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NATURAL SECOND-ORDER REGULARITY FOR PARABOLIC

SYSTEMS WITH OPERATORS HAVING (p, δ)-STRUCTURE AND

DEPENDING ONLY ON THE SYMMETRIC GRADIENT

LUIGI C. BERSELLI AND MICHAEL RŮŽIČKA

Abstract. In this paper we consider parabolic problems with stress tensor de-
pending only on the symmetric gradient. By developing a new approximation
method (which allows to use energy-type methods typical for linear problems)
we provide an approach to obtain global regularity results valid for general
potential operators with (p, δ)-structure, for all p > 1 and for all δ > 0. In this
way we prove “natural” second order spatial regularity –up to the boundary–
in the case of homogeneous Dirichlet boundary conditions. The regularity re-
sults, are presented with full details for the parabolic setting in the case p > 2.
However, the same method also yields regularity in the elliptic case and for
1 < p ≤ 2, thus proving in a different way results already known.

1. Introduction

In this paper we consider an initial boundary value problem for general nonlinear
parabolic systems

∂u

∂t
− divS(Du) = f in I × Ω,

u = 0 on I × ∂Ω ,

u(0) = u0 in Ω ,

(1.1)

where the operator S depends only on the symmetric gradientDu = 1
2 ((∇u)⊤+∇u)

and has (p, δ)-structure (cf. Definition 2.22). Here I := (0, T ) for some T > 0 is
a finite time interval, and Ω ⊂ R3 is a sufficiently smooth, bounded domain. The
paradigmatic example for the operator in (1.1) is given via

S(Du) := (δ + |Du|)p−2Du δ ≥ 0, 1 < p <∞. (1.2)

In this paper we only treat the case p > 2. However, the method of proof, based on
an (A, q)-approximation (cf. Section 2.4) works for every p ∈ (1,∞). We focus to
the case p > 2, since our main result in the case p ∈ (1, 2] has been already proved
in a different way (cf. [12]) and the method of the present paper simplifies a lot
for these exponents. Note that the elliptic problem corresponding to (1.1) can be
treated in the same way with much shorter proofs. Moreover, all our result possess
corresponding analogues in d-dimensional domains Ω ⊂ Rd, d ≥ 2. For simplicity
we only treat the case d = 3.

Our main goal is to prove a result of “natural” second-order spatial regular-
ity for weak solutions. This corresponds to proving, under appropriate (minimal)
assumptions on the data, that weak solutions satisfy

ˆ

I

ˆ

Ω

(δ + |Du|)p−2|∇Du|2 dx ds ≤ C,
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which can be also equivalently re-written as F(Du) ∈ L2(I;W 1,2(Ω)) with

F(Du) := (δ + |Du|) p−2
2 |Du|. (1.3)

We say “natural” as opposed to some recent results proving S ∈ L2(I;W 1,2(Ω)),
which is equivalent to proving that

ˆ

I

ˆ

Ω

∣∣∇
(
(δ + |Du|)p−2Du

)∣∣2 dx ds ≤ C,

which is called “optimal” second-order spatial regularity. The two notions of reg-
ularity are rather different in the spirit: the optimal regularity is linked with non-
linear versions of the singular integral theory, while the natural regularity is based
on energy methods. This yields estimates in quasi-norms, which are of crucial rel-
evance especially for the numerical analysis of the problem, and in particular to
study optimal convergence rates of spatial discretizations (cf. Barrett and Liu [2]).

The problem has a long history and many result concern mainly the problem: a)
in the scalar or elliptic case; b) with operators S depending on the full gradient; c)
the interior regularity. We refer to the classical results by DiBenedetto [20], Gilbarg
and Trudinger [26], Ladyžhenskaja et al. [28, 29], Liebermann [30], Uhlenbeck [40],
Ural’ceva [41], just to cite a few; or the ones linked more to applications Bensoussan
and Frehse [9], Nečas [34], and Fuchs and Seregin [24]. Even if the studies started
in the sixties, we observe that the field is still extremely active and very recent
results are those in [3, 4, 17, 18].

