2
(t ) =

limL→∞〈�̂ π
2
〉t/L2. It is expected that VarNt and N (t ) scale to

zero once divided by L2; a similar result is expected for 〈�̂〉
and 〈T̂u〉 because they are the sum of L terms. We obtain the
simpler equation

ṅ(t ) = −2γ

[
n(t )2

4
− s2

0

h̄2 + σπ
2
(t )

]
. (8)

Note that a finite spin 〈Ŝ2〉0 
= 0 could have zero value s0 = 0
in the thermodynamic limit.

We now propose an argument demonstrating that σπ
2
(t ) =

0 using the fact that the local properties of the system in
the thermodynamic limit can be discussed also within the
framework of the time-dependent generalized Gibbs ensemble
(GGE) [24,33]. This is a stronger approximation with respect
to that used at the beginning of this section to derive Eq. (6)
and requires that the system is not only always in a stationary
state of the Hamiltonian but also in the specific class of states
that are GGE. These states describe the local properties of
systems in the thermodynamic limit after a long unitary time
evolution. In the case of noninteracting fermions, a GGE is
a Gaussian state that is factorized in momentum space. We
present a detailed derivation in Appendix B and report here
the result:

Ṅ (t ) = −2γ

L

[
N (t )2

4
− 〈Ŝx〉2 + 〈Ŝy〉2 + 〈Ŝz〉2

h̄2

]
. (9)

If we focus on intensive quantities and address the thermody-
namic limit, we observe that

lim
L→∞

〈Ŝ2〉
L2

= lim
L→∞

〈Ŝx〉2 + 〈Ŝy〉2 + 〈Ŝz〉2

L2
, (10)

with their difference
∑

i〈Ŝ2
i 〉 − 〈Ŝi〉2 being only

∑
i VarSi,

which is subleading. We obtain the equation

ṅ(t ) = −2γ

[
n(t )2

4
− s2

0

h̄2

]
. (11)

By employing this GGE approximation we thus see that σπ
2

=
0, and that can be neglected. Moreover, this discussion has the
advantage of showing explicitly that Eq. (11) does not take
into account exactly the spin conservation.

Equation (6) is thus a more refined version of Eq. (11)
because it includes finite-size corrections. Whereas this might
seem an unnecessary overshooting, testing this theory with
numerical tools is demanding, and we present state-of-the-art

numerical simulations for lattices up to L = 10. For these
lattice lengths, in several cases the dynamics predicted by
Eq. (11) is recognizable only at short times. This higher accu-
racy comes at the price of introducing several new variables,
for which we have not been able to write satisfactory and
simple dynamical equations; when necessary, we will show
how to treat them.

B. Continuum limit

The study presented so far can be easily extended to a setup
without the optical lattice of length L (see also Ref. [27]).
Introducing the fermionic fields 	̂σ (x) (with σ = ↑,↓), the
atomic mass m, and the interaction parameter g, the Hamilto-
nian reads

Ĥc =
∫ ∑

σ

	̂†
σ (x)

(
− h̄2

2m
∂2

x

)
	̂σ (x) dx

+ g
∫

	̂
†
↑(x) 	̂↑(x) 	̂

†
↓(x) 	̂↓(x) dx. (12)

In order to include loss processes we introduce the jump op-
erators Ĵ (x) = √

ξ	̂↑(x)	̂↓(x), where ξ is the rate associated
with two-body losses. The full Lindblad dynamics reads

ρ̇(t ) = − i

h̄
[Ĥc, ρ(t )]

+
∫

Ĵ (x) ρ(t ) Ĵ (x)† − 1

2
{Ĵ (x)† Ĵ (x), ρ(t )}dx. (13)

We now focus on the weakly dissipative limit, charac-
terized by a loss rate that is subleading with respect to the
kinetic energy: ξ 	 h̄n/m, where n is the gas density. Note
that this inequality cannot be satisfied at all times for a gas
that completely loses its population; however, as we will see,
the problem that we are studying is characterized, in certain
regimes, by a finite steady density.

With calculations similar to those presented above, one
obtains the following dynamical equation for the population
N (t ) = 〈∫ ∑

σ 	̂†
σ (x) 	̂σ (x)dx〉t in the weakly dissipative

limit:

Ṅ (t ) = −2ξ

L

[
N (t )2

4
+ N (t )

2
+ VarNt

4
− 〈Ŝ2〉0

h̄2 − 〈�̂〉t

]
.

(14)

The above equation is identical to Eq. (6), where γ has been
replaced with ξ . The definitions of the total spin Ŝ2 and of the
�̂ observables are trivial generalizations of those presented
above for a lattice. Operators �̂ π

2
and T̂u instead do not appear

because, as we have already seen, they are a lattice effect. In
the rest of the article we will focus on only the lattice problem,
and several results can be easily generalized to the continuum
case.

