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Abstract

A recent trend in algorithm design consists of augmenting classic data struc-

tures with machine learning models, which are better suited to reveal and exploit

patterns and trends in the input data so to achieve outstanding practical im-

provements in space occupancy and time efficiency. This is especially known in

the context of indexing data structures for big data where, despite few attempts

in evaluating their asymptotic efficiency, theoretical results are yet missing in

showing that learned indexes are provably better than classic indexes, such as

B-trees and their variants. In this paper, we present the first mathematically-

grounded answer to this problem by exploiting a link with a mean exit time

problem over a proper stochastic process which, we show, is related to the space

and time complexity of these learned indexes. As a corollary of this general

analysis, we show that plugging this result in the (learned) PGM-index, we get

a learned data structure which is provably better than B-trees.
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1. Introduction

Very recently, the unexpected combination of data structures and Machine

Learning (ML) has led to the development of a new area of algorithmic research,

called learned data structures. The key design idea consists of augmenting — and

sometimes even replacing — classic building blocks of data structures, such as5

arrays, trees or hash tables, with ML models, which are better suited to reveal

and exploit patterns and trends in the input data. This feature, orchestrated

with proper algorithms, has led to outstanding practical improvements in space

occupancy and time efficiency over a plethora of problems and applications,

such as databases, search engines, operating systems, sorting algorithms [2].10

The most successful example of the interplay between data structures and

machine learning is the indexable dictionary problem, which asks to store a set

S of n keys over a universe U (e.g. reals, integers, etc.) in an index structure

that efficiently supports the following query operations:

• member(x) = true if x ∈ S, false otherwise;15

• predecessor(x) = max{y ∈ S | y < x};

• range(x, y) = S ∩ [x, y].

For this problem, many learned data structures (or learned indexes, as they

are called in this case) have been proposed. Examples include the ones in [3–8]

and others surveyed in [2]. The common idea is that indexes are models that20

can be trained to map keys to their location in the sorted S, and this mapping

is enough to implement the above queries.

To clarify, let us denote by rank(x) the primitive that returns, for any key

x ∈ U , the number of keys in S which are smaller than x, and let A be the

array storing the keys of S in sorted order. Then, member(x) can be imple-25

mented by checking whether A[rank(x)] = x; predecessor(x) consists of return-

ing A[rank(x)−1]; and range(x, y) consists of scanning the array A from position

rank(x) up to the first key larger than y. Given rank , we reformulate the index-

able dictionary problem as a supervised learning task over a dataset of points
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{(x, rank(x))}x∈S in which we look for a model f : U → {0, . . . , n− 1} mapping30

keys to their position in A that minimises the error |f(x) − rank(x)| over all

x ∈ U . The possible presence of an error imposes also the design of proper algo-

rithms that subsequently correct f(x) to get the exact rank(x), and thus answer

correctly the query on x. As an example, we can use a binary search in A in a

neighbourhood of size err = maxx∈U |f(x) − rank(x)| around the approximate35

position f(x). An illustrative example is given in Figure 1.

We observe that this has been a significant step ahead in the design of indexes

because the resulting (learned) data structure answers queries in O(log err) time

plus the cost of computing f , and this might be independent of the number of

keys in S. However, we have to notice that although f could be made as40

much sophisticate as needed to minimise the error, there is a non-negligible

side-effect on the overall efficiency of the learned index: the more complex is f ,

the worse is the query time efficiency and its space occupancy. Consequently,

it is not so obvious whether classic index structures, such as B-trees and their

variants [9, 10], are better or worse than learned indexes.45

State-of-the-art learned indexes. Starting from the premises above, a

significant flow of research has investigated the trade-off among the complex-

ity of the model f , the time to compute and correct the prediction f(x), and

the space needed to store f . Ao et al. [3] used simple least-squares linear re-

gression. Kraska et al. [4] proposed a fixed hierarchy of ML models and found50

that linear regression models were the most effective ones. Other researchers

improved these results by proposing dynamic learned indexes based on a Piece-

wise Linear Approximation (PLA) with a guaranteed maximum error ε ≥ 1 (in

practice, ε is of the order of hundreds or thousands). In particular, Galakatos

et al. [5] orchestrated the segments composing the PLA with a classic B+-tree,55

while Ferragina and Vinciguerra [7] introduced theoretically more efficient re-

cursive schemes based on optimal PLAs, i.e. PLAs with the minimum number

of segments.

