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The development of GPCR (G-coupled protein receptor) allosteric modulators has
attracted increasing interest in the last decades. The use of allosteric modulators in
therapy offers several advantages with respect to orthosteric ones, as they can fine-tune
the tissue responses to the endogenous agonist. Since the discovery of the first A1

adenosine receptor (AR) allosteric modulator in 1990, several efforts have been made to
develop more potent molecules as well as allosteric modulators for all adenosine receptor
subtypes. There are four subtypes of AR: A1, A2A, A2B, and A3. Positive allosteric
modulators of the A1 AR have been proposed for the cure of pain. A3 positive
allosteric modulators are thought to be beneficial during inflammatory processes. More
recently, A2A and A2B AR allosteric modulators have also been disclosed. The A2B AR
displays the lowest affinity for its endogenous ligand adenosine and is mainly activated as a
consequence of tissue damage. The A2B AR activation has been found to play a crucial role
in chronic obstructive pulmonary disease, in the protection of the heart from ischemic
injury, and in the process of bone formation. In this context, allosteric modulators of the A2B

AR may represent pharmacological tools useful to develop new therapeutic agents.
Herein, we provide an up-to-date highlight of the recent findings and future
perspectives in the field of orthosteric and allosteric A2B AR ligands. Furthermore, we
compare the use of orthosteric ligands with positive and negative allosteric modulators for
the management of different pathological conditions.
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INTRODUCTION

G-protein-coupled receptors (GPCRs) are a large family of membrane receptors that mediate the
response to several extracellular stimuli. Thus, several efforts have been made to discover molecules
acting on GPCRs that represent about one-fourth of marketed drugs approved in 2019 by the FDA
(Salmaso and Jacobson, 2020). Among the GPCR family, Adenosine receptors (ARs) are mainly
involved in the sensing of tissue damage rather than homeostatic regulators under physiological
conditions (Xiao et al., 2019). Four subtypes of ARs (A1, A2A, A2B, and A3) mediate the response to
the increase of extracellular adenosine concentrations in response to stressors (Chen et al., 2013).
Adenosinergic pathways possess a dual face: on one side, elevated adenosine concentration restores
an energy imbalance; on the other side, chronic exposure to high adenosine levels can switch to the
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promotion of pathological conditions such as uncontrolled
inflammation, cytokine release, and fibrosis (Borea et al., 2017).

Particularly, the A2B AR has emerged as a possible therapeutic
target in several physio-pathological conditions, including asthma
(Cicala and Ialenti, 2013), colitis (Kolachala et al., 2008), cancer (Gao
and Jacobson, 2019), cardiovascular, and metabolic disorders
(Effendi et al., 2020). However, among all the ARs, the A2B

subtype is the least characterized from a pharmacological point of
view owing to the lack of X-ray structure and to its low affinity for
the prototypic standard ligands commonly used to study ARs. Of
note, the four AR subtypes, the A1, A2A, A2B, and A3, share a highly
conserved binding (the “orthosteric” one) site of the endogenous
agonist adenosine challenging the design of selective agonists. The
design and development of positive (PAMs) as well as negative
(NAMs) allosteric modulators binding to a less conserved, and
topographically distinct site have emerged as an attractive
strategy. Allosteric modulators can modulate the effects of the
endogenous ligand in its site of production evidencing their
ability to be spatially and temporally more selective than the
orthosteric ones (Changeux and Christopoulos, 2016; Gregory
et al., 2019; Congreve et al., 2020).

Biological Effects of the A2B AR
The coupling of the A2B AR with Gs causes, within the cells, the
activation of adenylate cyclase with a consequent increase of
cAMP levels. The increase of cAMP concentrations activates the
protein kinase A (PKA) and Epac leading to the phosphorylation
of cAMP response element-binding protein (CREB) and
extracellular signal-regulated kinases (ERK) (Schulte and
Fredholm, 2003; Giacomelli et al., 2018). Furthermore, the A2B

AR is coupled with Gq11 that mediates the activation of
Phospholipase C (PLC) to increase the levels of 1,4,5-inositol

triphosphate (IP3)/diacylglycerol (DAG), leading to activation of
Protein kinase C (PKC) and increase of Ca2+ levels (Figure 1)
(Ciruela et al., 2010).

