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ABSTRACT 

One of the main goals of pre-stack seismic inversion is the estimation of elastic properties (i.e., P-

, S- wave velocities and density) and litho-fluid classes in the investigated area. To this end, many 

inversion strategies have been proposed but the most popular is based on a two-step inversion 

approach: first elastic properties are inferred from pre-stack data, then a classification algorithm is 

used to convert the outcomes of the first stage into litho-fluid facies. In this work, we propose an 

alternative approach based on recurrent neural networks. We train two bidirectional long short-term 

memory networks to predict the inverse mappings from pre-stack seismic data to elastic properties, 

and litho-fluid classes. In the elastic inversion, we also use a Monte Carlo simulation approach to 

properly propagate onto the model space both the uncertainties related to noise contamination in the 

data and to the modeling error introduced by the network approximation.  One crucial aspect of any 

machine learning inversion strategy is the definition of an appropriate training set. In this case, the 

models forming the training and validation examples are drawn according to a previously defined 

elastic and facies prior models derived from actual well log recordings. In particular, we assume a 

Gaussian-mixture elastic prior, and we also take into account the uncertainties affecting the estimation 

of the transition probabilities of facies. We invert each seismic gather independently, and in this 

context, the generation of the training set, and the learning process can be accomplished with a very 



limited computational effort on a common notebook. Once trained, the networks estimate the elastic 

properties, the litho-fluid facies, and the related uncertainties from the pre-stack data in near real-

time. Synthetic and field data inversions are used to validate the proposed method. The network 

predictions are also benchmarked against the outcomes of a more standard two-step approach that 

combines a linear elastic inversion and a subsequent point-wise Bayesian classification. Our results 

demonstrate that the implemented algorithm guarantees more accurate elastic property estimations 

and facies predictions than the standard inversion strategy. In particular, the predictions provided by 

the long short-term memory network are less affected by erroneous assumptions on the noise statistics 

and prior model, and by errors in the estimated source wavelet.  
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INTRODUCTION 

Pre-stack seismic data are routinely used to infer elastic properties (such as P-, S-wave velocity 

and density; Vp, Vs, and ρ) and litho-fluid facies in the subsurface (Avseth et al. 2005; Doyen, 2007; 

Kemper and Gunning, 2014; Bachrach and Gofer, 2019). This task can be formulated as an inverse 

problem that is inherently ill-posed meaning that multiple solutions reproduce well the observed data. 

The inversion is also complicated by the fact that the model space includes both continuous and 

discrete model parameters (the elastic properties and litho-fluid facies, respectively). Several 

approaches have been proposed over the last decades, and many of them formulate the inversion into 

a probabilistic framework (Tarantola, 2005) to properly assess the uncertainties affecting the 

estimated elastic parameters and litho-fluid classes. The most popular strategy solves the problem 

using a two-step cascaded workflow in which the computational workload is reduced by inverting 

each seismic gather separately. In this context, the lateral continuity of the predictions only depends 



on the lateral continuity of the seismic data. The first step estimates elastic properties from pre-stack 

seismic data, then the outcomes of this first stage are converted into fluid classes via a classification 

algorithm. The first step of seismic inversion usually employs a linear forward modeling operator 

(e.g., a linearization of the full Zoeppritz equations) under Gaussian assumptions for noise and model 

parameter distributions (e.g., the popular approach proposed by Buland and Omre, 2003). To mitigate 

the ill-conditioning, geostatistical vertical constraints are usually employed to correctly preserve 

plausible vertical variability in the predicted elastic parameters (Bongajum et al. 2013; Bosch et al. 

2015; Azevedo and Soares, 2017). To simplify the classification process, standard approaches 

estimate facies independently at each location, although it is known that the facies model must be 

vertically correlated to mimic depositional processes and gravity effects. Examples of popular 

classification methods include Bayesian classification (Doyen, 2007), maximum-likelihood approach 

(Da Veiga and Le Ravalec, 2012), Monte Carlo classification (Grana et al. 2012), pattern recognition 

and clustering algorithms (Martinez and Martinez, 2007; Hastie et al., 2009) such as support vector 

machine algorithms and discriminant analysis (Wang et al. 2014; Negahdari et al. 2014).  Fuzzy logic, 

k-nearest neighbors, and artificial neural network have also been employed (Dubois et al. 2007; Hall, 

2016; Aleardi and Ciabarri, 2017). Spatial/temporal facies constraints are usually modeled by 

including a stationary prior Markov-chain or Markov-random field for the discrete property (Larsen 

et al. 2006; Ulmoven and Omre, 2010; Rimstad et al. 2012; Lindberg and Grana, 2015; Fjeldstad and 

Omre, 2017; Talarico et al. 2020), although this increases the overall computational cost of the 

classification procedure as compared to point-wise methods.  The two-step approach although 

computationally fast has several drawbacks related to error propagation from data space to the facies 

model, and to the consistency between the observed seismic data and the predicted classes (Doyen, 

2007; Zunino et al. 2015). To circumvent these issues several strategies have been proposed; these 

directly infers litho-fluid facies from seismic data (Rimstad and Omre, 2010; Grana et al. 2020), or 

integrate the seismic inversion and the classification process into a single workflow (Connolly et al. 



2016; Aleardi et al. 2018; de Figueiredo et al. 2018; de Figueiredo et al. 2019; Aleardi and Salusti, 

2020a). 