In practice, learned indexes are fast and occupy a space which is up to several

3



30 40 50 60 70 80

0

1

2

3

4

5

6

7

8

9

f(x) = 0.14x− 2.55

err

key

p
o
si
ti
o
n

27 36 37 38 39 40 49 74 77 80
0 1 2 3 4 5 6 7 8 9

A

Figure 1: A set S of ten keys stored in a sorted array A and the corresponding set of points

D = {(x, rank(x))}x∈S in the Cartesian plane. The linear model f , computed using ordinary

least squares on D, estimates that x = 49 is in position r = bf(x)c = 4, but the true rank of x

is 6 (hence err = 2). We can fix the error incurred by f via a binary search on A[r−err , r+err ].

orders of magnitude smaller than classic data structures on several synthetic and60

real datasets [4–8, 11, 12]. However, although the authors in [7] showed that

querying the PGM-index is as fast as a B-tree with a disk-page size B, it is not

yet known whether its space occupancy is provably better than the Θ(n/B) disk

pages required by B-trees. In fact, the only known mathematical relation that

ties the number n of input keys, the error ε and the size s of the PLA-model (i.e.65

the number of its segments) is s ≤ n/2ε (see [7]). This shows that the space

occupancy of a learned index is never worse than the one taken by a B-tree with

disk-page size B (just take ε = Θ(B)), but it does not theoretically ensure that

it is provably more succinct than it.

As a consequence, there is a methodological gap in learned index design70

between what is evident from experiments on several but specific datasets and

what research has been able to corroborate with solid mathematical grounds.
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Bridging this gap amounts to explain from a theoretical perspective the “several

orders of magnitude smaller” space occupancy achieved in practice by learned

indexes, which in turn consists of showing a dependence in the space complexity75

between n and s of the form s = O(n/εc), with c > 1.

Our contribution. We make the first step towards explaining why learned

indexes are so effective with respect to traditional indexes.

We obtain this result by considering the gaps between consecutive keys in

the sorted input S, and assuming that they are drawn according to a given80

distribution. This corresponds to the general and realistic scenario of time series

data. Then, since the PLA-model at the core of a learned index consists of a

sequence of s segments which are at most ε-away (measured along the y-axis)

from the points {(x, rank(x))}x∈S , we turn the problem of determining s into a

Mean Exit Time (MET) problem over a stochastic process which estimates how85

many gaps i have to be drawn from the given distribution until the resulting

point (xi, i) is farther than ε from a segment with a properly defined slope.

Now, since this is a fixed slope whereas the algorithm used in Ferragina and

Vinciguerra [7] and due to O’Rourke [13] computes the “best” slope, namely

the one that induces the longest segment, our result on MET provides a lower90

bound to the average length of the segments computed by the above (optimal)

algorithm, and thus it provides also an upper bound to their number s and to

the space taken by the index.

Surprisingly, we show that for any gap distribution with finite mean and

variance, the average segment length scales at least quadratically with ε which,95

in turn, means that s decreases as O(n/ε2). Specifically, the average segment

length is proved to be κε2, for a constant κ = µ2/σ2 that depends only on the

mean µ and the variance σ2 of the gap distribution (Theorems 1–3). We then

strengthen this result by showing that the upper bound on s = O(n/ε2) holds

with high probability (Theorem 4). ı̀In addition to these key achievements, from100

the one hand, we specialise Theorem 1 to five well-known distributions (Corol-

lary 1) and, from the other hand, we thoroughly discuss the important case of
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correlated keys (Section 4). Finally, we perform an extensive set of experiments

corroborating that all our theoretical achievements are highly precise.

This leads us to conclude that learned indexes are provably better than clas-105

sic indexing data structures not only in time efficiency but also in space oc-

cupancy, and thus they constitute a robust and effective indexing choice for

modern applications on big data, where space compression and query efficiency

are mandatory.

As an illustrative example, let us consider the case of an external-memory110

setting with disk pages of B keys (typically B is of the order of thousands). Here,

a classic B-tree takes Θ(n/B) space and supports queries in O(logB n) I/Os.

Given our result, the PGM-index1 of Ferragina and Vinciguerra [7] answers

queries as fast as a B-tree while improving its space to O(n/B2) with high

probability (see Corollary 3).115

As a final remark, we note that the preliminary version of this work ap-

peared in [1]. The present contribution includes a new result on repeated keys

(Corollary 2), a thorough discussion on the important case of correlated keys

(Section 4), an extended Section 6 with new experiments on moving average pro-

cesses (Figure 7) and autoregressive processes (Figure 8) validating the claims120

of the new Section 4.

2. Preliminaries

We model the sorted input keys x0, x1, . . . as a stream generating the gaps

g1, g2, . . . between consecutive keys so that the ith input key is xi =
∑i
j=1 gj

(for convenience, we fix x0 = 0). We assume that the sequence gaps {gi}i∈N125

is a realisation of a random process {Gi}i∈N, where the Gis are positive, in-

dependent and identically distributed (iid) random variables with probability

density function (pdf) fG, mean E[Gi] = µ and variance Var[Gi] = σ2. Then,

we define the random variables modelling the cumulative sum as Xi =
∑i
j=1Gj

1https://pgm.di.unipi.it
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Figure 2: An example of random walk (a) and the corresponding transformed random walk (b).

(for i = 1, 2, . . . ) and fix X0 = 0.130

In this setting, our problem is to find a linear model that approximates the

points (0, 0), (X1, 1), (X2, 2), . . . in the Cartesian plane within a given maximum

error ε ≥ 1, measured along the y-axis.

