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Abstract

A heliogyro is a rotating solar sail with the reflecting surface divided into a number of long and slender blades,
which are stiffened by a spin-induced centrifugal force. Each blade can rotate around its own longitudinal axis
so as to change the pitch angle and allow the thrust vector to be effectively controlled. The aim of this paper
is to analyze the optimal heliocentric transfers of a Sun-facing heliogyro, that is, a heliogyro whose fundamental
plane is always perpendicular to the Sun-spacecraft line. A simplified analytical model of the thrust and torque
vectors provided by a Sun-facing heliogyro is illustrated, using the characteristic acceleration as a performance
parameter. The proposed thrust vector model is then exploited to calculate the minimum flight times in a set
of two-dimensional heliocentric transfers. Using an indirect method and a semi-analytical approach for trajectory
optimization, some exemplary cases are discussed, such as circle-to-circle Earth-Mars and Earth-Venus transfers
or a simplified mission to the asteroid 25143 Itokawa.
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Nomenclature

Atot = total reflective area, [m2]
a = semimajor axis, [au]
a = propulsive acceleration vector, [mm/s2]
ac = characteristic acceleration, [mm/s2]
ap = component of a along p̂, [mm/s2]
ar = component of a along r̂, [mm/s2]
at = component of a along t̂, [mm/s2]
C = heliogyro center of mass
Ck = k-th blade center of mass

d̂ = unit vector
e = orbital eccentricity
F k = radiation pressure force on the k-th blade, [N]
i = orbital inclination, [rad]

{̂i, ĵ, k̂} = unit vectors of TB
{̂ik, ĵk, k̂k} = unit vectors of Tk
J = cost function
l = blade length, [m]
M = total torque vector, [N m]
m = total spacecraft mass, [kg]
N = number of blades
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O = Sun’s center of mass
P = solar radiation pressure, [Pa]
p = osculating orbit semilatus rectum, [au]
{p̂, t̂} = normal and transverse unit vectors
r = Sun-spacecraft distance, [au]
r̂ = radial unit vector
S = spacecraft center of mass
T = orbital period, [days]
t = time, [days]
TB = spacecraft-fixed (body) reference frame
Tk = blade-fixed reference frame
T� = heliocentric polar reference frame
v = spacecraft inertial velocity vector, [km/s]
vr = radial component of v, [km/s]
vt = transverse component of v, [km/s]
w = blade width, [m]
α = thrust angle, [rad]

αd = angle between d̂ and r̂, [rad]
αn = cone angle, [rad]
γ = auxiliary angle, [rad]
δn = clock angle, [rad]
ζk = angular position of the k-th blade, [rad]
ϑ = control parameter, [rad]
θk = pitch angle of the k-th blade, [rad]
µ� = Sun’s gravitational parameter, [km3/s2]
ν = true anomaly, [rad]

ξ = angle between t̂ and î, [rad]
ϕ = polar angle, [rad]

ω = heliogyro spin rate (with ω , ‖ω‖), [rad/s]

Subscripts

0 = initial
f = final
ss = conventional solar sail
⊕ = evaluated at 1 au from the Sun

Superscripts

· = time derivative
∧ = unit vector
− = mean value
∼ = dimensionless
? = optimal

1. Introduction

Solar sailing is a fascinating concept of space propulsion that gains thrust from the momentum of solar
photons, which are reflected by a large and thin membrane [1, 2, 3]. The heliogyro is a rotating solar sail,
whose reflective surface is divided into a number of long and slender blades that are stiffened by a suitable
spin-induced centrifugal force [4], as is sketched in Fig. 1. Thanks to such a helicopter-like design, which
avoids the use of heavy booms necessary to stiffen the reflective film [5, 6], a heliogyro is potentially able
to provide a higher propulsive acceleration magnitude than a conventional (i.e., not rotating, three-axis
stabilized, and polygonal) solar sail of equal reflective area and payload mass [7]. Each blade may be rotated
around its own longitudinal axis (i.e., the axis extending from the blade root to the blade tip) to obtain
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the desired pitch angle, thus allowing the thrust vector to be controlled more effectively than that of a
conventional solar sail or a refractive sail [8, 9, 10]. The plane identified by all the longitudinal axes of the
blades is here referred to as the fundamental plane of the heliogyro. The spin axis is therefore perpendicular
to the fundamental plane and passes through the heliogyro center of mass; see Fig. 1.

blade

main
body spin axis

Sun

blade
pitch axis

reflective
film

Figure 1: Sketch of heliogyro concept.

