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Abstract

This work proposes a method for the development of cyber-physical systems starting
from a high-level representation of the control algorithm, performing a formal analysis of
the algorithm, and co-simulating the algorithm with the controlled system both at high
level, abstracting from the target processor, and at low level, i.e., including the emulation
of the target processor. The expected advantages are a smoother and more controllable
development process and greater design dependability and accuracy with respect to basic
model-driven development. As a case study, an automatic transmission control has been
used to show the applicability of the proposed approach.

1 Introduction

Simulation is an essential activity in model-driven development (MDD), as it enables developers
to implement virtual prototypes of their designs at all required levels of abstraction, until the
design has been refined and validated to the point that it can be prototyped in hardware and
code.

The existence of design models at different levels of abstraction makes it convenient to use
different tools and formalisms for each model. Let us consider, for example, the control part of
a cyber-physical system (CPS). This component must implement a high-level control algorithm
that can be defined mathematically and modelled and simulated with the well-known tools
together with a model of the controlled plant, usually built with the same tools, e.g., with
Simulink. From now on, it is tacitly assumed that simulations include a plant model built with
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Simulink. Further refinements lead to a lower-level design including programming code and a
hardware platform of the target processor(s), including system software/microcode. In this work,
the terms hardware or platform refer to the physical and software infrastructure that executes the
control algorithm. At this level of abstraction, it is possible to run the developed programming
code on a simulated or real processor architecture. At this point, the hardware platform is
the critical issue, as it affects significantly system performance and dependability. Accurate
simulation of the platform makes it possible to evaluate hardware from different vendors, compare
different architectural solutions, and choose optimal parameter configurations.

Processor simulation, however, requires formalisms and tools that are quite different from
those used for high-level design. This mismatch is both conceptual and organisational, since the
two levels require different fields of expertise, and is a potential source of issues ranging from
project delays to design errors.

This paper introduces the concept of cross-level simulation, an approach to MDD aimed at
bridging the gap between high- and low-level models, preserving coherence between them, and
furthermore enabling formal verification of the control algorithm. A key point in this concept is
that the implementation of the control algorithm is the same for both levels of simulation, and
that the implementation is produced automatically from a formally verifiable model. Depend-
ing on application characteristics or project constraints, verification may be performed upfront
on the formal model, or concurrently with simulation, the two activities cross-checking each
other. This approach, summarised in Figure 1, is an extension to the common development
flows based on Simulink-like tools, and relies on various tools for model construction, trans-
formation, and simulation. More precisely, (i) a prototyping environment is used to create a
high-level, automaton-based model and generate both a logic-based specification and C code;
(ii) the specification is used to verify the control algorithm with a theorem-proving environ-
ment; (iii) high-level simulation executes the controller code together with a plant model, e.g.,
in Simulink; and (iv) low-level simulation executes the same code on simulated hardware, built
in the SESAM/VPSim environment to account for timing behaviour.

In summary, this work extends the common MDD process by (i) starting with an abstract
formal model; (ii) automatically generating an executable and a verifiable model; (iii) using for-
mal verification side by side with simulation; (iv) relying on co-simulation to achieve modularity
and flexibility of system models; and (v) using the same control code in high- and low-level
simulation. The expected advantages are (i) a smoother and more controllable process and (ii)
greater design dependability and accuracy with respect to basic MDD, relying on tools that
enforce coherency among models at different levels of abstraction. In particular, the same code
is used in both high-level and low-level co-simulations.

The rest of the paper is structured as follows: a selection of related works is presented in
Section 2, the methods and tools for virtual prototyping/verification are introduced in Section 3,
Section 4 illustrates the proposed approach, and Section 5 shows its application to a case study.
Section 6 concludes the paper.

2 Related Work

Model-driven development relies mainly on simulation to analyse the system behaviour [25]. In
cyber-physical systems, simulation often takes the form of co-simulation [11], which integrates
simulation of heterogeneous sub-systems, modelled and simulated with the appropriate tools.
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Figure 1: Overview of cross-modelling.

