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Abstract: Atmospheric compensation (AC) allows the retrieval of the reflectance from the measured
at-sensor radiance and is a fundamental and critical task for the quantitative exploitation of hyper-
spectral data. Recently, a learning-based (LB) approach, named LBAC, has been proposed for the AC
of airborne hyperspectral data in the visible and near-infrared (VNIR) spectral range. LBAC makes
use of a parametric regression function whose parameters are learned by a strategy based on synthetic
data that accounts for (1) a physics-based model for the radiative transfer, (2) the variability of the
surface reflectance spectra, and (3) the effects of random noise and spectral miscalibration errors. In
this work we extend LBAC with respect to two different aspects: (1) the platform for data acquisition
and (2) the spectral range covered by the sensor. Particularly, we propose the extension of LBAC to
spaceborne hyperspectral sensors operating in the VNIR and short-wave infrared (SWIR) portion
of the electromagnetic spectrum. We specifically refer to the sensor of the PRISMA (PRecursore
IperSpettrale della Missione Applicativa) mission, and the recent Earth Observation mission of the
Italian Space Agency that offers a great opportunity to improve the knowledge on the scientific
and commercial applications of spaceborne hyperspectral data. In addition, we introduce a curve
fitting-based procedure for the estimation of column water vapor content of the atmosphere that
directly exploits the reflectance data provided by LBAC. Results obtained on four different PRISMA
hyperspectral images are presented and discussed.

Keywords: atmospheric compensation; satellite hyperspectral imagery; machine learning; PRISMA
hyperspectral data

1. Introduction

Hyperspectral sensors (HSs) offer the opportunity of analyzing the chemical and
physical composition of the remote sensed scene thanks to their ability of measuring the
spectrum of the observed pixels in a large number of contiguous and narrow spectral
channels [1]. In particular, spaceborne sensors allow the exploitation of the potential of
hyperspectral technology for large-scale monitoring of the earth [2]. The set of Earth Obser-
vation (EO) applications enabled by spaceborne HSs includes [3–6] detailed environmental
monitoring, forest analysis, precision agriculture, inland and coastal water monitoring, raw
material exploration and mining, soil degradation, and analysis.

Despite the technological advances, hyperspectral satellites are still poorly represented
in spaceborne missions compared to multispectral ones [2]. In this context, the Italian
Space Agency (ASI) EO mission named PRISMA (PRecursore IperSpettrale della Missione
Applicativa, [7–10]) offers a great opportunity to improve the knowledge about the scien-
tific and commercial applications of spaceborne hyperspectral data. PRISMA, launched
in March 2019 [11], includes a pushbroom hyperspectral camera covering the portion
of the electromagnetic spectrum ranging from 400 nm to 2500 nm with 10 nm spectral
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sampling. Specifically, the hyperspectral sensor is composed of two partially overlapped
spectrometers operating in the Visible, Near InfraRed (VNIR), and ShortWave InfraRed
(SWIR) spectral ranges, respectively [10]. The sensor acquires scenes of 30 km × 30 km
with a Ground Sampling Distance (GSD) of 30 m.

One of the critical issues in the exploitation of hyperspectral remotely sensed data
is represented by the distortion effects due to the atmosphere in the radiative transfer
path [12]. The information about the composition of the observed material is contained in
its spectral reflectance. Remote sensing sensors measure the at-sensor spectral radiance
that can be considered as an altered version of the spectral reflectance where distortion is
due to the effects of the solar illumination and the atmosphere composition. To derive the
spectral reflectance of the observed material, those effects must be properly compensated
by means of a process called Atmospheric Compensation (AC, [13–16]. In the VNIR-SWIR
spectral range, atmospheric effects mostly depend on [13–15] (a) the absorption of water
vapor, (b) the aerosol extinction, and (c) the absorption of uniformly mixed gases such as
oxygen (O2), ozone (O3), carbon dioxide (CO2) and methane (CH4).

The most effective and reliable approach to the AC of hyperspectral data is the Physics-
based (PB) one [13–18] that exploits an analytical model of the radiative transfer in the
atmosphere (Radiative Transfer Model-RTM). PB methods follow a common approach [14]
where, first the parameters characterizing the atmosphere (mainly the visibility V and the
column water vapor concentration CWV) are estimated from the available data, and then
the spectral radiometric quantities in the adopted RTM are derived by means of a specific
radiative transfer code (e.g., Modtran [19], and, finally, the spectral reflectance of each
image pixel is derived by inverting the RTM. Often, to remove the effects of random noise
and miscalibration artifacts from atmospherically compensated data, they are processed by
means of a filtering procedure generally known as spectral polishing [16].

In a recently published work [20], a new approach for AC of VNIR hyperspectral
data was introduced. It is called the learning-based atmospheric compensation (LBAC)
approach and makes use of machine learning methods to directly estimate the spectral
reflectance from the at-sensor radiance accounting for the variability induced by one
or more unknown parameters of the RTM and by-passing their estimation. Specifically,
LBAC derives the spectral reflectance from the at-sensor spectral radiance by means of
a parametric regression function whose parameters are determined through a specific
learning strategy that exploits simulated data to account for the variability of both the
atmosphere and the surface spectral reflectance. The learning strategy is specifically
designed to take noise into account in order to make the regression function robust to its
effects. The approach introduced in [20] is quite general and different types of parametric
regression functions can be used, including those characterized by complex architectures
such as deep neural networks. In [20], a first parametric function based on multilinear
regression was tested on real airborne hyperspectral data acquired in the VNIR spectral
range and several results were presented and discussed along with an extensive analysis
over simulated data.