Although there are no A2B AR ligands currently in clinical
evaluation, several pre-clinical data have been reported to support
their use to treat different conditions such as acute lung injury,
ischemia, vascular leakage, metabolic disorders, and bone defects
(Jacobson et al., 2019; Carluccio et al., 2020; Gnad et al., 2020)
(Table 1). The A2B AR is highly expressed in the respiratory tract
and its modulation has been related to the pathogenesis of chronic
obstructive pulmonary disease (COPD) and pulmonary fibrosis
(Zhong et al., 2005; Cronstein, 2011; Giacomelli et al., 2018). The
A2B AR has been proposed as a potential target in acute lung injury
(ALI): in fact, the administration of aerosolized BAY-60-6583 1
attenuates pulmonary edema and diminishes lung inflammation
(Hoegl et al., 2015). The A2B AR expression has been related to the
activation of the hypoxia-inducible factor in different cell types such
as endothelial cells (Feoktistov et al., 2004), lung (Eckle et al., 2014),
liver cancer cells (Kwon et al., 2019), intestinal epithelial cells (Kong
et al., 2006). Its activation has been reported to be useful in the
treatment of ischemic injury in different tissues such as the intestines
(Hart et al., 2011), heart (Ni et al., 2018) and brain (Coppi et al.,
2020).

In addition to the already known A2B AR activity, the A2B AR
has been recently related to physiological processes and
pathological conditions opening the way to new possible
therapeuthic applications of the A2B AR ligands. In fact, the
activity of the A2B AR has been linked to glucose homeostasis and
insulin secretion and resistance (Merighi et al., 2015).
Accordingly, it has been reported that the A2B AR is
abundantly expressed in skeletal muscle (SKM) as well as
brown adipose tissue (BAT), and its gene deletion in SKM

FIGURE 1 | Schematic representation of the A2B AR signaling pathways upon adenosine binding and the biological effects exerted in different tissues.
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TABLE 1 | Representative orthosteric ligands in pre-clinical and clinical trials and allosteric modulators of A2B AR.

Compound Structure Class Selectivity Activity

BAY-60-6583 1 Orthosteric agonist A2B EC50 (hA2B) � 3 nM

CVT-6883 2 Orthosteric antagonist A2B Ki (hA2B) � 8.3 nM

CGS-15493 3 Orthosteric antagonist Not selective Ki (rA1) � 21 nM (rA2A) � 3.3 nM (rA2B) � 16.4 nM
(rA3) � 190 nM

IPDX 4 Orthosteric antagonist A2B Ki (hA2B) � 625 nM

QAF-807 5 Orthosteric antagonist Not selective Ki (hA1) � 197 nM (hA2A) � 1.670 nM (hA2B) �
3 nM

(hA3) � 10 nM

(Continued on following page)
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TABLE 1 | (Continued) Representative orthosteric ligands in pre-clinical and clinical trials and allosteric modulators of A2B AR.

Compound Structure Class Selectivity Activity

6a,b Positive allosteric
modulators

A2B 6a EC50 (hA2B)
a � 427 nM

6b EC50 (hA2B)
a � 445 nM

7a Positive allosteric modulator A2B EC50 (hA2B)
a � 249 nM

7b,c Negative allosteric
modulators

A2B 7b IC50H (hA2B)
b � 0.4 nM IC50L (hA2B)

b �
1.550 nM

7c IC50 (hA2B)
b � 2.5 nM

8a,b Negative allosteric
modulators

A2B 8a IC50H (hA2B)
b � 0.2 nM IC50L (hA2B)

b �
1.050 nM

8b IC50H (hA2B)
b � 0.4 nM IC50L (hA2B)

b �
420 nM

(Continued on following page)
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cells causes sarcopenia, diminishes muscle strength, and reduces
energy expenditure (Gnad et al., 2020). Similarly, the adipose
tissue specific silencing exacerbates the age-related reduction of
BAT. The same authors demonstrated that the receptor
stimulation with the A2B AR agonist BAY-60-6583 1
ameliorates obesity (Gnad et al., 2020).