The aim of this paper is to present a simplified analysis of the thrust vector provided by a heliogyro and
to investigate its capabilities in executing a set of optimal (minimum-time) trajectories for two-dimensional
interplanetary transfers. The study is specialized to the case of a heliogyro with a Sun-facing attitude,
that is, when the heliogyro fundamental plane is perpendicular to the Sun-spacecraft line. Note that this
special configuration would also be useful, for example, to maintain an artificial Lagrangian point [11] .
In that case, the problem of determining the optimal control is considerably simplified because the thrust
vector orientation of a Sun-facing heliogyro (SFH) only depends on the blade pitch angles. The proposed
mathematical model shows that the propulsive acceleration vector of an SFH can be analytically described
in a compact form as a function of the number of blades and their orientation only. It is also proved that the
mean propulsive acceleration vector over a complete rotation of the SFH about its spin axis is independent
of the number of blades and can be expressed as a function of a single control parameter.

The simplified SFH thrust model is then used to study the classical minimum-time rendezvous problem
between heliocentric coplanar orbits [12, 8]. To that end, the optimal steering law for an SFH is first
determined in closed form, then some exemplary cases (including missions to the asteroid 25143 Itokawa
or circle-to-circle Earth-Mars and Earth-Venus transfers) are analyzed using both an indirect method [13,
14, 15] and a semi-analytical approach. Minimum flight times are estimated as a function of the heliogyro
characteristic acceleration, defined as the maximum propulsive acceleration at a reference Sun-spacecraft
distance of one astronomical unit, which is the design parameter that quantifies the heliogyro performance.
In an SFH configuration, the maximum propulsive acceleration occurs when all the blade pitch angles are set
to zero, that is, when the blades are at their rest position and, as such, belong to the heliogyro fundamental
plane. In that special case, the SFH provides a purely outward radial thrust.

The remainder of the paper is organized as follows. Section 2 is devoted to a brief review of previous
works related to the heliogyro concept, while Section 3 presents the analytical thrust model of an SFH.
Section 4 analyzes the minimum-time transfer problem and derives the optimal steering law in closed form.
The obtained control law is then used in Section 5 for investigating optimal heliocentric transfers in some
two-dimensional mission scenarios of interest. Finally, the last section contains some concluding remarks.

2. Heliogyro concept review

The heliogyro concept was first proposed by Astro Research Corporation and MacNeal-Schwendler Cor-
poration [16, 17] in the mid 1960s as a particular solar sail configuration, in which the reflective surface
is divided into a number of long and slender blades that resemble the arrangement of a helicopter rotor.
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This innovative and rather unconventional sail arrangement was extensively studied during the 1970s at the
Jet Propulsion Laboratory [18, 19, 20] in the context of Wright’s [21] visionary idea (which, unfortunately,
remained merely a theory on paper) to rendezvous with Halley’s comet by using a solar sail-based spacecraft.
In that mission scenario, the performance of a baseline 12-blade heliogyro, in which the size of each rect-
angular blade was about 8 m× 7.5 km, was investigated by considering a reflective membrane of aluminum
coated Kapton with an infrared emissive coating on the shaded side.

After that first pioneering phase, the interest in scientific research on the heliogyro regained strength
at the beginning of the 2010s, as is confirmed by the number of heliogyro-related papers presented at the
third International Symposium on Solar Sailing [22]. During that conference, some important issues related
to the heliogyro concept were addressed [23], such as the analysis of the dynamic behavior of a spinning
blade [24, 25], the study of the heliogyro solar-elastic stability [26], and an investigation of its attitude
control via a suitable set of blade pitch maneuvers [27]. In the recent years, an interesting contribution is
represented by the works by Guerrant et al. [28, 29, 30, 31], Guerrant and Lawrence [32, 33], and Wilkie
et al. [34], who investigated some crucial aspects (on which we do not go into details) related to the blade
pitch and torsional dynamics.

In the context of dynamics and orbital control, Heiligers et al. [35] addressed the heliogyro inverse
problem (i.e., the problem of determining the blade pitch profile that generates a given thrust and/or torque
vector) using a numerical technique and applied such a method to track a reference trajectory that corrects
injection errors into a Sun-Earth (sub-L1) halo orbit. Moreover, Heiligers et al. [36] exploited the force
control authority of a heliogyro for studying the orbital control of Sun-Earth (sub-L1) halo orbits by means
of a linear-quadratic feedback controller.

