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Abstract

We report on two clustering chelonibiid shells from Rupelian deposits of southwestern 

Germany. One of these specimens displays a tripartite rostral complex and disparietal radii 

that indicate the Oligocene species Protochelonibia melleni, which was known so far from 

isolated compartments only. A literature review reveals two additional, overlooked records of 

the rarely reported genus Protochelonibia, coming respectively from the Burdigalian of 

France and the Langhian of Austria. Both these historical finds likely represent the Miocene 

species Protochelonibia submersa. All together, these occurrences support the notion that the 

protochelonibiines had acquired a broad distribution as early as in Rupelian times, when P. 

melleni occurred along the proto-Gulf of Mexico and in the Western Paratethys. Both P. 

melleni and P. submersa grew in form of peltate shells that evoke a superficial adhesion to 
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some kind of quickly moving hosts. The outer wall of the abraded German colony of P. 

melleni is comprised of pillar-like blocks of shelly material. In other coronuloids, similar yet 

more prominent septa abut outward to form T-shaped flanges and intervening longitudinal 

canals that facilitate the grasping of various kinds of penetrable substrates. Whether the 

diminutive external longitudinal parietal septa of P. melleni represent an early stage in the 

evolution of the coronuloid shell architecture or vestigial structures cannot be ascertained, but

the former hypothesis seems to be more likely. New additions to the pre-Pliocene fossil 

record of Coronuloidea will hopefully clarify this and other crucial aspects of the origin and 

early evolution of the turtle and whale barnacles.
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Introduction

The balanomorph superfamily Coronuloidea includes cirripede epibionts of several marine 

vertebrates (mostly turtles, cetaceans and sirenians) and invertebrates (mostly crabs, 

horseshoe crabs and gastropods) (e.g., Darwin 1854; Pilsbry 1916; Newman 1996; Hayashi 

2013; Zardus 2021). These epizoic barnacles are classified into four families, namely, the 

extant Coronulidae, Chelonibiidae and Platylepadidae, and the extinct (and largely enigmatic)

Emersoniidae (e.g., Newman 1996; Collareta and Newman 2020). Among the living 

coronuloids, those assigned to Chelonibiidae are all classified into the genus Chelonibia 

Leach, 1817, whose members are either turtle-dwellers (e.g., Chelonibia caretta (Spengler, 

1790) and the testudinaria morph of Chelonibia testudinaria (Linnaeus, 1758)) or more 

generalist epibionts of largely invertebrate hosts (e.g., the patula morph of Chelonibia 

testudinaria) (e.g., Darwin 1854; Pilsbry 1916; Newman 1996; Chan et al. 2009; Zardus 

2021).

Our understanding of the evolutionary history of the chelonibiid barnacles is still partly 

wanting, at least as far as the fossil record is concerned. The fossil record of Chelonibiidae is 

mostly represented by shells and isolated compartments of C. testudinaria from various Plio-

Quaternary deposits worldwide (e.g., De Alessandri 1906; Ross 1963; Zullo 1982, 1986; 

Collareta et al. 2016; Collareta 2016, 2020). In deposits older than the Pliocene, fossil 

chelonibiids are much rarer. Besides a few unquestionable members of Chelonibia that 

originate from early Neogene deposits (e.g., Chelonibia solida Withers, 1929 and Chelonibia 

zanzibarensis Collareta & Newman in Collareta et al., 2021), chelonibiids are represented in 

pre-Pliocene strata by the genus Protochelonibia Harzhauser & Newman in Harzhauser et al.,

2011. Being diagnosed by large walls with tripartite rostral complexes displaying distinct 

sutures on the external surface, Protochelonibia is currently classified into the monotypic 
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subfamily Protochelonibiinae (Harzhauser et al. 2011; Collareta and Newman 2020), here 

also referred to as the protochelonibiines. In spite of its easily recognizable shell morphology,

finds of Protochelonibia are overly rare, this genus being known on the sole basis of a 

handful of specimens from three fossiliferous deposits worldwide – namely, i) the Oligocene 

(Rupelian) Mint Spring and Byram formations of Mississippi (USA), with Protochelonibia 

melleni (Zullo, 1982); ii) the lower Miocene (Aquitanian) Ebelsberg Formation of Upper 

Austria, with Protochelonibia submersa Harzhauser & Newman in Harzhauser et al., 2011; 

and iii) the Pliocene (Piacenzian?) marine deposits exposed at Orciano Pisano, Tuscany 

(central Italy), with Protochelonibia capellinii (De Alessandri, 1895).