In this work, we focus on the extension of the previous analysis of LBAC results in
two directions: (a) we consider hyperspectral data acquired from a spaceborne platform,
and (b) we consider an extended spectral range including the SWIR, where the atmosphere
has stronger water absorption windows than those in the VNIR spectral region. It is
worth noting that, though the LBAC algorithm considered in this work uses the same
regression model proposed in [20], the parameter matrix that defines the specific regression
function is changed both in terms of cardinality and values. Such a matrix is obtained in
the learning phase using a training set that differs from that in [20] for two main aspects.
First, the training set is here obtained by simulating the atmospheric effects in the SWIR
spectral range and not only in the VNIR spectral range. Then, in order to account for
satellite acquisition conditions, atmospheric layers up to an altitude of 100 km have been
considered and the description of the acquisition geometry has been enriched with the
inclusion of the sensor viewing angle and the relative azimuth angle between the incident
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solar direction and the direction of propagation of the scattered radiance. In this work, we
refer to the PRISMA data domain, and, for this purpose, we analyze images acquired by
the hyperspectral camera of the PRISMA mission. In addition, we propose a CWV retrieval
algorithm that exploits LBAC outputs in combination with a curve fitting approach to
obtain per-pixel estimates of CWV from PRISMA radiance data. It is worth noting that here
we focus on the extension of the LBAC method to the specific case of modern spaceborne
hyperspectral missions with particular reference to the PRISMA mission. The reader is
referred to [20] for the detailed description of the LBAC procedure.

This paper is organized as follows. In Section 2 we summarize the LBAC algorithm
and provide implementation details for its extension to spaceborne sensors and to the
SWIR spectral range. In Section 3, we introduce the procedure that exploits LBAC outputs
for the estimation of CWV values in each image pixel. Finally, in Section 4, we present and
discuss results obtained by applying the LBAC to real PRISMA images.

2. LBAC Algorithm

The LBAC algorithm applied to VNIR-SWIR satellite hyperspectral data is based on
the following RTM [15]. Denoted by LεRNB as the at-sensor radiance vector (where NB is
the number of sensor channels), and assuming a Lambertian model for the description of
the observed surface, L can be expressed as:

L(ρ,ρa, Γ) = LGND(ρ,ρa, Γ) + Lp(Γ)

LGND(ρ,ρa, Γ) =
Ecos(ϑs)

π [τ1(Γ)
ρ

1−S(Γ)ρa
+ τ2(Γ)

ρa
1−S(Γ)ρa

]
(1)

where ϑs is the solar zenith angle and LGND denotes the ground reflected radiance, i.e., the
contribution of the solar radiation that after the interaction with the surface is captured by
the sensor. The description of the radiometric quantities in Equation (1) is summarized
in Table 1 We assume that the vector La of the spectral radiance from adjacent regions is
available and modelled as La(ρa, Γ) = L(ρa,ρa, Γ) [15,18]. For the sake of conciseness, in
Equation (1) the parameters specifying the acquisition conditions (acquisition geometry
and atmosphere) are grouped in the vector Γ.

Table 1. Description of the radiometric quantities in Equation (1).

LGND(ρ,ρa, Γ)
GrouND Reflected Radiance: Spectral Radiance Reaching the Sensor after
the Interaction with the Surface.

Lp(Γ) Intrinsic upwelling atmospheric spectral radiance

ρ Surface spectral reflectance

ρa Spectral reflectance from background (adjacent surfaces)

E Solar spectral irradiance at the top of the atmosphere

τ1(Γ)
Spectral transmittance: radiometric quantity accounting for the interaction of
the surface material with the direct and diffuse solar radiation

τ2(Γ)

Spectral transmittance from adjacent pixels: radiometric quantity accounting
for the part of the solar radiation that, after the interaction with the materials
in a neighborhood of the surface of interest, is scattered by the atmosphere in
the sensor Instantaneous Field of View

S(Γ) Spectral spherical albedo of the atmosphere

On the basis of the smooth behavior observed in the spectral reflectance of most of
the natural and artificial materials [16,21], the vector ρ is assumed as lying into a vector
subspace with rank K lower than that of the original data space (NB. Thus, it can be
expressed as ρ = U·c with U denoting one of the possible NBxK basis matrices of the
above-mentioned subspace. In the derivation of LBAC [20], U is obtained by applying
a procedure based on Singular Value Decomposition to the data of a spectral reflectance
library D. The spectral library contains more than 3000 measured spectral reflectances
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of several artificial materials, vegetation, water, soils, and minerals and it was obtained
by merging three available spectral libraries: ASTER (Advanced Spaceborne Thermal
Emission Reflection Radiometer, [22], USGS (United States Geological Survey-version
released in 2007, [23] and ANGERS [24].

LBAC estimates ρ directly from the at-sensor radiance L of the observed pixel and
that from adjacent regions La regardless of the spatially varying values of CWV, and
without the calculation of the radiometric quantities. The only atmospheric parameter to
be estimated is V. La is, generally, obtained from the analyzed data [13,18] by applying a
linear and space invariant filter whose impulse response approximates the atmospheric
Point Spread Function (PSF). In the implementation of the LBAC algorithm we use the
impulse response proposed in [25].

Specifically, for each image pixel, LBAC receives L and La as input and provides as out-

put the estimates of the vector components
^
c and of the spectral reflectance

^
ρ = U·^c of the

observed surface. The output is obtained by means of a multiple linear regression function:

^
c = W(V)T ·xx =

[
LT , LT

a , 1
]T

(2)

The parameter matrix W(V). is obtained by means of a specific learning strategy that
minimizes the following loss function:

loss
[
W̃; xt, ct, V

]
t = 1, . . . , Nt

=
Nt

∑
t=1

||ct−W̃(V)T ·xt(V, CWV) ||2
||ct ||2

+β||W̃ (V)||2F (3)

where || || and || ||F . denote the L2-norm and the Frobenius norm, respectively.
The learning strategy exploits a training set of NT simulated triplets {Lt, La,t, ct}

generated according to the RTM in Equation (1). The simulation strategy uses Modtran
to generate the radiometric quantities in Equation (1) and the spectral library D for the
generation of the spectral reflectance of the observed surface and of its adjacent surfaces.
These are generated by applying the Linear Mixture Model to randomly selected elements
of D. Both the selected spectra and the mixing coefficients are randomly chosen [20].

In simulating the training sample for the learning phase, the Modtran parameter
related to CWV is randomly varied according to a uniform distribution in the range
[0.5, 5] g·cm−2. The rest of the Modtran parameters are kept constant. We refer to: (a) the
parameters MODEL and IHAZE that specify the geographical and seasonal model and the
aerosol model; (b) the visibility V; (c) the total column amounts of O2, O3, CO2, and CH4.
As to the parameters related to the acquisition geometry, in [20], with reference to typical
airborne applications, the sensor height and the solar zenith angle (ϑs) were considered.
Here, referring to spaceborne applications, the height of the sensor is irrelevant (all the
atmospheric layers included in Modtran are considered) and the acquisition geometry is
defined by ϑs, the sensor viewing angle (ϑv) and the relative azimuth angle between the
incident solar direction and the direction of propagation of the scattered radiance (φ).