Our treatment of the case of systems with dependence only on the symmetric
gradient and up-to-the boundary is new, to the best of the author’s knowledge.
We extend the so called A-approximation technique from [32] such that it allows
a treatment of all exponents p ∈ (1,∞). Here, we focus on the regularity of the
quantity in (1.3). Thus, this work can be seen as a natural extension of previous
results we have done in the case p ∈ (1, 2] for the steady problem in [12] and for
the unsteady continuous/discrete in [13]. Note that our approach allows to treat
the full range of exponents p ∈ (1,∞), as in the scalar case, even if we give full
details only in the case p > 2, as the case p ∈ (1, 2) is already treated in a different
way. Notice that the results in [18] hold only for p > 3

2 , which has been improved

in [1], reaching p > 4 − 2
√
2. The limitation on p > 3/2 was also present in prior

results of “natural” regularity in the symmetric gradient case [5], but it has then
later removed completely in [11] to the case p > 1.

The techniques employed for p > 2 are rather different from those previously
used in the case for p < 2, where calculations can be more easily justified by
approximation of the system by means of adding the term −ε∆u (and then showing
that estimates for a system with leading linear part could be made independent of
ε > 0). Anyway, the technique we use can be also employed in the case p ∈ (1, 2]
to prove in an alternative way the regularity results already known. This requires
some technical adjustments which are left for a further investigation, since the
technicalities are complex enough already in the case p > 2. The introduction
of a different regularization of the problem is due to the fact that for p > 2 the
perturbation with the heat equation is not enough to justify the computations;
hence, we developed a new (multiple) approximation technique, by a sequence of
operators, such that the last is an affine one, which allows to use standard energy
techniques leading to W 2,2-results.

1.1. Sketch of the proof of the main result. To prove the main regularity
result (cf. Theorem 3.4) we proceed as follows: (a) we introduce a proper multiple
approximation of the operator S; (b) we prove interior and tangential estimates for
second order derivatives by difference quotient methods; (c) we use the equations
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point-wise to recover the remaining derivative; (d) make again use of the point-
wise equations and integration by parts in the full domain to obtain estimates
independent of the approximation parameters; (e) and finally we pass to the limit
with the multiple approximation parameters.

For the reader’s convenience, we explain here the main ideas in the case that
the operator S is given by (1.2) and that instead of (1.1) its steady counterpart is
treated. Most of the calculations are elementary, but involved, and use various well-
established techniques from the regularity theory of partial differential equations.
Since they are linked in a quite intricate and delicate way and one has to be careful
in tracking the dependence on various parameters, we sketch the proof now and
then develop a full theory in the next sections.

A fundamental step in the approximation of general operators by ones with linear
growth dates back to [32], where generalized Newtonian fluids are treated. The
results proved there are obtained by using for A ≥ 1 the following approximation1

SA defined via

SA(P) =

{
(δ + |Psym|)p−2Psym if |P| ≤ A ,

c2P
sym + c1 if |P| > A ,

with appropriately chosen constants ci = ci(A, δ, p) to ensure an appropriate reg-
ularity of the stress tensor SA. Hence, the tensor SA grows linearly for large P.
This can be also restated by writing that

SA(P) :=
(ωA)′(|Psym|)

|Psym| Psym,

where ωA : R≥0 → R≥0 is a regular N-function such that (ωA)′(0) = 0, (ωA)′(t) =
(δ + t)p−2t for t ≤ A and (ωA)′(t) = c2t+ c1 for t > A.

Remark 1.4. In Section 2 we will show that -roughly speaking- once the results is
established for this explicit example, then it can be extended to a rather wide class
of nonlinear operators.

To obtain results for the original problem we first consider the approximate
problem

− divSA(DuA) = f in Ω,

uA = 0 on ∂Ω .
(1.5)

For regular enough f one can directly prove the existence of weak solutions satisfying
ˆ

Ω

|FA(DuA)|2 dx ≤ C,

where

FA(P) :=

√
(ωA)′(|Psym|)

|Psym| Psym.