Here, we report on two clustering protochelonibiine shells from Rupelian deposits of 

southwestern Germany (Fig. 1). Two historical finds of Chelonibiidae that were published by 

Withers (1929) are also assigned to Protochelonibia. The palaeobiogeographic, 

palaeoecological and evolutionary implications of the Oligo-Miocene species of 

Protochelonibia are then discussed, considering our finds, and a general overview of the 

fossil history of the protochelonibiines is provided.

Locality, geology and depositional environment

The fossil specimens studied herein come from the abandoned Unterfeld claypit near 

Rauenberg (formerly also known as Frauenweiler–Wiesloch), with sediments being deposited

in the Upper Rhine Valley during the early Oligocene (Rupelian) rifting phase. These 

sediments are part of the Hochberg Member of the Bodenheim Formation, dated as 

Calcareous Nannoplankton Zone NP23, or European Mammal Zone MP22-23, respectively, 

which corresponds to the middle part of the Rupelian (Grimm et al. 2002; see also the 
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summary in Maxwell et al. 2016). This corresponds to an age of ca. 33 to 30 My.

A comprehensive compilation by Maxwell et al. (2016) provides deeper insights into the 

depositional environment of Rauenberg. These authors documented 302 identified taxa of 

micro- and macrofossils. Of these, 207 are marine, the rest being terrestrial forms from the 

nearby hinterland. The marine plants and animals thrived in a fully marine, moderately 

shallow, low-energy tropical to subtropical sea are. Organic productivity in this 

palaeoenvironment was generally high, with occasional episodes of seafloor anoxia. Warm 

and frost-free (but winter-dry) conditions prevailed on land. The marine vertebrate fauna is 

typically Paratethyan, while the invertebrate fauna shows connectivity to the North Sea.

Systematic Palaeontology

Subclass Cirripedia Burmeister, 1834 

Superorder Thoracica Darwin, 1854 

Order Balanomorpha Pilsbry, 1916 ( = Order Sessilia Lamarck, 1818, sensu Buckeridge & 

Newman, 2006) 

Infraorder Neobalanoformes Gale (sensu Kočí et al. 2017, to accommodate 

Neobalanomorpha Gale in Gale and Sørensen, 2015) 

Superfamily Coronuloidea Leach, 1817 

Family Chelonibiidae Pilsbry, 1916 

Subfamily Protochelonibiinae Harzhauser & Newman in Harzhauser et al., 2011

Genus Protochelonibia Harzhauser & Newman in Harzhauser et al., 2011

Protochelonibia melleni (Zullo, 1982)

5

95

100

105

110

115



Figures 2, 3

Chelonibia melleni new species: Zullo 1982, p. 3, pl. 1, figs. 1-13

Protochelonibia melleni (Zullo, 1982): Collareta and Newman 2020, p. 179, fig. 1a (right 

corner)

balanid colony consisting of two individuals: Maxwell et al. 2016, p. 245 (caption), fig. 4E

Referred material. SMNK-PAL-7352, two adjacent incomplete shells stored at Staatliches 

Museum für Naturkunde Karlsruhe ( = SMNK).

Occurrence. Abandoned Unterfeld claypit near Rauenberg (formerly Frauenweiler–

Wiesloch), Early Oligocene (Rupelian), Calcareous Nannoplankton Zone NP23, European 

Mammal Zone MP22-23.

Description and comparisons. The colony consists of two clustering specimens that lack 

conspicuous portions of the outer wall. Both shells are dorsoventrally compressed and locally

fractured, their outer wall being invariantly abraded. 