More recently, Pimienta-Peñalver et al. [37] provided an improvement upon the existing discrete-mass
models of the heliogyro blade and extended its application from a single membrane blade to a full heliogyro
constituted by multiple blades spinning about a rigid central hub. Additionally, they implemented a control
algorithm at each blade root to enforce structural integrity and attitude control. Moreover, in Ref. [38] they
also established a hybrid approach where the blades are divided into equal sections, in which the mass is
lumped into discrete points located at their edges. Subsequently, Kim et al. [39] analyzed a possible control
strategy for a full heliogyro deployment by controlling the blade pitch angle and the angular velocity of
the blade reel. The simulation results proved that the blades can be successfully deployed at the desired
final rotational speed using an open-loop control system. This is certainly a non-trivial result because,
during the heliogyro unrolling phase, the increase of its moment of inertia decreases the spacecraft angular
velocity. In addition, Juang et al. [40] presented a number of simulation cases that showed how the flutter
instability frequencies vary with the solar radiation pressure (SRP) and the dynamic model size, while Kang
and Park [41] applied the Floquet stability analysis to a three-dimensional nonlinear blade subjected to
time-varying SRP. In particular, they determined the stability boundaries in the domain of SRP and spin
rate and in the domain of SRP and angle between the Sun-spacecraft (i.e., radial) line and the heliogyro
spin axis. Moreover, Kang and Park [42] investigated the dynamic behavior of a flexible multibody heliogyro
solar sail (consisting of a central rigid body and six flexible solar blades subject to SRP and gravitational
forces) using a floating frame approach. The proposed model [42] was then applied to demonstrate the
feasibility of Sun-synchronous orbits around the Earth.

Finally, Cook et al. [43] performed damping characterization tests on small-scale heliogyro blades hanging
in a high-vacuum chamber and managed to calculate separate flap and twist damping ratios for the first three
modes. The obtained results led to the conclusion that a linear viscous torsional blade damping model is
inadequate for the design of a robust proximal blade twist feedback controller. Then, Cook and Lawrence [44]
elaborated three modal damping models based on the previous experimental data and integrated them into
a single blade heliogyro model. They found out that a proximal blade twist feedback controller is able to
satisfy the settling time requirement for a heliogyro technology demonstration mission.

In essence, the reason why the heliogyro concept is still capturing the attention of researchers and,
therefore, it is worthy of further investigation, is that its performance is relatively higher than that of a
conventional solar sail of equal reflective area and payload mass. This property is a result of the centrifugal
force obtained by spinning the heliogyro around a rotation axis, thanks to which the blades are stiffened and
mechanically stabilized without the need of any massive booms that would otherwise be required to support
a non-rotating membrane. In other terms, the reflective surface area and the payload mass being the same,
the lower structural mass of a heliogyro guarantees a higher propulsive acceleration magnitude. This point
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is emphasized in Guerrant’s doctoral thesis [45], which is a rich source of references useful to start a general
research about the heliogyro concept.

3. Simplified models for thrust and torque vectors

Consider a heliogyro-based spacecraft of total mass m that rotates with a constant angular velocity ω
at a distance r , ‖r‖ from the Sun, where r is the Sun-spacecraft position vector. The heliogyro is made
up of N ≥ 2 rectangular and double-reflective blades of equal size, with length l and width w � l.

In this analysis the blades are modelled as rigid and perfectly reflective membranes, which implies that
the incident light is specularly reflected [21]. Actually, the blades are not rigid and their torsional bending
causes the twist at the tip to be less than the twist at the root. This unwanted structural behaviour had
already been observed during MacNeal’s pioneering work [17], in which the author came to the conclusion
that the blade trim can be maintained by controlling the chordwise relative locations of the center of pressure
and center of gravity. The assumption of rigid blades is however made here to simplify the following analysis
and to provide an analytical description of the thrust and torque vectors generated by a heliogyro.

It is now useful to introduce a radial-tangential-normal (orbital) reference frame TO(C; îO, ĵO, k̂O),
centered at the spacecraft center of mass C, in which k̂O ≡ r̂ , r/r is along the Sun-spacecraft line, ĵO is
directed along the specific angular momentum vector h , r × v (where v is the spacecraft inertial velocity
vector), and îO completes the right-handed coordinate system; see Fig. 2. Note that the plane (̂iO, ĵO)
coincides with the local horizontal plane.
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Figure 2: Radial-tangential-normal reference frame.

Furthermore, let TB(C; î, ĵ, k̂) be a body reference frame with k̂ parallel to the heliogyro spin axis, in such
a way that ω , ω k̂, where ω is the spacecraft spin rate. Note that the heliogyro fundamental plane is
identified by the unit vectors î and ĵ. Figure 3 sketches a simplified heliogyro with 4 blades. The generic
blade orientation is described with the aid of a blade-fixed (right-handed) reference frame Tk(Ck; îk, ĵk, k̂k)
with k = {1, . . . , N}, where Ck represents the k-th blade center of mass, îk (with î1 ≡ î) is parallel to
the rotation axis of the k-th blade and is oriented towards the blade tip, and k̂k is orthogonal to the blade
surface and points in the same direction as k̂ when the blade is at its rest position, as shown in Fig. 3.