Various regression functions are trained by varying the above-mentioned parameters.
In this work, for the parameters MODEL, IHAZE, V and ϑs we consider the same values
as in [20]. For φ we consider values in the range [0,180] deg with a step of 20 deg and
for ϑv, values in the range [−21,21] deg with a step of 1 deg. The extremes of the latter
range are in accordance with the maximum off-nadir pointing of the PRISMA mission [10].
For the total column amounts of O2, O3, CO2, and CH4., we consider the default Modtran
values determined by the parameter MODEL. Notice that the regressors applied to a given
hyperspectral image, are chosen from the set of all the trained regressors on the basis of
the specific a priori known acquisition conditions (geographical area, acquisition date, and
time, and acquisition geometry).

It is worth noting that, in order to apply LBAC to the PRISMA data, the general
architecture of the algorithm has not been modified with respect to that proposed in [20]
and recalled in Equation (2). What is actually changed is the simulation of the training
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set which also takes into account the effects of the atmosphere in the SWIR spectral
range. Of course, the simulated training sets are mapped in the sensor spectral domain
by accounting for the specific Spectral Response Function of the sensor channels of the
PRISMA hyperspectral sensor.

One of the advantages offered by LBAC is its robustness to spectral mis-calibration
errors and random noise, which is achieved by considering such sources of disturbance
in the algorithm training phase. Noise has been simulated according to the realistic
signal-dependent noise model described in [26,27]. In simulating the training set, noise
realizations are added to radiance vectors with different values of the Signal to Noise Ratio
(SNR) drawn from a uniform distribution in the range [25 dB, 60 dB]. The current version
of the LBAC algorithm does not account for the effects of terrain elevation.

2.1. Visibility Estimation

LBAC assumes the knowledge of the parameter V that is fundamental for selecting
the specific regression model to be used. In practice, the value of V is not known and must
be estimated from the analyzed image. In [20], an estimation method was proposed based
on dark pixels analysis [28]. It relies on the assumption that, denoted as ψ a certain set
of bands not affected by water vapor and gases absorption, the image contains, for each
band in ψ, at least one pixel where the contribution of the ground reflected radiance (LGND)
is negligible.

Denoting with Lψ, the vector of the darkest value of the image in each band of ψ,
it can be viewed as an approximation of the upwelling atmospheric spectral radiance
Lp(Γ), which depends on the specific acquisition conditions of the analyzed image and,
in particular, on V. The above-mentioned approximation is compared with a Look-Up
Table (LUT) of Lp(Γ) vectors simulated by Modtran for different values of V, to obtain the
estimate V̂(Γ) of the visibility.

In this work, the algorithm in [20] has been modified in some of its parts for the
extension to satellite data.

Firstly, the algorithm proposed in [20], was designed for airborne applications (small
scene) and provides a single visibility estimate for the entire image. In the case of PRISMA
data, given the spatial extent of the observed scene (30 km × 30 km), constant visibility is
unlikely to occur. Thus, the visibility estimation algorithm is applied locally by considering
non-overlapping image patches of 20 × 20 pixels (600 m × 600 m). This choice is in line
with the strategy adopted by the PRISMA L2C data processor as reported in [29].

Furthermore, different algorithms are applied to land and water areas on the basis
of a pre-classification of the entire image. Specifically, for land areas, ψ includes the first
32 channels of the PRISMA hyperspectral sensor corresponding to the central wavelengths
in the range [400 nm, 650 nm]. For water areas, ψ is the set of all the bands with central
wavelengths above 650 nm not affected by water and gases (O2, CO2, and CH4) absorption.
The latter choice is motivated by the fact that water-leaving reflectance is almost zero in
the near- and short-wave infrared spectral range.

In the case of land areas, where the probability of occurrence of dark pixels is generally
low, Lψ is obtained by averaging the 10 darkest pixels detected in that region of the image.
For water areas, a greater number of samples can be considered to estimate the visibility.
Thus, Lψ is obtained by averaging all the water pixels in the selected image region in order
to mitigate noise effects.

In both cases, visibility is estimated by minimizing, with respect to V, the following
loss function:

∆
[
Lψ, Lψ

p

(
V,

~
Γ
)]

=
||Lψ − Lψ

p

(
V,

~
Γ
)
||

||Lψ
p

(
V,

~
Γ
)
||

+
1

Nψ
u
(

Lψ
p

(
V,

~
Γ
)
− Lψ

)
(4)
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where
~
Γ is the vector of RTM parameters excluding V, Nψ is the number of bands in ψ and u

is the Heaviside step function. The first term in Equation (4) measures the relative distance

between Lψ and Lψ
p

(
V,

~
Γ
)

, while the second term accounts for the physical non-negative

constraint Lψ ≥ Lψ
p

(
V,

~
Γ
)

. The minimization of the function in Equation (4) is carried out
by considering values of V ranging from 10 km to 100 km.

It is worth noting that the dark pixel method, when applied to land images, provides
good results in the region containing shadowed pixels, dark vegetation pixels or, in general,
low reflectance pixels (at least in the set of bands ψ). It tends to underestimate V in image
sub-regions where all the pixels correspond to bright materials (e.g., desert areas). To miti-
gate the underestimation of V, after the local estimation procedure, a 3 × 3 bidimensional
median filter is applied to the resulting visibility estimation matrix to filter out potential
outliers. Values of the estimated visibility lower than 10 km are discarded and replaced by
the average visibility obtained in the rest of the image pixels. This strategy is similar to
that adopted by other methods proposed in the literature and based on dark pixels.

Notice that, in land-water transition patches (e.g., those corresponding to coastal
regions), visibility is estimated by considering the procedure designed for water pixels.