The largest specimen includes the well-preserved rostral complex (rostrum plus 

rostrolatera = RL-R-RL) and right carinolatus1 ( = CL1), plus parts of the outer wall of the left

carinolatus1 and right carinolatus2 ( = CL2). Parts of the sheath (including what appears to be 

the sheath portion of the left CL2) are also preserved along with uninformative, heavily 

damaged fragments of the other compartments, possibly including the carina ( = C). The 

smaller specimen includes a left carinolatus (CL1 or CL2) plus an adjacent compartment (left 

RL or CL1) that directly contacts the other shell's left CL1; the heavily damaged inner wall of 
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the other compartments is also preserved. 

In apical view (Fig. 2A, 3A), the largest shell is roughly semicircular in outline, and both 

specimens are low and broadly peltate. The diameter of the orifice is less than half the basal 

diameter of the shell. The wide rostral complex of the largest specimen is comprised of three 

distinct compartments (i.e., the R and the adjacent left and right RLs) that are broadly 

triangular and subequal in size; these compartments also display distinct sutures on the 

external surface (Fig. 2B). All the preserved compartments have broad, triangular to 

trapezoidal parietes and sunken radii. Where preserved (e.g., on the right RL of the largest 

shell), the upper margin of the radius runs obliquely above the underlying ala of the adjacent 

compartment – that is, the radii are disparietal (Fig. 2C). The external surface of most 

compartment parietes is broadly abraded, thus disclosing an inner fabric of closely appressed,

columnar blocks of shelly material (Fig. 2A, B, 3A), whereas the radii are finely striated 

transversely (Fig. 2C). The displaced sheath fragments are substantially smooth (Fig. 2A, 

3A).

The right RL, CL1 and fragmentary CL2 of the largest specimen were carefully detached 

mechanically from the underlying sediment in order to characterise the ventral aspect of the 

shell (Fig. 3B). The sheath is just slightly dependent and only developed along the upper third

or half of the compartments. Its basal edge features no downward projections or prongs. A 

dense pattern of fine, continuous, internal longitudinal parietal septa emerge below the basal 

edge of the sheath; they run radially to reach the shell periphery. 

The Rauenberg chelonibiid colony is unambiguously assigned to Protochelonibia owing to

the observation of a broad tripartite rostral complex rather than a partly fused compound 

rostrum (Harzhauser et al. 2011). Further supporting this genus-level attribution, SMNK-

PAL-7352 resembles Protochelonibia melleni and Protochelonibia submersa in featuring: 1) 
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a peltate shell morphology; 2) acutely triangular compartment apices; 3) trigonal, rather 

broad radii that are separated from the parietes by sharp angulations; 4) a largely appressed 

sheath that is as long as about one third or half of the paries; and 6) a dense pattern of fine, 

continuous, longitudinal septa running through the inner surface of the outer wall 

(Harzhauser et al. 2011; Collareta and Newman 2020).

When Harzhauser & Newman described P. submersa (Harzhauser et al. 2011), the 

protochelonibiine affinities of P. melleni had not been recognised. Skeletal differences 

between these two species are largely minor (Collareta and Newman 2020), and the new 

German colony of Protochelonibia contributes to strengthen this notion. However, we notice 

that the hypodigm of P. submersa displays transparietal radii (Harzhauser et al. 2001: figs. 

2A, 3A), whereas the type series of P. melleni is characterised by disparietal radii (cf. 

diagnosis in Zullo 1982). Considering that the disparietal/transparietal condition of the radii 

is often regarded as species-diagnostic in various lineages of Balanomorpha (e.g., Ross and 

Newman 1996; Prabowo and Yamaguchi 2005; Carriol 2008), SMNK-PAL-7352 is here 

assigned to P. melleni on the basis of the observation of disparietal radii. 

Protochelonibia melleni was known so far from the sole type series, which consists of 

isolated compartments only. Therefore, SMNK-PAL-7352 represents the first record of P. 

melleni since its original description in 1982, as well as the first find of articulated, clustering 

shells of this species.