IV. DICKE STATES AND STATIONARY POPULATIONS

The first test for the population equation (6) consists of its
application to states whose spin part is fully symmetric like
in a Dicke state, which are characterized by a spin quantum
number S = N/2. It was pointed out in Ref. [27] that Dicke
states (from now on we use this brief term to indicate any state
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with S = N/2) are dark states of the dissipative dynamics:
since spin is conserved and the minimal number of fermions
that are necessary to create a spin-s state is 2s, no particle can
be lost from a Dicke state without changing the spin quantum
number; that is, the loss cannot take place.

Equation (6) predicts that the population of Dicke states
does not evolve in time. In order to prove this, we introduce
the notation |DN 〉 for a generic Dicke state with N particles
and spin S = N/2; the orbital part of the wave function can
be arbitrary, provided it is fully antisymmetric. We show in
Appendix C that for a generic linear superposition of Dicke
states, |	D〉 = ∑

N cN |DN 〉, the following properties hold:

〈	D|Ŝ2|	D〉 = h̄2

2

(
N2 + VarN

2
+ N

)
, (15a)

〈	D|�̂|	D〉 = 0, 〈	D|�̂ π
2
|	D〉 = 0, 〈	D|T̂u|	D〉 = 0.

(15b)

From these properties we can deduce that Dicke states are
stationary states of the dynamics: Ṅ (t ) = 0.

Equation (11) takes into account the spin conservation in
the thermodynamic limit and predicts a stationary density

n∞ = 2

h̄
s0. (16)

Dicke states satisfy this relation; indeed, from the above for-
mulas we obtain

s2
0

h̄2 = lim
L→∞

〈	D|Ŝ2|	D〉
h̄2L2

= lim
L→∞

(
N2 + VarN + 2N

4L2

)
= n2

4
. (17)

V. DYNAMICS FROM A BAND INSULATOR

We now discuss the dissipative dynamics starting from a
band insulator, |	BI〉 = ∏

j ĉ†
j,↑ ĉ†

j,↓|0〉, where any lattice site
is doubly occupied and the initial population is 2L. The system
is in a spin-0 state, 〈Ŝ2〉 = 0, and a simple calculation shows
that 〈�̂〉0 = L, 〈�̂ π

2
〉0 = 0, and 〈T̂u〉0 = 0. The prediction for

the dynamics of the lattice density n(t ) in the thermodynamic
limit is easily obtained from Eq. (11):

n(t ) = 2

1 + γ t
. (18)

The full solution of Eq. (6) is more challenging because it is
not obvious how to give a prediction for the time dependence
of VarNt , 〈�̂〉t , 〈�̂ π

2
〉t , and 〈T̂u〉t (we could not derive closed

expressions for their time derivatives, and a Gaussian expan-
sion gives wrong predictions, possibly because here we are
looking for beyond-Gaussian effects).

We can use Eq. (6) to get insights into the long-time dy-
namics of a finite system since when N (t ) tends to zero, we
have N (t )2 	 N (t ). In this limit it is possible to model the
number of particles as a Bernoullian distribution, where with
probability p the system has two particles and with probability
1 − p it is empty. For such a distribution, N = 2p, VarN ∼ 4p,
and thus, we estimate that, in the long-time limit, VarNt ∼
2N (t ). Concerning 〈�̂〉, we can bound it in the following way:
since �̂ is a non-negative operator, 〈�̂〉 � 0; since n̂k,↑ n̂k,↓ �
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t γ

L=6L=4

L=8 L=10

FIG. 1. Dissipative dynamics of the normalized density of a band
insulator for L = 4, 6, 8, and 10. The various colors refer to different
dissipation strengths, from h̄γ /J = 10−2 to h̄γ /J = 10 (see legend).
The thin blue dotted curve is the prediction for the thermodynamic
limit in Eq. (18), whereas the thick blue dashed curve is Eq. (20). The
latter faithfully describes the weakly dissipative limit even at small
sizes. The plot highlights the collapse of the curves for h̄γ /J = 10−2,
10−1, and 1. On the other hand, the appearance of a different behavior
in the strongly dissipative Zeno limit is evident.

n̂k/2, we can write 〈�̂〉 < N/2. If we neglect the contributions
from �̂ π

2
and T̂u (which is justified a posteriori by numerical

simulations), we thus obtain that the long-time scaling is ex-
ponential: N (t ) ∼ exp(−t/τ ), with L/(2γ ) < τ < L/γ . In all
cases, τ depends on the size, which is compatible with the fact
that in the thermodynamic limit we expect an algebraic decay.