It is worth stressing that, as opposed to water vapor, that has absorption effects
characterized by distinctive spectral shapes over narrow intervals, atmospheric aerosols
determine spectrally smooth perturbations that can be difficult to disentangle from changes
in surface reflectance. Despite the recent advances in AC methods, estimating visibility
remains an open and challenging problem [16]. Algorithms that work well under all the
possible conditions are not currently available [16].

One possible way to tackle this problem is to involve in the visibility estimation
process aerosol thickness products from other satellite missions specifically conceived for
this purpose (e.g., Sentinel 3 L2 [30], Terra/Modis [31].

3. CWV Retrieval Based on LBAC Results

LBAC is specifically conceived to retrieve the surface spectral reflectance regardless of
the CWV values in the atmosphere. It does not require the estimates of the atmospheric
parameters as input. However, in some EO applications, it is important to estimate CWV,
because it is a tracer for tropospheric changes, and it is important for climate prediction and
global circulation models determination [32]. For this reason, we have developed a new
algorithm that exploits the reflectance obtained by LBAC (regardless of the CWV values) to
estimate CWV. Such a strategy is opposite to those adopted in traditional AC algorithms
that perform CWV estimations as a preliminary step for RTM model inversion. Common
methods for CWV retrieval is the Atmospheric Pre-corrected Differential Absorption
algorithm (APDA, [29] and the curve fitting techniques [15,33]. APDA exploits the at-
sensor radiance values in three groups of channels: the measurement channels with a
spectral central wavelength falling within an atmospheric water vapor absorption region
(typically around 820 nm or 940 nm), and two “reference” channels corresponding to the
wavelengths located at each side of the water absorption band where absorption due to
CWV is almost negligible. Those at-sensor radiance data are combined to compute the
“depth” of the absorption feature that is related to CWV. The computed “depth” is compared
with a pre-calculated look-up table to obtain the estimate of the CWV parameter. APDA
makes use of the simplifying hypothesis that the spectral reflectance in the measurement
channel has a fixed value (0.4) regardless of the observed surface.

Spectral curve fitting [33] is an alternative approach that searches for the best match
between the radiance measured in the water absorption bands and that generated according
to the RTM by assuming the spectral reflectance in those bands as linearly dependent on the
wavelengths. In reality, the reflectance is never a perfect linear continuum; more complex
surface reflectance shapes can distort both ratios and spectral fits. To deal with this problem,
in [15] a low-rank approximation of the spectral reflectance in the water absorption band
was proposed.
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In this work, we propose a curve fitting approach where the reflectance values in the
considered water absorption bands are those provided by the LBAC algorithms. Specifically,
denoting as ψw a set of sensor channels falling in the water absorption bands, a CWV
estimate for each image pixel is obtained as the minimum of the following loss function:

Ω(CWV) =

||Lψw − L̂ψw

(
ρ̂, CWV, V̂,

¯
Γ

)
||

||L̂ψw

(
ρ̂, CWV, V̂,

¯
Γ

)
||

(5)

where ρ̂ and V̂ are, respectively, the estimate of the spectral reflectance provided by the
LBAC, and the estimate of the visibility given by the procedure in Section 2.1 in the region
of the image comprising the pixel under consideration. The superscript ψw indicates that

the vectors L and
^
L
(
ρ̂, CWV, V̂,

¯
Γ

)
are considered in the spectral channels included in ψw.

L and L̂
(
ρ̂, CWV, V̂,

¯
Γ

)
are the measured and the RTM derived at-sensor spectral radiance

in the pixel under consideration, respectively. The latter is obtained through Equation (1) by

assuming ρ = ρa =
^
ρ and with the radiometric quantities (Table 1) obtained by Modtran.

In the expression of the at-sensor spectral radiance derived by applying the RTM, we
have explicitly separated the atmospheric parameters CWV and V from the rest of the

parameters in Γ (grouped in
¯
Γ). L̂

(
ρ̂, CWV, V̂,

¯
Γ

)
is derived for several values of CWV

by using the corresponding radiometric quantities that are pre-calculated and stored in a
LUT. CWV estimation is finally obtained by numerically minimizing the objective function

in Equation (5) over the vectors L̂
(
ρ̂, CWV, V̂,

¯
Γ

)
derived on a discrete set of values for

CWV ranging from 0 g·cm−2 to 5 g·cm−2.
In applying the CWV retrieval algorithm to PRISMA hyperspectral data, ψw is set so

as to include the sensor channels falling in the water absorption spectral windows around
820 nm, 940 nm, and 1130 nm.

4. Experimental Results on PRISMA Data

In this section, we discuss the results obtained by applying the AC procedure de-
scribed in the previous sections to different hyperspectral images of the PRISMA mission.
Specifically, we process the radiometrically calibrated radiance data stored in the Level 1
PRISMA data product [11].

4.1. Experimental Setup and Data Description

In Table 2 we summarize the PRISMA hyperspectral sensor specifications. The hyper-
spectral sensor is composed of two spectrometers operating in the VNIR and the SWIR
spectral range, respectively. The wavelengths covered by the two spectrometers are par-
tially overlapped. In our experiments, we combined the data in the overlapped region of
the covered spectral range thus obtaining a total number of spectral channels equal to 230.

It is worth noting that, dealing with remotely sensed data, in situ measurements for
AC algorithms validation are generally not available, especially in the case of satellite
missions where the acquisition of the ground truth is further complicated by the low
spatial resolution of the sensor. For this reason, our analysis is carried out by comparing
the results provided by the proposed algorithm with the spectral reflectance image (L2C
product, [9,11] included in the PRISMA data product. The L2C data are obtained by a state-
of-the-art PB algorithm (AC PRISMA algorithm, hereinafter) that retrieves the visibility by
using the Dark Dense Vegetation technique [28] and estimates CWV on a per-pixel basis
by using an algorithm in the class of the differential absorption techniques [34].
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Table 2. PRISMA sensor specifications.