The SRP-induced thrust F k generated by the k-th blade can be described by means of an ideal force
model [1], that is

F k =
2P Atot

N

∣∣∣r̂ · k̂k

∣∣∣ (r̂ · k̂k

)
k̂k (1)

where Atot , N lw is the total reflective area, r̂ is the radial unit vector, and P is the local SRP, given by

P = P⊕

(r⊕
r

)2
(2)

where P⊕ ' 4.54µPa is the value of P at the reference distance r⊕ , 1 au. Note that F k · r̂ ≥ 0 whatever
the orientation of TB and Tk is. Bearing in mind Eq. (1), the propulsive acceleration vector a provided by

5



C
1

C
2

C
3

C
4

2 4

ˆ ˆ ˆ
� � �j i i

x y

z

k̂

1 3

ˆ ˆ ˆ
� � �i i i

C

1 blade
st

1
ĵ

1
k̂ 2

k̂

2
ĵ
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ĵ

4
ĵ
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Figure 3: Conceptual scheme of a heliogyro with N = 4.

the heliogyro is

a =
1

m

N∑
k=1

F k (3)

which can be rewritten as

a = ac

(r⊕
r

)2 1

N

N∑
k=1

∣∣∣r̂ · k̂k

∣∣∣ (r̂ · k̂k

)
k̂k (4)

where

ac ,
2P⊕Atot

m
(5)

is the characteristic acceleration, that is, the typical performance parameter of a conventional solar sail-based
spacecraft.

The propulsive acceleration vector in Eq. (4) can be expressed as a function of the spacecraft attitude
relative to TO and the blade pitch angles. To this end, the Sun-spacecraft unit vector r̂ is described in TB
by means of the cone (αn) and clock (δn) angles, such that

r̂ = sinαn cos δn î + sinαn sin δn ĵ + cosαn k̂ (6)

where αn ∈ [0, π] rad is the angle between r̂ and k̂, while δn ∈ [0, 2π) rad is the angle between î and the
projection of r̂ onto the fundamental plane (̂i, ĵ); see Fig. 4.
Moreover, the unit vector k̂k may be written as a function of the blade pitch angle and its angular position
(i.e., the blade azimuthal location) along the heliogyro fundamental plane as

k̂k , sin θk sin ζk î− sin θk cos ζk ĵ + cos θk k̂ (7)

where θk ∈ [−π/2, π/2] rad is the blade pitch angle, while ζk , 2π (k − 1) /N represents the azimuth angle
(measured counterclockwise starting from î) of the k-th blade longitudinal axis on the plane (̂i, ĵ); see Fig. 5.

From Eqs. (6)-(7), the scalar product r̂ · k̂k of Eq. (3) becomes

r̂ · k̂k = sinαn cos δn sin θk sin ζk − sinαn sin δn sin θk cos ζk + cosαn cos θk (8)

so that the propulsive acceleration vector a is a function of the spacecraft attitude (through the angles αn

and δn) and the pitch angle of the generic blade.
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Figure 5: Representation of the generic blade pitch angle θk.

3.1. SFH thrust vector mathematical model

The expression of a, obtained by combining Eqs. (4) and (7)-(8), can be simplified by considering the
special but important case of an SFH, which corresponds to when the spacecraft spin axis is parallel to the
Sun-spacecraft line, the latter coinciding with the direction of r̂. In this case k̂ = k̂O ≡ r̂, the plane (̂i, ĵ)
coincides with the local horizontal plane (̂iO, ĵO), and αn = 0. Therefore, Eq. (8) gives r̂ · k̂k = cos θk, and
Eq. (3) reduces to the following compact form

a = ac

(r⊕
r

)2 1

N

N∑
k=1

cos2 θk k̂k (9)

As a result, an SFH generates a purely radial propulsive acceleration when, for all k, θk = 0. In that case,
a = ac (r⊕/r)

2
k̂k with k̂k = k̂ ≡ r̂. On the other hand, a transverse (that is, which lies on the local

horizontal plane) component of a can be obtained by suitably changing the generic blade pitch angle θk.
From the control viewpoint, four different strategies are usually identified in the literature to maneuver

an SFH [17, 46]. More precisely, the cyclic pitch maneuver gives a nonzero component of the heliogyro thrust
in the (̂i, ĵ) plane while keeping the spacecraft spin rate at a roughly constant value. The collective-cyclic
pitch maneuver, instead, produces a radial thrust (that is, a thrust vector directed along k̂) and a steady
torque along both the (̂i, ĵ) plane and the k̂-axis, while the collective pitch maneuver gives rise to a torque
and a modulation of the radial thrust component. Finally, the so called half-p pitch maneuver [46] is similar
to the collective-cyclic pitch, but does not change the heliogyro spin rate and has a zero net collective pitch
component. In this paper, a generalization of the collective-cyclic pitch maneuver is used to obtain a simple
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thrust vector mathematical model of an SFH. It will be shown that, with the control strategy used for the
generation of the required trust, the resulting disturbing torque is (at least on average) equal to zero.

