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Abstract:We consider a double-phase non-Newtonian �uid, described by a stress tensor which is the sum of
a p-Stokes and a q-Stokes stress tensor, with 1 < p < 2 < q < ∞. For a wide range of parameters (p, q), we
prove the uniqueness of small solutions. We use the p < 2 features to obtain quadratic-type estimates for the
stress-tensor, while we use the improved regularity coming from the term with q > 2 to justify calculations
for weak solutions. Results are obtained through a careful use of the symmetries of the convective term and
are also valid for rather general (even anisotropic) stress-tensors.
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1 Introduction
In this paper we study the uniqueness of “small” (in an appropriate sense) solutions to a family of double-
phase steady problems, arising in the analysis of non-Newtonian �uids. The interest in double-phase prob-
lems started with the celebrated result by Zhikov [29] concerning the Lavrentiev phenomenon. The problem
was set in the framework of functionals with (p, q)-growth, for which we refer also to the pioneering paper
by Marcellini [22]; recent results can be found in the works of Esposito, Leonetti, and Mingione [15], Baroni,
Colombo, and Mingione [3], and Colombo and Mingione [9], especially in the context of regularity of mini-
mizers. For results regarding the applications to spectral analysis andmultiplicity of solutions, see Chor� and
Radulescu [8], Baraket, Chebbi, Chor�, and Radulescu [2], and the review in Radulescu [25]. In the context of
�uid mechanics, problems with more than one phase arise especially in the case of �uids with complex rhe-
ologies, as introduced by Růžička [23], where the modeling leads to a problem with variable exponent. See
also the review in Rădulescu and Repovš [26] for general problems involving partial di�erential equations
with variable exponents.

Here, instead that regularity or multiplicity of solutions, we focus on some speci�c problems concerning
uniqueness in the class of small weak solutions.
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In order to introduce the problem, we recall that a basic result for the steady Navier-Stokes equations in
a smooth and bounded domain Ω ⊂ R3

−ν0∆u + (u ·∇)u +∇π = f in Ω,
divu = 0 in Ω,

u = 0 on ∂Ω,
(1.1)

is that of uniqueness of weak solutions, under the assumption of smallness of the L3(Ω)-norm of u. (In this
case the possible non-uniqueness is neither a special feature of the problem in R3, nor coming from the
fact that it is a nonlinear system with the divergence-free constraint. Possible multiplicity of solutions is a
common result even for semi-linear elliptic scalar equations.) More precisely, for the steady Navier-Stokes
equations (1.1), it holds that if u1, u2 ∈ W1,2

0 (Ω) are weak solutions corresponding to the same external force
f ∈ W−1,2(Ω), then there exists ϵ0 > 0 such that if ‖u1‖3 ≤ ϵ0, then u1 = u2; see the review in Galdi [17,
Ch. IX.2]. The proof is based on writing the system satis�ed by the di�erence U = u1 − u2 and testing by U
itself (a procedurewhich is legitimate in the steady case also forweak solutions). Next, oneuses the inequality∣∣∣∣∣∣

∫
Ω

(U ·∇)U · u1 dx

∣∣∣∣∣∣ ≤ ‖U‖6‖∇U‖2‖u1‖3 ≤ C‖∇U‖22‖u1‖3, (1.2)

with a constant C depending only on Ω, obtained by application of the Hölder inequality and of the Sobolev
embedding H1

0(Ω) ↪→ L6(Ω).
In this way from (1.1) one easily gets, after integration by parts, that

ν0‖∇U‖22 ≤ Cϵ0‖∇U‖22,

which impliesU = 0, provided that ϵ0 < ν0/C. Observe that from the energy estimate valid for weak solutions
one knows a priori just that

‖∇u1‖2 ≤
1
ν0
‖f‖W−1,2 ,

hence, uniqueness for small forces/large viscosities follows by using a Sobolev embedding to ensure small-
ness in L3(Ω), at least when Ω is bounded.

We stress the critical role played by the exponent “two” of ‖∇U‖2 in the energy estimate (1.2). It appears
at the same time as exponent in: i) the lower bound for the dissipative term; and ii) the upper bound for the
quantity obtained by estimating of the convective term. If there is a mismatch in the powers, then this easy
but powerful argument may fail.

The same argument can be also applied if ‖∇u1‖3/2 ≤ ϵ1 (for a possibly di�erent small constant ϵ1 > 0),
by using a similar estimate for the convective term and observing thatW1,3/2(Ω) ↪→ L3(Ω). Note that the two
alternative assumptions have the same scaling.

In the case of steady non-Newtonian �uids, the situation becomes more complex. If one considers for
1 < p < ∞ the following system, describing a family of shear dependent �uids,

−ν0∆u − div(δ + |Du|)p−2Du + (u ·∇)u +∇π = f in Ω,
divu = 0 in Ω,

u = 0 on ∂Ω,
(1.3)

then, for any δ ≥ 0 and for all ν0 > 0, the same argument valid for the Navier-Stokes equations can be applied.
In fact, the additional stress tensor is monotone and the following inequality holds:∫

Ω

(
(δ + |Du1|)p−2Du1 − (δ + |Du2|)p−2Du2

)
: D(u1 − u2) dx ≥ 0.

The above inequality and the fact that weak solutions still belong toW1,2
0 (Ω) will be enough to disregard the

e�ect of the additional non-linear stress tensor. It is possible to treat problem (1.3) in the same way as for the
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unperturbed Navier-Stokes equations, at least for what concerns uniqueness. The argument applies also to
�uids such that the stress tensor has, in addition to the linear part, a nonlinear stress tensor S(Du) = Sp,δ(Du)
with a (p, δ)-structure (see Section 2). We recall that the stress tensor

Sp,δ(Du) := (δ + |Du|)p−2Du δ ≥ 0, 1 < p < ∞, (1.4)

is just the prototypical example of a stress tensorwith (p, δ)-structure. These results are reviewed for instance
in [16, Sec. 2.2.1(c)].

