
1

Power Control in Networks With Heterogeneous Users: A

Quasi-Variational Inequality Approach

Ivan Stupia, Member, IEEE, Luca Sanguinetti, Member, IEEE, Giacomo Bacci, Member, IEEE, Luc Vandendorpe,

Fellow, IEEE

Abstract—This work deals with the power allocation problem
in a multipoint-to-multipoint network, which is heterogenous in
the sense that each transmit and receiver pair can arbitrarily
choose whether to selfishly maximize its own rate or energy
efficiency. This is achieved by modeling the transmit and receiver
pairs as rational players that engage in a non-cooperative
game in which the utility function changes according to each
player’s nature. The underlying game is reformulated as a quasi
variational inequality (QVI) problem using convex fractional
program theory. The equivalence between the QVI and the non-
cooperative game provides us with all the mathematical tools
to study the uniqueness of its Nash equilibrium points and to
derive novel algorithms that allow the network to converge to
these points in an iterative manner, both with and without the
need for a centralized processing. Numerical results are used to
validate the proposed solutions in different operating conditions.

Index Terms—Nash equilibria, energy efficiency maximization,
spectral efficiency maximization, quasi-variational inequality, dis-
tributed power control, centralized power control, heterogeneous
users.

I. INTRODUCTION

The vision of seamless and pervasive wireless communica-

tion systems has paved the way to an extraordinary prolifer-

ation of wireless network infrastructures and ubiquitous ser-

vices [1]. In this challenging arena, we consider a multipoint-

to-multipoint network in which each transmit and receiver pair

(TRP) can arbitrarily choose whether to selfishly maximize its

own spectral efficiency (SE) (in terms of maximum achievable

rate), or its own energy efficiency (EE) (in terms of trading

off achievable rate and energy consumption). An example in

which this heterogeneous multitude of users interact with each

other might be represented by small-cell networks, which are

founded on the idea of multiple radio access technologies,

architectures and transmission techniques coexisting in the
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same area to ensure the most efficient usage of the spectrum

resource with the minimum waste of energy [2].

Despite its promises, the deployment of small-cell networks

poses several technical challenges mainly because different

small cells are likely to be connected via an unreliable back-

haul infrastructure whose features may strongly vary from case

to case, with variable characteristics of error rate, delay, and

capacity. This calls for developing flexible and decentralized

power allocation strategies relying on local channel state infor-

mation, and requiring only a small exchange of information.

A. Related works

As is well-known, a suitable tool to study and design

complex interactions among rational entities operating in a

distributed manner is game theory. In recent years, there has

been a growing interest in adopting game theory to model

many communications and networking problems (see for ex-

ample [3]–[5]). Among the early contributions in this area, it

is worth mentioning [6]–[8], in which the rate maximization

problem for autonomous digital subscriber lines is addressed

following a competitive optimality criterion. Following the

route of such early works, most existing literature in wire-

less communications is focused on developing power control

techniques for the maximization of the individual SE while

satisfying individual power constraints. Some examples in

the area of non-cooperative game theory are represented by

the distributed power control strategies proposed in [9] for

multi-user multiple-input multiple-output systems and by those

developed in [10] and [11] for interference relay channels,

whereas a two-tier network is considered in [12]. In [13], [14],

the authors propose a detailed analysis of the Nash equilibrium

(NE) point for the rate maximization problem in parallel

Gaussian multiple access channels in which mobile users

autonomously take decisions on the resource usage and com-

pete with each other to exploit the available resources. More

recently, in [15] the authors rely on the variational inequality

(VI) framework to model and analyze the competitive rate

maximization problem. The analogy between NE problems

and VIs is also exploited in [16] to design distributed power

control algorithms for rate maximization under interference

temperature constraints in a cognitive radio context.

All the aforementioned distributed power allocation strate-

gies have the great advantage of avoiding the excessive in-

formation exchange to achieve signal coordination as well as

involved computational processing [15]. On the other hand,

users’ aggressive attitude towards interference can lead to

a large transmission power at the mobile stations, thereby

fostering an inefficient use of batteries. All this makes such

existing solutions not suited for the development of energy-

efficient networks. This has motivated a great interest in
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studying and designing resource allocation schemes taking

into account the cost of energy in the performance metrics.

Towards this end, the concept of link capacity per unit cost

originally proposed by Verdú in [17] has been widely adopted

in many different contexts (e.g., see [18]–[21] and references

therein). In [21], [22], the authors focus on the same scenario

investigated in [13], [14] and study the NE problem for a

group of players aiming at maximizing their own EE while

satisfying power constraints or rate requirements. Although

interesting, the theoretical framework developed in [21], [22]

does not provide a systematic study of the relationship between

the SE and the EE maximization problems. To the best of our

knowledge, a unified framework accommodating both is still

missing.

B. Contributions

The aim of this paper is to fulfill the gap mentioned above

using the quasi VI (QVI) framework, originally introduced

by Bensoussan in [23] as a modeling tool to be used in

different fields such as economics and biology (see also [24]

and references therein). Unlike the traditional VI framework,

that has been widely applied in wireless communications, the

use of QVI theory to develop numerical algorithms is relatively

recent [25]. In this work, we apply the QVI to study the

solution properties of power allocation in a heterogeneous

game defined as non-cooperative game in which the users

can locally choose whether to pursue their own SE or their

own EE. This allows us to overcome the main limitations

of existing approaches, which fail to provide closed-form

conditions on the uniqueness of the equilibrium points and

on the convergence properties of iterative solutions. Towards

this goal, a two-step approach is used. First, the EE maxi-

mization problem introduced in [21] is reformulated as a QVI

using convex fractional programming theory [19]. The same

approach is then exploited to reformulate the heterogeneous

game as a QVI. This is per-se sufficient to elaborate some

insights on the properties of the NE points and to provide

us with all the mathematical tools to study the uniqueness of

the NE points of the heterogeneous game, and the convergence

properties of iterative algorithms. In particular, we first propose

a centralized approach, which relies on an iterative method

for solving QVIs whose convergence is guaranteed under

mild assumptions. Then, we propose an alternative solution

exploiting the equivalence between the QVI and a nonlinear

complementary problem (NCP), which gives each TRP the

possibility to reach the NE in a distributed manner without the

need for any centralized processing. The developed solutions

are then validated by means of extensive simulations.

C. Organization

The remainder of this paper is organized as follows. In

Section II, we introduce the signal model, some basic no-

tations and the problem under investigation. We also review

the available literature on both the SE-only and the EE-

only maximization problems, with particular emphasis on the

major limitations of classical approaches when studying the

EE problem. Section III illustrates the mathematical steps to

reformulate the EE-only game as a QVI. This approach is

then used in Section III-B to formalize the heterogeneous

game in which both SE and EE users coexist. The uniqueness

conditions for the NE points of the heterogeneous game are

studied in Section IV. The QVI framework is also used in

Section V to derive and study the convergence properties of

two different iterative algorithms for achieving the NE points.

Numerical results are shown in Section VI whereas some

concluding remarks and discussions are drawn in Section VII.

D. Notation

The following notation is used throughout the paper. Matri-

ces and vectors are denoted by boldface letters. The notation

[A]i,k is used to indicate the (i, k)th entry of the enclosed

matrix A, and A = diag{a(n) ; n = 1, 2, . . . , N} denotes

an N × N diagonal matrix with entries a(n) along its main

diagonal.
∏

i Xi denotes the Cartesian product of the sets Xi,

and � stands for the element-wise greater or equal relations.

1N and 0N are the N -dimensional all-one and all-zero vectors,

respectively. ‖x‖ denotes the Euclidean norm of vector x, and

‖A‖ denotes the induced norm of matrix A. The notation

x⊥y stands for xTy = 0 and ∇xf(x,y) denotes the gradient

vector of f(x,y) with respect to x. In addition, λmax(A) and

λmin(A) denote respectively the maximum and the minimum

eigenvalue of a symmetric matrix A. Finally, 1K
k denotes the

indicator function of a set K and it is such that 1K
k = 1 if

k ∈ K and zero otherwise while [x]+ = max (0, x).