Consider now a generic transverse direction t̂, fixed in the local horizontal plane (̂iO, ĵO), and assume
that any blade rotation at an angle θk occurs instantaneously. Such an assumption of a “step-like” variation
of the blade pitch angle is very useful to simplify the mathematical model, but is rather non-conservative in
a real control law design. In fact, flexible heliogyro blades cannot handle a step-like pitch variation because
it would excite the structural modes. In practice, a smooth blade pitch variation can be used to get to the
overall effect of the (ideal) step-like variation.

Because the heliogyro spins about k̂ at a constant angular rate ω, the components of the transverse unit
vector t̂ in the body frame TB are

t̂ , cos ξ î + sin ξ ĵ with ξ , ξ0 − ω t (10)

where ξ is the angle between t̂ and î, t is the time, and ξ0 , ξ(t0) is the value of ξ at t0 , 0; see Fig. 6.

�
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ĵ

ω

0
( )ˆ tt 0

�

( )ˆ tt
ωt

Figure 6: Sketch of unit vector t̂.

The maximum value of the component of a along t̂ can be obtained, at a generic time instant t, by
finding the angle θk = θk(t) that maximizes the dot product at , a · t̂, which, from Eqs. (9)-(10), is

at = ac

(r⊕
r

)2 1

N

N∑
k=1

cos2 θk sin θk sin (ζk − ξ) (11)

From the previous equation, the value of at is maximum when

θk = θ?k , sign (sin (ζk − ξ)) arccos
(√

2/3
)

(12)

so that the expression of a when θk = θ?k can be written in a compact form as

a(θ?k) , a? = a?r r̂ + a?t t̂ + a?p p̂ (13)

where p̂ , r̂ × t̂ ≡ − sin ξ î + cos ξ ĵ and

a?r , ac

(r⊕
r

)2 2
√

6

9
(14)

a?t , ac

(r⊕
r

)2 2
√

3

9N

N∑
k=1

|sin (ζk − ξ)| (15)

a?p , −ac
(r⊕
r

)2 2
√

3

9N

N∑
k=1

sign (sin (ζk − ξ)) cos (ζk − ξ) (16)
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Note that a?r is independent of ξ (or t), while both a?t and a?p change with ξ, as is shown in Fig. 7, where

{ã?t , ã?p} are dimensionless terms, defined as

ã?t ,
a?t

ac

(r⊕
r

)2 , ã?p ,
a?p

ac

(r⊕
r

)2 (17)

In particular, the period of ã?t and ã?p is 2π/N rad when N is even, while it is π/N rad when N is odd.
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Figure 7: Variation of ã?t and ã?p with ξ and N .

The maximum and minimum values of {ã?t , ã?p} are plotted in Fig. 8 as a function of N . The figure shows

that the values of ã?t (or ã?p) converge to approximately 0.245 (or 0) as N increases. These limiting values
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Figure 8: Maximum and minimum values of ã?t and ã?p as a function of N .

coincide with the dimensionless forms of the mean values of {a?t , a?p}, denoted as {a?t , a?p}, during a heliogyro

rotation period 2π/ω. In fact, the mean values {a?t , a?p} can be obtained from Eqs. (15)-(16) as

a?t ,
1

T

∫ T

0

a?t dt = ac

(r⊕
r

)2 4
√

3

9π
(18)

a?p ,
1

T

∫ T

0

a?p dt = 0 (19)

where 4
√

3/(9π) ' 0.245. In other terms, when the orientation of the generic blade is such to maximize the
projection of a along the transverse unit vector t̂, the mean value of the propulsive acceleration vector can
be written as

a? ,
1

T

∫ T

0

a? dt = a?r r̂ + a?t t̂ (20)

where a?r and a?t are given by Eqs. (14) and (18), respectively.
The previous results may be easily adapted to the more general case when the blade pitch angle is in the

form
θk = sign (sin (ζk − ξ)) ϑ (21)

where ϑ ∈ [−π/2, π/2] rad is a control parameter. In this case, the mean propulsive acceleration vector,
defined as

a ,
1

T

∫ T

0

a dt (22)

belongs to the plane (r̂, t̂) and its components depend on the assigned value of ϑ. In particular, when
ϑ = 0, the propulsive acceleration vector is purely radial, while the component of a along the transverse

unit vector t̂ is maximized (or minimized) when ϑ = arccos
(√

2/3
)

rad (or ϑ = − arccos
(√

2/3
)

rad).