A similar approach has been recently used by Gasiński andWinkert [18] to treat the following anisotropic
double-phase scalar problem

−div
(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
= F(x, u,∇u) in Ω,

u = 0 on ∂Ω,
(1.5)

in the case p = 2 < q < 3, with µ ≥ 0 Lipschitz continuous, under appropriate growth conditions on f .
Our results improve also those in [18], since we consider a vector valued problem, with the constraint of
divergence-free, and with term F(x, u,∇u) = f(x) − (u ·∇)u.

In addition to the results above, we observe that the problem of uniqueness for non-Newtonian �uids
becomes more complex when the linear part is missing (that is system (1.3) with ν0 = 0 and, in the case
p > 2, also δ = 0), since one cannot take advantage of the classical estimates. In fact, the convective term
is still quadratic as in (1.1); this has to be balanced in some way by a non-quadratic term. Moreover, in the
context also of electro-rheological �uids uniqueness for small (and smooth) solutions is proved in Crispo and
Grisanti [10, 11], at least in the non-degenerate case.

Note that for a stress tensor with (p, δ)-structure (see precise de�nition in the Assumption 2.1) as in the
example (1.4), it is well-known that the following point-wise estimate holds:(

S(A) − S(B)
)
: (A − B) ≥ c1(δ + |A| + |A − B|)p−2|A − B|2,

for all A, B symmetric matrices. For a review see for instance Růžička [24]. Hence, at least if δ > 0 and p > 2,
it follows that (

S(A) − S(B)
)
: (A − B) ≥ c1 δp−2|A − B|2,

which allows us to employ the same machinery.
On the other hand, the case 1 < p < 2 presents some peculiarities as exploited in Blavier and Mikelić [6],

which permits to prove uniqueness for small solutions if 9
5 ≤ p < 2. (Note that 9

5 is the critical value to apply
the classical monotonicity argument and to use the solution itself as a test function in the weak formulation.)
We will review these results and provide more details in Section 2.1, explaining how we improve them.

Here, we will then consider as basic example the following boundary value problem for a double-phase
non-Newtonian �uid

−div(|Du|p−2Du) − div(|Du|q−2Du) + (u ·∇)u +∇π = f in Ω,
divu = 0 in Ω,

u = 0 on ∂Ω,
(1.6)

with 1 < p < 2 < q, proving uniqueness of small solutions (recall again that if at least one among p or q is
equal to 2 the result is trivial). Our main aim is to consider the degenerate case and to exploit the interplay
between the p-growth and the q-growth in double-phase problems, as a way to enforce uniqueness, which
cannot be proved in the single-phase cases. In addition, a non-standard estimation of the convective term
using its symmetries is also employed.

Themain resultweprove, see Theorem3.1, is theuniqueness of small solutions, for 6
5 < p < 2 and q = q(p)

large enough. Then, some extensions to an anisotropic problem are proved in Theorem 4.2.
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2 Notation and preliminary results
In the sequel, Ω ⊂ R3 will be a smooth and bounded open set. As usual, we write x = (x1, x2, x3) = (x′, x3),
for all x ∈ R3. If the boundary ∂Ω is at least of class C0,1, then the normal unit vector n at the boundary is
well de�ned. We recall that a domain is of class Ck,1, if for each point P ∈ ∂Ω, there are local coordinates
such that in these coordinates we have P = 0 and ∂Ω is locally described by a Ck,1-function, i.e., there exist
RP , R′

P ∈ (0,∞), rP ∈ (0, 1) and a Ck,1-function aP : B2RP (0)→ B1R′
P
(0) such that

i) x ∈ ∂Ω ∩ (B2RP (0) × B
1
R′
P
(0)) ⇐⇒ x3 = aP(x′),

ii) ΩP := {x ∈ R3 : x′ ∈ B2RP (0), aP(x
′) < x3 < aP(x′) + R′

P} ⊂ Ω,
iii) ∇aP(0) = 0, and ∀ x′ ∈ B2RP (0) |∇aP(x

′)| < rP,
where Bkr (0) denotes the k-dimensional open ball with center 0 and radius r > 0.

For our analysis, wewill use the customary Lebesgue (Lp(Ω), ‖ . ‖p) and Sobolev spaces (Wk,p(Ω), ‖ . ‖k,p)
of integer index k ∈ N, with 1 ≤ p ≤ ∞. As usual, p′ = p

p−1 denotes the conjugate exponent. We do not
distinguish between scalar and vector valued function spaces, we just use boldface for vectors and tensors.
We recall that Lp0(Ω) denotes the subspace with zero mean value, whileW1,p

0 (Ω) is the closure of smooth and
compactly supported functions with respect to the ‖ . ‖1,p norm. We denote by W−1,p′ (Ω) := (W1,p

0 (Ω))* its
dual space, with norm ‖ . ‖−1,p′ .