Now, let us consider the two parallel lines y = mx ± ε, for an m to be

chosen later, and the strip S of height 2ε between them, i.e. S = {(x, y) |
mx − ε < y < mx + ε}. As motivated in Section 1, among all the possible

choices of the linear model (i.e. values of m), we want the one that maximises

|S|. Hence, we are interested in the slope m that maximises the smallest i such

that the corresponding point (Xi, i) is outside S. Formally, we are interested in

maximising the following random variable:

i∗ = min{i ∈ N | (Xi∗ , i
∗) /∈ S}. (1)

Since i∗ is a random variable, we will find its expected value over different

realisations of the sequence {Xi}i∈N as a function of ε,m, µ, σ2. An example of135

a realisation is depicted in Figure 2a.
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3. Main Results

We recall that the value of i∗ depends on the choice of the slope m and the

objective of the algorithm is to maximise the expected value of i∗. Our main

result is that, in a suitable limit, this maximum is achieved when m = 1/µ, and140

in this case the number of keys covered scales as Θ(ε2).

More precisely, we can prove the following theorems and corollaries charac-

terising i∗ on general or specific distributions of the gaps between consecutive

keys in S.

Theorem 1. Given any ε ≥ 1 and a sorted set S of n input keys, suppose that

the gaps between consecutive keys in S are a realisation of a random process

consisting of positive, independent and identically distributed random variables

with mean µ and variance σ2. Then, if ε is sufficiently larger than σ/µ, the

expected number of keys covered by a segment with slope m = 1/µ and maximum

error ε is
µ2

σ2
ε2.

The following theorem shows that a segment with slope m = 1/µ is on145

average the best possible choice in terms of the number of ε-approximated keys.

Theorem 2. Under the assumptions of Theorem 1, the largest expected number

of keys covered by a segment with maximum error ε is achieved with slope 1/µ.

The variance of the length of the segment with slope m = 1/µ can also be

written in closed-form.150

Theorem 3. Under the assumptions of Theorem 1, the variance of the number

of keys covered by a segment with slope 1/µ and maximum error ε is

2

3

µ4

σ4
ε4.

By instantiating some common probability distributions in Theorem 1, it

follows the next key corollary.

Corollary 1. Under the assumptions of Theorem 1, the expected number of

keys covered by a segment is:

8



• 3 (a+b)2

(b−a)2 ε
2 if the gaps are iid and uniformly distributed with minimum a155

and maximum b.

• α(α − 2)ε2 if the gaps are iid and Pareto (power law) distributed with

minimum value k > 0 and shape parameter α > 2.

• ε2/(eσ2 − 1) if the gaps are iid and lognormally distributed with mean µ

and variance σ2.160

• ε2 if the gaps are iid and exponentially distributed with rate λ > 0.

• kε2 if the gaps are iid and gamma distributed with shape parameter k > 0

and scale parameter θ > 0.

As the next result shows, the number of keys covered by a segment scales

as Θ(ε2) even when S contains repeated keys, i.e. when some gaps are equal to165

zero.

Corollary 2. Given any ε ≥ 1 and a sorted set S of input keys, suppose that

the gap between any two consecutive keys in S is zero with probability p, and

that, with the remaining probability (1−p), the gap is drawn from a distribution

with mean µ and variance σ2. Define

κ2 =
(1− p)µ2

σ2 + pµ2
.

If ε is sufficiently larger than 1/κ, the expected number of keys covered by a

segment with slope m = 1/(µ(1− p)) and maximum error ε is κ2ε2.

Finally, we can show that the number of segments s which have slope

m = 1/µ and guarantee a maximum error ε on a stream of length n is very170

concentrated around Θ(n/ε2).

Theorem 4. Under the assumptions of Theorem 1, the number of segments s

needed to cover a stream of length n with error at most ε converges almost surely

to
σ2

µ2

n

ε2
,

and the relative standard deviation of s converges to zero as 1/
√
n when n→∞.
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In the following, given this last result, we will say that the number of seg-

ments s is O(n/ε2) “with high probability” [14].

The above theorems are based on the assumption that gaps are independent175

and identically distributed. In applications this condition might not be true and

thus it is important to assess whether our results hold, even in some asymptotic

regime, when gaps are autocorrelated. We answer this question affirmatively in

Section 4.

3.1. Proof of Theorem 1180

Let us consider the Cartesian plane introduced in Section 2. By swapping

abscissas and ordinates of the plane, the equation of the two parallel lines be-

comes y = (x ± ε)/m (x and y are the new coordinates), and the sequence of

points becomes {(i,Xi)}i∈N. This sequence describes a discrete-time random

walk with iid increments Gi = Xi − Xi−1. The main idea of the proof is to

determine the Mean Exit Time (MET) of the random walk out of the strip

delimited by the two lines above, i.e. the mean of

i∗ = min

{
i ∈ N

∣∣∣ Xi >
i

m
+

ε

m
∨ Xi <

i

m
− ε

m

}
. (2)

To simplify the analysis, we consider the following transformed random walk,

where we use the equality Xi =
∑i
j=1Gj and set Wj = Gj − 1/m:

Zi = Xi −
i

m
=

i∑
j=1

(
Gj −

1

m

)
=

i∑
j=1

Wj .