Swath/FOV 30 km/2.77◦

Ground sampling Distance 30 m

Spectral range VNIR: 400–1010 nm
SWIR: 920–2505 nm

Spectral width (FWHM) ≤12 nm

Radiometric quantization 12 bit

VNIR SNR >200:1

SWIR SNR >100:1

MTF@Nyquist Freq. VNIR/SWIR along Track > 0.18
VNIR/SWIR across Track > 0.34

Spectral bands 66 VNIR
173 SWIR

Our experiments focus on four images concerning the same scene and are collected at
different times with different acquisition conditions. The scene includes several application
scenarios such as urban, rural, and coastal regions and is a good test case for the proposed
analysis. The scene has a spatial extent of 30 km× 30 km and is centered near the city
of Grosseto, in the south of Tuscany, Italy. In Figure 1 we show a high spatial resolution
image of the region of interest taken by Google Earth. In the same image, we have marked
the position of some “targets” that will be adopted to discuss the results. Selected targets
include both natural surfaces and artificial surfaces.

Figure 1. Image of the scene of interest taken by Google Earth. Landmarks indicate the position of
the natural and artificial surfaces selected to discuss the results.

Table 3 shows, for each image, (a) the acquisition date, (b) the solar zenith angle
ϑs, (c) the sensor viewing angle ϑv, (d) the relative azimuth angle between the incident
solar direction and the direction of propagation of the scattered radiance φ, and (e) the
cloud cover percentage. The angles reported in Table 3 are averaged over all the pixels
of each image. Notice that the images named DAY2, DAY3, and DAY4 were collected
approximately with the same solar zenith angle and sensor viewing angle and are relatively
close in time. DAY1 data were acquired at a temporal distance greater than two months
from the others and with a different acquisition geometry. As an example, Figure 2
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shows the PRISMA true color (Red Green Blue: RGB) composite image taken on 8 July
2020 (DAY4).

Table 3. Acquisition date and acquisition geometry parameters for the images chosen for the experiments.

Image Name Acquisition Date ϑS(deg) ϑv(deg) φ (deg) Cloud Cover
(%)

DAY1 1 April 2020 40 13 126 0.7

DAY2 15 June 2020 23 1 68 6.5

DAY3 21 June 2020 23 6 139 2.5

DAY4 8 July 2020 25 7 37 0.04

Figure 2. PRISMA true color (Red Green Blue: RGB) composite image taken on 8 July 2020 (DAY4).

On the basis of the acquisition time of the images, in the learning phase of the LBAC
algorithm and in the visibility estimation algorithm, we adopted the LUTs derived by
considering the Mid-Latitude Summer Modtran model. Furthermore, on the basis of the
characteristic of the scene, we have considered two distinct aerosol models (parameter
IHAZE of Modtran): the rural aerosol model for land pixels and the maritime aerosol
model for pixels of the Tyrrhenian Sea. The basis matrix U of the reflectance subspace is
obtained by the procedure in [20,35] assuming a rank of 40.

Before analyzing the results obtained on the above-mentioned images, we show the
first example concerning a different image that is chosen because it is one of the rare cases
in which in situ measurements are available. Specifically, we refer to the image acquired on
8 August 2020 (at 10:47) over the La Crau site in France, where one of the measurement
stations of the RadCalNet network [36] operates. RadCalNet is an initiative of the Working
Group on Calibration and Validation of the Committee on Earth Observation Satellites
(CEOS), aimed at collecting in situ reflectance and atmospheric measurements to aid in
the post-launch radiometric calibration and validation of optical imaging sensor data. La
Crau station measures data representative of a very small area (compared to the PRISMA
GSD) corresponding to a disk of 30 m radius on latitude 43.55885 degrees and longitude
4.864472 degrees covered by pebbly soil with sparse vegetation. In situ spectral reflectance
measurements were performed by an ASD FieldSpec-4 spectroradiometer mounted on
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a tripod with a time interval of 30 min between 09:00 to 15:00 local standard time. The
reflectance spectra and the measurement uncertainty in the spectral range from 400 nm
to 2410 nm are made available. Note that the La Crau site was not specifically conceived
for validation of PRISMA L2C data products and in general for L2 data from spaceborne
sensors. To the best of our knowledge, a calibration/validation site specifically designed
for PRISMA data is not yet available. Consequently, La Crau data cannot be used to assess
the performance of an AC algorithm applied to PRISMA data, but can only be adopted to
give an example of the goodness of the AC results.

In Figure 3, we show the true color composite (RGB) representation of a portion of
the PRISMA image collected on 8 August 2020 on the La Crau site; the red box indicates
the region containing the measurement field. In Figure 4, the in situ reflectance spectra,
measured at the same time of the PRISMA overpass, are compared in terms of error plot
with the spectra provided by the LBAC and those included in the L2C PRISMA image. To
consider the uncertainty about the pixel coordinates of the measurement field, we consider
for both the LBAC results and the PRISMA L2C data an area of 5 × 5 pixels centered
on the site coordinates. In the figure, the absorption bands due to CO2 are delimited by
black dashed vertical lines, and the absorption spectral window due to CH4 is delimited
by red dashed vertical lines. The blue transparent patches indicate the water absorption
bands. Notice that for the spectra in Figure 4, and for all the spectra shown in the rest of
the paper, we do not consider the reflectance values in the water absorption bands near
1370 nm and 1880 nm because all the solar radiation is absorbed by the water molecules in
the atmosphere.

Results in Figure 4 show that both the LBAC and the AC PRISMA algorithm provide
reflectance spectra very similar to the measured one with the mean relative errors in the
order of 7% and 13%, respectively. The shape of the spectral reflectance obtained by both
algorithms is very close to that measured on the ground. However, in this example, the
LBAC outperforms the AC PRISMA algorithm. The LBAC reflectance closely follows the
smooth behavior of the in situ reflectance, while the L2C PRISMA data exhibit artifacts
(high-frequency variations) that are more evident in (a) the water absorption bands around
940 nm, 1130 nm, and above 2300 nm, and (b) in the CO2 absorption band around 2100 nm.
The possible causes of those effects will be discussed in the next section.

Figure 3. RGB representation of a portion of the PRISMA image on the La Crau site. The red box
indicates the area including the measurement field.
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Figure 4. Error plots of the spectral reflectance from RadCalNet, LBAC, and PRISMA L2C.

4.2. Reflectance Analysis

We start this sub-section by discussing the results concerning the DAY4 image and,
specifically, four targets corresponding to both natural and artificial surfaces. As to the
natural surfaces, we consider two pixels belonging to a beach (Sand 1) and to a holm oak
forest (Holm Oak 2), respectively. The artificial surface pixels are selected from the airport
runway (Airport Runway) and the rock quarry (Quarry), in the upper right part of the
image. Figure 5a–d graphically compare, for each target, the spectral reflectance obtained
by the LBAC (blue plot) with the L2C PRISMA product (red plot).

