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ABSTRACT
We present the implementation of a quadratically convergent self-consistent field (QCSCF) algo-
rithm based on an adaptive trust-radius optimization scheme for restricted open-shell Hartree-
Fock (ROHF), restricted Hartree-Fock (RHF), and unrestricted Hartree-Fock (UHF) references.
The algorithm can exploit Cholesky decomposition (CD) of the two-electron integrals to allow
calculations on larger systems. The most important feature of the QCSCF code lies in its black-
box nature – probably the most important quality desired by a generic user. As shown for pilot
applications, it does not require one to tune the self-consistent field (SCF) parameters (damp-
ing, Pulay’s DIIS, and other similar techniques) in difficult-to-converge molecules. Also, it can
be used to obtain a very tight convergence with extended basis sets – a situation often needed
when computing high-order molecular properties – where the standard SCF algorithm starts
to oscillate. Nevertheless, trouble may appear even with a QCSCF solver. In this respect, we
discuss what can go wrong, focusing on the multiple UHF solutions of ortho-benzyne.

KEYWORDS
Hartree-Fock, self-consistent field, second-order, Levenberg-Marquardt, Cholesky
decomposition

1. Introduction

Self-consistent field (SCF) methods are the starting point of virtually every quantum chem-
istry application. Kohn-Sham (KS) density-functional theory[1] (DFT), Hartree-Fock[2] (HF)
and even semiempirical methods[3] require as a fundamental numerical step the variational
optimization of the energy with respect to the orbitals, that are determined in the process.
The standard algorithm to solve the optimization problem – the self-consistent field algorithm
itself[4, 5] – is the iterative solution of a non-linear eigenvalue problem, which is solved using a
fixed-point approach. As the problem is strongly non-linear, a simple iterative procedure is often
not sufficient to achieve convergence. In the last several decades, various strategies have been de-
veloped to improve the reliability and stability of the SCF algorithm[6, 7], most notably Pulay’s
direct inversion in the iterative subspace[8–10] (DIIS) and various refinement thereof[7, 11, 12],
damping of the SCF iterations[13], level shifting[14], and combinations of the methods. Ad-
vanced strategies to compute accurate guesses of the initial density have also greatly improved
the overall reliability of the method[15, 16], to the point that closed-shell systems seldom pose
convergence problems in real life applications.

Unfortunately, things are not so easy when one is dealing with open-shell systems, or even
with closed-shell systems with small energy gaps between the highest occupied and lowest unoc-
cupied molecular orbital (HOMO, LUMO). Furthermore, even in well-behaved cases, achieving

Email: filippo.lipparini@unipi.it



a very tight convergence of the SCF density can be difficult, but mandatory for applications in-
volving high-order response properties or geometrical derivatives, especially if a post-HF method
is used. Being frustrated by problematic SCF convergence is therefore a common experience for
computational chemists. For these reasons, alternative strategies and robust numerical proce-
dures are still object of active investigation, despite SCF being possibly the most well-established
technique in computational chemistry.

An alternative strategy for solving the SCF problem is to use a standard optimization
technique, and, in particular, a second-order method[17, 18]. In second-order methods, the SCF
energy is parametrized as a function of non-redundant orbital rotations and expanded up to
second order in a Taylor series, obtaining thus a quadratic energy model. The latter is then
optimized to find a step and the process is iterated until convergence. The straightforward
Newton-Raphson (NR) method just described however suffers from a small convergence radius,
which can cause an erratic or even divergent behavior if the optimization process is started
far from a local minimum. It is possible to constrain the minimization so that the computed
step is no larger than a user-defined trust radius. The trust-radius Newton method, known as
Levenberg-Marquardt[19] (LM) optimization, can be further coupled with an adaptive choice
of the trust radius, based on the agreement of the quadratic model with the actual energy.
The global strategy, which has been originally proposed by Fletcher[19] (FLM), guarantees
convergence to the closest local minimum for a well-behaved function and can therefore be
used to implement a black-box SCF procedure. One of the most attractive features of such a
procedure is that it exhibits a quadratic convergence rate, which makes it suited for applications
where a very tight convergence of the SCF orbitals and density is required.

Computational cost is, of course, a fundamental aspect that one needs to keep in mind when
designing a SCF code. A quadratically convergent SCF (QCSCF) scheme can be implemented
in a direct fashion, where all the Hessian-vector products needed to compute the step are per-
formed without assembling the full Hessian matrix and in the atomic orbital (AO) basis. The
operations required to perform such a matrix-vector product (MVP) are computationally equiv-
alent to the direct construction of a Fock matrix. Therefore, QCSCF and SCF exhibit the same
computational scaling and can benefit both of Cauchy-Schwarz screening in an integral-direct
implementation and even of linear-scaling techniques exactly in the same way. Nevertheless,
QCSCF requires, in general, a larger number of Fock matrix builds and for well-behaved sys-
tems is always going to be more expensive than standard SCF. On the other hand, QCSCF
does not require the O(N3) diagonalization of the Fock matrix, which makes it in principle
advantageous in the asymptotic regime.

Despite the increased computational cost, many second-order SCF implementations are
available. An implementation based on the same algorithm as the one described in the present
paper is present in the Dalton suite of programs[20] for restricted (RHF) and high-spin restricted
open (ROHF) references, and a similar trust-region augmented Hessian implementation has
been recently presented by Helmich-Paris[21] and implemented in the ORCA package[22] for
restricted and unrestricted (UHF) references. In the Gaussian 16 suite of programs[23], a NR
second-order method combined with a linear search when far from the quadratic regions is
available for RHF and UHF. Other approaches, either based on a quasi-Newton update[24, 25] or
on an orbital Hessian based preconditioned conjugate gradient[26], can be found in MOLCAS[27,
28], GAMESS,[29] and NWChem[30], respectively.