II. NASH EQUILIBRIUM PROBLEMS

Consider a K-user N -parallel Gaussian interference chan-

nel, in which there are K TRPs sharing N parallel Gaussian

subchannels, that might represent time or frequency bins. The

channel transfer function over the nth subchannel between

the transmitter i and receiver k is denoted by Hk,i(n). The

transmission strategy of each user k is the power allocation

vector pk = [pk(1), pk(2), . . . , pk(N)]T over the N subchan-

nels satisfying the following (local) transmit power constraints:

Pk =
{
pk ∈ R

N
+ : hk (pk) ≤ 0

}
(1)

where hk (pk) is an affine function of pk given by

hk (pk) = 1Tpk − Pk (2)

with Pk being the total power available at transmitter k. We

assume that the K TRPs do not cooperate with each other and

that the multi-user interference is simply treated as additive

colored noise at each receiver. Moreover, local perfect channel

state information is available at both transmitter and receiver

sides.

In the above circumstances, the maximum achievable rate

on link k for a specific power allocation profile p =
[pT

1 ,p
T
2 , . . . ,p

T
K ]T is given by

Rk(pk,p−k) =

N∑

n=1

log


1 +

|Hk,k(n)|
2
pk(n)

σ2
k(n) +

∑
i6=k

|Hk,i(n)|
2
pi(n)




(3)

where σ2
k(n) is the noise variance over the nth subcarrier

on link k and p−k = [pT
1 ,p

T
2 , . . . ,p

T
k−1,p

T
k+1, . . . ,p

T
K ]T

collects the power allocation vectors of all transmitters, except
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the kth one. Following [18]–[21], the EE Ek(pk,p−k) of the

kth link can be computed as

Ek(pk,p−k) =
Rk(pk,p−k)

Ψk + 1Tpk

(4)

with Ψk > 0 being the radio frequency (RF) circuitry power

consumed at transmitter k by different analog components and

digital signal processing [26], [27].

As mentioned earlier, one of the major objectives of this

work is to provide a framework to study heterogeneous multi-

user systems in which each user can choose whether to

maximize its own SE or EE. To this end, we first recall some

fundamental results for the NE problem in which each player

(the TRP) maximizes its own SE (Section II-A). Then, the

case of competitive players aiming at maximizing the EE of

the link is introduced and its NE points are mathematically

characterized (Section II-B), using a fractional programming

approach. Finally, in Section II-C we combine the results from

these two game formulations to properly formalize and study

the heterogeneous problem sketched above.

A. Rate maximization

The rate maximization problem refers to a system in which

each TRPr aims at selfishly choosing the power allocation

strategy that maximizes its own rate for a given set of other

players’ power profile. Mathematically, this amounts to jointly

solving the following problems:

max
pk

Rk(pk,p−k) ∀k (5)

subject to pk ∈ Pk.

As is known, the joint solution of (5) p⋆ = [p⋆
1, . . . ,p

⋆
K ] =

[p⋆
k,p

⋆
−k], such that p⋆

k = arg maxpk∈Pk
Rk(pk,p

⋆
−k), cor-

responds to the NE of the non-cooperative game with complete

information defined as GR = 〈K, {Pk}, {Rk}〉 in which:

K = {1, 2, . . . ,K} is the set of players; Pk denotes the

strategy set of player k, defined as in (1); and Rk is player

k’s payoff function that is the rate defined in (3).

Proposition 1 ([13]). The Nash equilibria p⋆ of GR are found

to be the fixed points of the waterfilling mappings given by

p⋆k(n) =
[
wfk(p

⋆
−k, µ

⋆
k)
]
n

(6)

where

[
wfk(p

⋆
−k, µ

⋆
k)
]
n
=




1

µ⋆
k

−

σ2
k(n) +

∑
i6=k

|Hk,i(n)|
2
p⋆i (n)

|Hk,k(n)|
2




+

(7)

and µ⋆
k is the water level, chosen such that

1Tp⋆
k = Pk. (8)

In [15], the authors provide a convenient way to study the

properties of p⋆ by showing that the rate maximization NE

problem is equivalent to the nonlinear VI VI(P ,F) in which

F(p) = {Fk(p)}Kk=1, with

Fk(p) = −∇pk
Rk(pk,p−k) (9)

=



−

(
ξk(n) +

K∑

i=1

Dk,i(n)pi(n)

)−1




N

n=1

(10)

with

ξk(n) =
σ2
k(n)

|Hk,k(n)|
2 and Dk,i(n) =

|Hk,i(n)|
2

|Hk,k(n)|
2 . (11)

Thanks to the equivalence between the NE problem and the

VI(P ,F), the following result can be proved.

Theorem 1 ([15]). A power allocation profile p⋆ ∈ P is an

NE of the rate maximization problem if and only if

(p− p⋆)T F(p⋆) ≥ 0 ∀p ∈ P (12)

with P =
∏K

k=1 Pk.

Interestingly, [13] also shows that the NE in (6) can be

interpreted as a set of Euclidean projections onto the facets

of K polytopes. To see how this comes about, let ξk =
[ξk(1), ξk(2), . . . , ξk(N)]T and Dk,i = diag{Dk,i(n);n =

1, 2, . . . , N}. Define also P =
∏K

k=1 Pk where each Pk is

the simplex

Pk =
{
pk ∈ R

N
+ : hk (pk) = 0

}
(13)

obtained from (1) when the power constraint is satisfied with

equality.

Proposition 2 ([14]). A power allocation profile p⋆ is an NE

of the rate maximization problem if and only if

p⋆
k = ΠPk


−ξk −

∑

i6=k

Dk,ip
⋆
i


 ∀k (14)

where ΠPk
(z) computes the vector in the simplex Pk that is

closest to z in the Euclidean norm.

One of the major advantages of reformulating the NE prob-

lem as in (14) is that the sufficient conditions for the unique-

ness of the NE of GR can be derived by simply studying the

contraction property of ΠP (z) = [ΠP1
(z1) · · ·ΠPK

(zk)]
T ,

where zk = −ξk −
∑

i6=k Dk,ipi, with respect to the vector

p. In addition, the analysis of the convergence of iterative

waterfilling-inspired algorithms is greatly simplified (please

refer to [14] for more details on this subject). As we shall

see, similar results can be proved to hold true for the energy-

efficient maximization problem.

B. Energy-efficiency maximization

The EE maximization problem refers to a network in

which each player k aims at selfishly choosing a power

vector pk ∈ Pk to maximize its own EE Ek(pk,p−k) for

a given set of other players’ powers p−k. The problem can be

mathematically formulated as:

max
pk

Ek(pk,p−k) =
Rk(pk,p−k)

Ψk + 1Tpk

∀k (15)

subject to pk ∈ Pk.
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Analogously to what is introduced in Section II-A, the

solution of (15) is the NE of the noncooperative game GE =
〈K, {Pk}, {Ek}〉. Since the utility functions Ek(pk,p−k),
∀k ∈ K, are strictly quasiconcave and Pk is a convex

set, the players’ best response to the opponent strategies

can be computed using different convex optimization tools.

Although possible, this direct approach, originally pursued in

[21], presents some disadvantages, mainly because it does

not bring any insights into the structure of the equilibrium

points. This makes it hard to provide closed-form conditions

for the uniqueness of the NE points of GE and to study the

convergence properties of iterative algorithms based on best

response dynamics (see also [22]).

An alternative route (e.g., followed in [19]) relies on observ-

ing that (15) belongs to the class of concave-convex fractional

programs, since Rk(pk,p−k) is a concave function of pk

whereas Ψk+1Tpk is affine and positive. Interestingly, the so-

lution of such problems can be computed through methods that

rely on different convex reformulations or duality approaches

(see [28] for more details on this subject). Although different

in principle, all these methods are very closely related to each

other since they all lead to the same optimality condition. Fol-

lowing the parameter-free convex fractional program approach

(whose main steps are reported in Appendix A for the sake

of completeness), it turns out that player k’s best response

Bk(p−k) to an opponents’ vector p−k takes the form:

Bk(p−k) = wfk(p−k, λ
⋆
k(p−k)) (16)

where λ⋆
k(p−k) must satisfy the condition

1TBk(p−k) = min

{
Pk,

1

t⋆k(p−k)
−Ψk

}
. (17)

The value of 1/t⋆k(p−k) corresponds to the total (radiated

and fixed) power consumption for any given p−k when the

constraint hk (pk) ≤ 0 in (15) is neglected, and can be

computed as (see Appendix A)

t⋆k(p−k) =
1

Ψk + 1T zk(ν⋆k)
(18)

where zk(ν
⋆
k) is given by

zk(ν
⋆
k) = wfk(p−k, ν

⋆
k) (19)

with ν∗k being iteratively obtained via Algorithm 1 (originally

proposed by Dinkelbach in [29]) and such that

Rk (zk(ν
⋆
k),p−k)− ν⋆k

(
Ψk + 1T zk(ν

⋆
k)
)
= 0. (20)

Using the above results, the following proposition easily

follows from the observation that a point p⋆ is an NE if and

only if p⋆ ∈ B(p⋆), with B(p) =
∏K

k=1 Bk(p−k).