If Ω is bounded and if 1 < p < ∞, the following two relevant inequalities hold:
1) the Poincaré inequality

∃ CP(p, Ω) > 0 : ‖u‖p ≤ CP‖∇u‖p ∀u ∈ W1,p
0 (Ω); (2.1)

2) the Korn inequality

∃ CK(p, Ω) > 0 : ‖∇u‖p ≤ CK‖Du‖p ∀u ∈ W1,p
0 (Ω), (2.2)

where Du denotes the symmetric part of the matrix of derivatives∇u.
For 1 ≤ p < 3 we have, as a combination of (2.1)-(2.2), also the Sobolev-type inequality

∃ CS > 0 : ‖u‖p* ≤ CS‖Du‖p ∀u ∈ W1,p
0 (Ω),

where p* := 3p
3−p .

When working with incompressible �uids it is natural to incorporate the divergence-free constraint di-
rectly in the de�nition of the function spaces. These spaces are built upon completing the space of solenoidal
smooth functions with compact support (here denoted by C∞0,σ(Ω)) in an appropriate topology. For 1 < p < ∞,
we de�ne

Lpσ(Ω) :=
{
ϕ ∈ C∞0,σ(Ω)

}‖ϕ‖p ,

W1,p
0,σ (Ω) :=

{
ϕ ∈ C∞0,σ(Ω)

}‖∇ϕ‖p .

For the nonlinear stress tensors, we make the following assumption of being with (p, δ)-structure, which is a
generalization of the example from (1.4).

Assumption 2.1. We assume that S : R3×3 → R3×3
sym belongs to C0(R3×3,R3×3

sym)∩ C1(R3×3 \ {0},R3×3
sym), satis�es

S(P) = S
(
Psym

)
, and S(0) = 0. Moreover, we assume that S has (p, δ)-structure, i.e., there exist p ∈ (1,∞),

δ ∈ [0,∞), and constants C0, C1 > 0 such that∑3

i,j,k,l=1
∂klSij(P)QijQkl ≥ C0

(
δ + |Psym|

)p−2|Qsym|2, (2.3a)∣∣∂klSij(P)∣∣ ≤ C1(δ + |Psym|)p−2, (2.3b)

are satis�ed for all P,Q ∈ R3×3 with Psym ≠ 0 and all i, j, k, l = 1, . . . , 3. The constants C0, C1, and p are called
the characteristics of S.
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Remark 2.1. We would like to emphasize that, if not otherwise stated, the constants depend only on the
characteristics of S, but are independent of δ ≥ 0.

De�ning for t ≥ 0 a special N-function φ by

φ(t) :=
t∫

0

φ′(s) ds with φ′(t) := (δ + t)p−2t , (2.4)

we can replace Ci
(
δ+ |Psym|

)p−2 on the right-hand side of (2.3a) and (2.3b) by C̃i φ′′(|Psym|), for i = 0, 1. Next,
the shifted functions are de�ned for t ≥ 0 by

φa(t) :=
t∫

0

φ′
a(s) ds with φ′

a(t) := φ′(a + t) t
a + t .

In the following proposition, we recall several useful results, which will be frequently used in the paper. The
proofs of these results and more details can be found in [4, 13, 14, 27]. Many inequalities can be written in a
compact form by means of the following tensor valued function

F(A) :=
(
δ + |Asym|

) p−2
2 Asym , (2.5)

and we write f ∼ g if there exist constants c1, c2 > 0 such that c1g ≤ f ≤ c2f .

Proposition 2.1. Let S satisfy Assumption 2.1, let φ be de�ned in (2.4), and let F be de�ned in (2.5).
(i) For all P,Q ∈ R3×3

(
S(P) − S(Q)

)
:
(
P − Q

)
∼
∣∣F(P) − F(Q)∣∣2,

∼ φ|Psym|(|Psym − Qsym|),
∼ φ′′(|Psym| + |Qsym|

)
|Psym − Qsym|2,

S(Q) : Q ∼ |F(Q)|2 ∼ φ(|Qsym|),
|S(P) − S(Q)| ∼ φ′

|Psym|
(
|Psym − Qsym|

)
,

and the constants depend only on the characteristics of S.
(ii) For all ϵ > 0, there exists a constant cϵ > 0 (depending only on ϵ > 0 and on the characteristics of S) such

that for all u, v,w ∈ W1,p(Ω)(
S(Du) − S(Du),Dw − Du

)
≤ ϵ ‖F(Du) − F(Du)‖22

+ cϵ ‖F(Dw) − F(Du)‖22 .

Since the range of the allowed p ∈ (1, 2) will play a relevant role, we �rst recall that the restriction p > 6/5 is
quite natural for the problem, at least for what concerns existence of weak solutions. In the case ν0 = 0, the
weak formulation of (1.3) is in fact: �nd u ∈ W1,p

0,σ (Ω) such that∫
Ω

Sp,δ(Du) : Dϕ − u⊗ u : ∇ϕ dx = 〈f ,ϕ〉 ∀ϕ ∈ C∞0,σ(Ω).

To properly de�ne the quadratic term, one needs (at least) that u ∈ L2loc(Ω), which follows, for instance, if
u ∈ W1,p(Ω) for p ≥ 6

5 . The basic a priori estimate obtained testing with u itself shows that, if f ∈ W−1,p′ (Ω),
then ‖Du‖p ≤ C. Next, Korn inequality and the embedding W1,p

0 (Ω) ↪→ L2(Ω) (which holds for p ≥ 6/5 in
three space-dimensions) give that u⊗ u ∈ L1(Ω). This restriction on p is intrinsic to the problem, due to the
growth of the convective term. The limiting case p = 6/5 is excluded from the existence theorem due to some
technical compactness arguments which are used in the proof.