The objective (2) can be thus rewritten as

i∗ = min {i ∈ N | Zi > ε/m ∨ Zi < −ε/m} ,

which is the exit time of the transformed random walk {Zi}i∈N whose increments

Wj are iid with mean E[Wj ] = E[Gj − 1/m] = µ − 1/m, variance Var[Wj ] =

Var[Gj ] = σ2 and pdf fW (w) = fG(w + 1/m).

An example of this transformed random walk is depicted in Figure 2b above.

Let T (z0) = E[i∗ | Z0 = z0] be the MET if the random walk {Zi}i∈N starts

from z0. In our case, it starts from z0 = y0 − 0/m = 0 (since y0 = 0). It is
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well known [15, 16] that T (z) satisfies the Fredholm integral equation of the

second kind T (z0) = 1 +
∫ ε/m
−ε/m fW (z − z0) T (z) dz, which for our problem can

be rewritten as

T (z0) = 1 +

∫ ε/m

−ε/m
fG

(
z − z0 +

1

m

)
T (z) dz. (3)

While solving exactly the integral equation (3) is in general impossible, it185

is possible to give a general limiting result when ε is sufficiently large. More

specifically, when m = 1/µ, the transformed random walk Zi has increments

with zero mean and variance equal to σ2, and the boundaries of the strip are at

±εµ. When σ � εµ or equivalently ε � σ/µ, the Central Limit Theorem tells

us that the distribution of the position of the random walker is Normal because190

many steps are necessary to reach the boundary. In this case, the transformed

random walk converges to a Brownian motion (or Wiener process) in continuous

time [17].2

Now, it is well known [17] that for a driftless Wiener process the MET out

of an interval [−δ/2, δ/2] is

T (x) =
(δ/2)2 − x2

σ2
, (4)

where x ∈ [−δ/2, δ/2] is the value of the process at the initial time. In our case,

x = 0 and δ = 2ε/m = 2εµ, thus we finally have the statement of the theorem.195

3.2. Proof of Theorem 2

Using an approach similar to the one in Section 3.1, if m 6= 1/µ, the trans-

formed random walk Zi = Xi − 1/m =
∑i
j=1Wj has increments with mean

d ≡ E[Wj ] = µ − 1/m and variance σ2 (see the previous section). For large

ε the process converges to a Brownian motion with drift. The MET out of

an interval [−δ/2, δ/2] for a Brownian motion with drift coefficient d 6= 0 and

2A mathematical more precise but equivalent statement can be done using the Donsker’s

theorem [18].
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diffusion rate σ can be proved to be

T (0) =
δ

2d

[
edδ/σ

2

+ e−dδ/σ
2 − 2

edδ/σ2 − e−dδ/σ2

]
. (5)

To show this, we use the known fact (see [17, §5.2.7]) that the MET T (x) out

of an interval [−δ/2, δ/2] of a Brownian motion with drift d and diffusion rate

σ starting at position x satisfies the differential equation

d
dT (x)

dx
+
σ2

2

d2T (x)

dx2
= −1,

with the boundary conditions

T (δ/2) = T (−δ/2) = 0.

The solution of this Cauchy problem is

T (x) =
δ − 2x

2d
+
δ

d

[
e−dδ/σ

2 − e−2dx/σ2

edδ/σ2 − e−dδ/σ2

]

If the random walker starts at x = 0, this expression becomes T (0) of Equation 5.

Clearly, by taking the limit d → 0 (i.e. µ → 1/m) in (5), one obtains

Equation 4. As in the proof of Theorem 1, we have δ = 2ε/m, thus substituting

it in the equation above we get

T (0) =
ε

md
tanh

(
εd

mσ2

)
.

It is easy to see that the maximum of T (0) is achieved for d = 0, i.e. when

m = 1/µ, which is exactly the setting considered in Theorem 1.

3.3. Proof of Corollary 2200

Under the assumptions of the corollary, the gaps Gj have mean value µ̃ =

(1− p)µ and variance σ̃2 = (1− p)(σ2 + µ2)− (1− p)2µ2, thus the increments

Wj = Gj − 1/m = Gj − µ̃ of the transformed random walk have zero mean and

variance σ̃2. Using Theorem 1 and Theorem 2, we conclude that the optimal

slope is m = 1/µ̃ and the expected number of keys is (µ̃2/σ̃2) ε2, i.e. the thesis.205
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3.4. Proof of Theorem 3

Following Gardiner [17, Equation 5.2.156], the second moment T2(x) of the

exit time of a Brownian motion with diffusion rate σ starting at x is the solution

of the partial differential equation

−2T (x) =
σ2

2
∂2x T2(x),

where T (x) is the MET out of an interval [−δ/2, δ/2] (see Equation 4), with

boundary conditions T2(±δ/2) = 0. Solving for T2(x), we get

T2(x) =
x4 − 2δ2x2/3 + 5δ4/16

3σ4
.