Figure 5. DAY4. Graphical comparison of the spectral reflectance obtained by the LBAC and the PRISMA L2C product for
the targets: (a) Sand 1, (b) Holm Oak 2, (c) Airport Runway, and (d) Quarry. The transparent blue patches indicate the water
absorption bands. In the figures the CO2 and the CH4 absorption bands are also indicated.
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Several conclusions can be drawn from the results in Figure 5a–d. We can see that
the general behavior of the spectra derived by the two AC algorithms is quite similar,
and, in both the cases, the main absorption effects due to water vapor, CO2 and CH4 are
substantially compensated. The LBAC reflectance’s are smoother than those obtained by
the AC PRISMA algorithm.

It is well-known that below 2500 nm, the spectral reflectance of most natural and
man-made surfaces hardly ever shows narrow absorption bands even at the high spectral
resolutions characterizing hyperspectral sensors. Specifically, several studies and exper-
imental measurements [16,21] show that the spectral rate of change of the reflectance is
much slower than that of the corresponding radiance. PB algorithms often provide atmo-
spherically compensated data characterized by spectral artifacts, especially in the strongest
absorption bands. These artifacts are generally due to different causes [16], such as sys-
tematic errors in the atmospheric absorption model, uncertainties in the solar reference
spectrum, spectral residual calibration errors, and non-perfect radiometric calibration of
the radiance data. In addition, non-systematic errors are induced by random variations
due to photon noise and readout noise in the detector electronics. The presence of those
artifacts motivates the practice of applying spectral polishing algorithms to the retrieved
reflectance spectra in order to smooth them [21,33].

With reference to the experiment under consideration, we can observe that the AC
PRISMA algorithm, which does not include (to the best of our knowledge) a spectral
polishing procedure, seems to be not immune to the above-mentioned problems. The
provided reflectance spectra exhibit systematic artifacts that suggest the possible presence
of small errors in the calibration process or in the atmospheric model. We specifically refer
to the sharp variations in the two water absorption bands around 940 nm and 1130 nm,
and in the CO2 absorption band around 2100 nm.

Conversely, the LBAC results do not exhibit such kinds of artifacts and show better
robustness to potential systematic and non-systematic spectral artifacts. This result is
intrinsically related to the adopted learning strategy which relies on a database containing
the measured reflectance spectrum of more than 3000 man-made materials, vegetation,
water, soils, and minerals. The spectra in the database are smooth and do not have high-
frequency variations in the spectral domain. Furthermore, enclosing the main sources of
noise occurring in the hyperspectral data in the learning mechanism, makes the LBAC
robust to incorrect calibration errors and random noise. The specific learning strategy
behind the LBAC gives the algorithm an inherent polishing ability which is quite useful in
many application fields such as land use/land cover, water quality, hydrology studies of
snow and ice, basic mineralogical analyses, and some terrestrial and aquatic ecosystem
investigations. Thus, in most applications, it is certainly a strength of LBAC and makes
it a very promising approach, especially to process the low signal-to-noise ratio data and
non-perfectly calibrated images. However, that intrinsic polishing effect could be a limit of
LBAC in those applications where one is interested in searching materials whose reflectance
is characterized by narrow-band spectral features or, in general, not well represented as a
linear combination of the spectra in the database D. This is, for example, the case of specific
gas plumes, canopy chemistry, or environmental contaminants. In those cases, LBAC, in
its current form, may not preserve the relevant spectral features. In general, when the
reflectance of a given material is not well represented as a combination of the spectra in
D, one may lose the features that allow the discrimination of that material. This can occur
also in the case of man-made target detection applications, when the signature of the target
of interest could have an “anomalous” spectral behavior, in the sense that it cannot be
obtained as a linear combination of the spectra in D.

However, the approach in [20] is quite general and several modifications within
the learning-based framework can be made to extend the capabilities of the resulting
algorithm. For instance, regression functions more complicated than linear ones (e.g., deep
neural networks) can be adopted to explore non-linear structures in the data. Another
possible modification may concern the database D adopted in the learning phase and
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for the representation of the reflectance subspace. For example, the database D could
be application-driven and populated with data including the spectral features that are
significant for the application of interest. Possible solutions to the drawbacks of the LBAC
version considered in this paper are under investigation and they are the focus of our
ongoing activity.

To provide evidence of the effectiveness of the proposed approach in the analyzed
image (DAY4), we have computed the Squared Error (SE) between the reflectance of each
pixel estimated by the LBAC and that given by the AC PRISMA algorithm:

SEi,j =
1

NB
||ρ̂LBAC

i,j − ρ̂L2C
i,j ||

2 (6)

In Equation (6), i and j are the coordinates of the image pixel, NB is the number of
spectral bands, ρ̂LBAC

i,j is the reflectance estimated by LBAC in the pixel (i, j) and ρ̂L2C
i,j is

the reflectance provided by the AC PRISMA algorithm on the same pixel. The Mean SE
(MSE) obtained by averaging the SE on the whole DAY4 image is very low and equal to
1.8·10−3. In order to provide information about the spread of the distribution of SE, we
consider its Probability of Exceedance (PoE) defined as the complement of the cumulative
distribution function (cd f ) estimated on the whole image, i.e., PoE(SE) = 1− cd f (SE).
PoE of SE for DAY4 image (Figure 6) shows that most of the image pixels have SE lower
than 8·10−3, and the percentage of image pixels with SE greater than 10−2 is lower than
0.47% (PoE

(
10−2) = 0.004617).
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As to the benefits linked to the inclusion of the noise sources in the learning strategy,
it was deeply investigated on simulated data in [20], by analyzing the results obtained by
the version of the LBAC trained without taking into account noise. Results in Figure 7a,b
provide further evidence. In those figures, we compare the reflectance spectra obtained
by applying both the LBAC and its version trained without considering noise (LBAC-
NoiseFree). The poor performance of the LBAC–NoiseFree is clear proof of the importance
of introducing noise in the learning phase.