The following existence result holds true.
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Theorem 2.1. Let Ω ⊂ R3 be smooth and bounded, let ν0 = 0, and let the stress tensor Sp,δ satisfy Assump-
tion 2.1 for some δ ≥ 0 and for some p > 6/5. Then, for any given f ∈ W−1,p′ (Ω), there exists at least a weak
solution v ∈ W1,p

0,σ (Ω) of problem (1.3), which satis�es the estimate

‖Du‖pp ≤ C‖f‖p
′

−1,p′ , (2.6)

for some constant C depending on the domain and on the characteristics of the stress tensor.

The proof of existence of weak solutions requires a precise use of the monotonicity of the operator, but for
p < 9

5 the usual Browder-Minty approach (as employed by Lions [21] and Ladyžhenskaya [20] also for values
of p > 3) is not directly applicable and one has to resort to more technical arguments with bounded or even
Lipschitz truncation, plus an appropriate divergence correction, see the reviews in Breit [7] and Růžička [24].

Here, we do not discuss the existence of weak solutions, which easily follows also for the problem (1.6),
by employing similar arguments without any relevant change. Hence, we can state the following theorem.

Theorem 2.2. Let Ω ⊂ R3 be smooth and bounded, let the stress tensors Sp,δp (Du), Sq,δq (Du) satisfy Assump-
tion 2.1 for some δp ≥ 0, p > 6/5 and for some δq ≥ 0, q > p. Then, for all f ∈ W−1,q′ (Ω), the problem

−divSp,δp (Du) − divSq,δq (Du) + (u ·∇)u +∇π = f in Ω,

divu = 0 in Ω,
u = 0 on ∂Ω,

(2.7)

has at least a weak solution u ∈ W1,q
0,σ (Ω), which satis�es∫

Ω

Sp,δp (Du) : Dϕ + Sq,δq (Du) : Dϕ − u⊗ u : ∇ϕ dx = 〈f ,ϕ〉 ∀ϕ ∈ C∞0,σ(Ω),

and which satis�es the following inequality:

‖Du‖pp + ‖Du‖qq ≤ C‖f‖q
′

−1,q′ , (2.8)

for some constant C depending only on the characteristics of Sq and Ω.

2.1 On problems without linear part: some known uniqueness results

When considering the problem (1.3) in the case ν0 = δ = 0 and p > 2, the problem of uniqueness (even of
small solutions) is completely open, since the (sharp) estimates from Proposition 2.1 seem to be not suitable
to “absorb” the convective term. This is determined by a “gap” between the powers in the lower bound for the
stress tensors and those in the upper bound for the convective term.

On the other hand, in the case ν0 = 0 and for some p < 2, the following result of uniqueness for weak
solutions is proved in Blavier and Mikelić [6], under appropriate smallness of both weak solutions.

Theorem 2.3. Let ui ∈ W1,p
0,σ (Ω) be weak solutions of (1.3) in the case ν0 = 0 and let p ∈ [9/5, 2[. Then, there

exists a constant ϵ0 > 0 (which depends on p and on the data of the problem) such that, if ‖∇ui‖p ≤ ϵ0, then
u1 = u2.

The available proofs of uniqueness go through considering the equation satis�ed by the di�erence and testing
with the di�erence of the solutions, U := u1 − u2. To this end, one needs to be able to rigorously write the
integrals ∫

Ω

(
(u1 ·∇)u1 − (u2 ·∇)u2

)
· (u1 − u2) dx =

∫
Ω

(
(u1 − u2) ·∇

)
u1 · (u1 − u2) dx,
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(where the equality derives from integration by parts and from the divergence-free constraint) and to prove
proper upper bounds (similar to (1.2), already used in the Newtonian case). By using the information ui ∈
W1,p

0,σ (Ω), and by the Hölder inequality, we get that if

2
p* +

1
p = 2

p −
2
3 + 1

p ≤ 1 ⇐⇒ p ≥ 95 ,

then the following estimate holds: ∣∣∣∣∣∣
∫
Ω

(U ·∇)u1 · Udx

∣∣∣∣∣∣ ≤ ‖U‖2p*‖∇u1‖p . (2.9)

Hence, by using Sobolev and Korn inequalities, we get∣∣∣∣∣∣
∫
Ω

(U ·∇)u1 · Udx

∣∣∣∣∣∣ ≤ C(p, Ω)‖DU‖2p‖∇u1‖p .
The uniqueness result from [6] exploits this estimation, together with the lower bound∫

Ω

(
Sp,0(Du1) − Sp,0(Du2)

)
: D(u1 − u2) dx ≥ c(p)

‖Du1 − Du2‖2p
‖Du1‖2−pp + ‖Du2‖2−pp

, (2.10)

valid for all 1 < p < 2, for some c(p) > 0, when ui ∈ W1,p
0 (Ω).

If the smallness is assumed on one solution, namely, if

‖∇u1‖p ≤ ϵ0,

then the estimates for the convective term and the stress tensors imply that (for any 9
5 ≤ p < 2),

c(p) ‖DU‖2p
2maxi=1,2 ‖Dui‖2−pp

≤ Cϵ0‖DU‖2p .

From this inequality, by using (2.6), one gets

c(p, ‖f‖−1,p′ )‖DU‖2p ≤ Cϵ0‖DU‖2p , (2.11)

and uniqueness will follow if ϵ0 > 0 is small enough, that is, if ϵ0 <
c(p,‖f‖−1,p′ )

C .

3 On the double-phase problem
In this section, we consider the problem (2.7) with δp = δq = 0 andwe observe that –on one hand– the “good”
estimates (lower bound) for the stress tensor of the di�erence are valid if 1 < p < 2, hence one would like to
have one phase with this properties; On the other hand, to handle the convective term larger (than 2) values
of the exponent qwill provide the estimates needed to rigorously de�ne the integrals involving the convective
term.