Over the last years, the recent advent of high-speed multi-core CPUs and GPUs have extensively 

promoted the applications of machine learning algorithms to solve geophysical inverse problems 

(Monajemi et al., 2016; Goodfellow et al. 2016). Machine learning approaches can be used to solve 

both regression problems (i.e., in the case of continuous model parameters) or classification problems 

(for discrete properties). They can be very useful when the forward relation is known, but the inverse 

mapping is either expensive to compute analytically or numerically approximate. Therefore, the 

network is trained to predict the mapping between the data space and the discrete or continuous 

parameters. Some applications of machine learning methods to solve geophysical problems can be 

found in Lewis and Vigh (2017), Araya-Polo et al. (2018), Richardson, (2018), Waldeland et al. 

(2018), Wang et al. (2019), Wu and McMechan (2019), Puzyrev (2019), Park and Sacchi, (2020), 

Sun (2020), Aleardi (2020), Aleardi and Salusti (2020b), Moghadas (2020).   

Many different types of machine learning algorithms exist such as artificial neural networks 

(ANNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs) (Bishop, 

2006; Goodfelow et al. 2016; Geron et al. 2019). Artificial Neural Networks are theoretically capable 

of learning any nonlinear function linking the output and the input response. Hence, these networks 

are popularly known as universal function approximators. Some of the drawbacks of ANNs are the 

computational cost, the elevated number of internal parameters to be estimated (that exponentially 

increases with the dimension of the input and output responses), the overfitting issue, and the 

vanishing/exploding gradient problems. Besides, in cases of image applications, ANNs lose the 

spatial relationships between the pixels of the image and hence cannot capture sequential information 

in the data. CNN uses convolutional kernels to extract the relevant features from the input and hence 

they are commonly used in image classification problems. Differently to ANN, CNN captures the 

spatial variability pattern from an image and exploits parameter sharing to decrease the number of 



internal parameters to optimize. However, CNN treats each input response separately and hence they 

cannot capture sequential information hidden in the input data. To overcome this issue RNNs have 

been proposed to process sequential data (i.e., seismograms). The basic RNN architecture is similar 

to an ANN but with recurrent connections in the hidden state. Similar to CNN they use parameter 

sharing to reduce the number of internal parameters. RNNs use an internal state (memory) to share 

features learned across the different positions within a time series. Hence, they can learn the dynamic 

temporal relations within a time sequence. However, standard RNNs cannot infer long-term 

dependencies in the input set and are also severely affected by vanishing/exploding gradient 

problems. To overcome these issues Hochreiter and Schmidhuber (1997) proposed the Long Short 

Term Memory networks (LSTM) that are a special kind of RNN, capable of learning long-term 

dependencies. It has been demonstrated that LSTMs work tremendously well on a large variety of 

problems and nowadays are routinely employed in handwriting and speech recognition (Graves et al. 

2012).  

Applications of RNN and LSTM to solve geophysical problems are recent and date back to the 

very last years. These examples refer to earthquake classification (Kuyuk and Susumu, 2018), 

detection of earthquake precursors (Cai et al. 2019), earthquake magnitude prediction (Gonzales et 

al. 2019), facies classification from post-stack seismic data (Grana et al. 2019), seismic velocity 

analysis (Fabien-Ouellet and Sarkar, 2020), well log generation (Zhang et al. 2018), well production 

prediction (Jie et al. 2020), seismic data interpolation (Yoon et al. 2020), porosity estimation from 

well log data (Chen et al. 2020). 

In this work, we use a bidirectional LSTM approach to predicts elastic parameters and litho-fluid 

classes from pre-stack seismic data. A bidirectional LSTM (Bi-LSTM) is a special class of LSTM 

that simply puts two independent LSTMs together. This structure allows the networks to have both 

backward and forward information about the sequence at every time step, this means that at any point 

in time it preserves information from both past and future. We solve the problem under the assumption 



of a local 1D subsurface model, or in other words, we maintain the computational cost affordable by 

inverting each seismic gathers separately. We train two Bi-LSTMs one to solve the regression 

problem related to elastic inversion and the other to solve the classification problem. Therefore, one 

Bi-LSTM is used to predict the mapping between the pre-stack domain and the elastic space, the other 

is trained to infer the facies model from the seismic data. In both cases, the Bi-LSTM learns the 

intrinsic vertical dependencies of elastic parameters and facies distribution from the training set. Once 

the network is fully trained it provides the estimated elastic and facies profile in near real-time. 

Uncertainty assessment in machine-learning predictions using recurrent neural networks has been 

discussed in recent publications especially focused on computer science and engineering (Cong and 

Liang, 2009; Graf et al., 2010), but applications to geophysical inversions is still an open research 

field. In our work, we combine the Bi-LSTM for the elastic inversion with a Monte Carlo (MC) 

simulation approach that propagates onto the estimated Vp, Vs, and density models the uncertainties 

related to both noise contamination and the so-called modeling error introduced by the Bi-LSTM 

approximation.  

The proposed inversion approach includes four steps: (1) Generation phase: define an ensemble of 

1D facies and elastic profiles and compute the associated pre-stack response. In our application, a 

convolutional forward operator based on the full Zoeppritz equations provides the non-linear mapping 

between the model and the data space. (2) Network Design: define two Bi-LSTM architectures: one 

to map the data onto the elastic space, and the other to convert the seismic response into facies. (3) 

Training phase: train the two networks by minimizing the differences between the predicted and 

desired output. (4) Use the trained network to invert the seismic data. 

The facies profiles forming the training ensemble are generated according to a first-order 

stationary Markov Chain and the training examples properly model also the expected uncertainties 

affecting the estimated transition matrices. The generated facies models are also used to define the 

training for the elastic inversion. In this case, the elastic properties in each facies are distributed 



according to a Gaussian prior model determined from well log data. This means that we assume a 

Gaussian mixture prior to properly take into account the facies dependency of the elastic parameters. 

