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Abstract

In this article we describe the fractal nature of the solutions of the
Dirichlet problem associated with the definition of origami by an analytic
point of view. In particular we introduce a new iterative algorithm to
construct a solution of the differential problem when the boundary da-
tum is not homogenous. The paper is dedicated to Michele Emmer, who
few years ago invited us to give talks about this mathematical approach
to origami at one of the meetings on Mathematics and Culture that he
organized in Venezia.

1 A mathematical origami from the analytic point
of view

We consider an open set Ω ⊂ R2 which represents a sheet of paper, usually a
rectangle in R2. The origami is a folded paper and lives in the three dimensional
space R3. We identify the origami with the image of a map u : Ω ⊂ R2 → R3.

A sheet of paper is rigid in tangential directions. Indeed, it cannot be
stretched, compressed or sheared. If a sheet of paper is constrained on a plane,
it would only be possible to achieve rigid motions i.e. rotations and translations
of the whole sheet. Since origami is a folded paper, the map u cannot be ev-
erywhere smooth; it is only piecewise smooth. Folding creates discontinuities in
the gradient. Since we do not allow to cut the sheet of paper, u is however a
continuous map. The singular set Σu ⊂ Ω, which is the set of discontinuities of
the gradient Du, is called crease pattern in the origami context. Usually (but
not necessarily in the general three dimensional case) this set is composed by
straight segments. Of special interest is the case of the so called flat origami,
which is a map u whose image is contained in a plane, and which, up to a change
of coordinates, can be represented as a map u : Ω ⊂ R2 → R2.

In collaboration with Bernard Dacorogna we investigated this analytic ap-
proach to origami in a series of papers [7]-[13] and [24]; we refer to these refer-
ences for further details, proofs and descriptions of related aspects about origami
from a mathematical point of view. In particular, the article [11] in the Notices
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of the American Mathematical Society contains a less technical description of
our analytic approach.

We also mention some other mathematical approaches to origami, not nec-
essarily of analytic nature: we quote the recent article by Abate [3] and, for in-
stance, Alperin [1], Arkin-Bender-Demaine [2], Bern-Hayes [4], Haga [15], Heller
[16], Huffman [17], Hull [18], Kawahata-Nishikawa [14], Kawasaki [19], Kilian et
al [20], Lang [21],[22],[23], Robertson [25].

2 The fractal nature of the solutions of the Dirich-
let problem

In the general three dimensional case, with u : Ω ⊂ R2 → R3 being piecewise
smooth in Ω, the tangential rigidity can be expressed by requiring that the
gradient Du(x, y) of the map u is an orthogonal 3 × 2 matrix. That is, in any
subdomain where u is smooth, the matrix product satisfies the condition

Dut (x, y) ·Du (x, y) = I

where I is the identity matrix. In the special two dimensional case, with u :
Ω ⊂ R2 → R2, under the notation

u (x, y) =

(
u1 (x, y)
u2 (x, y)

)
the same conditionDut (x)·Du (x) = I equivalently gives |Du|2 = 2 |detDu| = 2
and also detDu = ±1. On the regions where the gradient is continuous the
determinant detDu must be constant and hence has a fixed sign. If we consider
a subdomain of Ω where detDu = 1, the equation |Du|2 = 2 detDu can be
easily transformed into the system

u1x − u2y = 0
u1y + u2x = 0∣∣Du1 (x, y)

∣∣ = 1∣∣Du2 (x, y)
∣∣ = 1

where the nonlinear nature of the differential equations is apparent.
The study of this kind of systems of partial differential equations is motivated

by the study of elasticity and rigidity properties of materials. If we assume, as
it is natural, that the elastic energy vanishes for rigid deformations, then any
map with orthogonal gradient must be a minimum for the elastic energy. It is
hence interesting to investigate when such maps exist.

In particular tension and compression of a material is achieved by constrain-
ing the boundary of such material in a given position. This is why we are
interested in solving the Dirichlet problem:Du =

(
u1x u1y
u2x u2y

)
orthogonal matrix a.e. in Ω,

u (x, y) = ϕ(x, y) on the boundary ∂Ω.