We verified these predictions with exact numerical sim-
ulations of the full master equation using the stochastic
quantum trajectory approach [35] (for L > 4); we have used
the PYTHON-based QUTIP package [36,37], which allowed us
to push our analysis up to L = 10 sites with high statistics
(Ntraj � 103, with Ntraj being the number of trajectories); when
they are not specified, we are using open boundary conditions.
The results of our numerical simulations (always with open
boundary conditions) are shown in Fig. 1, where we consider
four values of h̄γ /J , ranging from 10−2 to 10. Note that
here and in the subsequent figures we omitted the error bars
since the statistical errors associated with the averaging over
the trajectories remain negligible on the scales of the various
plots, up to densities n � 10−2. For h̄γ /J � 1 we observe
a universal behavior even at small sizes. Data are affected
by important finite-size effects, and indeed, no collapse of
curves at different L has been observed (see Appendix D). The
comparison with the prediction in (18), which is plotted as a
thin blue dotted line, is satisfactory only at short times, and
it improves for increasing lattice size. For L = 10 there is a
quantitative agreement until the density decreases to n ∼ 0.4.
For longer times, we observe the appearance of an exponential
decay, as predicted in the previous paragraph.

We use our numerical simulations to link VarNt and
〈�̂〉t to N (t ); motivated by the data shown in Appendix D,
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Derivative of N(t) using Eq. (6)
Numerical derivative of N(t)

FIG. 2. Time derivative of the population Ṅ (t ) for L = 8 and
h̄γ /J = 10−1. Thick black solid line: calculation of Ṅ (t ) using the
right-hand side of Eq. (6) by running a numerical simulation with
Ntraj = 2000 quantum trajectories that computes explicitly all the
necessary quantities. Thin red line: numerical derivative of N (t )
computed with Ntraj = 2000 quantum trajectories and using the Euler
method.

we propose

〈�̂〉t � N (t )

L
+ L − 2

4

N (t )2

L2
, (19a)

VarNt � 2[N (t ) − 2〈�̂〉t ]

�
(

1 − 2

L

)(
2N (t ) − N (t )2

L

)
. (19b)

On the other hand, 〈�̂ π
2
〉t and 〈T̂u〉t are negligible at all times.

We substitute these expressions into Eq. (6) and obtain the
following solution:

n(t ) = 4
(
1 − 2

L

)
L{exp

[(
1 − 2

L

) 2γ t
L

] − 1} + 2 − 4
L

. (20)

The above equation is the theoretical prediction plotted in
Fig. 1 as a thick blue dashed line, which provides a satisfac-
tory description of our numerics.

Since this latter result has been obtained using the numeri-
cal data, we perform a direct investigation of whether Eq. (6)
is a good tool for describing the population dynamics. We
compute the numerical derivative of the data displayed in
Fig. 1 for L = 8 and h̄γ /J = 0.1 using Euler’s method, and
we compare the obtained curve with the prediction given by
the rhs of Eq. (6) by running a numerical simulation that com-
putes explicitly all the necessary quantities. The comparison is
shown in Fig. 2, and the agreement is excellent, showing that
Eq. (6) models the system even at small sizes. This confirms
the general validity of the approximations employed to derive
Eq. (6).

A. Periodic boundary conditions vs open boundary conditions

The numerical analysis of the dissipative dynamics of an
initial band insulator shows that for periodic boundary condi-
tions the stationary value of the population is not zero (see
Fig. 3, top left panel). This result is in contrast to the ex-
pectation that Dicke states are unique stationary states: since
〈Ŝ2〉0 = 0, if this were the case, the stationary population
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FIG. 3. Lossy dynamics from an initial band insulator with peri-
odic boundary conditions using quantum trajectories (Ntraj = 104 for
L = 4, 6 and Ntraj = 103 for L = 8) and h̄γ /J = 0.1. Top left: dy-
namics of the population N (t ). Top right: at finite size, the stationary
state is not Dicke, as quantified by the operator ÔND. Bottom: time
derivative of the population computed using the right-hand side of
Eq. (6) and with the numerical derivative of N (t ).

would be zero, regardless of the boundary conditions. This
problem was also mentioned in Ref. [27].

By looking at Eq. (6), we observe that a stationary state that
is not a Dicke state is characterized by a nonzero expectation
value of the operator ÔND = −�̂ + �̂ π

2
+ T̂u; roughly speak-

ing, 〈ÔND〉ss measures the non-Dickeness of a stationary state.
Whereas our numerics for open boundary conditions shows
that 〈ÔND〉t ∼ 〈�̂〉t and that 〈�̂〉ss ∼ 0, this is not true for
periodic boundary conditions. In the top right panel of Fig. 3,
we show that in the latter case the stationary value of 〈ÔND〉ss

is different from zero at finite size. This explains why the
stationary state is not empty: it is not a Dicke state.

Yet if we consider 〈ÔND〉ss/L2 in order to discuss the prop-
erties of the thermodynamic limit, such a value should tend to
zero for L → ∞. We have verified this scaling numerically for
〈�̂ π

2
〉ss and 〈T̂u〉ss (not shown). Remarkably, for some values

of L the value of 〈�̂〉ss is zero, and for other ones it is not. This
absence of a smooth dependence on L prevents us from seeing
a clear tendency towards zero for L → ∞ in the plots of
N (t → ∞)/L and 〈ÔND〉ss/L2 reported in Fig. 3. Nonetheless,
from mathematical arguments we know that 〈�̂〉ss/L2 → 0
for L → ∞ because �̂ is the sum of L non-negative and
bounded operators. This is sufficient to let us conclude that in
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the thermodynamic limit 〈ÔND〉ss → 0 and that the stationary
state is Dicke and empty.