The vertical variability of the elastic attributes is modeled according to a vertical Gaussian variogram.  

We apply the method to both synthetic and field data. The real data have been acquired onshore to 

investigate a turbiditic sequence in which sand intervals with different porosities alternate to shales. 

The elastic and facies predictions provided by the trained Bi-LSTMs are also compared with the 

outcomes of a more standard two-step (inversion+classification) approach. In this case, we employ 

the probabilistic linear inversion proposed by Buland and Omre (2003) to infer the elastic properties 

from the seismic data, then a standard point-wise Bayesian classification infers the facies profile from 

the maximum-a-posteriori prediction provided by the linear approach. In the synthetic experiments, 

we also assess the stability of the predictions provided by the Bi-LSTM and the standard approach in 

case of erroneous assumptions on the noise statistics, on the prior model, and in case of errors in the 

predicted source wavelet. To the best of the author’s knowledge, this is the first application in which 

Bi-LSTM and MC simulations are used to estimate elastic properties, facies profiles and the 

associated uncertainties from pre-stack seismic data. 

 

THE METHOD 

Recurrent neural and long short-term memory networks 

Recurrent neural networks (RNNs) are a class of deep neural networks commonly applied to 

process sequential data such as text and audio signals. RNNs can take one or more input vectors and 

produce one or more output vectors that are influenced not just by weights applied to the inputs (like 

a standard ANN), but also by a hidden state vector that through a feedback loop also depends on 

previous input and output responses (Medsker and Jain, 2001). In other terms, the same input could 

produce a different output depending on previous inputs in the series. This is well suited for pre-stack 

inversion, in which a given seismic amplitude can be generated by different combinations of elastic 



properties at the reflecting interface. This fact is responsible for the ill-conditioning of the elastic 

inversion that is commonly mitigated by taking into account not only the observed seismic amplitudes 

but also the correlation between the elastic properties at neighboring time samples. In standard 

inversions, this is usually accomplished by infusing a spatial/temporal variogram model into the 

inversion kernel.  

Let us consider the basic RNN architecture as depicted in Figure 1. The RNN is applied to a time 

series of length T, where the vectors 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑇] and 𝐲 = [𝑦1, 𝑦2, … , 𝑦𝑇] denote the input and 

output responses, respectively. For each time step t, we can write: 

ℎ𝑡 = 𝑓(𝑊ℎℎℎ𝑡−1 + 𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ),       (1) 

𝑦𝑡 = 𝑓(𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦),        (2) 

where h represents the hidden state, 𝑓 is the activation function, 𝑏ℎ and 𝑏𝑦 are the trainable bias 

vectors for the hidden and output state, whereas 𝑊ℎℎ, 𝑊𝑥ℎ,𝑊ℎ𝑦 are the trainable weighting matrices 

associated with the hidden-to-hidden, input-to-hidden, and hidden-to-output connections, 

respectively. In Figure 1 note that the matrices 𝑊ℎℎ, 𝑊𝑥ℎ,𝑊ℎ𝑦 are shared within the RNN unit: this 

reduces the number of trainable parameters and then the time needed for the learning phase. The 

internal network parameters are first initialized and then updated during the learning procedure to 

minimize an error (loss) function that quantifies the difference between the desired and the computed 

output. The updating process is driven by a back-propagation algorithm: 

𝐏𝑖 = 𝐏𝑖−1  − 𝛾
𝜕𝜀

𝜕𝐏𝑖−1
,      (3) 

where 𝐏 generically represents the internal network parameters (i.e., bias vectors and weighting 

matrices), i is the iteration number,  𝜀 denotes the loss function value, and 𝛾 is the so-called learning 

rate. Well-known drawbacks of standard RNN are the difficulties to learn long-term dependencies 

that give rise to the so-called vanishing/exploding gradient problems. To avoid this issue several 

advanced RNN architectures have been developed such as Gated Recurrent Unit (GRU) and Long 



Short-Term Memory (LSTM) networks, with LSTM being a generalization of GRU (Pudikov and 

Brovko, 2020).  

LSTMs are specifically devoted to learning long-term features in the data and accomplish this task 

by introducing a cell state with an update gate, a forget gate, and an output gate (Figure 2). The cell 

state makes long-term dependency flows through the network, while the other gates add or remove 

information to the cell state. For example, the input gate discovers which information at the current 

time step should enter the cell state, while the forget gate determines which information should be 

forgotten from the previous cell state. More in detail, the value of the cell state at each time step (𝑐𝑡) 

depends on the candidate value at the current step (𝑐̃𝑡), the values at the previous time step (𝑐𝑡−1) and 

on the output of the forget and input gates at the current step (𝑓𝑡 , 𝑖𝑡, respectively):  

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐ℎ𝑡−1 + 𝑊𝑐𝑥𝑡 + 𝑏𝑐),      (4) 

𝑓𝑡 = 𝜎(𝑊𝑓ℎ𝑡−1 + 𝑊𝑓𝑥𝑡 + 𝑏𝑓),      (5) 

𝑖𝑡 = 𝜎(𝑊𝑖ℎ𝑡−1 + 𝑊𝑖𝑥𝑡 + 𝑏𝑖),       (6) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐̃𝑡,       (7) 

𝑜𝑡 = 𝜎(𝑊𝑜ℎ𝑡−1 + 𝑊𝑜𝑥𝑡 + 𝑏𝑜),       (8) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡),        (9) 

𝑦𝑡 = 𝑊𝑦ℎ𝑡,      (10) 

where 𝑡𝑎𝑛ℎ and 𝜎 represent the hyperbolic tangent and sigmoid activation functions, respectively; 

⊙ denotes the Hadamard product, and 𝑜𝑡 is the output gate and codes the information to be passed to 

the hidden state at the next time step ℎ𝑡; the W matrices and b vectors represent the learnable 

parameters.    