Proposition 3. The Nash equilibria p⋆ of GE are obtained as

the fixed-point solutions of the following waterfilling mapping:

p⋆
k = Bk(p

⋆
−k) = wfk(p

⋆
−k, λ

⋆
k(p

⋆
−k)) (21)

with λ⋆
k(p

⋆
−k) being such that

1Tp⋆
k = min

{
Pk,

1

t⋆k(p
⋆
−k)

−Ψk

}
. (22)

Algorithm 1: Dinkelbach method

Data. Set i = 0 and ν
(0)
k = ν̄, with a random ν̄ > 0. Choose

ǫ≪ 1.
Step 1. Compute

z
(i)
k (ν

(i)
k ) = wfk(p−k, ν

(i)
k ).

Step 2. Set

ν
(i+1)
k =

Rk

(

z
(i)
k (ν

(i)
k ),p−k

)

Ψk + 1T z
(i)
k (ν

(i)
k )

.

Step 3. If the condition
∣

∣

∣
Rk

(

z
(i)
k (ν

(i)
k ),p−k

)

− ν
(i+1)
k

(

Ψk + 1
T
z
(i)
k (ν

(i)
k )

)∣

∣

∣
< ǫ

is satisfied, then return ν⋆
k = ν

(i+1)
k and STOP; otherwise, go

to Step 4.

Step 4. Set i← i+ 1; and go back to Step 1.

Remark 1. Similarly to GR, the NE points of GE are found

to be the fixed points of a waterfilling mapping, with the only

difference that the water level must be chosen so as to satisfy

(22) rather than (8).

Remark 2. Since t⋆k(p−k) plays a major role in all subsequent

discussions, let us point out its physical meaning and prop-

erties. As mentioned before, 1/t⋆k(p−k) ∈ [Ψk,∞) represents

the total power dissipation that is required to maximize the

EE for any given p−k when the constraint hk (pk) ≤ 0 is

neglected. Mathematically, t⋆k(p−k) is obtained as the tk-part

of the solution of the following optimization problem (see

Appendix A):

max
{yk,tk}∈R

N+1
+

tkRk(yk/tk,p−k) (23)

subject to tk(Ψk + 1Tyk/tk) = 1.

where pk = yk/tk. From the above problem, it turns out that

1/t⋆k(p−k) − Ψk is the total radiated power that would be

needed by player k to maximize its own EE for a given p−k.

The maximum power constraint (1) acts as an upper bound to

the strategy p⋆
k, as follows from (17).

It is worth observing that computing the NE as in (21),

although useful to characterize its structure, does not provide

any particular advantage in deriving conditions for the unique-

ness of the NE points of GE . Similarly, the analysis on the

convergence properties of the resulting iterative solutions is

still much open. For this reason, analogously to what was

done in [15] for the rate maximization game using the VI

approach, in Section III we will make use of the above results

to reformulate GE as a QVI to exploit the powerful tools

provided by the QVI theory. Before delving into this, we

briefly introduce the heterogeneous maximization problem that

will be analyzed in Section III-B.

C. Heterogeneous maximization

Consider now a heterogeneous scenario in which a set KR

of players follows a rate maximization strategy, while the

remaining set KE is interested in maximizing its own EE.
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Let us define G = 〈K, {Pk}, {uk}〉 the corresponding game

in which: K = KR ∪ KE is the set collecting both types of

users; the strategy set Pk is defined as in (1); and uk(pk,p−k)
is the utility function, defined as

uk(pk,p−k) =

{
Rk(pk,p−k) if k ∈ KR

Ek(pk,p−k) if k ∈ KE .
(24)

The problem to be solved for each player k can thus be

mathematically formalized as follows:

max
pk

uk(pk,p−k) ∀k (25)

subject to pk ∈ Pk

and the corresponding Nash equilibria are obtained as follows

using the results of Propositions 1 and 3.

Proposition 4. The Nash equilibria p⋆ of G are obtained as

the fixed-point solutions of the following waterfilling mapping:

p⋆
k = wfk(p

⋆
−k, λ

⋆
k(p

⋆
−k)) (26)

with λ⋆
k(p

⋆
−k) being such that the following equality holds

true:

1Tp⋆
k =





Pk if k ∈ KR

min

{
Pk,

1

t⋆k(p
⋆
−k)

−Ψk

}
if k ∈ KE .

(27)

Similarly to the energy-efficient maximization problem,

characterizing the properties of the NE points of G, such as

uniqueness conditions, and developing iterative solutions to

achieve these points in a distributed manner, are open problems

that call for an alternative approach. As mentioned earlier, we

address all these issues by reformulating G as a QVI.

III. QVI FORMULATION OF GE

Next, we make use of the results of Section II-B to show

how GE can be reformulated as a QVI. To this end, for any

given p−k, let us introduce the function gk(pk,p−k), defined

as

gk(pk,p−k) = 1Tpk −

(
1

t⋆k(p−k)
−Ψk

)
(28)

where t⋆k(p−k) is computed through (18)-(20). Let us also

denote P−k =
∏

i6=k Pi and

Q (p) =

K∏

k=1

Qk(p−k) (29)

where Qk : P−k → 2Pk , ∀k collects the set-valued functions

given by

Qk(p−k) = Pk ∩
{
pk ∈ R

N
+ : gk(pk,p−k) ≤ 0

}
(30)

whereas 2Pk is the power set collecting all the possible subsets

of Pk [30]. Then, the following result can be obtained.

Theorem 2. A power allocation profile p⋆ ∈ Q(p⋆) is an

NE of the EE maximization problem given in (15) if and only

if it solves the QVI(Q,F), where F(p) = {Fk(p)}Kk=1, and

Fk(p) is the mapping defined in (9). Stated formally, p⋆ is an

NE of GE if and only if it is such that

(p− p⋆)
T
F(p⋆) ≥ 0 ∀p ∈ Q(p⋆). (31)

Proof: The proof is given in Appendix B and relies on

proving that the Karush-Kuhn-Tucker (KKT) conditions of

QVI(Q,F) are satisfied if and only if there exists a vector

p⋆ and a suitable Lagrange multiplier λ⋆ ∈ R
K
+ such that

(21) and (22) hold true.

Remark 3. The results of Theorem 2 are reminiscent of those

in [16] in which the authors make use of the VI framework

to solve the rate maximization problem in a cognitive radio

network under interference constraints. In that case, the indi-

vidual strategy sets Qk(p−k), ∀k ∈ K, are defined as

Qk(p−k) = Pk ∩
{
pk ∈ R

N
+ : I(pk,p−k) ≤ 0

}
(32)

where I(pk,p−k) denotes the interference constraint. The

latter turns out to be the same for any link k and moreover it

is shown to be convex with respect to the entire strategy profile

p. This property allows the authors in [16] to reformulate the

rate maximization problem as a VI. A close inspection of (28)

reveals that gk(pk,p−k) depends on the index link k and it is

not jointly convex with respect to the power allocation profile

p. For this reason the VI approach adopted in [16] cannot be

applied to the problem at hand while the QVI framework is

shown to be of great help.

A. Energy-efficiency maximization as a projector

For the sake of completeness, we observe that (similarly

to what has been done for the rate maximization problem in

[13]) the NE of GE can also be interpreted as the Euclidean

projection of the vector −ξk−
∑

i6=k Dk,ipi onto the simplex

Qk(p−k) =
{
pk ∈ R

N
+ : max {hk(pk), gk(pk,p−k)} = 0

}

(33)

where gk(pk,p−k) = 0 is an affine hyperplane in pk for any

given p−k. This is summarized in the following proposition.

Proposition 5. A power allocation profile p⋆ is an NE of GE

if

p⋆
k = ΠQk(p

⋆
−k

)


−ξk −

∑

i6=k

Dk,ip
⋆
i


 . (34)

Proof: The proof is given in Appendix C and relies on

proving that the KKT conditions of (34) are satisfied by the

solution to (15).

Capitalizing on the interpretation of the NE point as a

Euclidean projection, a graphical comparison between the

spectral-efficient (i.e., rate-maximizing) and energy-efficient

best responses is provided in Fig. 1 for the case N = 2.