We conclude this section with two final messages. First,
Eq. (11) retains its validity even with periodic boundary con-
ditions when numerical simulations show finite-size effects
that qualitatively deviate from the assumption that Dicke
states are the only stationary states. Second, even in these
situations, at finite size, Eq. (6) can be employed to describe
the dynamics and to characterize deviations from stationary
Dicke states. In order to support the latter statement, in the
bottom panel of Fig. 3, we compare the time derivatives of the
population computed from the numerical value of N (t ) and
from Eq. (6), which display excellent agreement.

VI. DYNAMICS FROM A MOTT INSULATOR

A. Thermodynamic limit

We now consider an initial state with one particle per site,
that is, a Mott insulator in the atomic limit.

Because of the spin, the manifold of such states spans a
subspace of dimension 2L. Conservation of spin during the
dynamics takes here a nontrivial form because the spin of
the gas can range from 0 to L/2. We can easily discuss the
dynamics in the thermodynamic limit: the asymptotic number
of particles is n∞ = 2

h̄ s0, and the dynamics is given by

n(t ) = n∞ tanh

[
n∞γ

2
t + arctanh

(
1

n∞

)]
. (21)

This result displays in a clear way the interplay between spin
conservation and dissipative dynamics. Not only are the sta-
tionary properties of the gas determined by the initial spin of
the gas; the dynamics is also determined by it since stationary
properties are approached with a typical decay time,

τ = 2

γ n∞
= h̄

γ s0
, (22)

that depends on spin and that is shorter for larger spin values.
The link between the stationary number of particles and

the typical decay time was already highlighted in Ref. [30],
although the authors did not mention its connection to spin.

B. Finite-size effects

If we consider a Mott insulator with N = L particles ini-
tialized in an eigenstate of Ŝ2 with quantum number S, the
asymptotic number of particles can be exactly characterized
for any size assuming that the final state is a Dicke state. In
this case we expect that the stationary state has a well-defined
number of particles given by the relation N∞ = 2S.

When the initial Mott insulator is not an eigenstate of Ŝ2,
we expect the final state to be a linear superposition of Dicke
states with different number of particles (VarN > 0) and spin.
Assuming stationarity, Ṅ = 0, and recalling that for a linear
superposition of Dicke states 〈�̂〉 = 0, we obtain

N∞ �

√
4〈Ŝ2〉

h̄2 + 1 − 1. (23)

It is simple to verify that the bound is saturated when the initial
state is an eigenstate of Ŝ2.
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FIG. 4. Dissipative dynamics of a Néel state for L = 4, 6, 8, and
10 for h̄γ /J = 0.1. The time-dependent population is plotted as a
red dashed line. The upper bound to the total population given in
Eq. (23). The blue solid curve (theory) is a fit to the dynamics using
Eq. (21) and taking n∞ as the only fitting parameter.

C. Typical decay time and spin

In order to test these predictions we performed several
numerical simulations of the full master equation for an initial
Mott insulator. We consider as the initial state a Néel state
with alternating spin up and down: |↑ ↓ ↑ ↓ · · · 〉. Results for
the decaying populations are shown in Fig. 4. We observe that,
since the initial state is not an eigenstate of Ŝ2, the bound
of Eq. (23) is satisfied but not saturated. It is shown that in
this situation Eq. (21) provides an excellent description of the
dynamics taking only n∞ as the fit parameter. We have verified
that the fitted value of n∞ does not satisfy the relation with the

spin, i.e., n∞ 
= 2
√

〈Ŝ2〉
h̄L .

We further investigate the typical timescale with which the
asymptotic number of particles is approached. The results in
Fig. 5 show a clear exponential approach to the stationary
value. We have investigated whether the analytical formulas
given in Eq. (22) can give a quantitative prediction to the
typical decay time τ . As shown in the plot, the formula

τ = h̄L

γ
√

〈Ŝ2〉
(24)

gives a remarkably good description of the numerical data.
Less accurate results are instead obtained with the formula
τ = 2/(γ n∞), where n∞ has been taken from the previous fit;
the discrepancy is solely ascribed to finite-size effects and is
expected to disappear in the thermodynamic limit.