However, if we limit the attention to a 1D model, the seismic data and the elastic properties are 

temporarily correlated forward and backward in time. For example, due to the filter effect introduced 



by the seismic wavelet, a given elastic property at time T influences the seismic response at times t>T 

as well. Moreover, an elastic property value or a facies at time T is related with all the surrounding 

samples T+Δt<t<T+Δt, where Δt generically represents a correlation distance. For this reason, to solve 

the facies classification problem and the elastic inversion we use a network that has an internal 

memory backward and forward in time. A bidirectional LSTM (Bi-LSTM) is an extension of LSTM 

that preserves information from both past and future time steps so that the output layer can get 

information from past (backward) and future (forward) states simultaneously. This is accomplished 

by connecting two hidden layers of opposite directions to the same output, or in other terms by 

formulating the hidden state as a concatenated matrix of forward ℎ⃗ 𝑡 and backward ℎ⃗⃖𝑡  hidden states 

(Figure 3). Both hidden states are considered to compute the output: 

𝑦𝑡 = 𝜎(𝑊𝑦ℎ⃗ 𝑡 + 𝑊𝑦 ℎ⃗⃖𝑡 + 𝑏𝑦).     (11) 

To simplify the notation Bi-LSTM is indicated with the acronym LSTM from here on. 

 

The implemented approach 

The elastic inversion aims to map the pre-stack input data (partial stacks at different incidence 

angles) onto the Vp, Vs, and density space. In this case, the observed data, that constitutes the input 

𝐗 to the network, can be written in matrix form as: 

𝐗 =

[
 
 
 
𝑑𝑡1,𝛩1

𝑑𝑡2,𝛩1
… 𝑑𝑡𝑇,𝛩1

𝑑𝑡1,𝛩2
𝑑𝑡2,𝛩2

… 𝑑𝑡2,𝛩2

⋮ ⋮ ⋮ ⋮
𝑑𝑡1,𝛩𝑁

𝑑𝑡2,𝛩𝑁
… 𝑑𝑡𝑇,𝛩𝑁]

 
 
 

,        (12) 

where d denotes the observed seismic sample, T is the total time length of the traces, and N is the total 

number of incidence angles considered (usually near, mid, and far angles) that corresponds to the 

number of input features to the network. The output of the network can still be written as a matrix 𝐘𝐞 

with 3 rows and T columns:  



𝐘𝐞 = [

𝑉𝑝1   
𝑉𝑝2   

… 𝑉𝑝𝑇   

𝑉𝑠1   
𝑉𝑠2   

… 𝑉𝑠𝑇   

𝜌1   
𝜌2   

… 𝜌𝑇   

].        (13) 

For the facies classification, the input is the same as for the elastic inversion but the desired output 

is a vector 𝐲𝐟 with discrete values representing the facies.  

𝐲𝐟 = [𝑓1 𝑓2   
… 𝑓𝑇   ].       (14) 

Both networks try to learn the inverse mapping from the data to the model space from a training 

set (see the next section). The network architectures used for the elastic inversion and facies 

classification are very similar: They include an input layer, hidden LSTM layers composed of several 

LSTM units, a fully connected layer, and an output layer. The two networks only differ in the number 

of hidden LSTM units used (where this number determines the learning capacity of the network) and 

in the activation function employed by the fully connected layer: The network for the elastic inversion 

deals with continuous numbers and hence uses a LeakyReLU activation function with a leakage value 

of 0.1. Instead, the network for facies classification employs a softmax function that converts logits 

into probabilities. This means that the output is a vector representing the probability distributions of 

a list of potential outputs (facies class in our case) at each time sample. Therefore, and different from 

the network used for elastic inversion, the facies classification also provides an assessment of the 

uncertainties affecting the predicted facies profile.   

For uncertainty estimation in the elastic inversion, we must project onto the parameters space both 

the noise affecting the data and the modeling error introduced by the network approximation. To this 

end we adopt a Monte Carlo approach: Let M represent the examples forming the validation 

ensemble, and N the ensemble of predicted models output of the LSTM. A sample of the modelings 

error can be obtained as 𝐄 = 𝐌 − 𝐍 (Hansen and Cordua, 2017). Under a Gaussian assumption, the 

modeling error can be defined as 𝒩(0, Ce), where Ce is the covariance of E. This error together with 

the noise affecting the seismic data 𝒩(0, 𝐂𝑛) (also assumed to be Gaussian-distributed) are 

propagated onto the final predictions through an iterative MC approach. Now, let d be the vector 



expressing the observed data input to the network, whereas q represents the number of MC 

simulations. The implemented MC approach for uncertainty propagation comprises the following 

steps: 

1) Use the trained network to compute the predicted elastic profile 𝐦b from the observed data 𝐝; 

2) Run a forward modeling to compute the noise-free seismic data 𝐝b associated to 𝐦b;  

3) Draw 𝐧 from 𝒩(0, 𝐂𝑛) and compute 𝐝n = 𝐝b + 𝐧; 

4) Use the trained LSTM and 𝐝n to compute the predicted model 𝐦n; 

5) Draw 𝐞 from 𝒩(0, 𝐂𝑒)  and compute 𝐦e = 𝐦n + 𝐞; 

6) Store 𝐦e and repeat from 3) to 6) for q times. 