Due to the complexity of such systems, formal verification can help to assess compliance
to safety requirements. Hybrid model checking, which relies on the formalism of Hybrid Au-
tomata [12], is used for the analysis of cyber-physical systems with a model-checking approach.
One example of a model checking tool is HYCOMP [7] which also relies on Satisfiability Mod-
ulo Theories [8]. A complementary approach to model checking is theorem proving. Dynamic
Logic [5] is used with the KeyMaeraX [22] theorem prover, which has been integrated with the
SPIRAL environment [23] as reported by Franchetti et al. [10]. A framework that integrates
simulation and theorem proving is PVSio-web [18], which uses higher-order logic as modelling
language, as reported in [9, 20, 3].

None of these works integrates the processor emulation in the co-simulation.
In the field of electronic systems design, virtual prototypes are extensively used to simulate

the behaviour of a system to be built. This allows hardware/software co-design to be better
assessed and provides fast software development, reducing time to market. Many tools from
academic work [14, 6] or electronic design automation vendors [26] address this need. The cited
tools are all based on the IEEE SystemC standard [13] meant for model sharing. The standard
defines a C++ library providing both a full discrete event simulation environment and design
specific architectural constructs to enable hardware design at this level of abstraction. SystemC is
further extended by the TLM 2.0 standard [1] which abstracts complex communication channels
and protocols into simple function calls for faster simulation.

3 Background

This section provides details on the methods and tools used in this work.

3.1 PVS, Emucharts, and PVSio-web

Theorem proving consists in describing a system as a theory in some logic language, expressing
its requirements as theorems, and verifying them with automatic or interactive theorem-proving
software. The Prototype Verification System (PVS) [19] is an interactive theorem-proving envi-
ronment based on a higher-order specification language whose variables can range over functions
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and predicates. Theorems are proved by issuing commands to execute proof steps.
Users can create any theory by editing a text file, but the PVSio-web toolkit [18] can generate

a PVS theory from an automaton created with the Emucharts [16] editor. An Emucharts graph
is composed of modes linked by transitions. The graph is complemented by a set of variables
whose values, together with the current mode, define the current state. Transitions are defined
by a trigger (an event), a guard (an enabling condition on variables), and an action (updates
on variables). The variables may range over discrete or continuous domains, they may represent
time, state variables, values of time derivatives, and updated values in difference equations,
so the Emucharts are a form of hybrid automata as defined in [12]. An example is shown in
Section 5.1, Figure 5.

The PVSio-web toolkit can translate Emucharts into various specification and programming
languages, including Misra C, a dependability-oriented version of C [17]. It is then possible to
create a high-level automaton-based system model and from it generate a PVS theory to assert
its properties, and use executable code automatically produced from the same model.

3.2 INTO-CPS

Co-simulation [11] is a technique to couple different simulation units together. A complex system
can then be divided in many simpler submodels, and each submodel can be simulated using its
specific language and tools. The Functional Mock-up Interface (FMI) [4] is an emerging standard
for co-simulation, in which different simulation units, called Functional Mock-up Units (FMU),
are orchestrated by a master algorithm in charge of synchronisation and data exchange among
the FMUs. The master algorithm adopted in this work is the Co-simulation Orchestration Engine
(COE), developed by the INTO-CPS Association [15]. The COE requires as input the logical
connections between FMUs, the parameter values and the constraints on the co-simulation time
step size. The INTO-CPS application also collects and graphically displays data produced by
the co-simulation experiments.