We finally perform a set of numerical simulations to test
whether this latter relation between the decay time and the
spin is true in general. We consider as the initial state an
uncorrelated Mott insulator in which, on each lattice site, the
spin �Si is randomly oriented. In order to construct such a state,
we randomly draw two angles, θi and φi, which identify a
generic direction on the Bloch sphere, for every lattice site
i. The goal of this procedure is not to sample in a uniform
way the set of uncorrelated Mott insulators, but to generate
states with widely variable values of 〈Ŝ2〉. We have evolved

053305-6



ONE-DIMENSIONAL SPIN-1/2 FERMIONIC GASES WITH … PHYSICAL REVIEW A 104, 053305 (2021)

10
-3

10
-2

10
-1

10
0

 N
t  - 

N
∞  Numerics

~ e -t / τ

 L = 4  L = 6

0 10 20 30

 t γ

10
-3

10
-2

10
-1

10
0

 N
t  - 

N
∞

 L = 8

0 10 20 30 40

 t γ

 L = 10

FIG. 5. Dissipative dynamics of a Néel state for L = 4, 6, 8, and
10 for h̄γ /J = 0.1 and long-time decay of N (t ) to the stationary
value N∞. In all cases we observe an exponential decay. The blue
solid curve is not a fit, but the decay obtained from the theoretical
prediction Nt − N∞ = e−t/τ with τ given by Eq. (24), which provides
an excellent description of the decay time at all lattice lengths.

in time 14 Mott insulators with uncorrelated and random
site-dependent spin alignment; in all cases we observe an
exponential approach to the stationary value of the number
of particles.

We fit the typical timescale with which the asymptotic
value is approached and compare it to the theoretical pre-
diction given by Eq. (24). We first take as N∞ the numerical
value of the population at the longest computed time; we then
fit N (t ) − N∞ at intermediate times because at long times
its value is comparable to the statistical error bars due to
our stochastic sampling with quantum trajectories. The re-
sults shown in Fig. 6 display a clear correlation between the
typical decay time predicted by the theory and the fitted one.

FIG. 6. Decay time of the population N (t ) approaching the
asymptotic number of particles N∞ as a function of 〈S2〉/h̄2 for L = 6
and h̄γ /J = 0.1. Red solid line: theoretical curve for τ predicted in
the thermodynamic limit (24). Blue crosses: numerical fits of the
decay time τ performed for 14 random Mott insulators with 104

quantum trajectories.

Notice that the theoretical prediction has been derived in the
thermodynamic limit, whereas here, we consider numerical
simulations for L = 6.

D. Symmetry-resolved purity

When starting from a Mott insulator, the system features
a nontrivial dynamics also in terms of the purity of the total
density matrix:

Ptot = tr[ρ(t )2]. (25)

Since the density matrix is reconstructed via the independent
dynamics of Ntraj quantum trajectories [35], we have

ρ(t ) = 1

Ntraj

Ntraj∑
i=1

|ψi(t )〉〈ψi(t )|, (26)

where |ψi(t )〉 is the ith trajectory at time t . Thus, combining
Eq. (26) with Eq. (25), we get (from now on we will omit the
time dependence)

Ptot = 1

N2
traj

∑
s

Ntraj∑
i, j=1

〈s|ψi〉〈ψi|ψ j〉〈ψ j |s〉

= 1

N2
traj

Ntraj∑
i, j=1

|〈ψi|ψ j〉|2, (27)

where {|s〉} is an orthonormal basis of the Hilbert space and in
the second line we used

∑
s |s〉〈s| = I.

The dynamics of a single quantum trajectory is gov-
erned by an effective non-Hermitian Hamiltonian Ĥeff = Ĥ −
i(γ /2)

∑L
i=1 L̂†

i L̂i and by the stochastic quantum jumps de-
termined by the jump operators L̂i [35]. While the evolution
induced by Ĥeff conserves the number of particles, the quan-
tum jumps do not: they couple the n- and (n − 2)-particle
sectors of the Hilbert space. For this reason, if the initial state
is an eigenstate of N̂ , each quantum trajectory |ψi(t )〉 will
have at any time a well-defined (although time-dependent)
number of particles. We can thus label the trajectories with
a double index, |ψn,α〉, where n is the particle sector and α

labels the trajectories belonging to the nth subspace. Note that
n depends on time.

Using the fact that 〈ψn,α|ψm,β〉 = 0 for n 
= m, we write

ρ =
⊕

n

pnρn, pn = Nn

Ntraj
, (28)

where Nn is the number of trajectories belonging to the n-
particle sector and

ρn = 1

Nn

Nn∑
α=1

|ψn,α〉〈ψn,α|, tr[ρn] = 1. (29)

We can thus link the total purity Ptot to the symmetry-resolved
purities P (ρn), i.e., the purities of the symmetry-resolved
density matrices:

Ptot =
∑

n

p2
n P (ρn). (30)

We now study the time evolutions of the total purity and
of the symmetry-resolved purities for an initial Mott insulator
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FIG. 7. Symmetry-resolved purity for the particle sectors n =
2, 4, 6 (solid lines) and purity of the full density matrix (dashed line).
Data are obtained for a typical set of parameters, J/γ = 10h̄, L = 8,
and Ntraj = 103.

with Néel order; we perform numerical simulations for L =
8 and h̄γ /J = 0.1. In Fig. 7 we show the dynamics of the
symmetry-resolved purities for the sectors n = 2, 4, and 6 (the
purities for n = 8 and n = 0 are trivial and equal 1) and the
behavior of the occupation probabilities pn. The plot of Ptot

(dashed line in the top panel) shows that for n = 2 and 6 the
symmetry-resolved purity is larger than the total one at long
times, i.e., P (ρn) > Ptot.