The QCSCF program described in this contribution has been implemented in the CFOUR
suite of programs[31, 32]. CFOUR is a quantum chemistry package devoted to high-level post-
HF calculations, and therefore the computational cost associated with solving the SCF equa-
tions is usually not a main concern for the typical application. Therefore, we do not pursue
an integral-direct implementation, even though it would not present any additional difficulty,
nor the use of linear-scaling techniques. To achieve some computational efficiency, we offer in-
stead an implementation that can either proceed in a traditional fashion, reading pre-computed
two-electron integrals from disk, or use their Cholesky decomposition[33–39] (CD). The latter
possibility comes as a part of a long-term goal to deploy the CD machinery for subsequent post-
HF calculations[32] that has been actively pursued by several developers of the CFOUR suite of
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programs and that has recently been proposed for complete active space-SCF calculations[40]
and for the calculation of NMR chemical shielding tensors at second-order Møller-Plesset per-
turbation theory (MP2) using gauge-including atomic orbitals[41]. On the other hand, having a
robust, almost black-box SCF implementation is particularly attractive for the users of CFOUR
that deal with open-shell systems, where the unrestricted (UHF) and high-spin restricted-open-
shell HF (ROHF)[5] SCF equations can be particularly hard to converge. In other words, the
main goal of this implementation is to save human time rather than machine time.

The paper is organized as follows. In section 2, we briefly recapitulate the norm-extended
optimization algorithm and its application to the SCF problem. In section 3, we discuss the
implementation of the various quantities required for the QCSCF procedure with and without
CD of the two-electron integrals. In section 4, we present a few case studies, which represent
prototypical applications of the QCSCF program and that illustrate possible problems and
drawbacks that a user can encounter. We finally conclude the paper with a short summary.

2. Norm-extended optimization of the SCF energy

In this section, we discuss the main principles of a QCSCF implementation based on the norm-
extended optimization (NEO) algorithm. The NEO scheme, originally formulated and imple-
mented by Jensen and coauthors for multiconfigurational SCF wavefunctions[42, 43], is an el-
egant and efficient practical realization of the FLM second-order procedure that allows for a
direct implementation. In this section, we focus our discussion on the high-spin ROHF opti-
mization problem. In the following, we omit the high-spin specification and refer to the method
simply as ROHF. RHF and UHF can be easily derived from the more general ROHF case. The
ROHF determinant is parametrized in terms of Nr orbital rotations

|Φ〉 = e−κ̂|0〉, (1)

where |0〉 is a reference determinant,

κ̂ =
∑
ix

κixÊ
−
ix +

∑
ia

κiaÊ
−
ia +

∑
xa

κxaÊ
−
xa (2)

is the elementary orbital rotation operator, where the rotations mix internal (i, j, ..., doubly
occupied) and active (x, y, ..., singly occupied), internal and external (a, b, ..., empty), and

active and external orbitals, and Ê−pq = Êpq − Êqp, where Êpq is a singlet excitation operator
(p, q, ..., generic orbitals). The matrix elements of κ̂ introduce a complete, non-redundant
parametrization of orbital rotations that can connect the reference determinant |0〉 to any non-
orthogonal determinant. This fundamental result, known as Thouless’ theorem,[44] is the basis
of direct optimization SCF techniques. We define a quadratic model of the SCF energy by
expanding the expectation value of the Hamiltonian up to second order in κ:

Q(κ) = E0 +
∑
pq

κpqgpq +
1

2

∑
pqrs

Gpq,rsκpqκrs, (3)

where E0 is the reference energy. The orbital-rotation gradient g ∈ RNr is

gpq = 〈0|[Ê−pq,H]|0〉
∣∣∣
κ=0

, (4)

and the orbital-rotation Hessian G ∈ RNr×Nr is given by

Gpq,rs =
1

2
(1 + Ppq,rs) 〈0|[Ê−pq, [Ê−rs,H]]|0〉

∣∣∣
κ=0

, (5)
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where Ppq,rs permutes the indices pairs pq and rs. The FLM procedure is an iterative algorithm
that computes an optimization step by minimizing the quadratic model in eq. 3 under the
constraint that the norm of the step is not larger than a user-defined trust radius Rt. This is
achieved by introducing the constraint using a Lagrange multiplier ν:

L(κ, ν) = Q(κ)− 1

2
ν(‖κ‖2 −R2

t ). (6)

The resulting Euler-Lagrange equations, also known as the LM equations, are{
(G− νI)κ = −g,
‖κ‖(ν) = Rt.

(7)

The trust radius is updated dynamically during the optimization based on the agreement be-
tween the energy and its quadratic model. Let ∆E be the actual energy variation after a LM
step, i.e., ∆E = E(κ) − E0 and let ∆Q be the predicted variation using the quadratic model,
i.e., ∆Q = Q(δ) − E0, where κ is the solution to the LM equations. Let r = ∆E/∆Q be the
ratio of the variations. If the ratio is negative, the energy is rising and the step is rejected. The
trust radius is reduced by a factor (0.66 in our implementation) and a new step is computed.
If the ratio is positive the step is accepted. If 0 < r ≤ 0.25, the agreement of the quadratic
model with the energy is poor and the trust radius is reduced (again, in our implementation,
by a factor 0.66). If 0.25 < r ≤ 0.75 the trust radius is left unchanged, while if r > 0.75 the
trust radius is increased (by a factor 1.2 in our implementation). The algorithm is robust with
respect to the choice of the parameters used to adapt the trust radius, and it can be proven
that convergence to a local minimum is always achieved[19].