3.3 SESAM/VPSim Environment

Within the SESAM [27] CPS design framework, the VPSim [6] tool targets the fast assembly
and simulation of SoC architecture for both design space exploration and hardware/software co-
design and validation. VPSim uses Python scripts to define architectures composed of SystemC
modules from an extensive library of simulated commercial components including CPUs, inter-
connects, peripherals, and external controllers from various vendors (Xilinx, Renesas, Cadence,
etc.). VPSim relies on the QEMU [2] processor emulator to provide a rich and fast CPU library
model. As it targets fast simulation, VPSim is based on a loosely-timed model in compliance
with TLM 2.0

As all SESAM tools, VPSim supports FMI co-simulation for tool interoperability through-
out the design stages. It is a fully automated solution for exporting a hardware/software virtual
prototype as an FMU. This enables the co-simulation of a whole CPS as detailed in [24]. There-
fore, it can easily interface with other FMI-compliant simulators. An FMU encapsulating the
virtual platform can be automatically generated based on a high-level description of the hard-
ware/software platform.
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4 Cross-level Modelling, Co-simulation and Verification

Cross-level simulation, introduced in Section 1, is discussed below.
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Figure 2: Model generation and formal verification.

4.1 Development Process

The initial steps of the development process are depicted in Figure 2: first, the developer uses
the PVSio-web environment to generate the Emucharts model of the algorithm under analysis
and then the developer uses the PVS and C code generators to generate the PVS theory and
the Misra C code.

In the verification activity, the theory is used for two forms of verification: First, the well-
formedness of the system model is assessed with the PVS type checker [21], then its compliance to
requirements is checked with the theorem prover. The type checker may generate type checking
conditions (TCC), i.e., statements that must be proved to ensure type correctness. Many TCCs
are discharged automatically, others can be proved by the user with one or few commands,
but unprovable TCC reveal incompleteness or inconsistency in a theory. The specification of
requirements involves translating the desired property from natural or mathematical language
to a PVS theorem.

Simulink
FMU

INTO−CPS
application

simulation

results

Plant

FMU

Controller

Figure 3: High-level co-simulation.

In the high-level simulation phase, the controller is co-simulated to validate it in connection
with the plant model (Figure 3). The latter, built with a tool such as Simulink, is packaged in
an FMU.
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In the low-level simulation phase, the controller implementation is compiled and executed on
a simulated platform including accurate models of real hardware, such as processors, memories,
and controllers. In this phase, performance-related properties are assessed, such as execution
time, latencies, or cache misses, possibly evaluating alternative choices of hardware components
(Figure 4).
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VPSim models
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results

VPSim environment
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Control and

Controller

C code

Plant
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Figure 4: Low-level co-simulation.

The verification or simulation activity (or both) may fail, e.g., because the results of the
co-simulation are not the expected ones or because the discharge of some TCC failed; In this
case, the Emucharts model should be refined, using the results of the failed activities, then a
new Misra C code and a new PVS theory should be generated, and the two activities iterated
until both succeed.

When type checking and co-simulation succeed, it is then possible to specify and prove safety
properties of the submodel under analysis.

4.2 Emulation of Processors with VPSim

Any architecture can be simulated by VPSim using the CPU models provided by the QEMU,
an open-source hardware emulation solution, although it also allows the integration of model
providers that have a SystemC/TLM interface, such as ARM Fast Models. By using QEMU
for CPU modelling, we can obtain a very high simulation speed. Such a high performance is
achieved mainly by abstracting the architectural aspects of CPUs while maintaining the func-
tional accuracy in the execution. To provide the essential performance statistics to users, the
QEMU models is enriched by VPSim in the SystemC simulation domain to model architectural
aspects. To that end, all models that are backed by QEMU, including the VirtIOs, are encapsu-
lated in SystemC modules and executed in the context of SystemC threads. Accordingly, QEMU
models are controlled by the SystemC kernel like any native module and are transparently ex-
posed to the user like any other VPSim component. For CPS validation purposes, the VPSim
virtual platform can be packaged as an FMU by adding the definition of necessary FMI inter-
faces used in the Python front-end interface. VPSim supports models such as CAN controllers
in its hardware library.
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5 Automatic Transmission Control Case Study

The case study of this work is based on the Automatic Transmission Controller example from
the Matlab documentation1. This example is a Simulink/Stateflow model composed of five high-
level blocks: the Engine, the ShiftLogic, the Transmission, the Vehicle, and the ManeuvresGUI,
which drives the simulation by producing the throttle and brake signals for a passing manoeuvre.
The ShiftLogic block is a hybrid automaton, defined in Stateflow, that produces the upshift and
downshift commands to the Transmission, according to a shift schedule that takes into account
the current gear, the vehicle speed, and the throttle position.