In Fig. 8 we show the symmetry-resolved purity normal-
ized by its minimum possible value for a given n-particle
subspace, i.e., the purity of a fully mixed state P (ρn)min =
1/dim(Hn), where dim(Hn) = ( L

n/2

)2
is the dimension of the

n-particle subspace of the Hilbert space (with Sz = 0). Re-
markably, the asymptotic dynamics features purities which
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FIG. 8. Purity ratio P (ρn)/P (ρn)min for n = 2, 4, 6. Parameters
are set as in Fig. 7.
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FIG. 9. Dissipative dynamics of the normalized density of a band
insulator for L = 8 and 104 quantum trajectories. Different colors re-
fer to different dissipation strengths, from h̄γ /J = 0.1 to h̄γ /J = 10.
Solid lines: simulations with U = h̄γ . Dashed lines: corresponding
dynamics for U = 0. The plot highlights the collapse of the curves
for U 
= 0 and U = 0 in the weakly dissipative limit.

are larger by orders of magnitude with respect to P (ρn)min.
This is related to the fact that, although our system is subject
to particle losses, the nontrivial interplay between spin con-
servation and dissipation leads to the creation of a nontrivial
dark subspace for all possible numbers of particles n. It is
interesting to observe that different from what was reported
in Ref. [38], the purification process here is not transient and
takes place in the long-time limit.

VII. THE EFFECT OF WEAK INTERACTIONS

We now discuss the validity of the approximation intro-
duced in Sec. III concerning the complete neglect of the
interaction term in the Hubbard Hamiltonian. The discussion
presented in this article focuses on the limit of weak dissipa-
tion h̄γ 	 J , which in most experimental situations coincides
with the limit of weak interactions U 	 J . In Fig. 9 we show
numerical simulations performed with a finite value of the
interaction constant, U = h̄γ , starting from a band insulator.
The numerics clearly shows that the presence of interactions
does not affect significantly the dynamics when they are weak.
The curious thing is that a weak dissipation, instead, can
significantly affect the dynamics.

The reason why we can safely neglect interactions but not
dissipation lies in the separation of timescales between unitary
hopping dynamics (very fast) and dissipative or interaction
dynamics (slow). Our theoretical analysis is a perturbative
treatment of dissipation, and the population equation (6) is
linear in γ ; it can be regarded as a first-order expansion
of the correct equation. It is well known from the standard
time-dependent perturbation theory and Fermi’s golden rule
that a perturbative treatment of the unitary evolution due to
interactions gives transition rates that are of order U 2 and thus
negligible with respect to the dissipative dynamics. Since h̄γ

and U are of the same order of magnitude, we find that interac-
tions give a second-order correction in the weakly dissipative
limit we deal with. For this reason, the whole discussion,
performed in the U = 0 limit, is expected to provide accurate
results for the weakly dissipative or interacting limit.
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VIII. CONCLUSIONS

We have presented a theoretical study of the dissipative
dynamics of a one-dimensional fermionic gas subject to two-
body losses. Our study has focused on the nontrivial interplay
between dissipation and spin conservation, as highlighted by
the differential equation obeyed by the gas population[see
Eq. (6)]. We have shown not only that the stationary popu-
lation is due to the initial spin of the gas but also that the
dynamics and its typical asymptotic decay time depend on
the spin. Our analysis has focused on three kinds of initial
states (Dicke states, band insulators, and several kinds of Mott
insulators), characterized by different dynamical properties.

The simplicity of the proposed equations, especially when
considered in the thermodynamic limit, makes us think that
they could have an application in the modelization of experi-
mental studies [28–30]. Although the experiments have so far
mainly focused on the strongly dissipative Zeno limit, the fact
that similar equations have been phenomenologically used for
fitting experimental data [30] hints at a possible use also in
this regime (after replacing γ with the Zeno decay rate). The
generalization of our results to the strongly dissipative case
[24] remains the most important perspective of this study.
Furthermore, the possibility to stabilize Dicke states with
nontrivial entanglement content opens the exciting possibility
to characterize the entanglement properties of the system,
analogous to what was done in Ref. [22] for bosonic particles,
with possible applications to quantum metrology as well [39].
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APPENDIX A: DERIVATION OF EQ. (6)

We start from Eq. (4) and focus on 〈ĉ†
k,↑ ĉw,↑ ĉ†

q,↓ ĉz,↓〉t .
We retain only the momentum-conserving (k + q = w +
z + 2πn) and energy-conserving (ωk + ωq = ωw + ωz, with
h̄ωk = −2J cos k) correlators. We have identified five possi-
bilities, and the first three read as follows:

(i) k = q = w = z. In this case,

〈ĉ†
k,↑ ĉw,↑ ĉ†

q,↓ ĉz,↓〉t = 〈n̂k,↑ n̂k,↓〉t .