First, we have the existence Theorem 2.2 for weak solutions. Next, we observe that the same argument
as in [6] can be directly adapted to the problem (2.7) (of which system (1.6) represents a particular case), to
produce the following elementary –but original– uniqueness result.

Proposition 3.1. Let the same assumption as in Theorem 2.2 be satis�ed. Let be given 6
5 < p < 9

5 and let
f ∈ W−1,q′ (Ω), for some q > 2 such that

q ≥ 3p
5p − 6 . (3.1)
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Let u1, u2 ∈ W1,q
0,σ (Ω) be weak solutions to (1.6) corresponding to the same f. Then, there exists ϵ0 =

ϵ0(q, Ω, ‖f‖−1,q′ ) such that if
‖∇u1‖q ≤ ϵ0, (3.2)

then u1 = u2.

Remark 3.1. In the range 6
5 < p < 9

5 the inequality 3p
5p−6 > 9

5 holds and, to have results which are not included
in Theorem 2.3, we need to require q > 2; next, when p > 6

5 , the following inequality holds:

3p
5p − 6 ≤ 2 for p ≥ 127 ∼ 1.714 . . .

In the light of the above observations, Proposition 3.1 can be restated as follows: The uniqueness of weak solu-
tions can be proven under condition (3.2) for some q such that

q ≥ 3p
5p − 6 in the case 6

5 < p < 12
7 ,

q > 2 in the case 12
7 ≤ p < 9

5 .

Proof of Proposition 3.1. The proof is a simple adaption of results in [6]. Taking the di�erence of two solutions
ui ∈ W1,q

0,σ (Ω) corresponding to the same force f ∈ W−1,q′ (Ω), one gets for the di�erence U the following
estimates:

c(p) ‖DU‖2p
‖Du1‖2−pp + ‖Du2‖2−pp

≤

∣∣∣∣∣∣
∫
Ω

(U ·∇)u1 · Udx

∣∣∣∣∣∣
≤ ‖U‖2p*‖∇u1‖q
≤ C‖DU‖2p‖∇u1‖q ,

obtained by using Hölder, Korn, and Sobolev inequalities, and also (2.10). The calculations are justi�ed if
2
p* +

1
q ≤ 1,

which follows if q is as in (3.1). Then, if one assumes the smallness of the Lq-norm of the gradient or u1, the
following estimate holds:

c(p) ‖DU‖2p
‖Du1‖2−pp + ‖Du2‖2−pp

≤ Cϵ0‖DU‖2p ,

which allows again to conclude uniqueness (exactly as in the previous case) by the same argument developed
in [6].

In order to improve this result, here we follow a slightly di�erent approach which is based on more precise
point-wise estimates for the stress tensor corresponding to the “p-phase.” This will allow us to require less
restrictive conditions on q. The main result we prove is the following one:

Theorem 3.1. Let δp ≥ 0 and δq = 0. Let p ∈]6/5, 12/7[ and q > 2 such that

(i) q > 3p(2 − p)
5p − 6 for 6

5 < p ≤
√
33 − 3
2 ,

(ii) q > 3p(4 − p)
7p − 6 for

√
33 − 3
2 < p ≤

√
37 − 1
3 ,

(iii) q > 2 for
√
37 − 1
3 < p < 12

7 .

(3.3)

Let u1, u2 be weak solutions of (2.7) corresponding to the same f ∈ W−1,q′ (Ω). Then, there exists a constant
ϵ0 = ϵ0(p, q, Ω, ‖f‖−1,q′ ) > 0 such that if at least one solution satis�es

‖∇u1‖q ≤ ϵ0,

then u1 = u2.
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Before proving the theorem, we observe that the signi�cant case is when the “q-phase” is such that δq = 0.
Also the possible degeneracy δp = 0 of the p-phase improves previously known results. Moreover, we think
that an interesting further development would be the study of the uniqueness for a single-phase �uid by
using the results of “higher regularity” from Crispo and Maremonti [12]. This will hold provided that: a) the
results from [12] can be adapted to the non-modi�ed p-Stokes system; and b) an explicit estimation of some
constants related with singular integrals is available.

We make some remarks to explain the improvements in the various ranges, with respect to the results in
Proposition 3.1. A �rst signi�cant di�erence comes into play if q is smaller or larger than the space dimension,
since this will imply estimates involving the Sobolev exponent q* = 3q

3−q or, alternatively, estimates in L∞(Ω).

Remark 3.2. Concerning the case (i) in (3.3)

6
5 < p ≤

√
33 − 3
2 ∼ 1.2 < p ≤ 1.37228 . . . ,

we can see that the restriction on the range of p is made to enforce q > 3, since the calculations leading to this
estimate are valid for q > 3 (cf. the proof of Lemma 3.2).

Moreover, we also have that

3p(2 − p)
5p − 6 < 3p

5p − 6 within the range 6
5 < p ≤

√
33 − 3
2 ,

hence the condition (i) is less restrictive than (3.1), coming from Proposition 3.1 (in the same range of p).

Remark 3.3. Concerning the case (ii) in (3.3)
√
33 − 3
2 < p ≤

√
37 − 1
3 ∼ 1.37228 · · · < p ≤ 1.69425 . . . ,

the restrictions aremade to impose that2 ≤ 3p(4−p)
7p−6 < 3, hence tomakepossible the choice of some2 < q < 3. The

lower bound on q is requested to have a non-trivial result, and the upper bound is requested to use Lemma 3.2.
Moreover, we have again

3p(4 − p)
7p − 6 < 3p

5p − 6 , within the range
√
33 − 3
2 < p ≤

√
37 − 1
3 ,

and this condition is less restrictive than that from Proposition 3.1 (in the same range of p).