Some overlooked protochelonibiine records from the Oligo-Miocene of Europe

The discovery of the German colony of Protochelonibia fostered a review of palaeontological

literature that revealed the existence of two additional, overlooked occurrences of this archaic

chelonibiid genus. Withers (1929) described and figured two chelonibiid fossils from the 
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Miocene of Europe which he attributed to the extant species Chelonibia patula (Ranzani, 

1817). These specimens consist respectively of an isolated left carinolateral (Withers 1929: 

pl. 2, figs. 8-10) from Peloua ( = Le Péloua), near Soucats (error pro Saucats), France, and an 

isolated carina (Withers 1929: pl. 2, figs. 11, 12) from Kalksburg, near Wien, Austria (Fig. 4).

Withers (1929) regarded the French specimen as Burdigalian and the Austrian one as 

Tortonian. Sediments assigned to the lowermost Burdigalian (ca. 20 Ma) are indeed exposed 

at Le Péloua (Cahuzac et al. 1996; Gourinard et al. 1999; Cahuzac and Poignant 2005). The 

Austrian specimen, however, are older than assumed by Withers (1929) and derive from 

middle Badenian deposits, which are correlated with the middle Miocene Langhian stage 

(Harzhauser et al. 2020).

Both these specimens are clearly congeneric of Protochelonibia submersa and 

Protochelonibia melleni in light of the same characters that informed the genus-level 

attribution of the aforementioned German specimens (except for that regarding the tripartite 

rostral complex). With its transparietal radius, the Austrian specimen figured by Withers 

(1929) clearly represents P. submersa (Fig. 4). Interpreting the French carina is less 

straightforward, but the sutural surfaces of the radii are not similar to those reported by Zullo 

(1982) for the type material of P. melleni. Considering also the purported age of the deposits 

that host this specimen, which appears to be close to that of the P. submersa stratotype (ca. 22

Ma according to Gregorova et al. 2009 and Grunert et al. 2010), an attribution of the French 

carina to P. submersa seems reasonable.

Palaeoecology, functional morphology and evolutionary significance of the Oligo-

Miocene Protochelonibia species

The newly identified German colony of Protochelonibia melleni demonstrates that, similar to
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Protochelonibia submersa, this protochelonibiine species attained a low, peltate shell profile 

(Figs. 2A, 3A). In the widespread extant chelonibiid species Chelonibia testudinaria, which 

has recently been demonstrated to represent a cluster of morphs (Cheang et al. 2013; Zardus 

et al. 2014), the low-conical testudinaria morph is restricted to the quickly moving sea 

turtles, whereas the high-conical patula morph dwells on slower hosts such as crabs, 

horseshoe crabs and sea snails, and even on motionless inanimate substrates (Sloan et al. 

2014; Collareta and Bianucci 2021). The overall shell morphology of the Oligo-Miocene 

species of Protochelonibia is thus reminiscent of that displayed by those members of C. 

testudinaria that currently attach onto actively swimming hosts such as sea turtles. 

Corroborating this morphological inference, Harzhauser et al. (2011) observed surface 

imprints from the host substratum in one specimen of P. submersa that are reminiscent of the 

sculpture of cheloniid carapacial scutes. Considering also the relatively minor nature of the 

skeletal differences observed between P. melleni and P. submersa, similar lifestyles are 

expectable for these extinct chelonibiid species. Thus, we feel confident to suggest that both 

P. melleni and P. submersa were epizoans on some kind of quickly moving, likely vertebrate 

hosts.

The German colony of P. melleni displays a thoroughly abraded external surface. Acorn 

barnacle shells are commonly abraded, especially close to their apex, dehiscence being one of

the modalities by which the orifice increases its diameter as the shell grows. Among the 

living chelonibiids, abrasion is high in Chelonibia caretta (Darwin 1854), whose shell is 

relatively high and not hydrodynamic in outline. In the peltate P. melleni, in-vivo abrasion 

was likely low, hence the often preserved uppermost terminations of the compartments, and 

especially, the well-characteristic apex of the rostrum, which is acutely triangular 