In particular, Fig. 1 shows the player k’s best response to

two different strategies of the other players, namely, p−k and

p′
−k. As seen, the player k’s best responses are obtained as

the projections of the interference vectors −ξk−
∑

i6=k Dk,ipi

and −ξk −
∑

i6=k Dk,ip
′
i onto the corresponding hyperplanes:

hk(pk) = 0 for rate maximization, and gk(pk,p−k) = 0 for

energy-efficient maximization.1 In sharp contrast to hk(pk) =
0, the hyperplane gk(pk,p−k) = 0 (corresponding to the

straight lines below the grey regions) depends on the other

1If the projection of the interference vector is outside the grey region, then
all the power is allocated only over the subchannel with the highest gain.
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Fig. 1: Graphical illustration of SE and EE best responses.

players’ strategies through 1/t⋆k(p−k), which varies within

the interval [Ψk,∞). It is worth observing that all admissible

power allocation profiles lie into the grey zone between the

two hyperplanes. Due to space limitations, we cannot provide

more details on this interpretation of the best response. We

just observe that it can be useful to get further insights into

the energy-aware optimization problem and more specifically

into the trade-off between SE and EE policies in a competitive

environment. Moreover, it might turn useful in some cases to

study the convergence properties of distributed solutions as

happened for the rate maximization problem (please refer to

[14] for more details on this subject). However, this is left for

future work and not pursued further in the sequel.

B. QVI Formulation of G

Let us consider now the heterogeneous scenario. The fol-

lowing result can be proved.

Proposition 6. Let Sk denote the set given by

Sk(p−k) =

{
Pk if k ∈ KR

Qk(p−k) if k ∈ KE

(35)

and let S : P → 2P be the set-valued function defined as the

following Cartesian product:

S(p) =
∏

k∈K

Sk(p−k). (36)

Then, the NE problem in (25) is equivalent to QVI(S,F),

which equals to finding a vector p⋆ such that

(p− p⋆)T F(p⋆) ≥ 0 ∀p ∈ S(p⋆) (37)

where F : RNK → R
NK is obtained as in (9).

Proof: The proof follows the same steps as those used

in Appendix B to prove Theorem 2. In particular, it relies

on showing that the power allocation profile pk satisfying

the KKT conditions of the QVI is also a solution of the kth

maximization problem in (25).

IV. ANALYSIS OF THE NASH EQUILIBRIA

The existence and uniqueness of the NE points of G are

now studied.

Proposition 7. The game G admits a nonempty set of NE

points for any non-null maximum transmit power of users.

Proof: The proof follows from observing that G satisfies

the existence conditions in [31, Theorem 1.2]. In particular, the

sets Pk are nonempty, convex and compact for any non-null

maximum transmit power of users. Also, the payoff functions

Rk(pk,p−k) and Ek(pk,p−k) are both quasi-concave with

respect to pk.

As far as the uniqueness of the NE is concerned, the

following theorem provides a sufficient condition guaranteeing

the uniqueness of the power allocation vector p⋆ in (37) and

thus in (25).

Theorem 3. (Uniqueness conditions): Let Ω (·) be the map-

ping with elements given by

[Ω (p)]k =

{
Pk if k ∈ KR

1/t⋆k(p−k)−Ψk if k ∈ KE

(38)

and let us define the matrices A and B whose elements are

[A]k,i = max
n

{
|Hk,i(n)|

2 |Hk,k(n)|
2

σ4
k(n)

}
(39)

and

[B]k,i =

{
1, if i = k,

−max
n

{
|Hk,i(n)|

2

|Hi,i(n)|
2 ςk,i(n)

}
, if i 6= k,

(40)

with ςk,i(n) being defined as

ςk,i(n) =
σ2
i (n) +

∑
ℓ |Hi,ℓ(n)|

2
Pℓ

σ2
k(n)

. (41)

The uniqueness of the NE in (25) is guaranteed under the

following conditions.

• The matrix B is positive definite;

• There exists a nonnegative constant δ < 1/Γ such that

‖Ω (p)−Ω (p′)‖ ≤ δ ‖p− p′‖ ∀p,p′ ∈ P (42)

where

Γ =

√
λmax(AHA)

λmin(B̃)
max

k
max
n

{
(ς̃k(n))

2
}

(43)

is the so-called condition number of F with λmax(A
HA)

and λmin(B̃) being the maximum eigenvalue of AHA
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and the minimum eigenvalue of the symmetric part of B,

respectively, and

ς̃k(n) =
σ2
k(n)

|Hk,k(n)|2
+
∑

i

|Hk,i(n)|
2

|Hk,k(n)|2
Pi. (44)

Proof: The proof is given in Appendix D and relies on

[32, Theorem 4.1]. Observe that, unlike [16], the positive

definiteness of B is not sufficient to guarantee the uniqueness

of the NE point (see discussion below).

Remark 4. Observe that when KE = ∅ and thus K = KR

then (42) is always satisfied since ‖Ω (p)−Ω (p′)‖ = 0.

Therefore, the uniqueness conditions only require the matrix

B to be positive definite. Not surprisingly, this result coincides

with that in [16], wherein the authors show that the positive

definiteness of B is a sufficient condition to claim the unique-

ness of the NE for the rate maximization game. As rigorously

discussed in [16], B is positive definite if for any k one (or

both) of the following conditions is fulfilled:

1

wk

∑

i6=k

wi max
n

{
|Hk,i(n)|2

|Hi,i(n)|2
ςk,i(n)

}
< 1 (45)

1

wi

∑

k 6=i

wk max
n

{
|Hk,i(n)|2

|Hi,i(n)|2
ςk,i(n)

}
< 1 (46)

where w = [w1, w2, . . . , wK ]T is some positive vector. The

above inequalities say that the positive definiteness of B is

ensured if the received and/or generated multi-user interfer-

ence is relatively low [16]. On the other hand, if KE 6= ∅
then

‖Ω (p)−Ω (p′)‖
2
=
∑

k∈KE

([Ω (p)]k − [Ω (p′)]k)
2

(47)

where [Ω (p)]k is the total power consumption on link k given

by (38). Therefore, the positive definiteness of B alone is no

longer sufficient since (42) is not always satisfied. A close

inspection of (42)-(43) leads to the following interpretation

of this additional condition: The game G has a unique NE if

at a variation of the opponent players’ strategy corresponds

a relatively small variation of the total power consumption in

(47). This comes from the definition of the condition number

of F, which is formally defined as the value of the asymptotic

worst-case relative change in the output for a relative change

in the input. Observe that Γ takes a finite value since F is a

smooth function.

V. ITERATIVE ALGORITHMS TO SOLVE G

In what follows, we show how to exploit the above theoret-

ical framework to compute the NE of G. Towards this goal,

two different solutions are proposed. The first one exploits

the equivalence between G and QVI(S,F), and show how the

solution of G can be computed by resorting to an iterative

method for solving QVIs. As we shall see, this results into

an iterative procedure that, in principle, requires a centralized

implementation. The second approach relies on showing that

QVI(S,F) is equivalent to a nonlinear complementary prob-

lem (NCP), which gives each player the possibility to reach

Algorithm 2: Sequential penalty approach for solving

QVI(S,F).

Data. Choose an increasing sequence {ρ(i)}∞i=0 satisfying (48),

and a sequence of vectors {α(i)}∞i=0. Set j = 0.

Step 1. Compute p(j) as the solution of the penalized VI in (49).

Step 2. If a suitable termination criterion is satisfied, then return
pSPA = p(j) and STOP, otherwise go to Step 3.

Step 3. Set j ← j + 1; and go back to Step 1.

the NE of G in a distributed manner without the need for any

centralized processing.

A. A sequential penalty approach

The solution to G is next numerically obtained through

the iterative procedure for solving QVIs known as sequential

penalty approach (SPA) (e.g., see [25]). The latter is inspired

by the augmented Lagrangian approach for nonlinear program-

ming and its key idea is to solve the QVI by iteratively solving

a properly defined sequence of penalized VIs on the set P .

Specifically, let j be the iteration index and let {ρ(j)} ⊂ R+

be a sequence of given positive scalars satisfying ρ(j) < ρ(j+1)

and tending to ∞, i.e.,

lim
j→∞

ρ(j) → ∞. (48)

Let also {α(j)} ⊂ R
K be a sequence of some arbitrary

vectors, and denote by p(j) the solution of the following

penalized VI
(j)(P ,F+∇C) on the set P :

(p− p(j))T
(
F(p(j)) +∇

p(j)C(p(j))
)
≥ 0 ∀p ∈ P (49)

where ∇
p(j)C(p(j)) = {∇

p
(j)
k

Ck(p
(j))}Kk=1 is the penalty

mapping at the jth iteration, with

Ck(p
(j)) =

1

KE

k

2ρ(j)

([
α
(j)
k + ρ(j)gk

(
p
(j)
k ,p

(j)
−k

)]+)2

. (50)

The resulting iterative procedure is reported in Algorithm 2

and its convergence properties are stated in the following

proposition.