Remark 3.4. The restriction p < 12/7 is already present in Proposition 3.1 since beyond that value the result
is included in Proposition 3.1. Again, the condition (iii) is less restrictive than the one previously obtained, since
the following inequality holds:

3p
5p − 6 > 2, within the range

√
37 − 1
3 < p < 12

7 .

The proof of Theorem 3.1 is heavily based on the following inequality coming from an application of Proposi-
tion 2.1: ∫

Ω

(
Sp,δp (Du1) − Sp,δp (Du2)

)
: DUdx ≥ c

∫
Ω

(
δp + |Du1| + |DU|

)p−2|DU|2 dx,
and then using the following two lemmas about the convective term.

The estimation of the tri-linear termwe use is not the direct one as in (2.9). We bound the convective term
exploiting some of its symmetries. This fact is relevant since in the stress tensors present in the equations (1.6)
the velocity enters only through the symmetric gradient. We �rst have a result which follows by integrating
by parts:
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Lemma 3.1. The following equalities hold:∫
Ω

(u ·∇)u1 · udx =
∫
Ω

u · Du1 · udx = −2
∫
Ω

u · Du · u1 dx ∀u, u1 ∈ C∞0,σ(Ω),

where

v · A ·w :=
3∑
ij=1

viAijwj ∀v,w ∈ R3, A ∈ R3×3.

Proof. The proof of the �rst equality is simply obtained by interchanging the dummy variable in the double
summation

(u ·∇)u1 · u =
3∑

i,j=1
ui∂iuj1u

j ,

and using that Du1 is, by de�nition, a symmetric tensor.
The second equality follows by integrating by parts: due to the vanishing of the boundary trace of u we

obtain ∫
Ω

(u ·∇)u1 · udx = −
∫
Ω

(u ·∇)u · u1 dx.

Then adding the null term

−
∫
Ω

u · [∇u]T · u1 dx = −
∫
Ω

uj∂iujui1 dx = −12

∫
Ω

∂i|u|2ui1 dx = 0,

the second identity follows.
The same result clearly holds also foru, u1 in spaces inwhich C∞0,σ(Ω) is dense, provided that the integrals

are well-de�ned (as an example Lemma 3.1 is valid for u, u1 ∈ W1,q
0,σ (Ω), with q ≥ 9/5).

The nonlinear term is now estimated with the following inequalities:

Lemma 3.2. Let U, u1 ∈ W1,q
0,σ (Ω) for some q ≥ 9

5 and let δ > 0 be any positive number. If q < 3, (hence if
W1,q(Ω) ⊂ Lq

*
(Ω) for q* = 3q

3−q < ∞), then the following inequality holds:∣∣∣ ∫
Ω

(U ·∇)u1 · Udx
∣∣ ≤ 2‖U‖p*∥∥(δ + |Du1| + |DU|) p−22 DU

∥∥
2‖u1‖q*

∥∥(δ + |Du1| + |DU|) 2−p
2
∥∥ 2q

2−p
,

with
q ≥ 3p(4 − p)7p − 6 ;

Observe that 3p(4−p)
7p−6 < 3, for

√
33−3
2 ≤ p < 2.

If q > 3, then W1,q(Ω) ⊂ L∞(Ω), and the following estimate holds:∣∣∣ ∫
Ω

(U ·∇)u1 · Udx
∣∣∣ ≤ 2‖U‖p*∥∥(δ + |Du1| + |DU|) p−22 DU

∥∥
2‖u1‖∞

∥∥(δ + |Du1| + |DU|) 2−p
2
∥∥ 2q

2−p
,

with
q ≥ 3p(2 − p)5p − 6 ;

observe that 3p(2−p)
5p−6 > 3, for 6

5 < p <
√
33−3
2 .

Finally, if q = 3, then W1,q(Ω) ⊂ Ls(Ω) for all s < ∞, and the following estimate holds:∣∣∣ ∫
Ω

(U ·∇)u1 · Udx
∣∣∣ ≤ 2‖U‖p*∥∥(δ + |Du1| + |DU|) p−22 DU

∥∥
2‖u1‖s

∥∥(δ + |Du1| + |DU|) 2−p
2
∥∥ 2q

2−p
,

with
q > 3p(2 − p)

5p − 6 .
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Proof. We observe that the integral
∫
Ω(U ·∇)u1 ·Udx is �nite by (2.9) since all functions belong toW1,q

0,σ (Ω),
hence all calculations we perform are completely justi�ed.

We start from the case q < 3 and we observe that the estimate involves a “natural quantity” related to
a stress tensor with (p, δ)-structure. We use directly Lemma 3.1, and since δ > 0, we can freely multiply and
divide by

(
δ + |Du1| + |DU|

) 2−p
2 ≠ 0. We use the Hölder inequality which is valid if

1
p* +

1
2 + 1

q* +
2 − p
2q ≤ 1,

and Sobolev inequalities to get

−
∫
Ω

(U ·∇)u1 · Udx = 2
∫
Ω

U · DU · u1 dx

= 2
∫
Ω

U ·
(
δ + |Du1| + |DU|

) p−2
2 DU · u1

(
δ + |Du1| + |DU|

) 2−p
2 dx

≤ 2‖U‖p*
∥∥(δ + |Du1| + |DU|) p−22 DU‖2‖u1‖q*

∥∥(δ + |Du1| + |DU|) 2−p
2 ‖ 2q

2−p
.