(Harzhauser et al. 2011; Collareta and Newman 2020). Considering also that abrasion seems 
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to be ubiquitous in SMNK-PAL-7352, it likely occurred post-mortem. Regardless of these 

considerations, the abraded external surface of the German colony allows for observing that 

the outer wall of P. melleni is comprised of closely appressed, pillar-like blocks of shelly 

material (Figs. 2A, B, 3A), much like in the testudinaria morph of C. testudinaria. This is an 

aspect of the chelonibiid shell that has never been given much attention but by Davis (1972), 

who commented on the shell architecture of the testudinaria morph of C. testudinaria as 

follows:

“A lateral view of the outer lamina shows that it is also ridged and that each ridge 

terminates at the basal edge as a tooth. […] In thin section […], the teeth are represented 

by dark linear interlaminate figures which represent the centers of calcification of the teeth

and of the solid elongate vertical blocks of calcium carbonate to which the teeth give rise. 

Filets can be seen between adjacent interlaminate figures which represent interfaces 

between the adjoining blocks. The formation of the structures composing the chelonibiid 

paries is in marked contrast to the formation of the similarly named structures in the 

tubiferous Balaninae. […] In the Chelonibiidae, however, the outer lamina, and 

longitudinal septa and inner lamina are not discrete entities but are complex structures. 

The outer lamina is formed compositely of elongate blocks [...]” (Davis 1972: 11-12).

Some pages further on, Davis (1972: 21) presciently linked the outer wall microstructure of 

the testudinaria morph of C. testudinaria to that of the whale barnacles (family Coronulidae):

“The structure of the coronulid parietes presents a basic plan. The parietes are composed 

of an inner lamina connected to the outer lamina by longitudinal septa, forming 

longitudinal tubes […]. The longitudinal septa radiate outward from the inner lamina and 

project below it at the basal edge of the shell where they function as teeth […]. The outer 

lamina is formed by the concrescence of the distal edges of the teeth, the secondary result 
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being the formation of longitudinal tubes. [Note that Davis' inner and outer laminas are to 

be interpreted as the primary and secondary laminas; see e.g. Collareta et al. 2021.] This 

contrasts with the teeth of the Chelonibiidae which give rise to solid, elongate, abutting 

blocks.

 Although the coronulid laminar complex is different from the outer laminar complex of

the chelonibiids, they are essentially similar and may be regarded as homologous. The 

basic difference between the two is that in the Chelonibiidae the teeth concresce along 

their entire length whereas in the Coronulidae only the distal edges concresce. This results 

in the formation of a tubed structure with the teeth projecting outward rather than a solid 

one with the teeth projecting downward.” 

Although Davis (1972) made more detailed observations on the coronuloid outer wall than 

any cirripedologist before him, his unpublished thesis had little resonance if any. As argued 

by Collareta et al. (2021), the “elongate vertical blocks” that comprise the outer wall of extant

C. testudinaria are external parietal septa that grew appressed to each other, thus leaving no 

room for any intervening canal. In the early-middle Miocene chelonibiine Chelonibia 

zanzibarensis, these septa are well-spaced from each other and abut outward to form T-

shaped flanges, thus defining longitudinal canals in-between them; the latter likely had a role 

in coring out strings of the host's integument, thus favouring the partial self-burial of the 

barnacle, as e.g. in Platylepas hexastylos (Fabricius, 1798) (Collareta et al. 2021). Relics of 

these canals can be found in some extant chelonibiids such as C. caretta, a moderately 

penetrating turtle-dwelling species (Darwin 1854; Pilsbry 1916), and even in the patula 

morph of C. testudinaria (Collareta et al. 2021). The Oligo-Miocene species of 

Protochelonibia have low-conical shells, and consequently, they were likely specialised for 

spreading over the substrate in a way much similar to the living platylepadid species 
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Platylepas coriacea Monroe & Limpus, 1979, whose shell is characteristically not embedded 

into the host's tissues (cf. discussion in Collareta et al. 2019). A few compartments of P. 

melleni display a jagged basal profile (Zullo 1982; Collareta and Newman 2021) that is 

reminiscent of the invaginations and rib-like structures observed at the base of some shells of 