In principle, solving the LM equations requires the knowledge of at least the lowest eigenvalue
λ1 of the Hessian, as it can be proved that, to get to a minimum, the constraint equation needs
to be solved in the range ν ∈ (−∞, λ1). In other words, one would need to compute the
lowest eigenvalue of the Hessian and then to solve the LM equations. The NEO algorithm is an
efficient, combined realization of the two steps that is achieved by introducing a gradient-scaled,
augmented Hessian L(α) ∈ RNr+1,Nr+1, defined as

L(α) =

(
G αg
αg† 0

)
. (8)

Let P be an orthogonal projector such that PL(α)P = G. The NEO step is given by

κ =
1

αs
Py, (9)

where

L(α)y = ν1y, (10)

i.e., y is the eigenvector of L(α) associated to its lowest eigenvalue, s = (1 − P )y, and α is
obtained by solving numerically the one-dimensional equation ‖κ‖ = Rt. It can be shown that
the NEO step solves the LM equations with a level-shift parameter ν = ν1. The Hylleraas-
Undheim-MacDonald theorem guarantees that, as G = PL(α)P , ν1 ≤ λ1. Therefore, the NEO
algorithm converges to a local minimum[42].

The NEO algorithm requires one to compute the lowest eigenvalue of the augmented Hes-
sian L, which can be done in a direct fashion using an iterative algorithm such as Davidson
diagonalization. It can also be shown that if the vector (0, . . . , 0, 1) is kept into the subspace,
it is possible to compute a new step, in case the one computed is rejected, without having to
solve the eigenvalue problem in eq. 10 again. As a final note, we remark that, as soon as the
optimization has reached a local region and the quadratic approximation becomes valid, the
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NEO step becomes fully equivalent to a standard NR step. Therefore, in the final stage of the
optimization, we switch from solving the NEO equation to the plain NR ones.

3. Implementation

Equations for the energy, the gradient, and the MVP can be conveniently obtained by intro-
ducing the generalized Fock matrix, F , whose elements are obtained as follows

Fip = 2(F Iip + FAip), (11)

Fxp = Qxp + F Ixp, (12)

Fap = 0, (13)

with F Ipq, F
A
pq, and Qxp being the inactive Fock matrix, the active Fock matrix, and the Q matrix

respectively. The latter can be effectively computed in the AO basis

F Iµν = hµν +
∑
ρσ

P Iρσ

[
(µν|ρσ)− 1

2
(µσ|ρν)

]
, (14)

FAµν =
∑
ρσ

PAρσ

[
(µν|ρσ)− 1

2
(µσ|ρν)

]
, (15)

Qµν =
∑
ρσ

PAρσ [(µν|ρσ)− (µσ|ρν)] , (16)

where we have used Mulliken notation for the two-electron integrals and Greek indices to refer
to the AOs. Here, P Iµν = 2

∑
iCµiCνi and PAµν =

∑
uCµuCνu are the inactive and active one-

body density matrices written in the AO basis, respectively. As it is evident from the equations
above, the actual implementation requires minor modifications to the customary routine that
assembles the RHF Fock matrix.

The generalized Fock matrix is transformed into the MO basis and then used to calculate
the ROHF energy

EROHF =
∑
i

(
hii +

1

2
Fii

)
+

1

2

∑
u

(huu + Fuu) . (17)

Furthermore, its anti-symmetric part is used to compute the gradient as follows

gpq = 2(Fpq − Fqp), (18)

where the only relevant rotations are the ones mixing orbitals belonging to different classes (i.e.,
internal, active, external).

The eigenvalue problem in eq. 10 is solved via Davidson diagonalization, while the NR
linear system is solved using an iterative preconditioned conjugate-gradient (PCG) solver. Both
algorithms are implemented in a matrix-free spirit, that is, they only require one to perform
MVPs, and not to build and store in memory the full Hessian matrix. It is important to stress
that the overall algorithm works in the MO basis, as this allows us to exploit the diagonal
dominant character of the MO rotation Hessian. In the MO basis, the MVP can be written as

bpq = 2(F̃pq − F̃qp) +
1

2

∑
r

(κprgrq − gprκqr) , (19)

where κ is a trial vector in Davidson’s algorithm and where we introduce the one-index trans-
formed generalized Fock matrix F̃ , which is defined as in eq. 11 but using intermediate matrices
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computed with density matrices dressed with the trial vector. To avoid transforming the two-
electron integrals into the MO basis, we compute the MVP in the AO basis. In particular, we
define transformed and symmetrized one-body density matrices:

P̃ Iµν = 2
∑
iq

CµiκiqCνq + 2
∑
iq

CνqκqiCσi, (20)

P̃Aµν =
∑
uq

CµuκuqCνq +
∑
uq

CνqκquCσu, (21)

and use them to assemble the one-index transformed internal and active Fock matrices and Q
matrix. These are in turn used to build the one-index transformed generalized Fock matrix,
which is then finally transformed back to the MO basis. Therefore, computing the required
MVP exhibits a computational cost similar with the one of a standard SCF iteration and, more
importantly, the same scaling with respect to the system size. Specifically, the leading term
operation in both the SCF and QCSCF algorithms scale as O(N4), where N is the number
of basis functions. However, each QCSCF iteration requires the solution of either the NEO or
the NR equations with an iterative solver thus increasing the prefactor of a QCSCF calculation
with respect to the standard SCF one.

When using the CD, the two-electron integrals matrix – written in the AO basis – is ap-
proximated as follows

(µν|ρσ) '
Nch∑
K

LKµνL
K
ρσ, (22)

where LKµν is a Cholesky vector and Nch is the rank of the decomposition. In this framework,
it is convenient to compute the Coulomb and exchange contributions to the various matrices
separately[38, 45]. The Coulomb contribution can be computed by performing a straightforward
contraction of a Cholesky vector with the one-body density matrix and then multiplying the
resulting factor by a Cholesky vector. On the other hand, in order to compute the exchange
contributions, it is convenient to first half-transform the Cholesky vectors into the MO basis, and
then assemble the exchange contribution. Considering the inactive Fock matrix as an example
we have