Setting x = 0 and δ = 2ε/m = 2εµ, we find that the second moment of the exit

time starting at x = 0 is

T2(0) =
5

3

µ4

σ4
ε4,

thus

T2(0)− [T (0)]2 =
2

3

µ4

σ4
ε4.

3.5. Proof of Theorem 4

Consider a process that starts a new segment j+1 as soon as the current one

j cannot cover more than i∗j keys without exceeding the error ε (see Equation 2).

We define the total number of segments s on a stream of length n as

s(n) = sup{k ≥ 1 | Sk ≤ n},

where Sk = i∗1 + i∗2 + · · ·+ i∗k.

We notice that {s(n)}n≥0 is a renewal counting process of non-negative inte-

ger random variables i∗1, . . . , i
∗
k, which are independent due to the lack of memory

of the random walk. Let E[i∗j ] = 1/λ and Var[i∗j ] = ς2. It is well known [19,

§2.5.2] that E[s(n)] = λn+O(1) as n→∞, Var[s(n)] = ς2λ3n+o(n) as n→∞,

and that s(n)/n
a.s.−−→ λ. In our case (see Theorems 1 and 3), it holds

1

λ
=
µ2

σ2
ε2 and ς2 =

2

3

µ4

σ4
ε4,

13



hence s(n)/n
a.s.−−→ λ = (σ/(µ ε))2. Finally, the following ratio converges to zero

as n→∞: √
Var[s(n)]

E[s(n)]
→
√
ς2λ

n
=

√
2

3

µε

σ

1√
n
.

4. A conjecture for the case of correlated keys

In this section, we study the case in which the independence assumption

of Section 3 is waived. Specifically, we study a random process {Gi}i∈N gen-

erating gaps that consist of positive and identically distributed random vari-

ables with mean E[Gi] = µ, variance Var[Gi] = σ2, and covariances C(`) =

Cov[Gi, Gi+`] = E[GiGi+`] − µ2 for any lag ` ≥ 1. As usual, we define

the random variables modelling the ith input key Xi as the cumulative sum

Xi =
∑i
j=1Gj (for i = 1, 2, . . . ) and fix X0 = 0. It is easy to see that their

mean is E[Xi] = iµ and their variance is

Var[Xi] =

i∑
j=1

i∑
k=1

Cov[Gj , Gk]

=

i∑
j=1

Var[Gj ] + 2
∑
j<i

Cov[Gj , Gi]

= iσ2 + 2 [(i− 1)C(1) + (i− 2)C(2) + · · ·+ C(i− 1)]

= iσ2 + 2

i−1∑
`=1

(i− `)C(`)

= iσ2

[
1 + 2

i−1∑
`=1

(
1− `

i

)
ρ(`)

]
. (6)

where ρ(`) ≡ C(`)/σ2 is the autocorrelation function.210

When i is much larger than the time scale `0 after which the autocorrelation

is negligible (the “memory” of the process), the `/i term in round brackets can

be neglected.

Hence, as i� `0 we get the approximation

Var[Xi] ' i
(
σ2 + 2

`0∑
`=1

C(`)

)
= iσ2

(
1 + 2

`0∑
`=1

ρ(`)

)
. (7)

14



Thus for large i, the process becomes exactly diffusive (i.e. the Var[Xi] increases

linearly with i) as in a random walk with iid increments and effective diffusion215

rate σ2(1 + 2
∑`0
`=1 ρ(`)). We therefore state the following conjecture:

Conjecture 1. If ε is sufficiently large, the random walk will make a large

number i of steps, and thus it will satisfy the condition of Theorem 1 with mean

E[Xi] = iµ and variance Var[Xi] given by Equation 7, giving for the expected

number of keys covered by a segment with slope m = 1/µ and maximum error ε

the value
1

1 + 2
∑`0
`=1 ρ(`)

µ2

σ2
ε2 ≈ 1

1 + 2
∑∞
`=1 ρ(`)

µ2

σ2
ε2.

In the above approximation we have extended the sum at the denominator

from ` ≤ `0 to ` → +∞, since by construction ρ(`) is negligible (or zero)

when ` > `0. The above formula shows that in a random walk with correlated

increments the expected number of keys increases quadratically with ε, as in220

the random walk with iid increments. The main difference is the prefactor

multiplying µ2ε2/σ2: when the increments are poitively correlated (ρ(`) > 0),

the prefactor is smaller than one, i.e. the expected number of keys is smaller

than for a random walk with iid increments.

In order to dig into the significance of this observation, let us study few specific,225

yet realistic, examples. In Section 6, we provide numerical evidence that the

above conjecture describes accurately the expected number of keys in one of the

examples presented below.