Note that, in a real mission scenario, when the actual blade control capability must necessarily be taken
into account, a sinusoidal cyclic amplitude of about 42 deg may be chosen as it maximizes the transverse
propulsive acceleration, yielding a normalized magnitude of about 0.2246 [33].
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For a generic value of ϑ, the mean propulsive acceleration is therefore

a = ar r̂ + at t̂ (23)

where

ar , ac

(r⊕
r

)2
cos3 ϑ , at , ac

(r⊕
r

)2 2

π
cos2 ϑ sinϑ (24)

The mean value of Eq. (23) will now be used in place of the instantaneous one given by Eq. (9), because the
heliogyro rotation period is considerably smaller than the characteristic time scale of a heliocentric orbital
motion. Note that the transverse component of a is multiplied by a factor 2/π ' 0.637 when compared to
the case of a conventional solar sail without attitude constraints [47] and optical degradation [48, 49, 50]
if, in the latter case, ϑ represents the angle between r̂ and the normal to the sail fundamental plane in the
direction opposite to the Sun. Furthermore, the thrust angle α (that is, the angle between a and r̂) is given
by

α = arctan

(
2

π
tanϑ

)
(25)

and is shown in Fig. 9.
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Figure 9: Variation of the thrust angle α with ϑ.

A final remark concerns the maximum transverse component of the mean propulsive acceleration vector.
While for a solar sail it occurs when α = arctan

(
1/
√

2
)

rad ' 35.26 deg, an SFH generates its maximum

transverse acceleration when α = arctan
(√

2/π
)

rad ' 24.24 deg; see Fig. 10, where

ãr ,
ar

ac

(r⊕
r

)2 , ãt ,
at

ac

(r⊕
r

)2 (26)

The lack of an overline in ãr emphasizes that it is not a mean value since, as stated, the radial acceleration
is independent of time. Note that the expressions of ãr and ãt may also be rewritten from Eq. (23) using α
as the independent variable, and the result is

ãr =

[(π
2

tanα
)2

+ 1

]−3/2

, ãt = ãr tanα (27)
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3.2. SFH torque vector

The generation of a propulsive acceleration gives rise to a disturbing torque acting on the heliogyro. For
a SFH, the torque due to a single blade is

Mk = −2P Atot

N

[
l

2
+
w

2
cot
( π
N

)]
cos2 θk ĵk (28)

where ĵk , − cos θk sin ζk î + cos θk cos ζk ĵ + sin θk k̂. The total torque vector is therefore

M =

N∑
k=1

Mk (29)

Using the control law given by Eq. (21), it may be verified that M = 0 when N is even, while

M =
2P Atot

N

[
l

2
+
w

2
cot
( π
N

)]
cos2 ϑ sinϑ sign (sin (N ξ)) k̂ (30)

when N is odd. In the latter case, the mean value of M is

M ,
1

T

∫ T

0

M dt = 0 (31)

Figure 11 shows the function M̃z , cos2 ϑ sinϑ sign (sin (N ξ)) whenN = {3, 5} and ϑ = arccos
(√

2/3
)

rad.

It is worth noting that, if N is odd, the period of M̃z is 2π/N . In conclusion, the disturbing torque is (at least
on average) equal to zero. Notably, this result is in agreement with the models discussed by Blomquist [46].

4. Trajectory optimization

Minimum-time transfer trajectories of an SFH-based spacecraft between two heliocentric coplanar orbits
are now investigated using an indirect approach. To that end, introduce a heliocentric polar reference frame
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Figure 12: Heliocentric polar reference frame.

T�(O; r̂, t̂), with its origin at the Sun’s center of mass O, where the spacecraft polar angle ϕ is measured
from the Sun-spacecraft direction at the initial time t0; see Fig. 12.

The two-dimensional motion of the SFH-based spacecraft may be described in T� through the following
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system of nonlinear equations

ṙ = vr (32)

ϕ̇ =
vϕ
r

(33)

v̇r = −µ�

r2
+
v2ϕ
r

+ ar (34)

v̇ϕ = −vr vϕ
r

+ at (35)

where µ� is the Sun’s gravitational parameter, vr (or vϕ) is the radial (or the transverse) component of the
spacecraft inertial velocity, and ar (or at) is the radial (or the transverse) component of the mean propulsive
acceleration vector given by Eqs. (24).

Minimum-time trajectories may be analyzed by maximizing, at any time, the Hamiltonian function
associated to the problem. This procedure is not reported here, as it is thoroughly described elsewhere [14,
51, 52]. It is well known [13] that the optimal control law that solves this kind of problem maximizes, at any
time, the projection of the propulsive acceleration vector along the direction of Lawden’s primer vector [53].
Let the primer vector be parallel to the unit vector d̂, defined as

d̂ , cosαd r̂ + sinαd t̂ (36)

where αd ∈ [−π, π] rad is the angle between d̂ and r̂; see Fig. 13. The optimal control law ϑ = ϑ? (or,

r̂

ˆt

ˆd
d

α

C

Sun

Figure 13: Sketch d̂ and αd.

equivalently, α = α?) maximizes, at any time, the projection of a along d̂ [53]. The expression of ϑ? can be
obtained, in an analytical and compact form, by introducing the dimensionless cost function J = J (ϑ, αd),
defined as