Each generated vector 𝐦e is an elastic realization in agreement with the observed data, the trained 

network, and the assumed noise and modeling error distributions. An approximated uncertainty 

estimation can be numerically derived from the ensemble of q MC simulations. For simplicity, we 

assume that both the error terms (noise and modeling errors) are Gaussian, but the implemented 

approach can be applied to whatever parametric or non-parametric error distributions. Note that the 

previous MC approach is extremely fast because the network predicts a model from the input data 

(steps 1 and 4) in real-time. 

 

RESULTS 

Synthetic inversions 

In view of the application of the LSTM approach to two field seismic gathers, we directly train the 

networks using model and data assumptions appropriate for the study area. The field data have been 

acquired onshore to investigate a clastic reservoir hosted within a turbiditic sequence in which sand 

formations with high variable porosity and thickness values intercalate to shales intervals. For this 

reason, we consider three different litho classes: shale, low porosity sand, and high porosity sand (SH, 



LPS, and HPS, respectively). We consider a time interval of 0.4 s for a time sampling of 4 ms: This 

results in 101 × 3 = 303 elastic properties to be estimated from the data. 

To generate the training and validation sets we first define the transition matrix determining the 

facies profile together with the prior probability and the vertical variogram for the elastic properties. 

Seven wells are available in the area: five of them are used to define the prior assumptions for both 

the continuous and discrete properties, while the remaining two have been used as blind tests in the 

field inversion.  

 To simulate the facies profile, usually, a first-order Markov chain is used in which the facies 

sequence is drawn according to a transition probability matrix. This means that the element Ti,j at the 

i-th row and j-th column of the transition matrix represents the probability of a transition from facies 

i located above the interface to facies j located below. Usually, the transition matrix is estimated from 

available well log data and assumed perfectly known and stationary over the investigated zone during 

the simulation/inversion process. However, this is a simplification because the transition probability 

could vary in the reservoir zone, and also the estimated Ti,j values could be also biased by available 

well log data that do not fully sample all the possible facies configurations. For this reason, in 

simulating the validation and training sets we take into account the uncertainty related to the estimated 

facies transition probabilities. We use the five wells to derive five transition probability matrices from 

which we can define for each Ti,j element the associated mean and standard deviation values. Then 

under the assumption of a Gaussian distribution for each Ti,j, we generate a transition matrix for each 

simulated model in the training and validation set, under the additional constraint that each row of T 

sums to 1, such that the corresponding conditional probability is a valid probability density function. 

After sampling the transition matrix, we generate the facies profile of T samples through a sequential 

approach. We first draw the sample at the top of the sequence (f1) from the prior facies probability 

(obtained from the stationary distribution associated with the considered transition matrix), hence the 

subsequent facies realizations at each time sample are drawn from the probability 𝑝(𝑓𝑡|𝑓𝑡−1). To 



derive the elastic model, we distribute Vp, Vs, and density values along the simulated facies profile 

under the assumption of a Gaussian mixture prior and a Gaussian vertical variogram. The Gaussian 

mixture prior assumes the elastic properties to be Gaussian distributed within each facies, so that the 

facies dependency of the elastic parameters is taken into account (Figure 4). In Figure 4 we observe 

that the expected Vp, Vs and density values decrease as we move from shale to low-porosity sand, 

and high-porosity sand. If needed whatever type of prior elastic model can be considered (i.e., a non-

parametric prior), provided that appropriate geostatistical simulation tools are available to generate 

elastic realizations. The parameters defining the prior assumptions and the vertical variability of the 

elastic properties have been determined from the five considered well log data after upscaling 

(Lindsay and Van Koughnet 2001). The upscaling has been applied to take into account the different 

resolutions of well log and seismic data. After generating the elastic profile, a convolutional 1D 

forward modeling based on the full Zoeppritz equations is used to compute the observed seismic data 

for the three incidence angles of 0, 15, and 30 degrees. To avoid overfitting, in the learning phase we 

also take into account the noise affecting the field data. To this end we contaminate the noise-free 

seismic gathers forming both the training and validation examples with Gaussian distributed and 

uncorrelated noise with zero mean and a covariance matrix estimated from the field dataset. This 

covariance is inferred from neighboring seismic gathers by measuring the variability of the reflected 

amplitudes at each time sample, thereby assuming that such variability is only related to noise 

contamination (Aleardi et al. 2018).  

The training and validation sets for the elastic inversion and facies classification are composed of 

5000, and 200 prior realizations, respectively, and of associated seismic gathers. The best network 

configurations (i.e., the number of models forming the training set, the optimal number of hidden 

layers, the number of hidden units, learning rate) have been determined through a trial-and-error 

procedure and the final settings have been determined as a compromise between the prediction 

accuracy on the validation set and the computational effort needed for training. The final net selected 

for the elastic inversion uses 2 hidden layers composed of 40 units each, while the network for the 



facies classification employs 2 hidden layers of 50 units. In both cases, we use a minibatch size of 

24, whereas the Adam optimizer (Balles and Hennig, 2018) is employed to update the network 

internal parameters. For both networks, we set the learning rate to 0.0005, and this value is multiplied 

by 0.98 every epoch. Before the fully connected layer, a dropout regularization of 10% is also used 

to tune the networks and avoid overfitting. These network architectures are schematized in Figure 5.  

The training for the network solving the elastic inversion runs for 100 epochs, while 50 epochs are 

employed for the facies classification. If we consider Matlab codes running on a common notebook 

equipped with a quad-core intel i-7 7700HQ CPU@2.80 GHz with 16 Gb RAM, the training and 

validation sets are generated in 1 minute, approximately, while both networks can be trained in less 

than 6 minutes. Figure 6a shows the evolution of the root-mean-square error (RMSE) during the 

training phase of the network used for the elastic inversion. Figure 6b represents the evolution of the 

accuracy during the learning process for the network used for facies classification. In both cases, we 

observe that convergence has been achieved within the selected number of epochs, whereas the 

similar RMSE, and accuracy, on the training and validation sets ensure us that overfitting has been 

prevented.  