The ShiftLogic controller is in a steady state if the vehicle is driving at an intermediate speed
between the upshift and downshift thresholds for the current gear and throttle. If the throttle
or speed cross a threshold, the controller moves to either of two waiting states (for upshift or
downshift). If the speed remains beyond the threshold for a given time, the corresponding shift
command is issued and the controller moves to the steady state of the new gear.

5.1 High-Level Virtual Prototyping

The ShiftLogic block has been re-designed as outlined in Section 4.1 and packed in an FMU.
Another FMU, generated by Simulink, contained the other four blocks. The two FMUs were
then co-simulated in INTO-CPS.

5.1.1 Emucharts Model for ATC

The ATC behaviour is specified by the shift schedule. Using the data from the cited example,
the shift schedule is defined by the functions represented in Tables 1 and 2. Each row labelled
as n−m shows the threshold speed value (in miles per hour) for a shift from gear n to gear m
in consecutive intervals of throttle position t%(in percent).

Table 1: Shift schedule, speed thresholds for upshifts.
shift t% ≤ 25 25 < t% ≤ 35 35 < t% ≤ 50 50 < t% ≤ 90 90 < t% ≤ 100

1-2 10 0.5t% − 2.5 0.53333t% − 3.6667 0.425t% + 1.75 40
2-3 30 30 0.73333t% + 4.3333 0.725t% + 4.75 70
3-4 50 50 0.66667t% + 26.6667 t% + 10 100

Table 2: Shift schedule, speed thresholds for downshifts.
shift t% ≤ 5 5 < t% ≤ 40 40 < t% ≤ 50 50 < t% ≤ 90 90 < t% ≤ 100

4-3 35 0.1429t% + 34.28571429 t% 0.75t% + 12.5 80
3-2 20 0.1429t% + 19.2857 0.5t% + 5 0.5t% + 5 50
2-1 5 5 5 0.625t% − 26.25 30

The shift schedule has been modelled as an Emucharts diagram. Figure 5 shows the diagram
fragment relative to the lower two gears, while the complete diagram (Figure 13), drawn in

1https://www.mathworks.com/help/simulink/slref/modeling-an-automatic-transmission-controller.

html.
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a more compact form, is in the Appendix with the transition definitions. Each transition is
identified with a label followed by a guard in square brackets and possibly an action in braces.

In the diagram, stdy modes represent steady conditions of the ATC, while up and down
modes represent the waiting phases before the ATC is going to issue an upshift or downshift
command, respectively, if the speed remains beyond the corresponding threshold for a long
enough time.

The transitions depend on variables: the discrete variables clock and gear and the continu-
ous variables tht (throttle), up th (upshift threshold), dw th (downshift threshold), and speed.
Variable clock is a timer that can be incremented by one step or reset, and gear is the controller
output. The flow conditions [12] for the input variables tht and speed are defined externally by
the Vehicle and ManeuvresGUI models, while the flow conditions for up th and dw th are given
by the shift schedule in Tables 1 and 2, respectively.

g1_stdy

T1: [speed < up_th]

g1_up

T11: [speed >= up_th]

{clock := 0}

T20: [speed =< dw_th & clock >= 5]
{gear := 1}

g2_stdy g2_upg2_down

T14: [speed >= up_th] {clock := 0]

T23: [speed =< dw_th] T15: [speed < up_th]

T24: [speed > dw_th]

{clock++}
T2: [clock < 5 & speed >= up_th]

T10: [speed > dw_th & speed < up_th]T5: [clock < 5 & speed =< dw_th]
{clock++}

T3: [clock < 5 & speed >= up_th]
{clock++}

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

T13: [speed >= up_th & clock >= 5]

{gear := 2}

T12: [speed < up_th]

Figure 5: Fragment of the Emucharts diagram for the shift logic automaton.