Note that |FA(P)|2 ∼ δ2 + |Psym|2, with constants depending on A. The special
role of the quantity

aA(t) :=
(ωA)′(t)

t
,

is evident from the definitions of SA and FA.
The estimates for the second order spatial derivatives are obtained by using the

difference quotient technique in the interior and along tangential directions (after
appropriate localization of the equations). Once this step is done, one gets that

1The precise form of the approximation in [32] is slightly different, since there the potential of
the stress tensor was depending on |Du|2, instead of |Du| here.
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the equations are satisfied almost everywhere. Thus, the equations can be used
point-wise to determine (by ellipticity) estimations in the direction normal to the
boundary. The outcome of this procedure, which is typical for second order elliptic
equations, leads to the estimates (cf. Proposition 3.20, Proposition 3.22)

δp−2

ˆ

Ω0

|∇DuA|2 dx ≤
ˆ

Ω0

|∇FA(DuA)|2 dx ≤ C1 ∀Ω0 ⊂⊂ Ω,

δp−2

ˆ

Ω

|∇DuA|2 dx ≤
ˆ

Ω

|∇FA(DuA)|2 dx ≤ C2(A),

where the constant C1 is independent of A. In addition, one gets that also tangential
derivatives are regular up to the boundary with a bound independent of A. Note
that the linear growth of the operator SA results in an L2-setting, which allows us
to use the classical Korn inequality and to handle the dependence of the operator
on the symmetric gradient (instead of on the full gradient) in the equations. An
important feature of this step is that the proved regularity is sufficient to justify the
following step and to remove the dependence on A in the estimates in the direction
normal to the boundary.

This is achieved by testing the equations locally near the boundary by second
order derivatives in the normal direction, and adapting a method introduced by
Seregin and Shilkin [37] for 1 < p < 2 (cf. [12, 13]). This results in the estimate
(cf. Proposition 3.32, Proposition 3.39)

δp−2

ˆ

Ω

|∇DuA|2 dx ≤
ˆ

Ω

|∇FA(DuA)|2 dx ≤ C3,

for some C3 which is independent of A.
The final step is the passage to the limit A → ∞. By uniform boundedness it

directly follows that FA(DuA) has a weak limit F̂ ∈ W 1,2(Ω) and by using also
the uniform bound on second order derivatives, it follows that DuA → Du almost
everywhere. Combining these two information, the definition of FA, and the lower
semi-continuity of the norm it follows that

F̂ = lim
A→∞

FA(DuA) = F(Du) weakly in W 1,2(Ω) and a.e. in Ω,
ˆ

Ω

|∇F(Du)|2 dx ≤ C3.

It remains to prove that u is the unique solution of the steady version the original
problem (1.1). From the construction of SA follows SA(P) → S(P) for every
P ∈ R3×3. This fact, coupled with the almost everywhere convergence of DuA,
implies that

lim
A→∞

SA(DuA(x)) → S(Du(x)) a.e. x ∈ Ω,

which is nevertheless not enough to infer directly that

lim
A→∞

ˆ

Ω

SA(DuA) ·Dw dx =

ˆ

Ω

S(Du) ·Dw dx ∀w ∈ C∞
0 (Ω),

and to pass to the limit in the weak formulation. To this end we need -for instance-
additionally an uniform bound on SA(DuA) in Lq(Ω) for some q > 1. This implies

that SA(DuA) ⇀ Ŝ in Lq(Ω), and that the limit can be identified as Ŝ = S(Du),
by a classical result.
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Observe that from the definition of SA it follows (cf. Proposition 2.47, Lem-
ma 2.51, Lemma 2.69) that

|SA(DuA)| ≤
{
c (δp−1 + |DuA|p−1) p > 2,

c δp−2|DuA| 1 < p ≤ 2,

while the proved estimate F(DuA) ∈ W 1,2(Ω), which is uniformly with respect
to A, implies by Sobolev embedding (in three-dimensions) that ‖F(DuA)‖6 ≤ C.
Using the properties of FA, it follows that (cf. Proposition 2.47, Lemma 2.51,
Lemma 2.69)

‖DuA‖6 ≤ C p > 2,

‖DuA‖3p ≤ C 1 < p ≤ 2.

Hence we get that SA(DuA) is bounded uniformly in L6/(p−1)(Ω) for p > 2 and in
L3p(Ω) for 1 < p ≤ 2, which implies that the above argument to pass to the limit
in the weak formulation works only for 1 < p < 7.