(ii) k = w, q = z, and k 
= q. In this case,

〈ĉ†
k,↑ ĉw,↑ ĉ†

q,↓ ĉz,↓〉t = 〈n̂k↑ n̂q,↓〉t , k 
= q.

(iii) k = z, q = w, and k 
= q. In this case,

〈ĉ†
k,↑ ĉw,↑ ĉ†

q,↓ĉz,↓〉t = 〈ĉ†
k,↑ ĉk,↓ ĉ†

q,↓ ĉq,↑〉t , k 
= q.

If we consider only these processes, we obtain

〈�̂〉t +
∑
k 
=q

〈n̂k,↑n̂q,↓〉t + 〈ĉ†
k,↑ĉk,↓ĉ†

q,↓ĉq,↑〉t . (A1)

We simplify this expression by introducing the explicit ex-
pressions for the spin operators. From the relations

∑
k

n̂k↑,↓ = N̂

2
± Ŝz

h̄
,

∑
k

ĉ†
k↑ ĉk↓ = Ŝx + iŜy

h̄
, (A2)

we easily obtain

N̂2

4
− Ŝ2

z

h̄2 =
∑
k,q

n̂k,↑ n̂q,↓ , (A3a)

Ŝ2
x + Ŝ2

y + h̄Ŝz

h̄2 =
∑

kq

ĉ†
k,↑ ĉk,↓ ĉ†

q,↓ ĉq,↑. (A3b)

Taking care in splitting the sums
∑

k,q as
∑

k=q +∑
k 
=q,

we obtain the first five terms of Eq. (6).
We now consider the last two possibilities:
(iv) q = π − k, z = π − w, and k 
= w and k 
= π − w. In

this case,

〈ĉ†
k,↑ ĉw,↑ ĉ†

q,↓ĉz,↓〉t = 〈ĉ†
k,↑ ĉw,↑ ĉ†

π−k,↓ ĉπ−w,↓〉t ,

k 
= w, π − w.

This equation describes processes that are symmetric with
respect to lattice momentum π/2, and all momenta appearing
in this expression should be intended mod 2π , so that they
can be restricted to the first Brillouin zone [−π, π ]. This
expression is responsible for the term �̂ π

2
in Eq. (6).

(v) Finally, we have to consider umklapp processes, in
which momentum is conserved mod 2π . Two classes of pro-
cesses transferring momentum +2π are possible: (i) w =
−k, z = −q, and k + q = π and (ii) w = −q, z = −k, and
k + q = π . Two similar opposite processes are possible that
transfer momentum −2π . These processes are responsible for
the term T̂u in Eq. (6).

APPENDIX B: GAUSSIAN DENSITY MATRIX:
A DYNAMICAL EQUATION FOR THE

THERMODYNAMIC LIMIT

We start from Eq. (4) and focus on 〈ĉ†
k,↑ ĉw,↑ ĉ†

q,↓ ĉz,↓〉t .
We now assume that the density matrix is Gaussian and that
Wick’s theorem applies:

〈ĉ†
k,↑ ĉw,↑ ĉ†

q,↓ ĉz,↓〉t ∼ 〈ĉ†
k,↑ ĉw,↑〉t 〈ĉ†

q,↓ ĉz,↓〉t

− 〈ĉ†
k,↑ ĉz,↓〉t 〈ĉ†

q,↓ ĉw,↑〉t . (B1)

Of all the correlators which appear here, we retain only
those which do not have an explicit time dependence because
dissipation is weak and they average to zero between two
dissipative events. Thus,

Ṅ (t ) = −2γ

L

∑
k,q

(〈n̂k,↑〉t 〈n̂q,↓〉t − 〈ĉ†
k,↑ĉk,↓〉t 〈ĉ†

q,↑ĉq,↓〉t ).

(B2)

By using expressions (A2), we finally obtain the dynamical
equation in (11).
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FIG. 10. Dissipative dynamics of the normalized density for a
band insulator for J/γ = 102, 10, 1, and 0.1. Different colors refer
to different sizes, from L = 4 to L = 10. The blue dotted curve is the
prediction for the thermodynamic limit in Eq. (18) and highlights the
importance of finite-size effects in our simulations. The appearance
of a different behavior in the strongly dissipative limit is evident.

APPENDIX C: PROOF OF RELATIONS (15)
FOR DICKE STATES

In this Appendix we prove relations (15a) and (15b), which
characterize Dicke states listed in Sec. IV.