5.1.2 Discharging the TCCs for the ATC

The Emucharts model of the ATC was derived from the Stateflow machine in the cited Matlab
example. Typechecking the PVS theory generated from the first Emucharts version produced
unprovable TCCs. One is a coverage TCC, stating that the disjunction of the guards of all
transitions is identically true, i.e., at least one transition is enabled. The complementary mutual
exclusion TCC requires that at most one transition is enabled. The problem was that some
transitions were implicit in the Stateflow model, and was fixed by explicitly adding the needed
transitions to the Emucharts model. These transitions are labelled in boldface as T1, T8, T9,
and T10 in Figure 13. This is an example of how a sophisticated type system, together with
automatic checking, helps spotting hidden assumptions that are often sources of errors.

5.1.3 Co-simulation for ATC

Figure 6 shows the co-simulation architecture for the high-level simulation. The co-simulations
are executed using a fixed time step of 0.1 seconds and last 80 seconds of simulated time. Figure 7
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shows the results of a co-simulation run. These results are consistent with those obtained with
the original Simulink model, i.e., the shapes of the throttle and speed curves between the first
and third upshifts match those of the plot in the MATLAB documentation, except for the initial
speed value and the initial transient as discussed in Section 5.2 below.

COEAutomotive FMU

speed

gear

throttle
Controller FMU

speed

gear

throttle

Figure 6: High-level Co-simulation architecture.

Figure 7: High-level control co-simulations.

5.1.4 Verification Process for ATC

As an example, one of the safety properties of the ATC algorithm is “it is never possible to
move in one step from a state where gear equals g to a state where gear equals g ± 2 ”. This
natural language statement can be translated in PVS with the main th theorem, where abs is
the absolute value function:

gear_T: TYPE = {x: posnat | x<=4}

main_th: THEOREM

FORALL (N:nat, g:gear_T):

kth_step(N)‘gear = g => abs(kth_step(N+1)‘gear - g) < 2
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where kth step(N) is a data structure containing the values of all variables at step N , and
‘gear selects the value of gear. The proof has been done by induction on the number of steps
and by analysing separately the different values of gear. The proof relies on a few lemmas.
For example, it must be proved that in any gear, the computed threshold speed for an upshift
(compute UP TH(s)‘up th)is greater than the one for a downshift (compute DW TH(s)‘dw th):

UPgtDW: LEMMA

FORALL (s:State):

compute_UP_TH(s)‘up_th > compute_DW_TH(s)‘dw_th

Another lemma excludes direct transitions between two steady states:

gear1: LEMMA

FORALL(N:nat):

kth_step(N)‘mode = g1_steady => kth_step(N+1)‘mode /= g2_steady

Verifying this and similar theorems guarantees the functional correctness of the control algo-
rithm.

5.2 Co-simulation with VPSim

Figure 8 shows the architecture for the low-level simulation with VPSim. This architecture is
very similar to the high-level scenario, the only difference is that the controller FMU has been
replaced with the FMU generated from VPSim. The FMU generated by VPSim emulates a
cluster of ARMv8 64-bit architectures. The cluster contains 1-core processors with private L1
and L2 caches, which is connected to the on-chip interconnect and peripheral devices. More
cores and clusters can be added in future works for more complex applications. The architecture
executes a Linux OS which supports the ShiftLogic application.

Automotive FMU

speed

gear

throttle

Controller + Platform

FMU
COE

speed

gear

throttle

Figure 8: Low-level co-simulation architecture.

Hence, the VPSim FMU requires an initial time to boot the operating system before executing
the application of the ShiftLogic algorithm, while the MisraC FMU executes the algorithm since
the beginning of the co-simulation. For sake of comparison between the two architectures, the
value of throttle is always kept close to zero for the first seconds of the co-simulations.