C. caretta and the manati morph of C. testudinaria (a manatee-fouling form; Pilsbry 1916), 

thus suggesting a certain degree of penetration into some kind of ductile tissue (Gruvel 1903; 

Monroe 1981); that said, most specimens of P. melleni exhibit a regularly rounded periphery 

(Zullo 1982: pl. 1; Fig. 2A, 3A). If P. melleni and P. submersa mostly adhered superficially 

onto their substrates, managing to develop macroscopic peripheral buttresses and bolsters in 

case of incidental anchoring to relatively soft tissues (as supposed for some specimens of P. 

melleni), this might also correlate with the observation of longitudinally elongated blocks, not

abutting into T-shaped flanges, running throughout the parietes of the German colony. 

Whether the diminutive external longitudinal parietal septa of the Oligo-Miocene species 

of Protochelonibia represent an early stage in the evolution of the tubiferous outer wall that is

typical of the later coronuloids (Collareta et al. 2021) or rather vestigial structures inherited 

from a C. zanzibarensis-like ancestor (such as hypothesised for the living testudinaria morph 

of C. testudinaria) cannot be ascertained. On the one hand, the occurrence of a seemingly 

derived coronuloid such as Emersonius cybosyrinx in strata as old as the Eocene suggests that

the key phases of the evolution of shell architecture of the turtle and whale barnacles – 

possibly including the development of longitudinal external parietal septa equipped with T-

shaped flanges and intervening external parietal canals – should be searched for in deposits 

older than the Oligocene. On the other hand, tissue graspers such as of T-shaped flanges only 

appear in the fossil record of Coronuloidea as late as the early or middle Miocene, and the 

peculiar tubiferous outer wall of most coronuloids might have evolved from an ancestral 

13

285

290

295

300

305



condition in which some kind of “precursors” of truly abutting longitudinal external parietal 

septa were present in form of adjoining columnar blocks of calcium carbonate. Possibly 

supporting an interpretation of the Oligo-Miocene species of Protochelonibia as 

representative of the ancestral coronuloid stock, the inner aspect of P. melleni and P. 

submersa features a largely appressed sheath and a dense pattern of fine, continuous, internal 

longitudinal parietal septa that recall the condition observed in some unspecialised, mostly 

rock-dwelling balanomorphs (cf. discussion in Zullo 1982). New additions to the fossil record

of the coronuloids, and especially to the largely fragmentary pre-Pliocene segment of this 

record, are definitively needed for shedding light on this and other crucial aspects of the 

origin and early evolutionary history of the turtle and whale barnacles.

General overview of the palaeogeographic and chronostratigraphic distribution of 

Protochelonibia

In light of the new and overlooked occurrences of Protochelonibia reported herein, the fossil 

history of the protochelonibiines can be summarised as follows. 

The oldest records of Protochelonibia are Rupelian in age and are assigned to P. melleni; 

they come from the southern USA and southwestern France (Table 1 and Fig. 4). These finds 

support the notion that the protochelonibiines had acquired a broad distribution as early as in 

Rupelian times, when P. melleni occurred in the proto-Gulf of Mexico as well as in the 

Western Paratethys. Such a transatlantic distribution might have been favoured by the fact 

that, during the early Oligocene, the North Atlantic expanse was distinctly narrower 

longitudinally than it is today, as well as by P. melleni being hosted by some kind of actively 

swimming hosts (see the previous section). Furthermore, given that Protochelonibia is the 

sole unquestionable representative of Coronuloidea to be known from Palaeogene strata, and 
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considering also that the oldest – albeit presumed – coronuloid (namely, Emersonius 

cybosyrinx Ross in Ross and Newman, 1967) also comes from the Gulf region of the USA, 

the dispersal centre of this superfamily might have been placed in what is currently regarded 

as the westernmost portion of Tethys (cf. discussion in Collareta and Newman 2020). 