The LSTM predictions are compared with those provided by a more standard approach in which 

the elastic properties are inferred from partial angle stacks through a linear inversion (Buland and 

Omre, 2003) under the assumption of log-Gaussian distributed elastic properties. The log-Gaussian 

prior model has been derived from the five considered wells, while the vertical constraint infused into 

the linear inversion is expressed by the same variogram model used to generate the training and 

validation sets. Then, the maximum-a-posteriori (MAP) solution provided by the linear inversion is 

the input for a point-wise Bayesian classification in which the prior facies model is derived from the 

average stationary distribution associated with the transition probability matrices derived from the 

five wells. We compare the LSTM and standard approach on test models and data simulating different 

possible scenarios: 



• Test 1: The prior model assumptions, the noise statistics, and the source wavelet used to derive 

the test model and the associated seismic response are the same assumed in the learning phase. 

This is the optimal situation in which the actual subsurface model and the observed data are in 

agreement with the prior assumptions.   

• Test 2: Similar to Test 1 but now the variance of the noise is twice that assumed in the learning 

phase but the underlying statistical distribution (uncorrelated Gaussian model) still holds. In 

this case, we are simulating an underestimation of the noise in the data. 

• Test 3: Now we contaminate the data with both correlated and uncorrelated Gaussian noise 

with a variance twice that assumed in the learning stage. The temporal variogram of the 

correlated noise is equal to that assumed for the elastic parameters. Now, we are simulating 

residuals of coherent noise in the data that in field applications can be ascribed to multiple 

reflections or diffractions not correctly removed during the processing phase.  

• Test 4: Similar to Test 3 but now we also simulate an erroneous estimation of the peak 

frequency and phase of the angle-dependent source wavelet. The errors increase as the 

incidence angles increases (Figure 7). 

• Test 5: Similar to Test 4 but now we also simulate errors in the assumed prior elastic and facies 

models. To this end, the facies test model has been drawn from a transition matrix that results 

in a stationary distribution with an increased 10% of the actual shale probability. Similarly, the 

elastic test model has been drawn from facies-dependent model covariance matrices with 10% 

of errors with respect to the model covariances used to derive the training examples.  

 

For the LSTM and linear inversion, we assess the quality of the predictions by measuring the 

percentage difference between predicted and actual elastic properties, and between observed and 

predicted data. For the LSTM elastic inversion, we also run 1000 MC simulations to compute the 95 

% posterior confidence intervals. Confusion matrices, precision, and recall are used to quantitatively 

compare the facies classification results.  The recall quantifies the percentage of samples belonging 



to a given class that have been correctly classified. The precision represents the percentage of samples 

classified in a given facies that actually belong to that facies.  

Figure 8 represents the inversion and classification results for Test 1. From a first visual analysis 

of Figure 8a, we note that both approaches provide elastic predictions that closely follow the vertical 

variability of the true properties and that satisfactorily predict the actual elastic contrasts at the 

reflecting interfaces. However, the overall quality of the predictions decreases moving from Vp, Vs, 

and density. This is expected since Vp and density are the parameters exerting the largest and smallest 

influence on observed seismic data, respectively. However, we also note that such decreasing in the 

accuracy is more significant for the standard approach. Both inversion results generate predicted data 

in close agreement with the observed seismic response. Figure 8b illustrates that the LSTM approach 

provides more accurate facies classification results in which all the main HPS and LPS intervals are 

correctly located. The posterior facies probability illustrates that the LSTM usually recovers the 

correct facies with lower uncertainties than the Bayesian method. Only the high porosity sand located 

at 0.142 s is misclassified by the LSTM probably because the thickness of this layer is far below the 

seismic resolution. The Bayesian classification overestimates the occurrence of low porosity sands 

and erroneously locates an HPS sand around 0.39 s. This qualitative analysis is confirmed by the 

confusion matrices shown in Figure 9: The LSTM guarantees more precise classification results and, 

for the SH and HPS, also higher recall values. For the Bayesian classification, the significant 

overestimation of LPS results in recall values higher than for the LSTM.  

Figures 10-17 show the results for Tests 2-5. As expected, erroneous assumptions on the noise 

statistics, errors in the source wavelet, and errors in the assumed prior model, decrease the overall 

quality of the predictions. A visual inspection of these results confirms that: both approaches provide 

estimated models that reproduce well the observed data; the LSTM elastic predictions are closer to 

the actual property values; the Bayesian classification tends to overestimate the occurrence of LPD 

and underpredicts the occurrence of HPS; The LSTM recovers more realistic facies profiles in which 



the actual layer thickness and depositional trends are better preserved; The combined presence of 

errors in the wavelet estimation and coherent noise in the data significantly deteriorate the quality of 

the retrieved elastic and facies models; In all of the tests and for both approaches, erroneous 

assumptions about the source wavelet and noise particularly affect the density estimates, which is the 

parameter least informed by the data. The quality of the predictions yielded by the standard approach 

is particularly low in the most challenging scenario (Tests 5; Figure 16), thus demonstrating the 

importance of accurate prior assumptions. In all the tests the LSTM outperforms the standard 

approach. Notably, for all the examples the actual elastic properties are enclosed by the 95 % 

confidence intervals as estimated from 1000 MC simulations.  