Elevated adenosine concentration is known to exert
immunosuppressive action through activation of the ARs
mainly by the A2A and A2B subtypes. Interestingly, the use of
adenosine as A2A and A2B AR agonist has been proposed and
tested as an effective treatment strategy for the recent COVID-19
(Correale et al., 2020; Falcone et al., 2020).

The role of the different ARs in orchestrating the
mesenchymal stem cell (MSCs) differentiation has been the
focus of several researches (Reviewed in Carluccio et al., 2020).
The activation of the A1 AR promotes osteoclast differentiation
reducing the MSC-osteoblast differentiation. Conversely, several
evidence support the role played by the A2B AR in the adenosine-
mediated commitment of MSC into osteoblast differentiation
(Gharibi et al., 2011; Carroll et al., 2012; He et al., 2013; Mediero
and Cronstein, 2013; Rao et al., 2015; Shih et al., 2019). The
receptor activation promotes the expression of the osteogenic
factor Runx2 and the phosphatase alkaline (ALP), favoring
osteoblastogenesis (Gharibi et al., 2011). Adenosine levels raise
up to micromolar concentrations during bone injury, thus
triggering the activation of the A2B AR that is highly expressed
in MSCs. Furthermore, the inflammation evoked during bone
injury further enhances the anabolic responses evoked by A2B AR
ligands (Daniele et al., 2017). These data support the role of the
A2B AR as an interesting target in the treatment of bone defects
such as osteoporosis. Accordingly, the A2B AR stimulation
attenuates bone loss in ovariectomized mice, supporting its
potential as a target for osteoporosis also consequent to
estrogen deficiency (Shih et al., 2019).

Adenosine A2B AR Orthosteric vs Allosteric
Ligands
It is beyond the scope of this perspective to review the whole
available literature concerning A2B AR ligands. Instead, we have
chosen to select a number of relevant (classes of) compounds to 1)

offer a reliable overview of those drugs involved in both
preclinical and clinical studies, and 2) briefly recapitulate the
effects produced by a specific orthosteric or allosteric binding to
the A2B AR.

The number of A2B AR agonists developed is the most limited
among the ARs agonists, and no agonists for this AR subtype have
yet entered clinical trials; nevertheless, some relevant A2B AR
agonists have been proposed and subjected to preclinical studies.
Among them, the most promising compound, the non-
nucleoside agonist BAY-60-6583 1 (Table 1), showed to be
useful in the treatment of acute lung injury as well as in
cardiovascular diseases, such as atherosclerosis and coronary
artery disorders (Eckle et al., 2008; Gao et al., 2014).

Conversely, several highly potent and selective A2B AR
antagonists have been reported and some of these had entered
in clinical trials in the past decades. CVT-6883 (2, Table 1, also
known as GS-601), developed by Gilead along with various other
compounds, such as, CGS15493 (3, Table 1, developed by
Novartis), WO-00125210 (Bayer HealthCare Pharmaceuticals),
IPDX (4, Table 1, Vanderbilt University), and ATL-907
(Adenosine Therapeutics) have entered phase I and II trials
for the treatment of asthma (Chandrasekaran et al., 2019;
Effendi et al., 2020). In addition, the dual A2B/A3 AR
antagonist QAF-807 (5, Table 1, Novartis) had reached phase
III clinical trial but it failed to attenuate PC20 AMP challenge as a
marker of airway inflammation in mild asthmatic subjects
(Wilson, 2008).

The discrepancy between the few drugs entered in clinical
practice and the pivotal role of adenosinergic system in several
pathological processes can be partially explained by the
ubiquitous AR expression in almost all tissues, increasing the
possibility of unwanted side effects. In this respect, small-
molecules acting as allosteric modulators of the A2B AR might
be worthy of investigation as they could represent a potential
novel therapeutic strategy for pathological conditions
characterized by an altered functionality of this AR subtype.