The proof in the case q > 3 follows more or less the same lines and if the following inequality is satis�ed

1
p* +

1
2 + 2 − p

2q ≤ 1,

we can write
−
∫
Ω

(U ·∇)u1 · Udx = 2
∫
Ω

U · DU · u1 dx

= 2
∫
Ω

U ·
(
δ + |Du1| + |DU|

) p−2
2 DU · u1

(
δ + |Du1| + |DU|

) 2−p
2 dx

≤ 2‖U‖p*
∥∥(δ + |Du1| + |DU|) p−22 DU‖2‖u1‖∞

∥∥(δ + |Du1| + |DU|) 2−p
2 ‖ 2q

2−p
.

We can now give the proof of the main result of this paper.

Proof of Theorem 3.1. Wewrite the di�erence between the twoweak solutions of (2.7) andweuseU = u1−u2 ∈
W1,q

0,σ (Ω) as test function to get∫
Ω

(
Sp,δp (Du1) − Sp,δp (Du2)

)
: D(u1 − u2) dx

+
∫
Ω

(
Sq,0(Du1) − Sq,0(Du2)

)
: D(u1 − u2) dx =

∫
Ω

(U ·∇)u1 · Udx.

Since the operator Sq,0( · ) is monotone, we get∫
Ω

(
Sp,δp (Du1) − Sp,δp (Du2)

)
: DUdx ≤

∣∣∣ ∫
Ω

(U ·∇)u1 · Udx
∣∣∣, (3.4)

and the right-hand side is �nite due to the fact that q > 2.
We now estimate the left-hand side by Proposition 2.1 and, for ui at least in W1,p

0,σ (Ω), the following in-
equality holds: ∫

Ω

(
δp + |Du1| + |DU|

)p−2|DU|2 dx ≤ C ∫
Ω

(
Sp,δp (Du1) − Sp,δp (Du2)

)
: DUdx.



Mohamed Abdelwahed et al., On the uniqueness for weak solutions of steady double-phase fluids | 465

Next, the last term from the right-hand side of the inequalities proved in Lemma 3.2 can be estimated for
δ = δp by observing that since

for α ∈ (0, 1) (x + y)α ≤ xα + yα ∀ x, y ≥ 0,

by the Minkowski inequality the following holds:∥∥(δp + |Du1| + |DU|) 2−p
2 ‖ 2q

2−p
≤ ‖δ

2−p
2
p ‖ 2q

2−p
+ ‖|Du1|

2−p
2 ‖ 2q

2−p
+ ‖|DU|

2−p
2 ‖ 2q

2−p

≤ δ
2−p
2
p |Ω|

2−p
2q + ‖Du1‖

2−p
2
q + ‖DU‖

2−p
2
q

≤ δ
2−p
2
p |Ω|

2−p
2q + 2‖Du1‖

2−p
2
q + ‖Du2‖

2−p
2
q ,

and, if δp ∈ [0, δ0] for some δ0 > 0, then∥∥(δp + |Du1| + |DU|) 2−p
2 ‖ 2q

2−p
≤ C(δ0, p, q, |Ω|)(1 + max

i=1,2
‖Dui‖

2−p
2
q )

≤ C(δ0, p, q, |Ω|)
[
1 + ‖f‖

2−p
2(q−1)
−1,q′

]
.

Hence, in the case of the problem with a non-degenerate stress tensor Sp,δp , that is if δp > 0, by collecting
the lower bound for the left-hand side of (3.4) and the upper bound for the right-hand side (using Lemma 3.2
with δ = δp) and simplifying similar terms, we get∫

Ω

(
δp + |Du1| + |DU|

)p−2|DU|2 dx
1/2 ≤ 2C‖Du‖p‖∇u1‖q‖f‖ 2−p

2(q−1)
−1,q′ .

We use now the hypothesis ‖∇u1‖q ≤ ϵ0 and, after squaring both sides,w we get∫
Ω

(
δp + |Du1| + |DU|

)p−2|DU|2 dx ≤ Cϵ20‖Du‖2p ,
where C depends on the data of the problem, sinceweused the a priori estimate inW1,q

0 (Ω) for both solutions.
The proof follows now as in the previous case. In fact, by using (2.10) and (2.11), we get

c(p, ‖f‖−1,q′ )‖DU‖2p ≤ c(p)
‖DU‖2p

‖DU‖2−pp + ‖Du2‖2−pp
≤ Cϵ20‖DU‖2p , (3.5)

implying uniqueness, provided that ϵ0 is small enough.

In the degenerate case δp = 0, we observe that from the (p, 0)-structure we get∫
Ω

(
|Du1| + |DU|

)p−2|DU|2 dx ≤ C∣∣∣ ∫
Ω

(U ·∇)u1 · Udx
∣∣∣ ≤ C1,

hence the integral from the left-hand side is well de�ned. Then,we show that the inequalities fromLemma 3.2
are valid also with δ = 0. This can be seen by writing the estimates in Lemma 3.2 for some 0 < δ ≤ 1 and
taking the inferior limit of the right-hand side as δ → 0. In fact, since p < 2 we have the following monotonic
increasing convergence(

δ + |Du1| + |DU|
)p−2|DU|2 ↑

δ→0

(
|Du1| + |DU|

)p−2|DU|2 a.e in Ω,

which implies convergence of the corresponding integrals. This shows convergence of the second term from
the right-hand side of estimates from Lemma 3.2.