To remove the restriction p < 7 in the regularity result2 we introduce and perform
a multiple approximation of the operator, which is roughly speaking the following:
for given decreasing sequences p > q1 > q2 > · · · > qN =: 2 and AN > AN−1 >
· · · > A1 ≥ 1 we set

SN (P) :=





(δ + |Psym|)p−2Psym if |P| ≤ A1 ,

c2,q1 |Psym|q1−2Psym + c1,q1 if A1 < |P| ≤ A2 ,

...
...

c2,qN−1|Psym|qN−1−2Psym + c1,qN−1 if AN−1 < |P| ≤ AN ,

c2,qNP
sym + c1,qN if AN < |P| ,

where the various constants ci,m are chosen such that the operator SN belongs to
the class C1. If the exponents qn are chosen such that

3qn
qn−1

> 1 n = 1, . . . , N ,

it is possible to perform the limiting process step by step, sending to infinity AN
(with An for n ≤ N − 1 fixed), then taking the limit AN−1 → ∞ with the previous
ones fixed, and so on. This procedure requires to prove the precise dependence of
the lower and the upper bounds of the multiple approximation with respect to the
parameters3 An.

Plan of the paper. The analysis of the approximate operators is the content
of Section 2 of the paper, where the procedure is carried out with full details for
general operators, derived from a potential and having (p, δ)-structure. Moreover,
for the derivation of the estimates for second derivatives, one also has to handle
precisely the behavior of the related operators Fn. In particular, we will see that
a peculiar role is played by handling tensors derived from a potential U satisfying
U ′(t)/t ∼ U ′′(t), which we call balanced. This allows us to reduce many of the
estimations to computable explicit cases, cf. Remark 1.4.

Next, in Section 3 the existence and regularity for solution of the approximate
problems is treated in detail. Particular care is given to the full justification of
the calculations: the results are rather natural from a formal point of view, while

2The restriction depends on the space dimension and it is more stringent in the time-evolution
case, due to different parabolic embedding results.

3Moreover, some care has to be taken in the choice of the An to ensure monotonicity of the
resulting potentials.
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the rigorous treatment of all integrals needs certain approximations and the ap-
plication of difference quotients, in order to be sure that we do not work with
infinite quantities. First, some An dependent estimates are proved, in order to
justify manipulating the system (1.5) point-wise and then to derive uniform esti-
mates by (improved) generalized energy methods. The limiting process is carried
out in the more technical parabolic case, using space-time compactness results and
convergences (at the price of a more restrictive choice of the parameters qn).

2. Nonlinear operators and N-functions

The goal of this section is to define an approximation, which possesses nice
properties, for operators appearing in (1.1). The approximation is inspired by [32],
while the proof of its properties is close to [36]. However, our notions are defined
slightly different, which simplifies and shortens the argumentation.

2.1. Notation. We use c, C to denote generic constants, which may change from
line to line, but are not depending on the crucial quantities. Moreover, we write
f ∼ g if and only if there exists constants c, C > 0 such that c f ≤ g ≤ C f .

For a bounded, sufficiently smooth domain Ω ⊂ R3 we use the customary
Lebesgue spaces (Lp(Ω), ‖ . ‖p), p ∈ [1,∞], and Sobolev spaces (W k,p(Ω), ‖ . ‖k,p),
p ∈ [1,∞], k ∈ N. We use the notation (f, g) =

´

Ω fg dx, whenever the right-hand
side is well defined. We do not distinguish between scalar, vector-valued or tensor-
valued function spaces in the notation if there is no danger of confusion. However,
we denote scalar functions by roman letters, vector-valued functions by small bold-
faced letters and tensor-valued functions by capital boldfaced letters. If the norms
are considered on a setM different from Ω, this is indicated in the respective norms
as ‖ . ‖p,M , ‖ . ‖k,p,M . We equip W 1,p

0 (Ω) (based on the Poincaré lemma) with the

gradient norm ‖∇ . ‖p. We denote by |M | the 3-dimensional Lebesgue measure of

a measurable set M . As usual the gradient of a vector field v : Ω ⊂ R3 → R3

is denoted as ∇v = (∂iv
j)i,j=1,2,3 = (∂iv)i=1,2,3, while its symmetric part is de-

noted as Dv := 1
2

(
∇v + ∇v⊤). The derivative of functions defined on tensors,

i.e., U : R3×3 → R is denoted as ∂U = (∂ijU)i,j=1,2,3 where ∂ij are the partial
derivatives with respect to the canonical basis of R3×3.

2.2. N-functions. We start with a discussion of some non-trivial properties of
N-functions that we need in the sequel. For a detailed discussion of Orlicz spaces
and N-functions we refer to [27, 33, 35, 36].