For a more quantitative analysis of the previous results we represent in Table 1, and for all the 

tests, the percentage difference between actual and predicted elastic parameters and predicted and 

observed data. In all cases, it can be noticed that the accuracy of the elastic inversion decreases 

moving from Tests 1 to Test 5, but this decreasing accuracy is more significant for the linear 

inversion. This means that the LSTM predictions are less affected by erroneous assumptions in the 

statistical noise properties, in the prior model, and also less influenced by errors in the estimated 

source wavelet, and by unmodelled coherent noise in the data. For Test 1 we observe that the predicted 

data generated on the MAP linear solution are slightly closer to the observed seismic than the data 

predicted by the LSTM. This can be explained by taking into consideration that the linear inverse 

solution corresponds to the maximum of a posterior probability density or in other terms to a 

minimum of an error function. Differently, the LSTM predictions are not driven by a minimization 

process, but they are simply obtained by applying the previously trained network to the observed data. 

For the other tests, we observe that the data mismatch for the linear inversion is significantly lower 

than for the LSTM inversion. This is probably related to the underprediction of the noise variance 

and the consequent data overfitting. In other words, for underpredicted noise, the linear inversion is 

too confident on the quality of the observed seismic gathers. This could indicate that the LSTM is 

less prone to overfitting the data in case of errors in the assumed noise variance.  



The poorer predictions provided by the linear inversion can also be ascribed to the simple Gaussian 

prior used, which overlooks the facies dependency of the elastic properties and thus oversimplifies 

the actual distribution of the elastic properties in the subsurface. For what concerns the facies 

classification, the main limitation of the Bayesian inversion is that it overlooks the vertical correlation 

of the facies model and classifies each sample independently.  

  

Field data application 

We now discuss the results obtained on the two field seismic gathers used as blind tests. The 

upsampled collocated well log data (hereafter called Well 1 and Well 2) have been used to validate 

the predictions of the LSTM and standard approach. The true facies profiles have been inferred from 

the derived petrophysical property curves (not shown here) by imposing appropriate cut-off values 

(for example a porosity lower than 5% and a clay content higher than 70% define the shale facies). 

The low-frequency elastic model has been derived from geostatistical interpolation of the available 

well log data. 

The visual inspection of Figures 18-21 illustrates that the overall quality of the results is often lower 

compared to the previous synthetic examples, although the major elastic contrasts have been correctly 

predicted. For both seismic gathers, the LSTM outperforms the standard approach as it provides 

elastic predictions and facies classification usually closer to the actual model, especially for Well 1, 

while the predictions are more similar for Well 2. In particular, the LSTM correctly locates the main 

sand layers, while the Bayesian classification still overpredicts the occurrence of low-porosity sand. 

For Well 1 the thick HPS layer below 0.5 s is interpreted as LPS by the Bayesian approach, while it 

is correctly classified by the LSTM. For Well 1, the increasing mismatch between the predicted and 

actual elastic properties below 0.15 s is probably related to coherent noise in the data that cannot be 

properly modeled by the assumed diagonal data covariance matrix. However, more importantly, for 

the LSTM approach, the true property values always lie within the 95 % confidence interval 



numerically derived from 1000 MC simulations. Table 2 summarizes the field inversion results. It 

emerges that the LSTM provides more accurate elastic property predictions, while similar to the 

synthetic test the linear inversion yields final estimates that better reproduce the observed data.  

 

DISCUSSION 

Estimation of elastic properties and litho-fluid facies is the primary goal of pre-stack seismic 

inversion. In this work, we used bilinear LSTMs to solve this mixed discrete-continuous inverse 

problem. We trained one network to solve the elastic inversion and the other to solve the classification 

problem, under the assumption of a local 1D subsurface model, and Gaussian-mixture distributed 

elastic parameters. Standard approaches to elastic inversions must be adapted and reformulated when 

the prior assumptions or the relation linking the model to the data change (i.e., from linear to non-

linear forward operator). Differently, the LSTM inversion can be directly applied to any type of prior 

elastic model, and forward equation. The implemented method does not require the regularization in 

its common-sense meaning (i.e., the inclusion of model constraints or prior information into the 

inversion framework), but the network is trained on a data set containing realistic subsurface scenarios 

and thus learns how to reproduce a similar model that fits the observed data. Moreover, instead of 

minimizing an error function or sampling from a posterior probability distribution, the proposed 

approach employs trained LSTMs to reconstruct the elastic parameters and litho-fluid classes from 

observed pre-stack seismic gathers. 

The generation phase requires a very limited computational effort, and the proposed approach also 

requires a relatively small data set for training, thus meaning that different network architectures and 

hyperparameter settings can be evaluated rapidly. This reduces not only the effort required for the 

network configuration but also makes applications of the approach to different exploration areas with 

different prior assumptions computationally affordable. The LSTM elastic inversion was combined 

with a subsequent Monte Carlo simulation for uncertainty appraisals, in which both the noise affecting 



the observed data and the modeling error associated with the network approximation are taken into 

account. Once trained, the networks estimate elastic properties, litho-fluid classes, and associated 

uncertainties from the data in real-time. 

Since the computational cost to generate the training set and to train the network is very limited (a 

few minutes on a common notebook), we suggest retraining the network from scratch when the LSTM 

inversion is applied to different scenarios. This is similar to what is commonly done in Bayesian 

inversion in which the prior must be reestimated for different exploration areas. Another possible 

approach could be applying a transfer learning strategy in which a small portion of new training 

examples is employed to adjust the internal network parameters when the prior of the target differs 

from that assumed during the learning stage (Aleardi and Salusti 2021). However, this method is 

mainly recommended when the generation and training phases are computationally expensive so it 

might be not appropriate for the considered application. In any case and similar to any Bayesian 

inversion, a robust prior model that exhaustively captures the actual distribution of the elastic 

properties in the study area is a crucial ingredient of the proposed inversion strategy. Other tests we 

performed (not shown here for brevity) that simulate more challenging scenarios with highly 

overlapped elastic properties within the different facies, confirmed the robustness and the 

applicability of the presented LSTM approach.  