Another conclusion is that, opposite to traditional PB methods, the LBAC is insensitive
to bad pixels occurring in the image. This is evident in Figure 5b,d. Specifically, the sharp
and narrow transitions to zero in the PRISMA L2C spectrum of Holm Oak 2 around 700 nm
and Quarry at 570 nm are caused by bad pixels that are properly flagged in the PRISMA
data products. Notice that the LBAC automatically reconstructs the observed spectra in
those bad bands without exploiting the information about their location in the image.

For completeness, in Figure 8 we summarize the results obtained on all the targets
considered in this experiment. Results in Figure 8 confirm all the previous conclusions.
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Figure 7. DAY4. Comparison of the results provided by LBAC and LBAC-NoiseFree on the targets: (a) Sand 1, Holm Oak 2,
and (b) Airport Runway, Quarry.

 
(a) (b) 

 
(c) (d) 

Figure 8. DAY4. Graphical comparison of the spectral reflectance obtained by the LBAC and the PRISMA L2C product
for the targets: (a) Parking Lot, City Center, Wheat Field and Football Field; (b) Holm Oak 1, Vegetation 1, and Rice Field;
(c) Maritime Pine, Sand2, and Soil, (d) Ombrone’s Mouth, Coastal Water, and Open Water. The transparent blue patches
indicate the water absorption bands. In the figures, the CO2 and the CH4 absorption bands are also indicated.

An analysis similar to that described in the previous part of this section has been
carried out on the DAY1 image that was acquired under different atmospheric and viewing
conditions. A synthesis of the results obtained is reported in the following. Specifically, in
Figure 9 we compare the spectra derived by the LBAC with those provided by the PRISMA
L2C product for the same targets considered in the previous experiment: Holm Oak 2,
Sand 1, Airport Runway, and Quarry. We note that the spectra derived by the LBAC and by
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the AC PRISMA algorithm follow the same general trend and that in both cases the main
absorption effects are compensated. However, we note a slight difference in the derived
spectra in the channels corresponding to wavelengths falling in the visible spectral range
between 600 nm and 900 nm. In absence of ground truth data, we cannot determine which
of the two results is more correct. We can only make hypotheses about the causes of that
misalignment. For instance, it could be determined (1) by a difference in the derivation
of the LUTs adopted by the two algorithms, (2) by the fact that the LBAC, in its current
version, does not account for the terrain elevation, (3) errors in the visibility estimation.
However, the MSE obtained all over the image is 1.82·10−3 and the analysis of the PoE
shows that the percentage of image pixels with SE greater than 10−2 is lower than 0.092%
(PoE

(
10−2) = 9.17·10−4).

Figure 9. DAY1. Graphical comparison between the spectral reflectance obtained by the LBAC and the PRISMA L2C
product for the targets: (a) Sand 1, (b) Holm Oak 2, (c) Airport Runway, (d) Quarry. The transparent blue patches indicate
the water absorption bands. In the figures, the CO2 and the CH4 absorption bands are also indicated.

As in the previous experiment, we note that PRISMA L2C data exhibit possible artifacts
in the water absorption bands around 940 nm and 1130 nm and in the CO2 absorption
band around 2100 nm. Such artifacts seem systematic and support the thesis of potential
residual errors in the radiometric calibration of the data in the absorption bands or errors
in the model of the atmospheric radiometric quantities. The non-systematic variations can
be generated by random noise affecting the measurements. LBAC, providing smoother
spectra, confirms its robustness to both residual calibration errors and random noise. The
above considerations can be extended to all the targets analyzed in our experiments whose
results are not reported here for brevity.

It is worth noting that, in all the results shown (included those of the La Crau site),
there is a difference between the spectra provided by the LBAC and those of the PRISMA
L2C product in the 2400 nm water absorption band. The difference could be due to an
imperfect compensation, in the PRISMA L2C product, of the strong water absorption effect.
This possible interpretation is motivated in the following. As is shown in the next part of
this section, the DAY1 image was characterized by CWV values (close to 0.5 g·cm−2) lower
than those of the DAY4 image (close to 2 g·cm−2). Consequently, potential errors in the
compensation of water absorption are supposed to have a lower impact on the results of
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the DAY1 image. Indeed, comparing Figure 5 with Figure 9, we note that the difference
between the LBAC spectra and the PRISMA L2C data in the DAY1 image (Figure 9) is
strongly reduced with respect to that observed in the results concerning the DAY4 image
(Figure 5).

Another noteworthy result regards the three images named DAY2, DAY3, and DAY4.
These images were collected approximately in the same period of the year and practically
with the same incidence and observation angles. Therefore, the effects of seasonal changes
and those of the anisotropic response of the observed surfaces to the incident radiation are
expected to be negligible. This means that, if the AC algorithm works well, the reflectance
spectra derived for the same surface in the scene in the three images must be very similar.
The previous claim is verified by the results obtained by the LBAC on the three images.
Specifically, Figures 10 and 11 show the reflectance spectra derived by the LBAC on the
three images for all the in-land targets considered in our experiments. Notice that the
spectra are practically the same for almost all the targets. The only exception is represented
by the targets Quarry, Holm Oak 1, and Rice Field in the DAY2 image (Figure 11). In the
case of Holm Oak 1 and Quarry, the difference in the spectra is certainly due to the fact
that both the targets were covered by cloud in the DAY 2 image. For the Rice Field target,
the variation in the spectra could be due to the greater presence of water in the field at the
time of the acquisition of the DAY3 and DAY4 images. Of course, the above discussion also
applies to the spectra of the PRISMA L2C data in the three images.

Figure 10. Comparison of the spectra derived by the LBAC on the considered targets in the three images named DAY2,
DAY3, and DAY4 (a–e).
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Figure 11. Comparison of the spectra derived by the LBAC on the targets Quarry (a), Holm Oak 1 (b), and Rice Field (c) in
the three images named DAY2, DAY3, and DAY4.

4.3. LBAC Based CWV Retrieval: Results

In this sub-section, we present the results obtained by applying the CWV retrieval
algorithm described in Section 3 and based on the LBAC. Such results are compared with
the CWV estimates included in the PRISMA L2C product and with those obtained by
applying the well-known Atmospherically Pre-corrected Differential Absorption (APDA)
technique proposed in [29] that is adopted by several PB atmospheric compensation
algorithms. APDA was applied to the water absorption spectral window around 940 nm.