F Iµν = hµν +

Nch∑
K

(∑
ρσ

P IρσL
K
µνL

K
ρσ −

∑
i

LKµiL
K
νi

)
(23)

where, LKµi =
∑

ν CνiL
K
µν . A similar procedure is applied also for the calculation of the one-index

transformed matrices.
The restricted and unrestricted SCF implementations can be trivially obtained as sub-cases

of the ROHF one. Second-order RHF is simply derived by neglecting the contributions of active
orbitals, that is, by setting the active density matrix to zero. Under these circumstances, only
the inactive Fock matrix has to be considered. Regarding the second-order implementation of
UHF, we have to take into account two different bases – one for the alpha and one for the beta
electrons. As a result, we have two different set of orbital rotation parameters

κ̂ =
∑
ia

καaiÊ
α
ai +

∑
ia

κβaiÊ
β
ai, (24)

where, Êαpq = â†pαâqα and Êβpq = â†pβ âqβ. Furthermore, two different density matrices can be

obtained namely, αP Iµν =
∑

iC
α
µiC

α
νi and βP Iµν =

∑
iC

β
µiC

β
νi. These are used to assemble the
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alpha and beta Fock matrices

αF Iµν = hµν +
∑
ρσ

αP Iρσ [(µν|ρσ)− (µσ|ρν)] +
∑
ρσ

βP Iρσ(µν|ρσ), (25)

βF Iµν = hµν +
∑
ρσ

βP Iρσ [(µν|ρσ)− (µσ|ρν)] +
∑
ρσ

αP Iρσ(µν|ρσ). (26)

Accordingly, αF I and βF I are used to compute the alpha and beta parts of the gradient re-
spectively. A summary of the main equations for the RHF and UHF references can be found in
Table 1.

Reference Energy Gradient MVP

RHF
∑

i

(
hii + F Iii

)
gai = −4F Iia bai = g̃ai

UHF
∑

i

(
hii + Fα I

ii + Fβ I
ii

) gαai = −4 Fα I
ia bαai = g̃αai

gβai = −4 Fβ I
ia bβai = g̃βai

Table 1. Leading equations used in the second-order implementation of RHF and UHF. We have used a shorthand

notation for g̃ai that means a gradient built with one-index transformed matrices; moreover, this is the only contribution
to the MVP since the commutator-like term of eq. 19 vanishes.

We conclude this section with an important remark. Both Davidson diagonalization and the
PCG solver require a preconditioner, the most common choice being the inverse diagonal of the
matrix. This is a good choice, as the MO rotation Hessian is diagonally dominant in the MO
basis. However, assembling the exact diagonal of the Hessian can be expensive. This is not a
problem in neither RHF nor UHF, as the leading term of the electronic Hessian’s diagonal is
given by the difference F Iaa − F Iii: the two-electron integral contributions to the diagonal can
therefore be safely neglected. However, the same is, unfortunately, not the case for ROHF. In
particular, the diagonal elements associated with the inactive-active and active-external rota-
tions are poorly approximated by the diagonal elements of the inactive Fock matrices. A much
better approximation can be obtained by noting that some of the two-electron contributions to
the aforementioned diagonal elements are given by Qii and Qaa. From the definition of the Q
matrix such blocks would not exist; nevertheless, we have direct access to them since we are
computing Q in the AO basis. In this way, a good approximation to the Hessian’s diagonal can
be computed with no additional cost. The inclusion of such terms is fundamental in order to
achieve a good convergence for both the Davidson and PCG algorithms.

4. Numerical results

In this section, we present numerical results obtained with the quadratic SCF implementation
described in the paper. First, we apply the strategy to medium-sized, hard to converge cases
to show the numerical stability of the algorithm. Then, we apply the CD version of the code
to larger molecules, to show that thanks to the compression operated by the CD technique,
calculations can be performed efficiently even for very large systems. Finally, we present a
discussion on the possible numerical issues that can arise even when using a quadratically
convergent implementation and give some suggestions to rationalize and troubleshoot them. All
the geometries are listed in the Supplemental Material.

The QCSCF algorithm has been implemented in the CFOUR suite of programs[31, 32],
which has been used for all the following QCSCF calculations. In our setup, a few standard SCF
iterations are performed to generate a reasonable starting guess for the second-order algorithm.
While the second-order optimization can be used for the overall calculation, this is seldom a
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Figure 1. Convergence profile for Ti2O4, both for the RHF (blue) and ROHF (orange) references, and of the phenoxyl

radical respectively on the left and right panel. The QC algorithm started at iteration 16 for triplet Ti2O4, 10 for singlet

Ti2O4, and 12 for the phenoxyl radical. The final electronic energies for the singlet and triplet Ti2O4 are -1996.144 738 811
and -1996.100 447 937 Eh respectively while the one for the phenoxyl radical is -304.953 646 044 Eh.

good idea, as it would require a large number of expensive quadratic steps to reach the local
region. On the other hand, a small number of standard SCF iterations are usually enough to get
to a good starting point, from which the strong and fast convergence of a second-order scheme
can be efficiently exploited.

Specifically, starting from a guess generated by diagonalizing the core-Hamiltonian, we per-
form up to 30 SCF iterations applying a damping of 0.5 to the first 5 iterations and then using
Pulay’s DIIS[8] to accelerate convergence. We switch to the quadratic algorithm as soon as the
root mean square (RMS) deviation of the density-matrix increment is lower than 10−1 and its
maximum deviation is lower then 1.

4.1. Quadratically convergent calculations on small and large molecules

In order to show the black-box nature of the proposed algorithm, we tested it on two systems
that exhibit problematic convergence patterns. The first system is Ti2O4 in its D2h geometry,
where the two titanium atoms lie on one of the three C2 axes, the second is the phenoxyl radical.
The first system is used as a template to troubleshoot SCF converge issues1 in the Amsterdam
Density Functional (ADF) quantum-chemistry package[46]. We compute, using Dunning’s aug-
cc-pVTZ basis set[47], both a singlet and a triplet wavefunction, the latter using a ROHF
reference. The second system, a doublet in its ground state, is usually well behaved, but we
choose a particular geometry at which two electronic states are nearly intersecting. Again, we
use a ROHF reference and we employ Dunning’s cc-pVDZ basis set[48]. We report in Figure 1
the convergence profile of the calculation on Ti2O4 (left panel) and of the phenoxyl radical (right
panel). Both calculations converge reasonably smoothly in a limited number of iterations. It is
interesting to note the we could not get the phenoxyl radical ROHF calculation to converge
using the standard SCF code in CFOUR using the algorithm described in Ref. [49], despite
various attempts using several combinations of DIIS and damping parameters. In other words,
using a QCSCF program can turn a labor intensive, possibly fruitless activity into a simple,
routine application, at the cost of increased computer time.