Example 1 (Moving-average process). Let us consider a process {Ui}i∈N of

positive iid variables Ui having mean E[Ui] = µU and variance Var[Ui] = σ2
U .230

We then assume that a gap Gi is generated by a convolution of `0 variables Ui as

Gi =
∑`0
k=1 φiUi, where φi are positive weights, i.e. that {Gi}i∈N is a moving-

average process of order `0.

It is immediate to show that µ := E[Gi] = µU
∑`0
k=1 φk and σ2 := Var[Gi] =

15



σ2
U

∑`0
k=1 φ

2
k. Moreover, it holds

C(`) = Cov[Gi, Gi+`] =

σ
2
U

∑`0−`
k=1 φkφk+` if ` < `0

0 otherwise.

In the special case of a flat filter, i.e. φi = 1 for any i, it is easy to see

that µ = `0µU , σ2 = `0σ
2
U , and that C(`) = σ2

U (`0 − `) if ` < `0 and C(`) = 0

otherwise. By plugging the last definitions of σ2 and C(`) into Equation 6, we

obtain

Var[Xi] = i`0σ
2
U + 2i

`0−1∑
`=1

(
1− `

i

)
σ2
U (`0 − `)

≤ i`0σ2
U + 2iσ2

U

`0−1∑
`=1

(`0 − `)

= i

(
`0σ

2
U + 2σ2

U

`0(`0 − 1)

2

)
= i`20σ

2
U

= i`0σ
2.

To mimic the statement of Theorem 1 in the special case we just described,

we conjecture that if ε is sufficiently larger than σ
√
`0/µ, the expected number

of keys covered by a segment with slope 1/µ and maximum error ε is at least

µ2

σ2`0
ε2. (8)

Example 2 (Autoregressive process). This second example assumes that the235

gaps follow an AR(1) process, i.e. Gi = ϕGi−1+ηi, where ϕ is a real parameter,

and ηi is a white noise with mean µη and variance σ2
η.

It is well known [20] that when |ϕ| < 1

µ := E[Gi] =
µη

1− ϕ, σ2 := Var[Gi] =
σ2
η

1− ϕ2
, and C(`) = σ2ϕ`.

The autocorrelation function decays exponentially to zero, thus in this case ρ(`)

is never zero, even if the time scale of the process is finite and related to |ϕ|.
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The variance of the random walk is

Var[Xi] = iσ2

[
1 + 2

i∑
`=1

(
1− `

i

)
ϕ`

]

= iσ2

(
1 + 2

ϕ

1− ϕ − 2
ϕ− ϕi+1

(1− ϕ)2i

)
.

When i is very large the last (negative) term in brackets becomes negligible,

and the variance of the random walk may be approximated by

Var[Xi] ' iσ2 1 + ϕ

1− ϕ.

To mimic the statement Theorem 1 in the special case we just described, we

conjecture that if ε is sufficiently larger than
√

1+ϕ
1−ϕ

σ
µ , the expected number of

keys covered by a segment with slope 1/µ and maximum error ε is

1− ϕ
1 + ϕ

µ2

σ2
ε2. (9)

5. Some Implications

We now mention some key implications of Theorems 1 and 4 that go beyond240

the realm of learned indexes. The computation of a Piecewise Linear Approxi-

mation (PLA) has indeed gathered attention in many other fields, such as com-

putational geometry, time series approximation, image processing, database,

geographic information systems, machine learning, etc., with a variety of er-

ror definitions, constraints, and proposed algorithms (see e.g. [13, 21–24] and245

refs therein). Theorem 4 can eventually give an estimate of the number of seg-

ments computed by these algorithms when they are given a dataset satisfying

the assumptions of Theorem 1. In particular, taking as a reference the linear

time algorithm for computing the optimal (i.e. minimum-sized) PLA P with

maximum error ε, that we could trace back to O’Rourke [13], we have that the250

number of segments composing P is bounded above by O(nσ2/(µε)2) with high

probability (by Theorem 4).
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In light of our new results, we can strengthen the solution of Ferragina

and Vinciguerra [7] to the indexable dictionary problem by showing that their

PGM-index achieves the same query time complexity of a B-tree, but within an255

improved space occupancy of O(n/B2) (versus the Θ(n/B) space of a B-tree).

Corollary 3. Let S and n be as in Theorem 1. The PGM-index data structure

built on S uses O(n/B2) space with high probability, and answers rank, mem-

bership and predecessor queries in optimal O(logB n) I/Os, where B is block size

of the external-memory model. Range queries are answered in extra (optimal)260

O(K) time and O(K/B) I/Os, where K is the number of keys satisfying the

range query.

Proof. Since the PGM-index is built on the s segments computed by the optimal

algorithm of O’Rourke [13], then the minimality of s and Theorem 4 imply that

s = O(n/ε2) with high probability (by Theorem 4). Substituting this bound265

into Theorem 1 of [7], and setting ε = Θ(B), the claim follows.