Figure 12 shows, in the form of error bars, the mean values and the standard deviations
of the CWV estimates obtained by the means of the LBAC-based procedure, those included
in the PRISMA L2C product, and those obtained by APDA. We excluded the estimates
from water pixels where the three procedures do not provide reliable CWV results because
of the low signal-to-noise ratio in the water absorption bands. In all the considered cases,
the proposed algorithm provides values quite close to those included in the PRISMA
L2C product and those derived by APDA. Specifically, the LBAC-based procedure attains
values of CWV very similar to those provided by APDA. Both the algorithms give estimated
values greater than (approximately 20%) those provided by the PRISMA AC algorithm.
However, the estimates from the three algorithms are highly correlated. The correlation
coefficients between the LBAC and the PRISMA L2C are 0.72 for DAY1, 0.93 for DAY2,
0.89 for DAY3, and 0.91 for DAY4. Those between the LBAC and APDA are 0.73 for
DAY1, 0.93 for DAY2, 0.9 for DAY3, and 0.92 for DAY4. The APDA and PRISMA L2C
products, both exploiting the differential absorption approach, have correlation coefficients
greater than 0.95 in all the considered images. For completeness, in Figure 13 we show the
(estimated) probability density functions (pdf) for the CWV values obtained by the three
algorithms on the four images. For each image, the pdf of the estimates obtained by the
proposed procedure and by the PRISMA L2C product have approximately the same shape,
but they seem to differ for a shift. This is especially true for the DAY2, DAY3, and DAY4
images. As for the comparison between the LBAC-based procedure and the APDA, we
note that the pdfs are very close in shape and position.
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As an example, in Figures 14 and 15 we show the CWV maps for the DAY1 image
(Figure 14) and the DAY4 image (Figure 15) obtained by the proposed technique, those
included in the PRISMA L2C data and those obtained by the APDA algorithm. In all the
CWV maps, the water pixels are masked. Notice that the stripes in the cross-track direction
appearing in the CWV map included in the PRISMA L2C product (Figures 14b and 15b)
correspond to bad pixels that are properly indicated in the provided product.
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Figure 14. DAY1: (a) CWV map obtained by the proposed procedure; (b) CWV map from the PRISMA L2C product;
(c) CWV map obtained by the APDA algorithm.

Figure 15. DAY4: (a) CWV map obtained by the proposed procedure; (b) CWV map from the PRISMA L2C product;
(c) CWV map obtained by the APDA algorithm.

5. Conclusions

The intent of this paper is to present an extension of the recently proposed LBAC
algorithm to data acquired by a satellite hyperspectral sensor operating in the VNIR and
SWIR spectral intervals, along with a discussion of the results obtained on the first available
data of the hyperspectral EO mission PRISMA. After a brief summary of the algorithm, we
have emphasized the modifications made for its extension to satellite data and to the SWIR
spectral domain. Furthermore, we have introduced a curve fitting-based CWV retrieval
procedure that exploits the reflectance estimates provided by LBAC.

Results on four different PRISMA images of the same scene have been presented and
discussed. As a consequence of the lack of reference data and ground truth information, a
qualitative analysis has been performed by comparing the results provided by the learning-
based approach with those distributed by ASI as part of the PRISMA products. The
analysis confirmed most of the conclusions drawn from the application of the LBAC to
VNIR airborne hyperspectral data and showed that the LBAC can be effectively applied
also to process VNIR-SWIR satellite data. In particular, the smooth behavior of the LBAC-
retrieved spectra confirmed the robustness of the algorithm to random noise and residual
radiometric and spectral calibration errors. Results of the CWV retrieval algorithm are
quite correlated to those included in the PRISMA L2C product. However, we observed a
systematic difference between the values provided by the LBAC-based CWV estimation
algorithm and the PRISMA L2C products. In the absence of ground truth data, it is not
possible to draw quantitative conclusions on the performance of the two algorithms.

In light of the results of the LBAC on the VNIR airborne data [20] and on the VNIR-
SWIR satellite data, we can state that it is a promising unconventional approach to at-
mospheric compensation especially when perfect radiometric/spectral calibration cannot
be obtained. LBAC adds to the plethora of existing AC methods with its strengths and
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weaknesses. As claimed by several authors, an AC algorithm that works the best in all con-
ditions does not exist and the availability of alternative methods enriches the opportunity
of choosing the most suitable solution for the case of interest.

The promising results of LBAC encourage further efforts to improve its performance
and to extend its capabilities by including (a) terrain elevation, (b) anisotropic response
of the surface to the incident radiation, and (c) more complicated aerosol profiles. Surely,
one of the issues that needs to be further investigated is related to the estimation of the
visibility. In the current version of the algorithm, it is obtained by a dark pixel-based
approach. It is in general effective in regions containing a surface with very low spectral
reflectance in specific spectral bands, but it tends to underestimate the visibility in the
absence of dark pixels. We are studying new visibility estimation strategies that involve and
exploit information provided by other satellite missions that supply global aerosol optical
thickness products validated by means of in situ measurements. For instance, we would
like to exploit data from the Moderate Resolution Imaging Spectroradiometer (MODIS)
aboard NASA’s Aqua and Terra satellites, and the Visible Infrared Imaging Radiometer
Suite (VIIRS) aboard the joint NASA/NOAA Suomi National Polar-orbiting Partnership
(Suomi NPP) and NOAA-20 satellites.

It is worth noting that the LBAC provides good results on spectra having a smooth
behavior, as in the case of most natural and man-made materials, but it might be less
accurate in estimating the reflectance of materials featuring narrow spectral features, such
as gases or minerals, or, in general, for those materials whose spectral behavior cannot be
obtained as a linear combination of the spectra included in the adopted database. Possible
solutions to this problem include the use of more complete databases that could be enriched
or modified by a priori knowledge in order to match the specific characteristics of the
scene under analysis. For instance, an “application-driven” spectral library might be
used, populated, or enriched with specific spectra of interest in the considered application
scenario. The analysis of such kinds of solutions is the subject of our ongoing activities.
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