As a second example of standard use of a QCSCF implementation, we optimize the RHF
wavefunction of a small organic molecule, paranitroaniline (PNA), using Dunning’s aug-cc-
pVDZ basis set[48]. This is not a problematic system, as convergence can be easily achieved with
a standard SCF code, but becomes an issue for applications where a very tight SCF convergence
is required. This is the case when one is interested in computing high-order molecular properties
using a post-HF method. A typical example is the calculation of accurate anharmonic force

1See https://www.scm.com/doc/ADF/Examples/SCF_Ti2O4.html
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Figure 2. Convergence profile for the PNA molecule for the SCF (orange) and QC-SCF (blue) code using Dunning’s

aug-cc-pVDZ basis set. The QCSCF code performed 10 regular SCF iterations before switching to the QC algorithm. The
final electronic energy is -489.277 111 404 Eh.

fields, as the ones required for the treatment of anharmonicity. In such applications, cubic and
quartic force fields are in general computed by numerically differentiating analytical Hessians,
the latter computed for instance using coupled-cluster (CC) theory. To achieve a good numerical
accuracy, a tight convergence of the SCF and CC amplitude equations, as well as the various
coupled-perturbed equations, is paramount: this can be difficult for a regular SCF code when
using extended basis sets. In Figure 2, we compare the convergence profile of the standard SCF
code in CFOUR with QCSCF. The standard SCF code has no issue achieving a reasonable
(10−7 to 10−8 in the RMS norm of the density increment) convergence, but then stagnates
and oscillates. On the other hand, the quadratically convergent code achieves effortlessly the
required tight convergence (10−11 in the RMS norm of the gradient).

The systems proposed so far are medium-sized, and provide examples of applications that
are typical for the users of the CFOUR suite of programs. The standard implementation that
relies on precomputed two-electron integrals written on disk has been used in all cases.

molecule 1A1g It. 3Au It.

Ti2O4 -1996.144 738 811 6 -1996.100 447 937 5

Table 2. Results for RHF and ROHF calculation on Ti2O4 with the aug-cc-pVTZ basis set. The energies are in Hartree
units, next to them the number of iterations required by the second-order optimization. The two calculations were done

without CD and exploiting point-group symmetry.

As the next examples, we tested the algorithm on three larger systems. Here, CD of the two-
electron integrals has been exploited using a decomposition threshold equal to 10−4. The first
molecule is an aqua thiolate iron(III) porphyrin complex (HSFeIIIOH2) in its doublet state used
as a model system for the active site of the cytochrome P450 in Ref. [50]. The second calculation
was done on the triplet state of a binuclear copper magnet (CUAQUACO2) whose geometry
has been taken from Ref. [51]. Finally, we optimized the singlet state of a chlorophyll molecule
where the phytyl tail has been substituted with a hydrogen atom to reduce the computational
cost. The geometry was optimized with B3LYP/6-31G(d)[52, 53], using the Gaussian 16[23]
suite of programs. In Figure 3, a representation of the three systems under study is shown.
The optimization of the open-shell systems, i.e., HSFeIIIOH2 and CUAQUACO2, was carried
out with ROHF. For all the calculations we adopted the cc-pVTZ basis set[48]. In Table 3,
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Figure 3. Molecular representations of the three molecules used to test the CD based QCSCF algorithm. From the left:

chlorophyll, CUAQUACO2, and HSFeIIIOH2.

we report the number of basis functions, the number of iterations required to converge the
second-order algorithm, the time spent to assemble the Fock matrix (F I , FA, and Q for the
ROHF calculations), and the total CPU wall time for the whole calculation (i.e., preliminary
SCF iterations and quadratically convergent ones). All the calculations have been performed on
a computer node equipped with four Intel Xeon Gold 6140M CPUs running at 2.30GHz sharing
the work among 28 cores. For all the systems the Cholesky vectors are kept in-core. The time
spent performing the MVP is not reported since it is similar with the time needed to compute
the Fock matrix.

molecule Nb It. Fock (s) Total (min)

HSFeIIIOH2 1062 9 19 26.1
CUAQUACO2 900 9 11 15.8
chlorophyll 1624 6 27 28.4

Table 3. Large systems results. For each of them, we report the number of basis functions, the number of iterations

required by the second-order optimization, the time needed to build a Fock matrix (in seconds), and the total CPU wall
time for the whole SCF calculation (in minutes).

While a comprehensive analysis of the computational advantages introduced by CD is out
of the scope of this paper, it is worth pointing out that, using a traditional, non integral-
direct SCF implementation such as the one available in CFOUR, the calculations reported
in table 3 would probably be out of reach, or at least very demanding. A qualitative idea of
the savings introduced by CD can be deduced by comparing the timings for the traditional
and CD implementations on the Ti2O4 system reported in Table 2. For such a system, using
Abelian point-group symmetry, the restricted QCSCF calculation took about 2 minutes on a
single core using the traditional SCF implementation, with a Fock-matrix formation requiring
about 2 seconds. The same calculation using CD, always exploiting point-group symmetry, only
required 13 seconds, with about 0.2 seconds spent for a Fock-matrix formation. While a CD-
based implementation is not going to be competitive with an integral-direct one for very large
systems, especially when advanced linear-scaling techniques are used, it is already advantageous
even for small and medium systems with respect to a traditional one.