VPSim enables the timing behaviour of a system to be captured. Hence the duration of the
applicative code has a direct impact on the evolution of the FMU outputs that it may change.
Simulations have been performed with different execution times of the ATC, obtained by adding
delay loops to the original code. When the ATC executes faster than the FMI simulation step
demanded by the FMI master (Figure 9), the behaviour is similar to what is achieved with
high-level simulation. (Functions fmi2set and fmi2get are write and read operations, while
function fmi2DoStep triggers the execution of one simulation step.) In that case, Figure 11
shows the behaviour of the co-simulation with the VPSim FMU: The resulting behaviour is
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consistent with the one previously obtained with the high-level co-simulation. On the contrary
(Figure 10), when the ATC executes slower than the interval between invocations of fmi2DoStep,
output value changes are differed to after future simulation steps.

Having both simulation levels together allows inadequate execution speed of the code under
scrutiny to be better underlined. Indeed, when the application execution speed is appropriate,
the behaviour is consistent throughout the validation levels as expected. However, it is worth
noting that, even if one may set the co-simulation step to an arbitrarily small value, this will
create new discrepancies due to processing delay in the low-level simulation compared to the
high-level one. If achievable, users should be advised to keep a simulation step duration in line
with the expected control decision deadline.

To further improve the alignment of models without this constraint, it could also be beneficial
in future work to model the target execution time during high-level simulation by delaying control
decisions accordingly. This would render the high-level model behaviour invariant to simulation
step choices. Similarly the low-level simulation results shall not be made available too early,
even if the control code execute too fast. This would likely be taken into account in real-time
code where control decision would never be output before the target deadline.

Figure 9: Co-simulation of VPSim-generated FMU with fast ATC execution.

5.3 Results and Discussion

It is possible to compare Figure 11 with Figure 7: excluding the first seconds, in which gear
equals zero because the processor is still booting, the variable of gear has the same behaviour
for both cases. This result implies that the time required to execute the ATC on the emulated
processor is lower than the step-size chosen for the co-simulation (0.1 seconds).

In order to highlight the advantages of considering low-level co-simulation, the algorithm of
the ATC has been artificially extended with a redundant code that increases its computation
time so that the execution time of the ATC becomes greater than the co-simulation step-size.
Figure 12, shows the comparison between the low- and high-level behaviour of the gear variable
with the extended code. It is possible to notice a small time delay in the behaviour of the
variable which is due to the different time management: The high-level co-simulation always
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Figure 10: Co-simulation of VPSim-generated FMU with slow ATC execution.

executes the whole ATC algorithm within a co-simulation step while the low-level now requires
more co-simulation steps. Please notice that the delay in the first two gear transitions of the
low-level co-simulation has affected the value of speed, increasing it, in such a way that the next
gear transition occurs earlier with respect to the high-level simulation and, apparently, with no
delay.

The co-simulation results show that the underlying hardware performance (e.g., computation
speed), must be taken into account to ensure that the plant can be controlled within the step-size.
High-level simulation hides system performance issues that the virtual prototype can highlight.

In all the co-simulation runs, both high-level and low-level, the results obtained with PVS
hold, as it is never the case that two gear transitions are executed in two adjacent steps, thus
validating the results obtained in Section 5.1.4. Of course, time-related properties will be affected
by the different time management and so require an additional step in the verification process,
i.e., the specification of the processor in PVS, but this will be subject of future work.
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Figure 11: Low-level control co-simulations.

Figure 12: Gear shifts in high- and low-level simulations.
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6 Conclusions

This work proposes an approach to the analysis of control algorithms deployed on automotive
systems. The approach uses models with different levels of abstraction: a more abstract, high-
level, model composed of the executable code of the control algorithm, and a more accurate,
low-level, model that also includes the emulation of the hardware executing the code. The high-
level analysis provides information on the functional correctness of the model by exploiting both
formal reasoning tools such as the PVS theorem prover and simulation tools such as INTO-CPS,
while the low-level analysis provides information on the execution performances related to the
chosen hardware for the low-level model by exploiting VPSim. The proposed approach also uses
FMI co-simulation to include the physical components of the car in the analysis.