Definition 2.1 (N-function and regular N-function). A function ϕ : R≥0 → R≥0 is
called N-function if ϕ is continuous, convex, strictly positive for t > 0, and satisfies4

lim
t→0+

ϕ(t)

t
= 0 , lim

t→∞

ϕ(t)

t
= ∞ .

If ϕ additionally belongs to C1(R≥0)∩C2(R>0) and satisfies ϕ′′(t) > 0 for all t > 0,
we call ϕ a regular N-function.

The use of regular N-functions is sufficient for our purposes. Thus, in the rest of
the paper we restrict ourselves to this case. For a treatment in the general situation
we refer to the above mentioned literature. Note that for a regular N-function we
have ϕ(0) = ϕ′(0) = 0. Moreover, ϕ′ is increasing and limt→∞ ϕ′(t) = ∞.

The following notion plays an important role in the sequel.

4In the following we use the convention that
ϕ′(0)

0
:= 0.
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Definition 2.2 (∆2-condition). A non-decreasing function ϕ : R≥0 → R≥0 is said
to satisfy the ∆2-condition if for some constant K ≥ 2 it holds

ϕ(2t) ≤ Kϕ(t) ∀ t ≥ 0 . (2.3)

We write ϕ ∈ ∆2 if ϕ satisfies the ∆2-condition. The ∆2-constant of ϕ, denoted
by ∆2(ϕ), is the smallest constant K ≥ 2 satisfying (2.3).

We have the following results.

Lemma 2.4. For a regular N-function ϕ the following properties are satisfied:

(i) For all t ≥ 0 there holds

ϕ(t) ≤ ϕ′(t)t ≤ ϕ(2t) .

(ii) If ϕ ∈ ∆2, then we have for all t ≥ 0

ϕ(t) ≤ ϕ′(t)t ≤ ∆2(ϕ)ϕ(t) .

(iii) It holds that ϕ ∈ ∆2 if and only if ϕ′ ∈ ∆2. In this situation we have
∆2(ϕ) ≤ 2∆2(ϕ

′) ≤ (∆2(ϕ))
2.

Proof. Assertion (i) is contained in [36, Lemma 5.1]. Assertion (ii) follows from (i).
Assertion (iii) is proved in [36, Lemma 5.2]. �

For a regular N-function ϕ we define the complementary function ϕ∗ by

ϕ∗(t) :=

t
ˆ

0

(ϕ′)−1(s) ds .

It is easily seen from this definition, using elementary properties of inverse functions
(cf. proof of [36, Lemma 6.4]), that ϕ∗ is again a regular N-function. We have the
following versions of Young inequality.

Lemma 2.5 (Young type inequalities). Let the regular N-function ϕ be such that
ϕ, ϕ∗ ∈ ∆2. Then, for all t, u ≥ 0 there holds

tu ≤ ε ϕ(t) + (∆2(ϕ
∗))M ϕ∗(u) ,

tu ≤ ε ϕ∗(t) + (∆2(ϕ))
M ϕ(u) ,

tϕ′(u) ≤ ε ϕ(t) + ∆2(ϕ) (∆2(ϕ
∗))M ϕ∗(u) ,

ϕ′(t)u ≤ ε ϕ∗(t) + (∆2(ϕ))
N ϕ(u)

for all ε ∈ (0, 1),M ∈ N such that ε−1 ≤ 2M , and N ∈ N such that ∆2(ϕ) ε
−1 ≤ 2N .

Proof. The first two inequalities follow immediately from the classical Young in-
equality

tu ≤ ϕ(t) + ϕ∗(u) ,

ϕ, ϕ∗ ∈ ∆2, and ψ(ε t) ≤ ε ψ(t), valid for all convex functions ψ, t ≥ 0 and ε ∈ (0, 1).
The last two inequalities follow from the first ones and the equivalence

(∆2(ϕ
∗))−1ϕ(t) ≤ ϕ∗(ϕ′(t)) ≤ ∆2(ϕ)ϕ(t) , (2.6)

valid for all t ≥ 0 (cf. [36, (5.17)]). �

In the study of nonlinear problems like (1.1) and of N-functions the property (2.8)
below plays a fundamental role. To keep the presentation shorter we call functions
satisfying it “balanced function”.
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Definition 2.7 (Balanced function). We call a regular N-function ϕ balanced, if
there exist constants γ1 ∈ (0, 1] and γ2 ≥ 1 such that for all t > 0 there holds

γ1 ϕ
′(t) ≤ t ϕ′′(t) ≤ γ2 ϕ

′(t) . (2.8)

The constants γ1 and γ2 are called characteristics of the balanced N-function ϕ, and
will be denoted as (γ1, γ2).