The first selective PAM, PD81,723, has been reported in 1990
for the A1 AR subtype (Bruns and Fergus, 1990). Since then,
many research groups have performed extensive structure-
activity relationship studies and reported several PAMs of
different AR subtypes (Valant et al., 2012; Jacobson et al.,

TABLE 1 | (Continued) Representative orthosteric ligands in pre-clinical and clinical trials and allosteric modulators of A2B AR.

Compound Structure Class Selectivity Activity

9 Positive allosteric modulator A2B EC50 (hA2B)
a � 636 nM

aCHO cells stably transfected with hA2B AR were treated with a fixed EC50 NECA concentration (100 nM) in the absence or presence of different concentrations of the tested compound.
The EC50 values to promote the cAMP accumulation were reported.
bCHO cells stably transfected with hA2B AR were treated with a fixed EC50 NECA concentration (100 nM) in the absence or presence of different concentrations of the tested compound.
The IC50 values to inhibit the cAMP accumulation were reported.
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2018; Deb et al., 2019). Less has been reported regarding A2A and
A2B AR allosteric modulators. In 2013, our research group
serendipitously has discovered the first class of A2B AR
allosteric modulators (Taliani et al., 2013). Specifically,
adopting the strategy of designing AR antagonists starting
from benzodiazepine receptor (BzR) ligands, the indol-3-
ylglyoxylamide scaffold, previously exploited by us to develop
BzR ligands (Da Settimo et al., 1996; Da Settimo et al., 1998;
Primofiore et al., 2001; Primofiore et al., 2006; Primofiore et al.,
2007; Taliani et al., 2009; Cosimelli et al., 2012; Salerno et al.,
2012), has been structurally modified, providing a series of 1-
benzyl-3-ketoindoles (6a-b, 7a-c, 8a-b, Table 1). These
compounds possess two structural features characterizing most
of the A2B AR antagonists: three lipophilic moieties linked to a
heterocyclic ring and a group capable to establish
hydrogen bonds.

No compounds show significant binding affinities toward A1,
A2A,, and A3 ARs, except for 7a and 7b, which display moderate
A1 AR affinity (sub-micromolar Ki values). Quite surprisingly, the
new compounds act as selective human A2B AR modulators in a
stably transfected cell line. In particular, 6a,b and 7a behave as
PAMs of the A2B AR in functional assay by increasing the efficacy
but not the potency of the A2B AR agonists (NECA, BAY 60-6583,
adenosine) in stimulating cAMP accumulation. These
compounds have been deeply investigated using competitive
and kinetic binding experiments resulting in the hypothesis
that they favor the receptor active state without altering the
orthosteric site. Compounds 7b,c and 8a,b act as NAMs of the
A2B AR by decreasing both efficacy and potency of agonists.
Similar to the PAMs, the activity of these compounds have been
also investigated with binding experiments. They probably
interfer with receptor-Gs protein coupling and, consequently,
with the agonist functional response favoring the receptor
uncoupled state (Trincavelli et al., 2014).

The positive or negative profile of these compounds seems to
be correlated to small structural differences. However, the limited
number of compounds allowed to delineate only preliminary
structure-activity relationships. In brief, compounds 6a, 6b, 8a,
and 8b act as PAMs or NAMs depending on the nature of the
linker between the indole nucleus and the lipophilic side chain,
i.e. glyoxylamide for 6 and carboxamide for 8. Conversely, for
compounds 7 the interaction with the protein strictly depends on
the nature of the pendant aromatic ring: 7a with a phenyl ring is a
PAM while 7b and 7c, featuring a furyl or a thienyl ring,
respectively, are NAMs.