4.2. What can go wrong and how to deal with that?

Despite the rigorous and sound convergence properties of a quadratic optimization algorithm,
there are still a few issues that can arise in a calculation. First, one must mention that the
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convergence properties of the FLM algorithm hold in infinite precision. While this is usually not
an issue on double-precision machines, the effects of finite arithmetic precision become apparent
when trying to achieve very tight convergence of the SCF, especially when using very large basis
sets comprising diffuse functions. This can be rationalized in terms of overall conditioning of the
problem. If the basis set presents near linear dependencies, i.e., if the overlap matrix has small
eigenvalues, the numerical precision of the computed quantities degrades. As a rule of thumb,
one cannot expect to achieve a convergence tighter than the product of the machine precision
times the ratio between the largest and smallest eigenvalues of the overlap matrix. In practice,
this means that it is possible to converge the SCF up to 10−11–10−12 depending on the basis
set, which is usually more than sufficient for high-precision applications.

That being said, the fact that the QCSCF will converge does not imply that it will always
converge to the desired solution. There are two possible, common scenarios that can present.
First, the QCSCF code will converge to a state of the same symmetry as its starting point,
but not the desired state. For well-behaved systems, the few SCF iterations performed in the
beginning are usually enough to establish, using the Aufbau principle, the right occupation. The
user should however be wary that there is no guarantee that this will work automatically: it is
therefore a good practice to specify explicitly the occupation, or the symmetry of the state, to
ensure the convergence of the optimization procedure to the desired wavefunction.

A second case that requires some attention by the user is, in general, any UHF calculation.
It is well known that the solution to the UHF problem is not unique and that many solutions
with different levels of spin contamination can exist. A minimization algorithm will converge
to the closest local minimum, so there is no guarantee that the QCSCF solution will be the
global minimum. It is the experience of the authors that, with respect to a standard SCF code,
a QCSCF optimization tends to converge to the solution lowest in energy and with highest spin
contamination. After a UHF calculation, the user needs to check whether the obtained solution
is acceptable.

A third, not common, case that can be encountered is convergence to an unstable solu-
tion. This is something that typically happens when performing a calculation on a symmetric
system without enforcing point-group symmetry and is somewhat similar to what has already
been discussed above about convergence to a state with the wrong occupation. The second-
order code should in principle always converge to a minimum; however, there are numerical
reasons that may leave the optimization stuck into a saddle point. This is a consequence of
the parametrization choice, as Thouless’ theorem[44] specifically states that the determinant
one can obtain with a rotation parametrized as in eq. 1 cannot be orthogonal to the reference.
Therefore, if the QCSCF optimization starts from a determinant orthogonal to the minimum,
whether due to imposed or to numerical symmetry constraints, it is prevented from reaching the
minimum itself. If the minimum has the same symmetry of the starting point – including if no
point-group symmetry is enforced – this can easily be avoided by perturbing, at the beginning
of the second-order optimization, the MO gradient with random noise. On the other hand, if
symmetry is enforced and there exists a broken-symmetry solution, this cannot be reached with
a second-order method. The latter case can be diagnosed doing a stability analysis and resolved,
if the broken-symmetry solution is of interest, enforcing symmetry in a lower subgroup or by
completely removing the enforcement of symmetry.

We illustrate all the discussed problematic behaviors using the triplet state of ortho-benzyne
(o-benzyne) as an example. Such a molecule exhibits C2v point-group symmetry and has a sin-
glet ground electronic state. This molecule has also been used by Tsuchimochi and Scuseria
as a test case for their constrained UHF method[54, 55]. We follow their procedure and opti-
mize the geometry using density-functional theory, namely, the B3LYP functional[52] in con-
junction with Pople’s 6-31G(d) basis set[53]. The geometry optimization has been performed
using the Gaussian 16[23] suite of programs. On the optimized geometry, we compute the UHF
wavefunction with Dunning’s cc-pVTZ basis set[48] using four different setups, namely i) en-
forcing point-group symmetry, but without specifying the occupation numbers; ii) enforcing
point-group symmetry and specifying the occupation numbers; iii) without symmetry, using
the normal setup; iv) without symmetry, adding a small perturbation (0.01 times the gradient’s
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norm times a uniformly distributed random number between -0.5 and 0.5) to the gradient at
the beginning of the optimization. The results, together with a short comment, are reported in
Table 4. In the first setup, the initial SCF iterations are tasked with computing the occupation

Setup Energy Spin contamination Comment

i -229.261 071 0.0204 wrong occupation
ii -229.468 767 0.0277 symmetric solution
iii -229.261 071 0.0204 unstable
iv -229.471 139 0.4156 symmetry broken

Table 4. Results of UHF calculations for o-benzyne with four different setups. Setup i): point-group symmetry enforced, no

initial occupation given. Setup ii): point-group symmetry enforced, initial occupation given in input. Setup iii): no symmetry
enforced. Setup iv): no symmetry enforced, the gradient is perturbed at the beginning of the second-order optimization. We

report the electronic energy (in Hartree), the spin contamination of the wavefunction, and a short comment that describes

the solution found.

of the wavefunction using the Aufbau principle. When convergence of the preliminary SCF is
reached, the resulting electronic configuration is the following: 10 doubly occupied a1 orbitals, 1
doubly and one singly occupied b1 orbitals, 8 doubly occupied b2 orbitals and a singly occupied
a2 orbital. QCSCF then converges without problems the given state, which is however not the
ground triplet state. In the second setup, we specify in input the correct occupations (9 doubly
and one singly occupied a1 orbitals, 2 doubly occupied b1 orbitals, 7 doubly and one singly oc-
cupied b2 orbitals and one doubly occupied a2 orbitals), which results in the correct behaviour.
We note that, while the states that result from the first two setups both have B2 symmetry,
the occupations make them strictly orthogonal. In other words, no symmetry-allowed orbital
rotation can link the two states, making therefore it impossible for the QCSCF code to converge
from one to the other.