(1)
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It is not difficult to convince oneself that if ϕ is a dilation problem (1) has
no solution. On the other hand when ϕ is a strict contraction there are general
abstract results [5, 6] which guarantee the existence of infinitely many solutions.

In the particular case when ϕ is constant we are able to find explicit solutions
to this problem. From the point of view of origami we are looking for a crease
pattern on a square sheet of paper (for example) such that the whole boundary
of the square is sent on a single point. The set of points where the map assumes
a fixed value cannot have interior, othwerise the gradient would be zero and
hence not orthogonal. On the other hand in a region where the gradient is
constant and orthogonal the map is locally invertible and hence there cannot
be two points with the same value.

This forces the crease pattern to accumulate and become dense while ap-
proaching the boundary of the domain and explains the fractal nature of the
solutions of our differential problems.

More precisely, by denoting by τ , ν respectively the tangent and normal
unit vectors on ∂Ω, up to a sign we have

(
Du1, τ

)
=
(
Du2, ν

)
and

(
Du2, τ

)
=(

Du1, ν
)
. Since u1 (x, y) = u2 (x, y) = 0 on ∂Ω, we also obtain Du1 = Du2 = 0,

which contradicts the fact that
∣∣Du1∣∣ =

∣∣Du2∣∣ = 1. Thus any solution to the
differential problem (1), with ϕ = 0 is Lipschitz continuous but not of class
C1 near the boundary; therefore it assumes in a fractal way the homogenous
boundary datum ϕ = 0. The map u will be explicitly defined at every (x, y) ∈ Ω
and it will be piecewise affine, with infinitely many pieces, in accord with its
fractal nature near the boundary of Ω.

3 A strategy to solve the differential problem

As usual we denote by O (n) the set of n−dimensional orthogonal matrices; this
in particular O (2) is the set of 2× 2 orthogonal matrices. Under this notation
the Dirichlet problem (1) with ϕ = 0 becomes{

Du (x, y) ∈ O (2) a.e. (x, y) ∈ Ω

u (x, y) = 0 (x, y) ∈ ∂Ω
(2)

with Ω rectangle in R2. As we already pointed out in the previous section,
only a fractal construction can ensure the boundary condition u = 0. When Ω
is a rectangle we can divide it in infinitely many homothetic rectangles which
are smaller and smaller while we approach to the boundary of Ω. Then it is
enough to consider a base map u0 defined on one of these tiles. This map will
be translated rotated and rescaled to fit any other rectangles. To assure that
the gluing of the rectangles gives a continuous map, we need the base map to
have prescribed recursive boundary conditions. I.e., we require that on the right
hand side of the base rectangle (say a square of side 1) the map is defined so
that it reproduces twice the values of the left hand side, rescaled by half; i.e.

u0(1, y) = u0(0, 2y) for y∈ [0, 1/2],

u0(1, y) = u0(0, 2y − 1) for y∈ [1/2, 1];
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while on the upper and lower sides we only need periodic boundary conditions
u0(x, 0) = u0(x, 1) for x ∈ [0, 1]. If the map assumes at least once the value 0
on every rectangle in the net, then by its Lipschitz continuity (every rigid map
is 1-Lipschitz continuous) it can be extended to the boundary ∂Ω with the 0
value.

4 The Dirichlet problem with not homogeneous
boundary condition

In this section we propose some new ideas to solve the Dirichlet problem (2)
when the homogeneous boundary condition u (x, y) = 0 on ∂Ω is replaced by a
not homogeneous one. From the applicative point of view the ϕ = 0 boundary
datum is not really applicable because we are usually interested in finding so-
lutions when a small compression is applied to the boundary of our body. The
problem of finding explicit solutions becomes more difficult and for simplicity
we only consider a linear datum such as

ϕ(x, y) = (1− 2λ)(x, y) ∀(x, y) ∈ ∂Ω (3)

with Ω = [0, 1]2 and 0 < λ < 1. When λ = 0 the only solution is the identity
u(x, y) = (x, y) while for λ = 1 the only solution is u(x, y) = (−x,−y).

We build a solution to the Dirichlet problem with a recursive construction,
as explained in the previous section.

In particular we start by defining the mesh of the cells as in Figure 1. Note
that we approach the boundary recursively by splitting each cell into two cells
of half the size.