Both levels of analysis are needed in the development of CPSs, especially safety- or mission-
critical ones.

It would not make sense to jump to software/hardware integration before validating and
possibly verifying the controller design, as it would not make sense to choose a hardware platform
without assessing its adequacy with respect to timing constraints and evaluating its performance.
This work strives to provide a framework to maintain as much coherence as possible to the three
key aspects of development, i.e., formal verification, high-level, and low-level modelling.

A case study of an automatic transmission controller algorithm is used as a proof of concept
for the methods and tools involved in a safety-critical area like automotive applications. The
results highlight that it is possible to assess the performance of the chosen hardware: If the
emulated processor is fast enough to accommodate the execution of the algorithm within a co-
simulation time step, then the behaviour of the low-level co-simulation is the same as the one of
high-level co-simulation, otherwise the co-simulation shows a different behaviour. The proposed
methodology was applied to an ARMv8 64-bit single-core processor with private L1 and L2
caches, used in many application automotive processors (e.g. NXP S32V). More cores will be
added in future work to consider high-end processors (like the Rhea1, expected as output of
the European Processor Initiative project) and for more complex safety-critical applications like
autonomous driving and model predictive control of vehicle dynamics.
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Appendix
Table 3 below shows the transition definitions of the simplified Emucharts diagram shown in
Figure 13. Functions up th and dw th implement the shift schedule specifications from Tables 1
and 2, respectively.

Table 3: Shift logic transitions.
Transition source target guard action
T1 g1 stdy speed < up th(1, t%)
T2 g1 up clock < 5 AND speed ≥ up th(1, t%) clock++
T3 g2 up clock < 5 AND speed ≥ up th(2, t%) clock++
T4 g3 up clock < 5 AND speed ≥ up th(3, t%) clock++
T5 g2 down clock < 5 AND speed ≤ dw th(2, t%) clock++
T6 g3 down clock < 5 AND speed ≤ dw th(3, t%) clock++
T7 g4 down clock < 5 AND speed ≤ dw th(4, t%) clock++
T8 g4 stdy speed > dw th(4, t%)
T9 g3 stdy speed > dw th AND speed < up th(3, t%)
T10 g2 stdy speed > dw th AND speed < up th(2, t%)
T11 g1 stdy g1 up speed ≥ up th(1, t%) clock := 0
T12 g1 up g1 stdy speed < up th(1, t%)
T13 g1 up g2 stdy speed ≥ up th(1, t%) AND clock ≥ 5 gear := 2
T14 g2 stdy g2 up speed ≥ up th(2, t%) clock := 0
T15 g2 up g2 stdy speed < up th(2, t%)
T16 g2 up g3 stdy speed ≥ up th(2, t%) AND clock ≥ 5 gear := 3
T17 g3 stdy g3 up speed ≥ up th(3, t%) clock := 0
T18 g3 up g3 stdy speed < up th(3, t%)
T19 g3 up g4 stdy speed ≥ up th(3, t%) AND clock ≥ 5 gear := 4
T20 g2 down g1 stdy speed ≤ dw th(2, t%) AND clock ≥ 5 gear := 1
T21 g3 down g2 stdy speed ≤ dw th(3, t%) AND clock ≥ 5 gear := 2
T22 g4 down g3 stdy speed ≤ dw th(4, t%) AND clock ≥ 5 gear := 3
T23 g2 stdy g2 down speed ≤ dw th(2, t%) clock := 0
T24 g2 down g2 stdy speed > dw th(2, t%)
T25 g3 stdy g3 down speed ≤ dw th(3, t%) clock := 0
T26 g3 down g3 stdy speed > dw th(3, t%)
T27 g4 stdy g4 down speed ≤ dw th(4, t%) clock := 0
T28 g4 down g4 stdy speed > dw th(4, t%)
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Figure 13: Simplified Emucharts diagram for the shift logic automaton.
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