In the third setup, no symmetry is enforced; however, the initial SCF iterations make the QC
procedure start very close to an unstable stationary point, to which the optimization gets stuck.
It is interesting to note that the unstable solution found with this setup is exactly the same found
with setup i), i.e., enforcing symmetry but without specifying the occupation. This suggests that
the QC optimizer started from a wavefunction that is orthogonal to the actual minimum. In
other words, even though symmetry was not enforced, it was still present numerically, which
explains the observed behavior.

In the fourth setup, we repeated the calculation without symmetry, but added a small,
random perturbation to the gradient at the beginning of the QCSCF process. The small amount
of random noise allowed the QCSCF optimizer to connect to the orthogonal subspace where
the minimum lies and converge to it without particular effort. It is interesting to note that the
optimization found a solution that has a lower energy than the symmetric one, and a much
larger spin contamination. This is the same solution found by Tsuchimochi and Scuseria. A
comparison between the UHF solutions found with the various setups is particularly interesting
to understand the behavior of the QCSCF optimization. Performing a stability analysis, the
symmetric solution from the second setup is found to exhibit an instability towards a symmetry-
broken UHF solution, which is exactly the one found with the fourth setup. The latter is in
turn stable. All these results confirm numerically what was discussed above. In setups i) and
iii), QCSCF converges to a solution with the wrong occupation – which is explicitly enforced
in the first case, and is a numerical consequence of the preliminary SCF iterations in the third.
In the second setup, the minimum within the symmetry is found. In the fourth setup, as no
symmetry is enforced and the symmetry is artificially broken with a small, random perturbation,
a true minimum is found, which corresponds to the stable, symmetry broken solution. It is
worth commenting that the lowest energy, stable solution exhibits a remarkably large spin
contamination, besides being symmetry broken: whether this is the solution of interest, or
whether the symmetry one found with the second setup is preferable, is ultimately a choice left
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to the user.
We conclude this section with some considerations concerning computational efficiency. The

choice of parameters that we adopt by default, namely, the parameters that control the pre-
liminary SCF iterations and the initial trust radius, represent a good compromise between
robustness and efficiency. This is, of course, not something that applies in general to every
molecular system. It is therefore likely that there exists, for any system, a specific combination
of parameters that minimizes the number of overall iterations, and therefore the computational
cost. Tuning these parameters is not required to achieve convergence, but may speed up the
computation, which is particularly relevant for applications involving large and very large sys-
tems. Nevertheless, the spirit of a quadratically convergent SCF is to minimize human effort
with respect to computational effort: it is up to the user to decide whether to invest time into
the numerical optimization of the procedure for a specific application. Let us remark once again
that, even if an optimal setup is found, a QCSCF calculation is inevitably going to be more
expensive, heuristically, about twice to three times as expensive, than a well-behaving regular
SCF one.

5. Conclusions

In this contribution, we presented a quadratically convergent self-consistent field program that
can achieve convergence of the SCF iteration in a black-box manner for restricted, unrestricted,
and (high-spin) restricted-open-shell references. The implementation is based on the Fletcher-
Levenberg-Marquardt trust-radius Newton method, in its direct formulation known as norm-
extended optimization. All the operation are performed in a direct fashion, without the need
of assembling explicitly the MO rotation Hessian nor of transforming the two-electron integrals
into the MO basis. The implementation is also general, as it can deal with open-shell systems
using either a UHF or a ROHF reference. The resulting algorithm is suited to be used in
conjunction with integral-direct, and even linear-scaling techniques to increase its computational
performances. As this implementation is meant for high-accuracy applications on small- to
medium-sized molecules, we explore a different strategy to reduce computational cost, namely,
the use of Cholesky decomposition of the two-electron integrals. We showed with numerical
examples how the QCSCF code can be helpful not only with hard-to-converge cases, but also
with regular cases where a very tight convergence is needed. Using the CD of the two-electron
integrals, larger systems become easily treatable.

While a QCSCF calculation is in general more expensive than its linear counterpart, we
showed that it is possible to achieve the same scaling with respect to the size of the system as
in regular SCF. Furthermore, as regular SCF and QCSCF share as the leading computational
operation the construction of Fock matrices, they can exploit the same techniques to accel-
erate the computation, including integral-direct implementations, linear-scaling methods and
low-rank approximations of the two-electron integrals matrix. As an example, we showed an
implementation based on the Cholesky decomposition of the two-electron integrals, as the use
of such a technique is part of a widespread effort amongst the developers of the CFOUR suite
of programs.

A second-order optimization algorithm has the remarkable property of being completely
predictable. Its black-box nature is shown in its ability to always converge to a solution, which,
however may not be the desired one. We discussed and rationalized the main reasons why
QCSCF can converge to either a solution with the wrong symmetry or to an unstable solution,
and showed how one can overcome such difficulties by either guiding the optimizer to the right
symmetry state by specifying an occupation or, when working enforcing either no or a reduced
symmetry point-group, by adding to the gradient with a small random perturbation.

In conclusion, a second-order SCF code can be a useful tool to converge problematic cases
to a very tight threshold in an almost automated way, without the need of tweaking and tuning
various parameters to achieve the desired accuracy. We hope that the QCSCF program that
will be made available in the next release of CFOUR will provide the community with a useful
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tool.
An interesting development that we intend to pursue in the future is the coupling of the FLM

algorithm with the use of an approximated Hessian, in a quasi-Newton spirit. While, to the best
of our knowledge, there are no convergence results as strong as the ones the FLM method relies
on for quasi-Newton trust-radius methods, Fletcher[19] suggests that the same conclusions are
likely to apply. This would lead to an approach that is, at the same time, computationally very
efficient and as robust as possible.
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pp 261–283.
[4] Roothaan, C.C.J. New developments in molecular orbital theory, Rev. Mod. Phys. 1951, 23, 69–89.
[5] Roothaan, C.C. Self-consistent field theory for open shells of electronic systems, Rev. of Mod. Phys.