J ,
a · d̂

ac

(r⊕
r

)2 = cos2 ϑ

(
cosϑ cosαd +

2

π
sinϑ sinαd

)
(37)

and enforcing the necessary condition
∂J
∂ϑ

= 0 (38)

From Eqs. (37)-(38), neglecting the trivial solutions ϑ = ±π/2 rad, the optimal value of the control parameter
ϑ is given by

ϑ? =

γ − arcsin

(
sin γ

3

)
2

(39)
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where the auxiliary angle γ ∈ [0, 2π) rad is defined such that

sin γ ,
2 sinαd√

4 sin2 αd + π2 cos2 αd

, cos γ ,
π cosαd√

4 sin2 αd + π2 cos2 αd

(40)

Note that the optimal value of the SFH thrust angle α? can be obtained from Eqs. (25)-(39) as

α? = arctan

 2

π
tan

γ − arcsin

(
sin γ

3

)
2


 (41)

which is drawn in Fig. 14, along with ϑ?, as a function of αd.
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Figure 14: Variation of the optimal values ϑ? and α? with αd.

For the sake of completeness, the optimal thrust angle given by Eq. (41) is compared to that of a conventional
solar sail without attitude constraints (here referred to as α?

ss), which, according to Sauer [13], is

α?
ss = arctan

(√
8 + cos2 αd − 3 cosαd

4 sinαd

)
(42)

The comparison between the functions α?(αd) and α?
ss(αd) is shown in Fig. 15.

5. Case studies

The proposed thrust model and optimal control law are used to analyze a set of heliocentric two-
dimensional transfers. For exemplary purposes, the SFH heliocentric parking orbit is assumed to be circular
with radius r0 = r⊕. This scenario is consistent with that of a heliogyro that leaves the Earth’s sphere
of influence on a parabolic escape trajectory, with the simplifying assumption that the planetary orbit is
circular.
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5.1. Earth-Mars and Earth-Venus circle-to-circle orbit transfers

Consider a generic circle-to-circle heliocentric transfer between two coplanar orbits, and assume that
the target orbit radius is rf = 1.523 au (or rf = 0.723 au). This case is consistent with an ephemeris-free
Earth-Mars (or Earth-Venus) transfer, in which the eccentricity and the mutual inclination between the
planetary orbits are both neglected.

The optimal transfer has been analyzed with a spacecraft characteristic acceleration ranging in the
interval [0.2, 2] mm/s2, and the variation of the minimum flight time tf with ac has been drawn in Fig. 16.
In particular, Fig. 16(a) (or Fig. 16(b)) shows that tf increases rapidly when ac becomes less than 0.7 mm/s2

(or less than 0.6 mm/s2) in a Earth-Mars (or Earth-Venus) mission scenario. Figures 17 and 18 show in
more detail the cases ac = 0.2 mm/s2 and ac = 2 mm/s2 for the two mission scenarios, in terms of transfer
trajectory and optimal control law.

5.2. Circle-to-circle transfer with low-performance SFH

When dealing with circle-to-circle orbit transfers using a low-performance SFH, the optimal transfer
duration can be related to the characteristic acceleration through an analytical approximation. Such a rela-
tionship is now obtained by paralleling the procedure discussed by Quarta and Mengali [54], who developed
an analytical model for estimating the minimum flight time and the number n of revolutions around the
Sun required by a low performance solar sail without attitude constraints to perform a circle-to-circle orbit
transfer. In particular, for given values of r0 and rf , Quarta and Mengali [54] showed that tf is inversely
proportional to ac when ac is sufficiently small (i.e., when the number of revolutions around the Sun is suffi-
ciently high). In those cases, they observed that vr ' 0 and vϕ '

√
µ�/r along the whole transfer. Moreover,

the optimal thrust angle α? oscillates around a mean value equal to sign (rf/r0 − 1) arctan
(
1/
√

2
)

rad, the
modulus of which is the thrust angle corresponding to the maximum transverse acceleration supplied by a
conventional solar sail without attitude constraints.

The same properties are also found when dealing with circle-to-circle optimal transfer trajectories in-
volving an SFH. This is for example confirmed by Figs. 17(a)-18(a), which show that, actually, |α?| nearly
coincides with 24.24 deg. The approximate expression of the minimum flight time may be obtained by
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Figure 16: Minimum flight time as a function of ac in a circle-to-circle interplanetary transfer.

introducing the following simplifications in Eqs. (32)–(35)

vϕ '
√
µ�

r
, α? = ± arctan

(√
2

π

)
(43)
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Figure 17: Earth-Mars circle-to-circle transfer with ac = {0.2, 2} mm/s2.