Based on the evidence that the A2B AR is the principal AR
subtype implicated in MSC differentiation to osteoblasts and
bone formation (Gharibi et al., 2011), the A2B AR PAM 6b has
been selected for its specificity toward the A2B AR and evaluated
for its effect on the agonist-mediated MSC differentiation to
osteoblasts. Compound 6b potentiates the effects of either
adenosine and synthetic orthosteric A2B AR agonists (NECA
and BAY 60-6583 1) in promoting MSC differentiation to
osteoblasts in vitro (Trincavelli et al., 2014b) by increasing the
osteogenic marker expression and by favoring osteoblast
mineralization. In addition, in the early stage of
differentiation, 6b potentiates the physiological and A2B

agonist-mediated reduction of IL-6 levels that in turn is
necessary to support the differentiation process in MSCs. On
the contrary, in the late differentiation phase, 6b improves the
physiological and A2B agonist-mediated IL-6 increase, important
to ensure a pro-survival effect in osteoblasts. These results
provide the basis for a prospective therapeutic use of selective
A2B AR PAMs in bone diseases.

Very recently, Barresi et al. (2021), to expand the knowledge
about the pharmacophoric requirements for A2B AR allosteric
modulation, have reported a series of novel derivatives chemically
related to 6–8. Compounds from this library exhibit different
degrees of similarity with the indoles 6, 7, and 8, including novel
indole-based derivatives bearing various substitutions at 1- and/
or 3-positions, and derivatives characterized by different
aromatic heterocycles in place of indole. Interestingly,
structure-activity relationships in terms of matrix
mineralization stimulation activity in MSCs (either in the
presence or in the absence of the agonist BAY60-6583 1)
suggest that the indole nucleus and N1-arylalkyl group do not
represent key pharmacophoric elements for a compound acting
as A2B AR PAM. In this study compound 9 (Table 1), which
possesses a peculiar chemical structure with respect to the
reference N1-benzyl substituted indoles 6–8, has been
identified to represent a novel lead structure for the
development of novel A2B AR PAMs potentially acting as anti-
osteoporosis agents.

DISCUSSION

Allosteric modulation is a fundamental mechanism in biology
and the development of allosteric ligand on GPCRs is a fast-
growing field. Allosteric modulators have the potential to inhibit,
activate, or maintain the signaling of the GPCR receptor allowing
their modulation based on the physiological requirement without
blocking endogenous ligand binding. The research on this field
has delivered hundred of candidates in the pipeline and also
FDA-approved therapies.

Among the GPCRs, ARs have attracted considerable attention
in drug developmemt. During the last fifty decades, several efforts
have been made to develop small molecules acting as agonists,
antagonists or allosteric enhancers of ARs. Most of these
molecules failed in clinical trials and only three are currently
approved for human use: adenosine, Regadenoson and
Istradefylline. However, increasing evidence demonstrates the
biological role played by ARs, particularly by the A2B subtype,
in pathological conditions. The A2B AR is expressed under stress
conditions in almost all human tissues, and exhibits a low affinity
for its endogenous agonist adenosine. Based on the tissue, the
nature of the stimuli and the time of exposure, the A2B AR can
mediate positive or negative effects. Thus, in the last decade, the
research has been focused, on one hand, on a deeper knowledge of
the molecular mechanism evoked by the A2B AR activation in
different pathological conditions; on the other hand, on the
development of small molecules able to selectively bind to this
receptor subtype. New A2B AR ligands are currently being
developed and the discovery of allosteric modulators
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represents an attractive research topic. The use of a GPCR
orthosteric agonist can always lead to undesired effects due to
its activation in other tissues. The limitation of the use of an AR
orthosteric agonists and antagonists can not be completely overcome
by the use of an allosteric modulator. Of note, the use of an A2B AR
agonist can lead to its activation in all the tissue (also where a low
amount of adenosine is present) promoting undesired side effects.
Conversely, allosteric modulators may represent a more physiologic
alternative to orthosteric agonist and antagonist as they promote site-
specific and event-specific responses mainly in damaged tissues,
where adenosine is massively released. Thus, the development of
potent and selective A2B AR PAMs can open the way to a new
application of AR ligand in clinical practice likely reducing the side
effects with respect to those potentially caused by orthosteric agonists.
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