Proposition 8. Let p(j) being the solution of (49) at iteration

j. If {α(j)} is a bounded sequence of vectors, i.e.,

max
k

∣∣∣α(j)
k

∣∣∣ < ᾱ ∀j (51)

with ᾱ some non-negative real-valued number, then

pSPA = lim
j→∞

p(j) (52)

is a solution of QVI(S,F) and thus of G.

Proof: The proof is given in Appendix E and exploits

the more general result provided by [25, Theorem 3] which,

in turn, requires to prove that gk(pk,p−k) is a continuous

function with respect to the entire power vector p.

As seen, each iteration of Algorithm 2 requires only to solve

a penalized VI. Next, we briefly illustrate how this can be
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Algorithm 3: Distributed algorithm for solving QVI(S,F)

Data. Set j = 0, γ(0) = 0K and Φ(γ(0)) = 0K . Choose ǫ≪ 1.

Step 1. Use γ(j) to compute pVI(γ(j)) solving

(p− p
VI(γ(j)))T

(

F(pVI(γ(j))) + γ
(j)

)

≥ 0 ∀p ∈ P

using the IWFP (e.g., via Algorithm 4).

Step 2. Use pVI(γ(j)) to compute t⋆k(p
VI

−k(γ
(j))) for any k ∈ KE

via the Dinkelbach method (e.g., via Algorithm 1).

Step 3. Use pVI

k (γ(j)) and t⋆k(p
VI

−k(γ
(j))) to set

[

Φ(γ(j))
]

k
=

1

t⋆k(p
VI

−k(γ
(j)))

−Ψk − 1
T
p
VI

k (γ(j))

for any k ∈ KE .

Step 4. If maxk

∣

∣

∣γ
(j)
k

[

Φ(γ(j))
]

k

∣

∣

∣ ≤ ǫ, then return

p⋆ = pVI(γ(j)) and STOP, otherwise go to Step 5.

Step 5. Choose τ (j) > 0. Set

γ
(j+1)
k =

[

γ
(j)
k − τ

(j)
[

Φ(γ(j))
]

k

]+

for any k ∈ KE .

Step 6. Set j ← j + 1; and go back to Step 1.

done using standard optimization techniques. Let us introduce

a slack variable λ
(j)
k such that λ

(j)
k = 0 if k ∈ KR and

0 ≤ λ
(j)
k ⊥ (λ

(j)
k − α

(j)
k − ρ(j)gk(p

(j)
k ,p

(j)
−k)) ≥ 0 (53)

if k ∈ KE . From the KKT conditions of (49) and observing

that the squared max function (50) is once continuously

differentiable with

[
∇

p
(j)
k

Ck(p
(j))
]

n
=
[
α
(j)
k + ρ(j)gk

(
p
(j)
k ,p

(j)
−k

)]+
(54)

it follows that p(j) is the solution of VI
(j)(P ,F + ∇C) if

and only if there exist some vectors µ(j) ∈ R
K
+ such that the

following stationarity condition is satisfied for any k:

Fk(p
(j)
k ,p

(j)
−k) + λ

(j)
k 1N + µ

(j)
k 1N = 0N (55)

with 0 ≤ µ
(j)
k ⊥ hk(p

(j)
k ) ≤ 0 and λ

(j)
k defined above.

Moreover, for any given λ(j) = [λ
(j)
1 , λ

(j)
2 , . . . , λ

(j)
K ]T and

µ(j), the vector p(j) solving (55) can be easily found in closed

form as a function of λ(j) and µ(j). Therefore, the solution of

the jth iteration can be obtained solving a constrained system

of equations in λ(j) and µ(j). This can be done using standard

methods for nonsmooth continuous equations [33, Chapter 8].

In general, the implementation of Algorithm 2 requires

a centralized unit or an excessive exchange of information

among the users. Although possible, this is clearly not suited

for those applications (such as small-cell networks) wherein

the exchange of information among the users is unreliable or

even impossible. For this reason, in what follows we propose

an alternative solution, which operates in a distributed manner

and requires only local information.

Algorithm 4: Sequential IWFP for a given γ(j) � 0

Data. Set m = 0 and choose any ξ
(0)
k ∈ Pk for k = 1, 2, . . . ,K.

Step 1. Sequentially for k = 1, 2, . . . ,K compute

ξ
(m)
k = wfk

(

ξ
(m)
−k , χ

(m)
k + γ

(j)
k

)

where wfk is defined as in (7), and χ
(m)
k is chosen to satisfy

the power constraint 1T
Kξ

(m)
k = Pk if

1
T
Kwfk

(

ξ
(m)
−k , γ

(j)
k

)

≥ Pk

and χ
(m)
k = 0 otherwise.

Step 2. If a suitable termination criterion is satisfied, then

pVI(γ(j)) = ξ(m) and STOP, otherwise go to Step 3.

Step 3. Set m← m+ 1; and go back to Step 1.

B. An NCP-based approach

Assume that γ ∈ R
K
+ is a given vector and denote pVI(γ)

as the solution of the following penalized VI:

(p− pVI(γ))T
(
F(pVI(γ)) + γ

)
≥ 0 ∀p ∈ P . (56)

Let us also define the mapping Φ : RK
+ → R

K as

[Φ(γ)]k =

{
0 if k ∈ KR

1
t⋆
k
(pVI

−k
(γ))

−Ψk − 1TpVI

k (γ) if k ∈ KE

(57)

with t⋆k(p
VI
−k(γ)) being obtained via (18)-(20) after replacing

p−k with pVI
−k(γ). Then, the following result can be proven.

Proposition 9. A power allocation profile p⋆ is an NE of G
if it solves (56) and γ is solution of the NCP(Φ) given by:

NCP(Φ) : 0 ≤ γ⊥ Φ(γ) ≥ 0. (58)

Proof: The proof is provided in Appendix F and relies on

showing that the solution of NCP(Φ) along with the solution

of the penalized VI satisfies the KKT of QVI(S,F), and thus

p⋆ is also an NE point of G.

Taking advantage of the above proposition, we develop the

iterative scheme illustrated in Algorithm 3, which operates

through a 2-layer procedure. More in details, at the jth

iteration the inner layer represented by Step 1 makes use of

γ(j) to compute the solution of (56). This is achieved using the

iterative waterfilling with pricing (IWFP) procedure proposed

in [16] and reported in Algorithm 4 for completeness. The

outer layer makes use of pVI
k (γ(j)) (provided by Step 1) to

update γ(j) through Steps 2 – 5. The convergence properties of

Algorithm 3 are stated in the following proposition, in which

{τ (j)} represent the scalar parameters used in Step 5.

Proposition 10. Assume that:

• The matrix B defined in (40) is positive definite;

• The mapping Φ(γ) is a co-coercive function of γ with

constant κ > 0, i.e.,

(γ1 − γ2)
T (Φ(γ1)−Φ(γ2)) ≥ κ ‖Φ(γ1)−Φ(γ2)‖

2

(59)
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for any γ1, γ2 ∈ R
K
+ .

If the scalars τ (j) are chosen such that

0 ≤ inf
j

τ (j) ≤ sup
j

τ (j) ≤ 2κ (60)

then the sequence of vectors {pVI(γ(j))} generated by Algo-

rithm 3 converges to the NE of G.

Proof: The convergence of the inner layer to the solution

of (56) follows from the results in [16], in which the authors

prove that if the mapping F is strongly monotone then pVI(γ)
can be computed in a distributed manner for any given γ � 0

through IWFP. As pointed out in Appendix D, the condition

on the strong monotonicity of F holds true whenever the

matrix B in (40) is positive definite. On the other hand,

the convergence of the outer layer can be proved by simply

observing that it is equivalent to the projection method with

variable steps described in [33, Algorithm 12.1.4]. Therefore,

the convergence proof follows from [33, Theorem 12.1.8].

Unlike Algorithm 2, Algorithm 3 enables the computation

of the NE points of G in a distributed manner without the

need for any centralized processing. To see how this comes

about, observe that the evaluation of pVI
k (γ(j)) through IWFP

in the inner layer only requires knowledge of the local measure

of the overall interference plus noise. This information can

easily be estimated at each transmitter during its own reception

phase. The same information is needed in the outer layer

by each player k for updating the value of t⋆k(p
VI
−k(γ

(j))) in

Step 2. Once t⋆k(p
VI
−k(γ

(j))) is computed, then
[
Φ(γ(j))

]
k

is

evaluated in Step 3 and later used in Step 5 to update γ
(j+1)
k .