Moreover, since p < 2, we have the uniform bound

(δ + |Du1| + |DU|
) 2−p

2 ≤ (1 + |Du1| + |DU|
) 2−p

2 ∈ L
2q
2−p (Ω),

which allows us to use the Lebesgue dominated convergence, to handle the last term in the right-hand side
of estimates from Lemma 3.2. After having justi�ed the limiting step δ → 0, one obtains again (3.5) and the
proof proceeds as in the non-degenerate case.
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4 Some remarks for anisotropic (weighted) double-phase problems
In the analysis of double-phase problems, it is also interesting to consider, as done in [9, 18, 25], families of
anisotropic double-phase problems. We also adapt our uniqueness results to the following problem

−div
(
|Du|p−2Du

)
− div

(
µ(x)|Du|r−2Du

)
+ (u ·∇)u +∇π = f in Ω,

divu = 0 in Ω,
u = 0 on ∂Ω,

where µ is a non-negative regular function and r > 2.
Stress-tensors of this type occur in �uid mechanics in certain turbulence models introduced by Baldwin

andLomax [1]. Themathematical analysis in termsof existence ofweak solutionshas been recently developed
by one of the authors and D. Breit in [5]. In this case, it makes sense (from the modeling point of view based
on Prandtl mixing length), to use as function µ the distance of x from the boundary of Ω

µ(x) = d(x) := d(x, ∂Ω),

or one of its powers. The original model of Baldwin and Lomax concerns the tensor BL(x,ω) = d2(x)|ω|ω
and it enters in the momentum equations through its curl

curlBL(x,ω) = curl
(
d2(x)|ω|ω

)
with ω = curlv, (4.1)

being written in rotational form. The system resembles the p-curl system studied in certain problems in elec-
tromagnetism, especially inmathematical model for superconductors, see Yin [28]. The value 2 for the power
of the distance function is critical in terms of being able to recover estimates on the full gradient from those
valid for the weighted curl, by means of the theory of weighted Sobolev spaces and Muckenhoupt weights.
The expression (4.1) is the rotational form of the stress tensor

− div(d2
(
x)|Du(x)|Du(x)

)
,

which is a weighted version of a stress tensor with “(3, 0)-structure,” within the notation of Assumption 2.1.
In this section, we will see how to generalize the uniqueness results when Sq,δ(Du), the stress tensor

in (1.6), is replaced by

−div
(
dα(x)|Du(x)|r−2Du(x)

)
for some r > 2, with 0 < α < r − 1.

To handle this termwe �rst recall a well-known lemma about the distance function d(x), see for instance
Kufner [19].

Lemma 4.1. Let Ω be a domain of class C0,1. There exist constants 0 < c0, c1 ∈ R such that

c0 d(x) ≤ |a(x′) − x3| ≤ c1 d(x) ∀x = (x′, x3) ∈ ΩP .

From the above result we get the following weighted estimate

Lemma 4.2. Let f be measurable such that
∫
Ω d

α|f |r dx < ∞. Then, for 0 < α < r−1 it follows that f ∈ L
r

1+α (Ω).

Proof. The proof follows by Hölder inequality and Lemma 4.1. In fact we can write∫
Ω

|f |s dx =
∫
Ω

d−αs/r dαs/r|f |s dx

≤

∫
Ω

d−
αs
r−s dx

(r−s)/r∫
Ω

dα |f |r dx

s/r

≤ c

∫
Ω

dα |f |r dx

s/r

,
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where the last estimate on the integral of the distance function follows immediately from Lemma 4.1, if αs
r−s <

1.

We can now state the following existence theorem:

Theorem 4.1. Let Ω ⊂ R3 be smooth and bounded and let Sp,δp satisfy assumption 2.1 for some δp ≥ 0 and for
some p > 6/5. Let r > 2 be given and α ≥ 0. Then, for all f ∈ W−1,p′ (Ω), the problem

−divSp,δp (Du) − div
(
dα(x)|Du|r−2Du

)
+ (u ·∇)u +∇π = f in Ω,

divu = 0 in Ω,
u = 0 on ∂Ω,

(4.2)

has at least a weak solution u ∈ W1,p
0,σ (Ω), such that

‖Du‖pp +
∫
Ω

dα(x)|Du(x)|r dx ≤ C‖f‖p
′

−1,p′ ,

for some constant depending only on p and Ω, but not on the solution. Moreover, if 0 < α < r − 1, then

‖Du‖rq ≤ C‖f‖p
′

−1,p′ ∀ q < r
1 + α .

Proof. The proof of existence can be obtained by a standard perturbation argument, as the one employed
in [5]. The Lq-estimate for the deformation tensor Du follows from Lemma 4.2.

We can now state the uniqueness result for the anisotropic double-phase problem.

Theorem 4.2. Let be given p ∈]6/5, 12/7[, r > 2, and 0 < α < r − 1 such that

(i) r
1 + α > 3p(2 − p)

5p − 6 for 6
5 < p ≤

√
33 − 3
2 ,

(ii) r
1 + α > 3p(4 − p)

7p − 6 for
√
33 − 3
2 < p ≤

√
37 − 1
3 ,

(iii) r
1 + α > 2 for

√
37 − 1
3 < p < 12

7 .

Let u1, u2 be a weak solutions of (4.2) with f ∈ W−1,p′ (Ω). Then, there exists a constant ϵ0 =
ϵ0(p, r, α, Ω, ‖f‖−1,p′ ) > 0 such that if at least one solution has a small enough weighted gradient, that is,
if ∫

Ω

dα(x)|Du1(x)|r dx

1/r ≤ ϵ0,
then u1 = u2.

Proof. The proof follows the same lines of that presented in Theorem 3.1, where r
1+α plays the same role as q

(with the caveat that equality is not valid in the estimates, due to the strict inequality in Lemma 4.2).
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