This property transmits itself to complementary functions.

Lemma 2.9. Let ϕ be a balanced N-function with characteristics (γ1, γ2). Then,
the complementary N-function ϕ∗ is a balanced N-function with characteristics
(γ−1

2 , γ−1
1 ).

Proof. The assertion is proved in [36, Lemma 6.4]. The proof uses only the con-
dition (2.8), and the formula for the derivative of the inverse function applied to
(ϕ∗)′(t) = (ϕ′)−1(t). �

Balanced N-functions always satisfy the ∆2-condition (cf. [8]).

Lemma 2.10. For a balanced N-function ϕ we have that ϕ, ϕ∗ ∈ ∆2. In particular,
for all t ≥ 0 there holds

ϕ(2t) ≤ 2γ2+1 ϕ(t) ,

ϕ∗(2t) ≤ 2
1
γ1

+1 ϕ∗(t) ,

i.e., the ∆2-constants of ϕ and ϕ∗ possess an upper bound depending only on γ1
and γ2.

Proof. From condition (2.8) it follows for all t > 0 that

d

dt
log(ϕ′(t)) =

ϕ′′(t)

ϕ′(t)
≤ γ2

1

t
,

which implies by integration with respect to t over (s, 2s), s > 0, and using the
exponential function that

ϕ′(2s)

ϕ′(s)
≤ 2γ2 .

A further integration with respect to s over (0, t), t > 0, proves, for all t > 0, that

ϕ(2t) ≤ 2γ2+1ϕ(t) ,

showing the assertion for ϕ. The assertion for ϕ∗ follows analogously by using
Lemma 2.9. �

Corollary 2.11. For a balanced N-function ϕ we have

ϕ(t) ∼ ϕ′(t) t ∼ ϕ′′(t) t2 for all t > 0 ,

with constants of equivalence depending only on the characteristics of ϕ.

Proof. This follows immediately from Lemma 2.4 and Lemma 2.10 since ϕ is bal-
anced. �

Lemma 2.12. Let ϕ a balanced N-function with characteristics (γ1, γ2). Let U ∈
C1(R≥0) ∩ C2(R>0) with U(0) = U ′(0) = 0 satisfy for some c0, c1 > 0 and for all
t > 0

c0 ϕ
′′(t) ≤ U ′′(t) ≤ c1 ϕ

′′(t) . (2.13)

Then, also U is a balanced N-function with characteristics (γ2
c0
c1
, γ1

c1
c0
), which sat-

isfies for all t ≥ 0
c0 ϕ

′(t) ≤ U ′(t) ≤ c1 ϕ
′(t) ,

c0 ϕ(t) ≤ U(t) ≤ c1 ϕ(t) .
(2.14)
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Proof. The inequalities in (2.14) follow from (2.13) by integration using that U ′(0) =
ϕ′(0) = 0. From (2.14) and (2.8) it follows that U is a balanced N-function with
characteristics as indicated in the assertion. �

It turns out that the function aϕ : R≥0 → R≥0, defined for regular N-functions
ϕ via

aϕ(t) :=
ϕ′(t)

t
, (2.15)

plays an important role in the investigation of problem (1.1).

Lemma 2.16. Let ϕ be a regular N–function such that ϕ, ϕ∗ ∈ ∆2. Then, for all
P,Q ∈ R3×3 there holds

aϕ(|P|+ |P−Q|) ∼
1
ˆ

0

aϕ(|θP+ (1− θ)Q|) dθ ,

with constants of equivalence depending only on ∆2(ϕ) and ∆2(ϕ
∗).