 

CONCLUSIONS 

We trained two bidirectional long short-term memory networks to infer elastic properties and litho-

fluid classes from pre-stack data. A Monte Carlo simulation was also implemented to estimate model 

uncertainties in the elastic inversion.  Synthetic and field data experiments showed promising results 

and demonstrated that LSTM networks can effectively approximate the inverse of nonlinear operators 

that project the observed data onto the discrete and continuous parameter space. The trained networks 

achieved satisfactory predictions when realistic conditions were simulated (e.g., errors in the 



estimated source wavelet or erroneous assumptions about the noise and model statistics). In all the 

tests the LSTM usually provided more accurate predictions than the standard, two-step approach to 

elastic inversion and facies classification. Notably, the quality of the LSTM predictions is less 

affected by errors in the assumed noise and prior model, and by errors in the estimated source wavelet. 
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FIGURES & TABLES 

 

 

Figure 1: Standard RNN unit. 

  



 

 

Figure 2: Standard LSTM unit. 

  



 

 

Figure 3: Architecture of bidirectional LSTM. 

  



 

Figure 4: Facies-dependent Gaussian components of the elastic prior model for Vp, Vs, and 

density. 

  



 

Figure 5: Schematization of the network architectures. 

  



 

 

Figure 6: a) RMSE evolution during the training phase of the network used for the elastic 

inversion. b) Evolution of the accuracy for the network used for facies classification.   

  



 

Figure 7: Comparison between the angle-dependent source wavelets assumed in the 

learning phase (blue curve) and the wavelets used to compute the observed data in Tests 4 and 

5 (red curve). We simulate errors in the peak frequency and phase that increase with the 

incidence angle. 

 



 

Figure 8: Results for Test 1. a) Comparison between the true elastic profile and the elastic 

parameters estimated by the LSTM and linear inversion (MAP solution). The shaded red area 

depicts the 95% confidence interval associated with the LSTM estimates and provided by 1000 

MC simulations. The predicted data have been computed on the LSTM predictions and on the 

MAP solution provided by the linear approach. b) Facies classification results and the facies 

probability provided by the LSTM and Bayesian classification. The outcomes of the Bayesian 

classification has been obtained from the MAP solution estimated by the linear inversion. 

 

 



 

Figure 9: Confusion matrices, precision, and recall associated with the LSTM (a) and 

Bayesian (b) classifications for Test 1. The values in the confusion matrices indicate the number 

of samples correctly classified (main diagonal) or those misclassified (off-diagonal terms). 

 

 

 

 



 

Figure 10: As in Figure 8 but for Test 2. 

  



 

 

Figure 11: As in Figure 9 but for Test 2. 

  



 

Figure 12: As in Figure 8 but for Test 3. 

  



 

 

Figure 13: As in Figure 9 but for Test 3. 

  



 

 

Figure 14: As in Figure 8 but for Test 4. 

  



 

 

Figure 15: As in Figure 9 but for Test 4. 

  



 

 

Figure 16: As in Figure 8 but for Test 5. 

  



 

 

Figure 17: As in Figure 9 but for Test 5.



 

Figure 18: Results for Well 1. a) Comparison between the logged elastic properties and the 

elastic parameters estimated by the LSTM and linear inversion (MAP solution). The shaded red 

area depicts the 95% confidence interval associated with the LSTM estimates and provided by 

1000 MC simulations. The predicted data have been computed on the LSTM predictions and 

on the MAP solution provided by the linear approach. b) Facies classification results and the 

facies probability provided by the LSTM and Bayesian classification. The outcomes of the 

Bayesian classification has been obtained from the MAP solution estimated by the linear 

inversion. 

 



 

 

Figure 19: Confusion matrices, precision, and recall associated with the LSTM and 

Bayesian classification results for Well 1. The values in the confusion matrices indicate the 

number of samples correctly classified (main diagonal) or those misclassified (off-diagonal 

terms). 

  



 

Figure 20: As in Figure 18 but for Well 2.  

  



 

 

 

Figure 21: As in Figure 19 but for Well 2. 

  



 

 LSTM Linear inversion 

Vp err. 

(%) 

Vs err.  

(%) 

ρ err.    

(%) 

Data err. 

(%) 

Vp err. 

(%) 

Vs err. 

(%) 

ρ err.  

(%) 

Data err. 

(%) 

Test 1 3.15 3.44 1.10 14.33 6.40 3.62 2.96 13.65 

Test 2 3.18 3.36 1.20 19.71 7.58 5.07 3.25 13.25 

Test 3 4.06 3.42 1.58 30.72 8.21 5.15 3.23 24.80 

Test 4 7.89 4.86 2.37 34.12 11.32 5.49 3.52 26.99 

Test 5 8.01 5.01 2.31 34.29 12.48 6.42 3.43 25.63 

Table 1: Summary of the results provided by the LSTM and linear elastic inversion on 

synthetic inversion tests.  

  



 LSTM Linear inversion 

Vp err. 

(%) 

Vs err.  

(%) 

ρ err.    

(%) 

Data err. 

(%) 

Vp err. 

(%) 

Vs err. 

(%) 

ρ err.  

(%) 

Data err. 

(%) 

Well 1 8.44 5.49 3.62 32.22 9.23 5.84 3.92 28.35 

Well 2 6.09 4.64 2.03 31.03 6.69 5.90 2.15 28.04 

Table 2: Summary of the elastic inversion results on the two field seismic gathers. 

 

 

 

 