6. Experiments

We start with an experiment aimed at validating our main result (Theo-

rem 1).3 We generated 107 random streams of gaps for each of the following

distributions: Uniform, Pareto, Lognormal, Exponential/Gamma. For each270

generated stream S, we picked an integer ε in the range [1, 28], which contains

the values that were shown to be the most effective in practice for the learned

index of [7]. Then, we ran the following PLA-algorithms with input parameters

ε and S:

MET. This is the algorithm that fixes the slope of a segment to 1/µ and stops275

when the next point of S is outside the strip of width 2ε, see Equation 1.

This corresponds to the random process we used to prove Theorem 1.

3The code to reproduce the experiments is available at https://github.com/

gvinciguerra/Learned-indexes-effectiveness. The experiments were run on an Intel Xeon

Gold 6132 CPU.
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OPT. This is the algorithm that constructs the optimal PLA-model [13] used

in the PGM-index of [7]. This algorithm computes the segment (of any

slope and intercept) that ε-approximate the longest prefix of S.280

We analysed the length of the segments computed by the two previous al-

gorithms, that is, the index of the first key that causes the algorithm to stop

because the (vertical) distance of the point from the segment is larger than ε. We

plot in Figure 3 the mean and the standard deviation of these segment lengths.

The figure shows that the theoretical mean segment length computed according285

to Corollary 1 (hence the formula (µ2/σ2) ε2), depicted as a solid black line,

accurately describes the experimented algorithm MET, depicted as red points,

over all tested distributions (just observe that the solid black line overlaps the

red points). Moreover, the standard deviation of the exit time, depicted as a

shaded red region, follows the corresponding bound proved in Theorem 3 and290

depicted as two dashed black lines in each plot. So our theoretical analysis of

Theorem 1 is tight.

Not surprisingly, the plots show also that OPT performs better than MET.

This is because MET fixes the slope of a segment to 1/µ, while OPT optimally

adapts to each sequence of points given in input by choosing the slope that295

maximises the number of points covered by a segment. Thus it is more robust

to outliers and hence can find longer segments.

Overall this first experiment entails that learned indexes (and, in particular,

the learned index based on an optimal use of linear models, see [7]) use a space

that decreases as fast as O(n/ε2), where n is the number of keys in the dataset300

and ε is the maximum error admitted by the learned index (Corollary 3).

The second experiment analysed the slopes found by OPT over the sequence

of points generated according to the previous experiment, and averaged over ε.

We compared them to the fixed slope 1/µ of MET. Table 1 clearly shows that

these slopes are centred around 1/µ, thus confirming the result of Theorem 2305

that 1/µ is the best slope on average.

The third experiment was devoted to studying the accuracy of the approximation
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Figure 3: We consider four gap distributions — Uniform, Pareto, Lognormal, and Gamma —

with various parameter settings. We plot the formula (µ2/σ2) ε2 given in Theorem 1 with a

solid black line and the Mean Exit Time (MET) of the experimented random walk with red

points. The figure shows that they overlap, thus the formula stated in Theorem 1 accurately

predicts the experimented MET. The figure also shows the performance of the algorithm OPT

with green points. The shaded regions represent the standard deviation. The improvement of

OPT with respect to MET is evident, indicating that OPT is more robust to outliers.
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Distribution Parameters 1/µ Avg. slope range

Uniform a = 0, b = 1 2 [2.000, 2.002]

Uniform a = 0, b = 10 0.2 [0.200, 0.200]

Uniform a = 10, b = 100 0.018 [0.018, 0.018]

Pareto k = 2, α = 2.5 0.3 [0.300, 0.301]

Pareto k = 3, α = 3 0.222 [0.222, 0.222]

Pareto k = 4, α = 3.5 0.179 [0.179, 0.179]

Lognormal µ = 1, σ = 0.5 0.325 [0.325, 0.325]

Lognormal µ = 1, σ = 0.75 0.278 [0.278, 0.278]

Lognormal µ = 1, σ = 1 0.223 [0.223, 0.224]

Exponential λ = 1 1 [1.000, 1.003]

Gamma θ = 3, k = 2 0.167 [0.167, 0.167]

Gamma θ = 6, k = 3 0.056 [0.056, 0.056]

Table 1: The range of slopes found by algorithm OPT in the experiments of Figure 3. Notice

that these ranges are centred and close to 1/µ, which is the theoretical slope that maximises

the MET of the random walk depicted in Figure 2a.

to the mean exit time provided by the formula (µ2/σ2) ε2 under the assumption

“with ε sufficiently larger than σ/µ” present in the statement of Theorem 1. To

this end, we properly set the distribution parameters to obtain a ratio σ/µ in310