The early Miocene finds of Protochelonibia conform to P. submersa; they come from the 

Central Paratethys, Central Mediterranean Sea and the Northeastern Atlantic Ocean (Table 1 

and Fig. 4). The few data available for the Oligocene and early Miocene protochelonibiines 

might lead to thinking that P. melleni and P. submersa comprise a lineage of chronospecies 

exhibiting little morphological change through time. A single find from the Langhian 

(Badenian) of the Central Paratethys testifies to the persistence of P. submersa as late as in 

middle Miocene times (Table 1 and Fig. 4). 

In Pliocene strata, the protochelonibiines are represented by Protochelonibia capellinii, 

which is known from the sole Central Mediterranean (i.e., Italian) holotype (Table 1 and Fig. 

4). While sharing with the Oligo-Miocene species of Protochelonibia a distinctly tripartite 

rostral complex featuring a transversely broad rostrum, P. capellinii resembles Chelonibia 

testudinaria in having a dome-shaped shell morphology and a clearly dependent sheath, as 

well as in the general arrangement of the internal longitudinal parietal septa. These characters

evoke some degree of morphological convergence with the coeval chelonibiines, among 

which members of the living species C. testudinaria were already present (De Alessandri 

1906; Collareta 2016, 2020). The protochelonibiines did not persist into the Pleistocene, thus 

eventually leaving Chelonibia as the sole representative of Chelonibiidae in the present-day 

global ocean.
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Figure captions

Fig. 1 Geographic setting of the abandoned Unterfeld claypit near Rauenberg, southwestern 

Germany. Geographic coordinates: 49°16'14"N; 8°40'22"E

Fig. 2 SMNK-PAL-7352, colony of Protochelonibia melleni (Zullo, 1982) from the Rupelian 

of southwestern Germany, in apical view. a – General view of the colony. b – Close-up of 

the apex of the tripartite rostral complex (note the elongate vertical blocks that comprise 

the outer wall and the well individualised, acutely triangular rostrum and rostrolaterals). c 

– Detail of the right rostrolateral-carinolateral1 suture (note the disparietal radius). Figure 

legend: al = ala, CL1 = carinolatus1, rd = radius, R = rostrum, RL = rostrolatus. Squares in 

the scale bar have sides of 1 mm each 

Fig. 3 SMNK-PAL-7352, colony of Protochelonibia melleni (Zullo, 1982) from the Rupelian 

of southwestern Germany. To improve contrast and highlight detail, the specimen was 

coated with ammonium chloride, a whitening technique described by Cooper (1935) and 

Feldman (1989). a – General view of the colony in apical view. b – Close-up of the ventral

view of the right rostrolatus, carinolatus1 and fragmentary carinolatus2, in basal view (note 

the largely appressed sheath and the dense pattern of fine, continuous, longitudinal internal

parietal septa). Figure legend: CL1 = carinolatus1, CL2 = carinolatus2, R = rostrum, RL = 

rostrolatus

Fig. 4 Reproduction of the original plate depicting the specimens of Protochelonibia 

Harzhauser & Newman, 2011 described by Withers (1929) under the name Chelonibia 

patula (Ranzani, 1817). Panels 8, 9 and 10 illustrate a lower Miocene French carina (here 

assigned to Protochelonibia cf. submersa Harzhauser & Newman, 2011). Panels 11 and 12

illustrate an upper Miocene Austrian carinolatus (here assigned to Protochelonibia 
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submersa). Note that the holotype of Chelonibia solida Withers, 1929 is also illustrated in 

panels 5, 6 and 7. A scale bar has been added at the bottom of the plate; this equals 10 mm 

for panels 11–12, 5 mm for panels 8–10, and 2.5 mm for all other panels. After Withers 

(1929: pl. 2)

Fig 5 (Palaeo)geographic and chronostratigraphic distribution of the finds of Protochelonibia

spp. Figure legend: red stars = occurrences of Protochelonibia melleni (Zullo, 1982), 

yellow stars = occurrences of Protochelonibia submersa Harzhauser & Newman, 2011, 

green stars = occurrences of Protochelonibia capellinii (De Alessandri, 1895). The 

palaeogeographic maps reproduced in the four panels are after Scotese (2014a, b). See 

Table 1 for distributional data sources
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