1960, 32, 179–185.
[6] Rabuck, A.D.; Scuseria, G.E. Improving self-consistent field convergence by varying occupation

numbers, J. Chem. Phys. 1999, 110, 695–700.
[7] Cancès, E. SCF algorithms for HF electronic calculations; Springer, Berlin, Heidelberg, 2000; pp

17–43.
[8] Pulay, P. Convergence acceleration of iterative sequences - the case of SCF iteration, Chem. Phys.

Lett. 1980, 73, 393–398.
[9] Pulay, P. Improved SCF convergence acceleration, J. Comput. Chem. 1982, 3, 556–560.

[10] Hamilton, T.P.; Pulay, P. Direct inversion in the iterative subspace (DIIS) optimization of open-
shell, excited-state, and small multiconfiguration SCF wave functions, J. Chem. Phys. 1985, 84,
5728–5734.

[11] Sellers, H. The C2-DIIS Convergence Acceleration Algorithm, Int. J. Quant. Chem. 1993, 45, 31–41.
[12] Kudin, K.N.; Scuseria, G.E.; Cancès, E. A black-box self-consistent field convergence algorithm:

One step closer, J. Chem. Phys. 2002, 116, 8255–8261.
[13] Karlström, G. Dynamical damping based on energy minimization for use ab initio molecular orbital

SCF calculations, Chem. Phys. Lett. 1979, 67, 348–350.
[14] Saunders, V.R.; Hillier, I.H. A “Level–Shifting” method for converging closed shell Hartree–Fock

wave functions, Int. J. Quant. Chem. 1973, 7, 699–705.
[15] Vacek, G.; Perry, J.K.; Langlois, J.M. Advanced initial-guess algorithm for self-consistent-field cal-

culations on organometallic systems, Chem. Phys. Lett. 1999, 310, 189–194.
[16] Lehtola, S. Assessment of initial guesses for self-consistent field calculations. Superposition of atomic

potentials: Simple yet efficient, J. Chem. Theory Comput. 2019, 15, 1593–1604.
[17] Bacskay, G.B. A quadratically convergent Hartree-Fock (QC-SCF) method. Application to closed

shell systems, Chem. Phys. 1981, 61, 385–404.
[18] Bacskay, G.B. A quadratically convergent Hartree-Fock (QC-SCF) method. Application to open

shell orbital optimization and coupled perturbed Hartree-Fock calculations, Chem. Phys. 1982, 65,
383–396.

[19] Fletcher, R. Practical Methods of Optimization, 2nd ed.; Wiley: New York, 1999.

14



[20] Aidas, K.; Angeli, C.; Bak, K.L.; Bakken, V.; Bast, R.; Boman, L.; Christiansen, O.; Cimiraglia,
R.; Coriani, S.; Dahle, P.; et al. The Dalton quantum chemistry program system, WIREs Com-
put. Mol. Sci. 2014, 4, 269–284.

[21] Helmich-Paris, B. A trust-region augmented Hessian implementation for restricted and unrestricted
Hartree–Fock and Kohn–Sham methods, J. Chem. Phys. 2021, 154, 164104.

[22] Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package,
J. Chem. Phys. 2020, 152, 224108.

[23] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani,
G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision A.03, 2016. Gaussian
Inc. Wallingford CT.
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[43] Jensen, H.J.Aa.; Ågren, H. A Direct, restricted-step, second-order MC SCF program for large scale
ab initio calculations, Chem. Phys. 1986, 104, 229–250.

[44] Thouless, D. Stability conditions and nuclear rotations in the Hartree-Fock theory, Nuc.Phys. 1960,
21, 225–232.

[45] Aquilante, F.; Pedersen, T.B.; Lindh, R. Low-cost evaluation of the exchange Fock matrix from
Cholesky and density fitting representations of the electron repulsion integrals, J. Chem. Phys.
2007, 126, 194106.

[46] te Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Fonseca Guerra, C.; van Gisbergen, S.J.A.; Snijders,
J.G.; Ziegler, T. Chemistry with ADF, J. Comput. Chem. 2001, 22, 931–967. http://dx.doi.org/
10.1002/jcc.1056.

[47] Kendall, R.A.; Dunning, T.H.; Harrison, R.J. Electron affinities of the first-row atoms revisited.
Systematic basis sets and wave functions, J. Chem. Phys. 1992, 96, 6796–6806.

[48] Dunning, Jr., T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms
boron through neon and hydrogen, J. Chem. Phys. 1989, 1007, 4572–4585.

[49] Binkley, J.; Pople, J.A.; Dobosh, P.A. The calculation of spin-restricted single-determinant wave-
functions, Mol. Phys. 1974, 28, 1423–1429.

[50] Groenhof, A.R.; Swart, M.; L; Ehlers, A.W.; Lammertsma, K. Electronic ground states of iron
porphyrin and of the first species in the catalytic reaction cycle of cytochrome P450s, J. Phys.
Chem. A 2005, 109, 3411–3417.

[51] Feng, X.; Epifanovsky, E.; Gauss, J.; Krylov, A.I. Implementation of analytic gradients for CCSD and
EOM-CCSD using Cholesky decomposition of the electron-repulsion integrals and their derivatives:
Theory and benchmarks, J. Chem. Phys. 2019, 151, 014110.

[52] Becke, A.D. A new mixing of Hartree-Fock and local density-functional theories, J. Chem. Phys.
1993, 98, 1372–1377.

[53] Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self — Consistent molecular orbital methods . XII . Further
extensions of Gaussian — type basis sets for use in molecular orbital studies of organic molecules,
J. Chem. Phys. 1972, 56, 2257–2261.

[54] Tsuchimochi, T.; Scuseria, G.E. Communication: ROHF theory made simple, J. Chem. Phys. 2010,
133, 141102.

[55] Tsuchimochi, T.; Scuseria, G.E. Constrained active space unrestricted mean-field methods for con-
trolling spin-contamination, J. Chem. Phys. 2011, 134, 064101.

16