Relation (15a) is simple and follows from the definition
of the Dicke state: 〈	D|Ŝ2|	D〉 = h̄2 ∑

N |cN |2 N
2 ( N

2 + 1) =
h̄2

4 〈	D|N̂2|	D〉 + h̄2

2 〈	D|N̂ |	D〉.
We begin by considering the first relation in (15b). We

first demonstrate it for a generic Dicke state with a well-
defined number of particles N that is also an eigenstate
of Ŝz with eigenvalue h̄m, |DN,m〉. The repeated application
of the spin-raising operator turns |DN,m〉 into a fully polar-
ized state: (Ŝ+)

N
2 −m|DN,m〉 ∝ |DN, N

2
〉. Since this state is fully

polarized, �̂|DN, N
2
〉 = 0. By using the expression for the spin-

raising operator Ŝ+ = ∑
k ĉ†

k↑ĉk↓, it is not difficult to show

that [�̂, Ŝ+] = 0 because n̂k,↑n̂k,↓ĉ†
k↑ĉk↓ = ĉ†

k↑ĉk↓n̂k,↑n̂k,↓ =
0. With this relation we can show that �̂|DN,m〉 = 0. From this
we obtain that in general �̂|DN 〉 = 0 and thus that �̂|	D〉 =
0. With similar reasoning it is possible to show also the other
relations in (15b) and this concludes the proof.

APPENDIX D: ADDITIONAL DATA
FOR THE BAND-INSULATOR DYNAMICS

In this Appendix we present some additional data from our
quantum trajectory simulations of the band-insulator dissipa-
tive dynamics. In Fig. 10 we plot the same data as in Fig. 1
at fixed J/h̄γ while varying L. We observe the importance of
finite-size effects and the absence of any collapse at the sizes
that we could consider numerically.

In Fig. 11 we plot the numerically computed VarNt and
〈�̂〉t and compare them to the expressions proposed in
Eq. (19a).
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FIG. 11. VarNt (left panel) and 〈�̂〉t (right panel) for L = 8 and
J/h̄γ = 10. Black solid line: calculation of the two quantities using
2000 quantum trajectories. Red dashed line: approximation using
formula (19a) and using the numerically computed value for N (t ).

APPENDIX E: ADDITIONAL DATA
ON THE CALCULATION OF THE PURITY

We now comment on the convergence of the results pre-
sented in Sec. VI D with respect to the number of stochastic
trajectories. From Eq. (26) it is clear that the degree of ac-
curacy in the reconstruction of the density matrix depends
on Ntraj. In particular, as Ntraj is increased, we can account
for more statistically independent realizations of the dynam-
ics; intuitively, one expects P (ρn) to be a monotonically

0.0

0.1

0.2

P(
ρ 2)

Ntraj=50

Ntraj=500

Ntraj=1000

Ntraj=1250

0.0

0.1

0.2

P(
ρ 4)

0 10 20 30 40

t γ
0.0

0.1

0.2

P(
ρ 6)

FIG. 12. Symmetry-resolved purity P (ρ̂n) for n = 2, 4, 6 for dif-
ferent values of Ntraj. The blue dashed lines represent the theoretical
prediction for the steady-state symmetry-resolved purity P (ρn) =
2/

(L
n

)
. Parameters are set as in Fig. 7.

053305-10



ONE-DIMENSIONAL SPIN-1/2 FERMIONIC GASES WITH … PHYSICAL REVIEW A 104, 053305 (2021)

decreasing function of Ntraj. This intuition is confirmed by the
numerical data presented in Fig. 12.

Decomposing the symmetry-resolved purity in terms of
diagonal and off-diagonal overlaps, we get

P (ρn) = 1

Nn
+ 1

N2
n

Nn∑
α 
=β

|〈ψn,α|ψn,β〉|2. (E1)

Since we are interested in the Nn → ∞ limit, we observe
that the limiting value of the purity can be obtained by only
studying the second addend on the rhs.

We now make the assumption that Nn ∝ Ntraj and that
|ψn,α〉 are randomly distributed in the dark subspace HDark

n ,
so that the off-diagonal overlaps scale as |〈ψn,α|ψn,β〉|2 ∼
1/dim(HDark

n ) for α 
= β. In the limit Nn → ∞ we obtain

P (ρn) � 1

dim
(
HDark

n

) . (E2)

In our specific case, we can estimate the dimension of the
dark subspace by counting the number of antisymmetric or-

bital wave functions associated with the fully symmetric spin
part of the wave function, a Dicke state with S = n/2 and Sz =
0. Thus, dim(HDark

n ) = ( L
n ). Equation (E2) provides a very

good estimation of the asymptotic value of the symmetry-
resolved purity, as shown in Fig. 12, where the convergence
with Ntraj is also shown.

By numerical inspection, the asymptotic purity value is
P (ρn) = 2/( L

n ); we do not understand the reason for the
factor of 2 appearing in the formula, which points to a lack
of ergodicity and to the fact that the only half of the dark
subspace is explored by the dynamics. We pose that this is due
to the specific spin structure of the initial Néel state and that
a Mott insulator with randomly oriented spins would explore
the full dark state; we leave a more systematic study to the
future.

Finally, we stress that this numerical computation is quite
heavy in terms of memory since it requires us to allocate Ntraj

wave functions of the many-body system for many values of
t , which limits our analysis to Ntraj = 1250.
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