Remark 5 (On the design of {τ (j)} in Algorithm 3). From

(60), it follows that a judicious design of {τ (j)} would require

to compute κ in closed form as a function of the system

parameters. Unfortunately, this is a challenging task, which is

still much open. In Appendix G, we make use of some heuristic

arguments to conjecture that if the uniqueness conditions of

Theorem 3 are satisfied, then Φ(γ) is a co-coercive function

of γ with constant

κ =
β

1 + Γ−2
(61)

where

β =
λmin(B̃)

max
k

max
n

{(ς̃k(n))2}
(62)

is the strong monotonicity constant of F while Γ is its

condition number (see also Appendix D). A formal proof of

(61) is beyond the scope of this work, and it is currently under

investigation. Herewith, we observe that, although building

upon heuristics, this condition has been validated by means

of the extensive simulations shown in the next section. In

particular, it turns out that the proposed distributed algorithm

converges with probability one whenever the uniqueness con-

ditions depicted in Theorem 3 are satisfied.

VI. NUMERICAL RESULTS

Numerical results are now provided to assess the perfor-

mance of the proposed solutions when applied to a hetero-

geneous network. In particular, we consider a scenario with
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Fig. 2: Convergence probability of Algorithm 3.

K = 8 players in which four of them aim at maximizing the

EE and the other four are focused on the SE maximization. The

system parameters are as follows: i) the interference channel is

composed of N = 16 subchannels; ii) the channel coefficients

Hk,i(n) are assumed to be CN (0, 1) ∀k, i, n; iii) the average

signal-to-noise ratio (SNR) on the generic subchannel n over

link k is defined as SNRk(n) = E{|Hk,k(n)|2}/σ2
k and it

is set to 0 dB ∀k, n; iv) the maximum normalized power is

fixed to Pk = N for any k; v) the static power consumption

is assumed to be Ψk = 1 for all k; vi) the starting point

of the distributed algorithms is the uniform power allocation

strategy, i.e., p
(0)
k = 1; vii) the tolerance parameter of the

Dinkelbach’s algorithm is set to ǫ = 10−6, viii) the sequence

{τ (j)} is chosen such that the upper bound in (60) is met with

equality with κ given by (61).

Fig. 2 shows the empirical probability that Algorithm 3

converges to the solution of the QVI obtained via Algorithm

2. The convergence probability Pc is plotted as a function

of the average signal to interference ratio (SIR) on the

generic subchannel n over link k defined as SIRk(n) =
E{|Hk,k(n)|2}/(

∑
i6=k E{|Hk,i(n)|2}). As it is seen, in the

low SIR regime Algorithm 3 does not always converge to the

solution of the QVI and thus to the NE point of G. This is

because the co-coercivity of Φ is not guaranteed for small

values of SIRs. On the other hand, the convergence probability

is numerically close to one for moderate-to-high values of SIR.

Figs. 3-4 show respectively the EE and the SE dynamics

during the time interval needed by Algorithm 3 to converge.

As can seen, a stable power allocation strategy is achieved

while enhancing the EE of the energy efficient users up to the

113% with respect to static uniform power allocation at the

price of a consistent information rate loss. The equilibrium

is also achieved for the SE users with a final SE more than

doubled with respect the initial uniform power allocation.

VII. CONCLUSION

In this work, we have studied a non-cooperative game

modelling the power allocation problem that arises in a

heterogenous multipoint-to-multipoint network wherein each

TRP can arbitrarily choose whether to selfishly maximize its

own SE or EE. To overcome the main limitations of existing

methodologies, we have reformulated the underlying game as
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a QVI problem and then we have exploited the powerful tools

of the QVI theory: i) to study the uniqueness of the NE points;

and ii) to derive novel algorithms to converge to the NE points

in an iterative manner both with and without the need for

a centralized processing. Numerical results have been used

to validate the performance of the proposed solutions in a

heterogeneous network.

This work must be considered as a first attempt in using the

QVI theory for dealing with EE in a competitive environment.

We do believe that the developed framework will be of great

help to deal with several interesting extensions (as the VI the-

ory was useful to better study the rate maximization problem).

For example, the above results might be in principle extended

to any t⋆k(p−k) that is a continuously differentiable function

of the set of other players’ powers p−k. This means that any

additional constraint in (15) or (25) could be easily handled

by QVI(S,F) whenever it can be incorporated in t⋆k(p−k).
This might be the case of minimum data rate requirement or

maximum allowed interference levels.

Another interesting result that builds upon the developed

framework is as follows. Exploiting the well-established re-

lationship between QVIs and generalized NE problems (e.g.,

see [25], [34]), the heterogeneous game G turns out to be

equivalent to G′ = 〈K, {Sk}, {Rk}〉 in which the problem to

be solved for each player k takes the form:

max
pk

Rk(pk,p−k) (63)

subject to pk ∈ Sk(p−k).

This means that a heterogeneous game G in which each player

can choose whether to maximize its own SE or EE is basically

equivalent to a game G′ in which the utility to maximize is

always the rate but the strategy set of each player depends on

the opponents’ strategies p−k through Sk(p−k). This result

may be useful to get valuable insights into the tradeoff between

SE and EE in competitive environments.

APPENDIX A

PROBLEM (15) AS A FRACTIONAL PROGRAM

In this appendix, the solution of (15) is computed by means

of the parameter-free convex fractional program approach

(e.g., see [19]). To this end, we set

yk =
pk

Ψk + 1Tpk

(64)

and define tk as the inverse of the total power dissipation

tk =
1

Ψk + 1Tpk

. (65)

Then, the kth maximization problem in (15) can be rewritten

in the following parameter-free form:

max
{yk,tk}∈R

N+1
+

tkRk(yk/tk,p−k) (66)

subject to tk(Ψk + 1Tyk/tk) ≤ 1

1Tyk/tk − Pk ≤ 0

which is equivalent to (15), since the inequality in the first

constraint can be changed to an equality if the denominator of

the EE function is affine, and it is convex in (yk, tk), since the

perspective of a function preserves convexity [35]. To proceed

further, let us define the slack vector zk = yk/tk and denote

by νk and µk the dual variables associated with the constraints

tk(Ψk + 1T zk) − 1 ≤ 0 and 1T zk − Pk ≤ 0. Let us also

denote t⋆k(p−k) the optimum value of tk when the constraint

1T zk −Pk ≤ 0 on the maximum transmit power is neglected.

The KKT conditions of (66) yield

z⋆k = wfk(p−k, ν
⋆
k + µ⋆

k) (67)

where the waterfilling operator is defined as in (7). Now,

it is worth observing that Rk(zk,p−k) is a monotonically

increasing function of zk(n) for any n. It follows that, at

the optimum point, either the first or the second constraint

in (66) are satisfied with equality. Hence, from (67), using

the complementary slackness conditions it follows that, if

1/t⋆k(p−k) − Ψk ≤ Pk , then µ⋆
k = 0, whereas ν⋆k 6= 0 and

such that

1Twfk(p−k, ν
⋆
k) =

1

t⋆k(p−k)
−Ψk. (68)

On the other hand, if 1/t⋆k(p−k) − Ψk > Pk, then ν⋆k = 0
whereas µ⋆

k 6= 0 and such that 1Twfk(p−k, µ
⋆
k) = Pk.

Consequently, it turns out that z⋆k has the following waterfilling

structure:

z⋆k = wfk(p−k, λ
⋆
k) (69)



11

where λ⋆
k must satisfy the power constraint

1T z⋆k = min

{
Pk,

1

t⋆k(p−k)
−Ψk

}
. (70)

Recalling that z⋆k = y⋆
k/t

⋆
k, from (64) and (65) the results (16)

and (17) easily follow.

APPENDIX B

PROOF OF THEOREM 2

We start observing that gk(pk,p−k) in (28) is convex and

continuously differentiable with respect to pk for any possible

vector p−k ∈ P−k. Therefore, we can make use of [24,

Theorem 1] and state that p⋆ is a solution of QVI(Q,F) if

and only if there exist some vectors ν⋆ ∈ R
K
+ and µ⋆ ∈ R

K
+

satisfying the following KKT conditions for any k 2:

Fk

(
p⋆
k,p

⋆
−k

)
+ ν⋆k1N + µ⋆

k1N = 0N (71)

with

0 ≤ ν⋆k ⊥ gk
(
p⋆
k,p

⋆
−k

)
≤ 0 (72)

0 ≤ µ⋆
k ⊥ hk (p

⋆
k) ≤ 0. (73)

From (71) – (73), using (2) and (28), we can easily verify that

p⋆ is thus a solution of QVI(Q,F) if and only if

p⋆
k = wfk(p

⋆
−k, λ

⋆
k) (74)

with λ⋆
k being such that

1Twfk(p
⋆
−k, λ

⋆
k) = min

{
Pk,

1

t⋆k(p
⋆
−k)

−Ψk

}
. (75)

The above condition coincides exactly with the condition for

an NE in GE as stated in Proposition 3. This means that p⋆

is also an NE of GE .