In Figure 2 we represent the singular set of the map, i.e., the discontinuity set
of the gradient. In fact our solution is Lipschitz-continuous: only the gradient
can have discontinuities.

We describe the construction of the solution in each cell. We start by the
diagonal cells, see Figure 3, where we emphasize the discontinuity lines of the
gradient of the solution.

The main construction is described in Figure 4 where we have inserted the
analytic expression of the solution in each subcell. We also inserted the cartesian
equation of the discontinuity lines. Note that the solution matches continuously
on each discontinuity line of the gradient. We invite the reader to check this
property.

In Figure 5, we give the values of the gradient on a base cell. Note that the
map has only diagonal gradient matrices. In this Figure we use precisely six
different gradient matrices.

Finally a similar detailed analytical description is proposed in Figure 6 where
we show four adjacent cells around a point in the diagonal of the square.

Up to now we have a map u whose gradient is orthogonal. To check that
this map solves the boundary datum (3) we consider again Figure 4 (similarly
we could consider Figure 6). In this basic cell the map assumes the same values

4



Figure 1: The scheme of the cells which approach the boundary in a fractal way.
The green cells are described in Figure 3 while all other cells are obtained by a
rotation of the construction with the singular set and the solution described in
Figure 4 and Figure 6.
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Figure 2: The singular set i.e. the discontinuity lines of the gradient. In the
picture in the left-hand side the singular set is superimposed to the grid of the
cells, while the picture on the right-hand side shows the singular set alone. Each
different value of the gradient of the solution corresponds to each color in the
picture. The identity gradient matrix I = [ 1 0

0 1 ] is identified with white color,
while the yellow color denotes the gradient matrix −I.

Figure 3: A detail of each green square in Figure 1. The set of discontinuity
lines of the gradient of the map is respresented here. Some analytic details are
shown in Figure 6.
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Figure 4: This is the main construction of the solution in a basic cell. Recall that
our solution is a map R2 → R2. We wrote the analityic expression of the two
components of the solution on each subregion where the gradient is constant.
The solution matches continuously on the discontinuity lines of the gradient.
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Figure 5: The gradient of the solution on two contiguous basic cells. Note that
the map only uses diagonal unitary matrices. This depends on the fact that the
discontinuity lines of the gradient are either parallel to the coordinate axes or
are rotated by ±45 degrees. In this picture six different gradient matrices can
be seen.
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Figure 6: We represent here the analytic expression of the vector-valued solution,
up to an additive constant and a rescaling, specifically around a corner cell (as
in Figure 3). Of course also here the solution matches continuously on each
discontinuity line of the gradient. The difference of the values of the solution
at the vertex points (2, 2) and (0, 0) is equal to 2− 4λ; i.e. it is the same value
computed similarly for the boundary value (1− 2λ)(x, y). The same is true for
the other two vertices (2, 0) and (0, 2).
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of the boundary datum (3) on the four vertices of the unit square. From a basic
cell to another basic cell, the map is rescaled, rotated, and translated so that
this property is preserved on all the vertices of the grid in Figure 1.

Since the cells have diameter which goes to zero as we approach the boundary
∂Ω, and since the map is Lipschitz-continuous, we can extend it to the boundary
so that the map assumes exactly the linear datum (1− 2λ)(x, y).

In conclusion our map u solves the Dirichlet problem{
Du(x, y) ∈

{
±
[
1 0
0 ±1

]
,± [ 0 1

1 0 ]
}
⊂ O(2) a.e. (x, y) ∈ [0, 1]2

u(x, y) = (1− 2λ)(x, y) for all (x, y) ∈ ∂[0, 1]2

the map being orthogonal almost everywhere on [0, 1]2 and assuming only six
gradient values.

Figure 7: Two singular sets of the solution in dependence on λ: on the left-hand
side λ = 1

10 on the right-hand side λ = 7
10 . Again, the gradient matrix of the

solution is equal to the identity matrix I in the white regions, while it is equal
to −I in the yellow regions.

When λ varies in (0, 1) the singular set of the solution that we have built
varies in consequence. In Figure 7 we present two singular sets. The first one
with a small value of λ the second one with a value of λ close to 1.
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