{0.15, 1.5, 15}. We plot in Figure 4 the relative error between the experimented

MET (i.e. the empirical mean segment length) and the formula above, as ε grows

from 1 to 28. For the left plot, we notice that for all the distributions the relative

error converges soon to 0 (here, the ratio σ/µ is very small compared to ε). In the

middle plot, the convergence is fast for Gamma and Lognormal distributions,315

but it is slower for Pareto because α = 2.202 generates a very fat tail that

slows down extremely the convergence of the Central Limit Theorem. This is a

well-known fact [20] since the third moment diverges and the region where the

Gaussian approximation holds grows extremely slowly with the number of steps

of the walk. This effect is even more evident in the rightmost plot where all the320

three distributions have very fat tails. Overall, Figure 4 confirms that ε does
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Figure 4: Three plots for three different settings of the ratio σ/µ for the distributions: Pareto,

Gamma and Lognormal. We plot the relative error between the formula (µ2/σ2) ε2 of The-

orem 1 and the experimented MET. Notice how the fat-tail of the distributions affects the

accuracy of the formula with respect to MET, as commented in the text.

not need to be “too much larger” than σ/µ to get convergence to the predicted

mean exit time, as stated in Theorem 1.

The fourth experiment considered streams of increasing length n (up to 106)

that follow the gap distributions of the first column of Figure 3. For each325

part of a stream, we computed with the MET algorithm the s segments that

approximate that stream with error ε = 50. By repeating the experiment 104

times, we computed the average and the standard deviation of s/n. Figure 5

shows that for a large n the distribution of s/n concentrates on λ = (σ/(µ ε))2,

with a speed that is faster for smaller µε/σ, as predicted by Theorem 4.330

The fifth experiment, reported in Figure 6, shows the average segment length of

OPT on real-world datasets of 200 million elements from [11]. The books dataset

represents book sale popularity from Amazon, while fb contains Facebook user

IDs. Even though these datasets do not satisfy the assumption of Theorem 1,

the fitted curves show a superlinear growth in ε. This suggests that the ε1+O(1)
335

growth established in our analysis may also be valid on datasets that do not

strictly follow the assumption on iid gaps.

The sixth experiment considered the random process described in Example 1

of Section 4, i.e. streams of gaps generated by moving-average processes of
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Figure 5: The solid line is the average and the shaded region is the standard deviation of s/n

over 104 streams for four distributions, where s is the number of segments computed by MET

for a stream of length n. The dashed line depicts the limit stated in Theorem 4 to which the

experimental values clearly converge to (quickly, at moderately small values of n).

order `0. Specifically, we computed the moving average of reals drawn from a340

uniform distribution (with parameters a = 0, b = 1) by using unit weights φi and

by varying `0 in {5, 50, 500}. For each value of `0, we repeated the experiment

107 times, each time picking an integer ε in the range [1, 28] and running OPT

and MET with argument ε. Figure 7 shows that the mean segment length of

the two algorithms scales quadratically in ε and that the conjectured correction345

of the prefactor related to autocorrelation is in a very good agreement with

simulations. This entails that even in the case of keys correlated at large lags

(e.g. `0 = 500) the result of Theorem 1 might still hold, as discussed thoroughly

in Section 4.

The seventh and final experiment considered the random process described in350

Example 2 of Section 4, i.e. streams of gaps generated by an autoregressive

processes with parameter ϕ. We sampled the white noise terms from a uniform

distribution (with parameters a = 0, b = 1) and varied ϕ in {0.1, 0.5, 0.9}. For

each value of ϕ, we repeated the experiment 107 times, each time picking an

integer ε in the range [1, 28] and running OPT and MET with argument ε.355
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Figure 6: The average length of a segment computed by OPT on two real datasets exhibit a

superlinear growth in ε.

Figure 8 shows that the mean segment length of the two algorithms scales

quadratically in ε and that the conjectured correction of the prefactor related

to autocorrelation is in very good agreement with simulations.

7. Conclusions

In this paper, we have provided the first theoretical analysis of learned in-360

dexes, thus offering mathematical grounds to their known excellent practical

performance in terms of space occupancy. Our theoretical results have been

corroborated in precision and robustness by a large set of experiments. Our

paper leaves open a series of interesting theoretical questions, two of them are

sketched here.365

The first one concerns the main result stated in Theorem 1. It holds under

the condition that “ε is sufficiently larger than σ/µ”, therefore it is natural to

ask whether this condition can be waived, thus making the theorem stronger,

and whether/how we can bound the error made by the approximation for finite

and not too large values for εµ/σ.370

A second question asks to provide a formal analysis of the distribution of the
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Figure 7: The mean segment length computed by OPT and MET on keys generated by

three moving-average processes of order `0 = 5, 50 and 500, respectively. The solid black line

overlaps the red dots of MET and thus it shows that Equation 8 provides a good approximation

for the case of correlated keys.

segment lengths found by the optimal algorithm (OPT) proposed by O’Rourke

[13]. We know that they are longer than the ones found by MET and thus their

number grows on average as Ω((µε/σ)2), but how much are they longer than

what it is stated asymptotically in this Ω-bound?375
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