APPENDIX C

PROOF OF PROPOSITION 5

Let us consider the following problem:

z⋆k = ΠQk(p−k)


−ξk −

∑

i6=k

Dk,ipi


 (76)

which corresponds to the Euclidean projection of the vector

−ξk −
∑

i6=k Dk,ipi onto the simplex Qk(p−k) defined as in

(33). Mathematically, z⋆k is computed looking for the solution

of the following minimization problem:

z⋆k = argmin
zk

1

2

∥∥∥zk −
(
−ξk −

∑
i6=k

Dk,ipi

)∥∥∥
2

(77)

subject to zk ∈ Qk(p−k)

2Observe that, according to [24], the gradient of the constraint functions,
gk(·, ·) for any k in (71), are computed only with respect to the first argument
pk , while the second argument is kept as a constant. Hence, we have
∇pk

gk(pk ,p−k) = 1N .

which is in a convex form for any given p−k. Therefore, the

associated Lagrangian is

L(zk,νk,θk) =
1

2

N∑

n=1

(zk(n) + ζk(n))
2

− θk

(
N∑

n=1

zk(n)−min

{
Pk,

1

t⋆k(p−k)
−Ψk

})

−
N∑

n=1

νk(n)zk(n) (78)

with ζk(n) = ξk(n) +
∑
i6=k

Dk,i(n)pi(n), and the problem

solution z⋆k is such that the following KKT conditions are

satisfied for any n:

z⋆k(n) + ζk(n)− θ⋆k − ν⋆k(n) = 0 (79)

z⋆k(n) ≥ 0 ν⋆k(n) ≥ 0 ν⋆k(n)z
⋆
k(n) = 0 (80)

N∑

n=1

z⋆k(n) = min

{
Pk,

1

t⋆k(p−k)
−Ψk

}
. (81)

From (79) and (80), if z⋆k(n) > 0, we obtain

z⋆k(n) = θ⋆k − ζk(n) > 0 (82)

with ζk(n) > 0. Thus, θ⋆k > 0 whenever z⋆k(n) > 0. On the

other hand, if z⋆k(n) = 0, we get

−ν⋆k(n) = θ⋆k − ζk(n) ≤ 0. (83)

Finally, from (81) – (83) we obtain

z⋆k(n) = [θ⋆k − ζk(n)]
+ (84)

with θ⋆k being such that

1T z⋆k = min

{
Pk,

1

t⋆k(p−k)
−Ψk

}
. (85)

Setting θ⋆k = 1/λ⋆
k, it follows that (84) and (85) are

equivalent to (69) and (70), respectively. This means that the

parameter-free optimization problem in (66) is equivalent to

the minimization problem in (77). Since the optimal power

allocation profile p⋆
k of player k is always an instance of z⋆k,

it follows that p⋆ is a NE of the energy-efficient maximization

problem if and only if it is such that:

p⋆ = ΠQ(p⋆)



−ξk −
∑

i6=k

Dk,ipi



 . (86)

The claim of Proposition 5 is thus proved.

APPENDIX D

PROOF OF THEOREM 3

The uniqueness result of Theorem 3 is a consequence

of the following theorem [32, Theorem 4.1] (see also [36,

Theorem 9]).

Theorem 4. Let the following assumptions hold.

• The operator F is strongly monotone ∀p,p′ ∈ P , i.e.,

(p− p′)
T
(F(p)− F(p′)) ≥ β ‖p− p′‖

2
(87)

with β > 0 being the strong monotonicity constant;
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• The operator F is Lipschitz continuous ∀p,p′ ∈ P with

modulus L > 0, i.e.,

‖F(p)− F(p′)‖ ≤ L ‖p− p′‖ ; (88)

• There exists a constant δ ≥ 0 such that ∀z,p,p′ ∈ P
∥∥ΠS(p)(z) −ΠS(p′)(z)

∥∥ ≤ δ ‖p− p′‖

with δ < β/L.

Then, QVI(S,F) has a unique solution.

The first condition easily follows from [16, Proposition 2]

in which it is stated that if B in (40) is positive definite then

the operator F is strongly monotone ∀p,p′ ∈ P with

β =
λmin(B̃)

max
k

max
n

{(ς̃k(n))2}
(89)

where B̃ represent the symmetric part of B and

ς̃k(n) =
σ2
k(n)

|Hk,k(n)|2
+
∑

i

|Hk,i(n)|2

|Hk,k(n)|2
Pi. (90)

To prove that F is Lipschitz continuous, we make use of (10)

to get

‖Fk(p)− Fk(p
′)‖ ≤∥∥∥∥∥∥

{
−

∑K

i=1 Dk,i(n)pi(n)−
∑K

i=1 Dk,i(n)p
′
i(n)

ξ2k(n)

}N

n=1

∥∥∥∥∥∥
(91)

since ξk(n) +
∑K

i=1 Dk,i(n)pi(n) ≥ ξk(n). Letting Ãk,i be a

diagonal matrix with elements

[
Ãk,i

]

n,n
=

Dk,i(n)

ξ2k(n)
=

|Hk,i(n)|
2 |Hk,k(n)|

2

σ4
k(n)

(92)

from (91) we obtain

‖Fk(p)− Fk(p
′)‖ ≤

∥∥∥∥∥

K∑

i=1

Ãk,i (pi − p′
i)

∥∥∥∥∥ . (93)

Observe now that
∥∥∥∥∥

K∑

i=1

Ãk,i (pi − p′
i)

∥∥∥∥∥≤
K∑

i=1

max
n

{[
Ãk,i

]

n,n

}
‖pi − p′

i‖ (94)

so that from (93) one gets

‖Fk(p)− Fk(p
′)‖ ≤

K∑

i=1

[A]k,i ‖pi − p′
i‖ (95)

with A being defined as in (39). Then, we may write

‖F(p)− F(p′)‖
2
≤

K∑

k=1

(
K∑

i=1

[A]k,i ‖pi − p′
i‖

)2

(96)

or, equivalently,

‖F(p)− F(p′)‖
2
≤ ‖Ax‖2 (97)

where

x = [‖p1 − p′
1‖ , · · · , ‖pK − p′

K‖]
T
. (98)

Observe that

‖Ax‖ ≤ ‖A‖ ‖x‖ = ‖A‖ ‖p− p′‖ (99)

with ‖A‖ = max‖x‖=1 {‖Ax‖} =
√
λmax(AHA) being the

induced norm of the matrix A. Therefore, we may write

‖F(p)− F(p′)‖ ≤
√
λmax(AHA) ‖p− p′‖ (100)

which proves that F is Lipschitz continuous ∀p,p′ ∈ P with

modulus L =
√
λmax(AHA).

We now proceed proving that the third condition of The-

orem 3 holds true if (42) is satisfied. To this end, we start

observing that
∥∥ΠS(p)(z)−ΠS(p′)(z)

∥∥2 =
∑

k∈KE

∥∥∥ΠSk(p−k)(zk)−ΠSk(p′

−k
)(zk)

∥∥∥
2

. (101)

Since the upper boundaries of Sk(p−k) and Sk(p
′
−k), denoted

with Sk(p−k) and Sk(p
′
−k) respectively, are two parallel

hyperplanes in pk, i.e. either Sk(p−k) ⊂ Sk(p
′
−k) or

Sk(p
′
−k) ⊆ Sk(p−k), we may write

∑

k∈KE

∥∥∥ΠSk(p−k)(zk)−ΠSk(p′

−k
)(zk)

∥∥∥
2

≤

∑

k∈KE

∥∥∥ΠSk(p−k)
(zk)−ΠSk(p′

−k
)(zk)

∥∥∥
2

. (102)

Observing that

∑

k∈KE

∥∥∥ΠSk(p−k)
(zk)−ΠSk(p′

−k
)(zk)

∥∥∥
2

≤

≤
∑

k∈KE

(
1

tk(p′
−k)

−
1

tk(p−k)

)2

= ‖Ω(p)−Ω(p′)‖
2

and using (101) and (102) yields
∥∥ΠS(p)(z)−ΠS(p′)(z)

∥∥2 ≤ ‖Ω(p)−Ω(p′)‖
2

from which taking into account (42) we eventually obtain
∥∥ΠS(p)(z)−ΠS(p′)(z)

∥∥ ≤ δ ‖p− p′‖ (103)

as required by the third condition of Theorem 3.