where α? > 0 when rf/r⊕ > 1 (orbit raising), while α? < 0 when rf/r⊕ < 1 (orbit lowering). The result is

tf '
√

3µ�

8 r2⊕ ac
|T⊕ − Tf | (44)

where T⊕ and Tf are the orbital periods of the parking and target orbit, respectively.
The range of ac within which Eq. (44) is valid can be determined with the aid of Fig. 19, which shows

that the function ac tf/ (a⊕ T⊕) (with a⊕ , µ�/r
2
⊕) is nearly constant with ac as long as n > 5. An analytical

expression of ac, below which Eq. (44) gives a reasonable estimate of the total flight time, can be obtained
starting from the total sweep angle ∆ϕ. In fact, as previously stated, the analytical approximation given by
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Figure 18: Earth-Venus circle-to-circle transfer with ac = {0.2, 2} mm/s2.

Eq. (44) is valid as long as n > 5, that is, when ∆ϕ ≡ 2π n > 10π rad. The total sweep angle can be found
from Eqs. (33), (43), and (44), from which

dϕ ' dt√
r3⊕
µ�

+ sign

(
rf
r⊕
− 1

)
4 ac t√
3π a⊕

(45)

and the result of the integration is

∆ϕ ' 3
√

3π a⊕

8 ac

∣∣∣∣ln( rfr⊕
)∣∣∣∣ (46)

Substituting ∆ϕ = 10π rad into Eq. (46), we get the maximum value of ac below which Eq. (44) gives a
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good approximation, viz.

ac <
3
√

3 a⊕

80

∣∣∣∣ln( rfr⊕
)∣∣∣∣ (47)

Using this inequality, it is found that ac < 0.16 mm/s2 when rf = 1.523 au and ac < 0.12 mm/s2 if rf =
0.723 au.

5.3. Simplified rendezvous with asteroid 25143 Itokawa

This section investigates the performance of a low-performance SFH when the target orbit is highly
elliptical. As an example, consider a heliocentric transfer towards the asteroid 25143 Itokawa, that is,
a potentially hazardous asteroid of the Apollo group, which has already been explored by the Japanese
probe Hayabusa in 2005 [55, 56, 57]. Itokawa’s heliocentric orbit has a semimajor axis af = 1.3241 au, an

eccentricity ef = 0.2801 (i.e., pf , af (1− e2f ) ' 1.2202 au), and an orbital inclination if = 1.6214 deg. Due
to the small value of if , minimum-time transfer trajectories can be preliminarily investigated considering a
two-dimensional mission scenario.

The minimum flight time and the corresponding number n of revolutions around the Sun for an orbit-
to-orbit transfer (without ephemeris constraints) is shown in Fig. 20 as a function of ac. In this scenario,
when the value of νf is constrained, the minimum flight times are greater than or equal to those reported
in the figure. For example, consider an SFH with ac = 1 mm/s2. In this case, the optimal orbit-to-orbit
transfer requires the rendezvous to take place when the asteroid true anomaly is νf ' 120 deg, as is shown
in Fig. 21, which illustrates the transfer trajectory and the time variation of the optimal thrust angle α?.
When, instead, νf is constrained, the minimum flight time changes with νf as reported in Fig. 22.

6. Conclusions

This paper has discussed a simplified analytical model for describing the propulsive acceleration vector
provided by a Sun-facing heliogyro, a special configuration that occurs when the spin axis is aligned with the
Sun-spacecraft line. In particular, an expression of the propulsive acceleration vector has been obtained by
considering its mean value during a rotation period of the heliogyro about its spin axis. In this regard, the
mean transverse propulsive acceleration provided by a Sun-facing heliogyro is reduced by a factor (1− 2/π)
when compared to that given by a conventional solar sail without attitude constraints. As expected, the
torque that arises from the generation of the propulsive acceleration is (at least on average) equal to zero.
The thrust model has been used for analytically determining the optimal steering law, which has been
applied to solve a set of minimum-time rendezvous problems between coplanar heliocentric orbits. Some
exemplary cases, including transfers to the asteroid 25143 Itokawa, to Mars and to Venus have been studied
as a function of the heliogyro characteristic acceleration.

A natural extension of this work is to include the optical characteristics of the reflective film in the
description of the heliogyro thrust and the torque vectors. In addition, a more detailed performance analysis
of a heliogyro-based spacecraft in a three-dimensional mission scenario should also consider the spacecraft
mass budget model, in order to estimate the actual value of the characteristic acceleration as a function of
the reflective surface area and the payload mass. Finally, the performance of a Sun-facing heliogyro could
also be analyzed in a more challenging planetary escape/capture scenario, where the high orbit rates could
make the thrust orientation more difficult to obtain. In fact, during a planetary escape/capture phase, the
orbit rate is typically so high that the heliogyro may not be able to rotate its fundamental plane fast enough.
In that case, a Sun-facing cyclic thrust profile may represent the only possible control strategy.
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