APPENDIX E

PROOF OF PROPOSITION 8

The proof of Proposition 8 follows from the more general

result provided by [25, Theorem 3], according to which

the SPA leads to the solution of a generic QVI(S,F) with

S (p) =
∏K

k=1 Sk(p−k), and Sk(p−k) defined as in (35), if

the following conditions are satisfied:

• F is continuous in p and hk(pk) is continuously differ-

entiable and convex in pk;

• gk(pk,p−k) is continuously differentiable and convex in

pk;

• gk(pk,p−k) is continuous in p.

From (2) and (10), it follows that the first condition is verified

for the problem at hand. The second condition is also met

since gk(pk,p−k) in (28) is an affine function of pk for

any given p−k. Therefore, we are only left with proving
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that gk(pk,p−k) is continuous in p. From (28), this amounts

to showing that t⋆k(p−k) is continuous ∀p−k ∈ P−k with

P−k =
∏

i6=k Pi. This is proved by contradiction as follows.

Assume that there exists a pair of arbitrary sequences {p
(j)
−k,1},

{p
(j)
−k,2}, with p

(j)
−k,1,p

(j)
−k,2 ∈ R

N(K−1) ∀j, such that

lim
j→∞

p
(j)
−k,1 = p−k (104)

and

lim
j→∞

p
(j)
−k,2 = p−k. (105)

Assume also that

lim
j→∞

t⋆k(p
(j)
−k,1) 6= lim

j→∞
t⋆k(p

(j)
−k,2) (106)

with

t⋆k(p
(j)
−k,1) =

1

Ψk + 1Twfk(p
(j)
−k,1, ν

(j)⋆

k,1 )
(107)

t⋆k(p
(j)
−k,2) =

1

Ψk + 1Twfk(p
(j)
−k,2, ν

(j)⋆

k,2 )
(108)

where ν
(j)⋆

k,i , for i = 1, 2, are such that (20) is satisfied. First,

we observe that, for a given i ∈ {1, 2}, we have

lim
j→∞

wfk(p
(j)
−k,i, ν

(j)⋆

k,i ) = wfk(p−k, ν
(∞)⋆

k,i ) (109)

where p−k is defined in (104)-(105) and the existence of a

nonnegative and bounded value of ν
(∞)⋆

k,i satisfying (20) is

guaranteed by the quasiconcavity of Ek(pk,p−k) in pk [21],

[22]. Moreover, from (20) it is easily seen that, ν
(∞)⋆

k,i is such

that

ν
(∞)⋆

k,i =
Rk

(
wfk(p−k, ν

(∞)⋆

k,i ),p−k

)

Ψk + 1Twfk(p−k, ν
(∞)⋆

k,i )
(110)

which is nothing else than the maximum value of the EE

function in (4). Since Ek(pk,p−k) is strictly quasiconcave,

for any given p−k belonging to a compact subset of RN(K−1),

its maximum value is unique. It follows that ν
(∞)⋆

k,1 = ν
(∞)⋆

k,2 ,

which, in turn, implies that (106) is not verified. Accordingly,

we must conclude that there are no distinct sequences {p
(j)
−k,1}

and {p
(j)
−k,2} such that (106) is satisfied. This concludes the

proof.

APPENDIX F

PROOF OF PROPOSITION 9

We start observing that p⋆ is a solution of QVI(S,F) if and

only if there exist some vectors ν⋆ ∈ R
K
+ and µ⋆ ∈ R

K
+ such

that the following KKT conditions are satisfied [24], [25]:

Fk(p
⋆) + ν⋆k1N + µ⋆

k1N = 0N (111)

0 ≤ µ⋆
k ⊥ hk(p

⋆
k) ≤ 0 (112)

with ν⋆k = 0 if k ∈ KR, and

0 ≤ ν⋆k ⊥ gk(p
⋆
k,p

⋆
−k) ≤ 0 (113)

if k ∈ KE . Next, we look for a procedure that allows to

compute a triplet (p⋆,ν⋆,µ⋆) in a distributed manner. To this

end, we observe that the solution pVI(γ) of (56) must be such

that there exists some vector χ⋆ ∈ R
K
+ satisfying

Fk(p
VI(γ)) + γk1N + χ⋆

k1N = 0N (114)

0 ≤ χ⋆
k ⊥ hk(p

VI

k (γ)) ≤ 0. (115)

Let γ⋆ be the solution of the following nonlinear comple-

mentarity problem NCP(Φ), with Φ defined as in (57):

find γ � 0 (116)

subject to Φ(γ) � 0

0 ≤ γ⊥ Φ(γ) ≥ 0.

We can easily see that the triplet (pVI(γ⋆),γ⋆,χ⋆) satisfies the

KKT conditions of QVI(S,F) (see also [33] for more details

on finite-dimensional VIs and complementarity problems).

APPENDIX G

According to Proposition 10, the main condition for the

convergence of the proposed algorithm is the co-coercivity of

the operator Φ, i.e., there exists a constant κ such that

(γ1−γ2)
T (Φ(γ1)−Φ(γ2)) ≥ κ ‖Φ(γ1)−Φ(γ2)‖

2
(117)

where, from (38) and (57), we can observe that

(γ1 − γ2)
T (Φ(γ1)−Φ(γ2)) =

= (γ1 − γ2)
T (Ω(pVI(γ1))−Ω(pVI(γ2)))

−
K∑

k=1

(γ1,k − γ2,k)(1
TpVI(γ1)− 1TpVI(γ2)). (118)

Let us assume that the uniqueness conditions presented in

Theorem 3 are fulfilled and consider the right side of (117).

Exploiting the Cauchy-Schwarz inequality, we may write

‖Φ(γ1)−Φ(γ2)‖
2 ≤

‖Ω(p(γ1))−Ω(p(γ2))‖
2
+
∥∥pVI(γ1)− pVI(γ2)

∥∥2 (119)

where, from (42), one gets

‖Φ(γ1)−Φ(γ2)‖
2 ≤

δ2
∥∥pVI(γ1)− pVI(γ2)

∥∥2 +
∥∥pVI(γ1)− pVI(γ2)

∥∥2 =
(
1 + Γ−2

) ∥∥pVI(γ1)− pVI(γ2)
∥∥2 (120)

with Γ = L/β. To proceed further, we take advantage of the

results in [16, Proposition 8] wherein it is proved that

−
K∑

k=1

(γ1,k − γ2,k)(1
TpVI(γ1)− 1TpVI(γ2)) ≥

β
∥∥pVI(γ1)− pVI(γ2)

∥∥2 ≥
β

1 + Γ−2
‖Φ(γ1)−Φ(γ2)‖

2
.

(121)

At this point, we are only left with the scalar product:

(γ1 − γ2)
T
[
Ω(pVI(γ1))−Ω(pVI(γ2))

]
=

K∑

k=1

(γ1,k − γ2,k)

(
1

t⋆k(p
VI

−k(γ1))
−

1

t⋆k(p
VI

−k(γ2))

)
. (122)
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From (18), one gets

[Ω(pVI(γ))]k =
1

t⋆k(p
VI

−k(γ))
−Ψk = 1T

wfk(p
VI
−k(γ), ν

⋆
k)

which represents the radiated power we would have at the

transmitter k when the EE is maximized given pVI
−k(γ). The

lack of an explicit form for t⋆k(p
VI

−k(γ)) makes it hard to study

in a rigorous way the co-coercivity of (Ω(pVI(γ)) with respect

to γ. To partially fulfill this lack, the following heuristic line

of reasoning is used to get some insights. Intuitively speaking,

when the penalty coefficients in γ increase, the interfering

powers in pVI
−k(γ) decrease and the user k experiences larger

SINRs. According to the waterfilling principle, a larger SINR

implies a larger radiated power, or, in other words,

(γ1 − γ2)
T (Ω(pVI(γ1))−Ω(pVI(γ2))) ≥ 0. (123)

Then, collecting (118) and (120)-(121), one gets

(γ1−γ2)
T (Φ(γ1)−Φ(γ2)) ≥

β

1 + Γ−2
‖Φ(γ1)−Φ(γ2)‖

2 .

(124)
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