Proof. This follows immediately from [36, Lemma 6.6] by using Lemma 2.4, the
convexity of ϕ, ϕ ∈ ∆2, and 2−1(|P|+ |Q|) ≤ |P|+ |P−Q| ≤ 2(|P|+ |Q|). �

It is convenient to introduce for all p ∈ (1,∞) and all δ ∈ [0,∞) the function
ωp,δ : R

≥0 → R≥0 via

ω(t) = ωp,δ(t) :=

t
ˆ

0

(δ + s)p−2s ds ∀ t ≥ 0 ,

which is precisely the N-function associated with the definition of the tensor S

from (1.2). If p and δ are fixed we often simply write ω(t) := ωp,δ(t). Nevertheless,
we will track the possible dependence of constants in terms of these two parameters.
Clearly, ωp,δ is a regular N-function for all p ∈ (1,∞) and all δ ∈ [0,∞). The
advantage is that we have exact control of all relevant constants for these functions.
We have the following basic properties.

Lemma 2.17. For any δ ∈ [0,∞) and for any p ∈ (1,∞) there holds

ωp,δ(t) ≤ (ωp,δ)
′(t) t ≤ 2p+1ωp,δ(t) ∀ t ≥ 0 ,

min{1, p− 1} (ωp,δ)′(t) ≤ (ωp,δ)
′′(t) t ≤ max{1, p− 1} (ωp,δ)′(t) ∀ t > 0 .

(2.18)

In particular, ωp,δ, p ∈ (1,∞), δ ≥ 0, are balanced N-functions with characteristics
(min{1, p − 1},max{1, p − 1}) and ∆2-constants depending only on p. Moreover,
by the previous results also (ωp,δ)

∗ are balanced N-functions with characteristics
(min{1, (p− 1)−1},max{1, (p− 1)−1}) and ∆2-constants depending only on p.

Proof. The first assertion in (2.18) follows from Lemma 2.4 (ii) and [36, Lemma 5.3],
since ∆2((ωp,0)

′) = 2p−1. The second assertion (2.18) follows from direct compu-
tations. �

2.3. Nonlinear operators with (p, δ)-structure. In this section we collect the
main results on nonlinear operators derived from a potential and having (p, δ)-struct-
ure.

Definition 2.19 (Operator derived from a potential). We say that an operator
S : R3×3 → R3×3

sym is derived from a potential U : R≥0 → R≥0, if S(0) = 0 and for
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all P ∈ R3×3 \ {0} there holds5

S(P) = ∂U(|Psym|) = U ′(|Psym|)
|Psym| Psym = aU (|Psym|)Psym

for some U ∈ C1(R≥0) ∩C2(R>0) satisfying U(0) = U ′(0) = 0.

Remark 2.20. For ease of notation, in many cases we will also write S = ∂U for
an operator derived from the potential U and note that from its definition it follows
that S(P) = S(Psym), for all P ∈ R3×3.

Note also that we consider the operator S with domain R3×3, since we study the
problem (1.1) in the setting of three space-dimensions. Clearly, the same definition
and results below can be applied to a general operator defined on Rd×d, with d ≥ 2.

Remark 2.21. Note that in investigations of the regularity of solution of (1.1), or
its steady analogues, for operators derived from a potential U , the lower and upper
bounds of the quantity

(aU )
′(t) t

aU (t)
=
U ′′(t) t

U ′(t)
− 1 ,

play an important role (cf. the discussion in [3, 19, 17, 18]. If U is a balanced
N-function these bounds are closely related to the characteristics (γ1, γ2) of U . In
fact, we have

γ1 − 1 ≤ (aU )
′(t) t

aU (t)
≤ γ2 − 1 .

Definition 2.22 (Operator with ϕ-structure). Let the operator S : R3×3 → R3×3
sym,

belonging to C0(R3×3;R3×3
sym) ∩ C1(R3×3 \ {0};R3×3

sym), satisfy S(P) = S
(
Psym

)
and

S(0) = 0. We say that S has ϕ-structure if there exist a regular N-function ϕ and
constants γ3 ∈ (0, 1], γ4 > 1 such that the inequalities

3∑

i,j,k,l=1

∂klSij(P)QijQkl ≥ γ3 aϕ(|Psym|) |Psym|2 , (2.23a)

∣∣∂klSij(P)
∣∣ ≤ γ4 aϕ(|Psym|) , (2.23b)

are satisfied for all P,Q ∈ R3×3 with Psym 6= 0 and all i, j, k, l = 1, 2, 3. The
constants γ3, γ4, and ∆2(ϕ) are called the characteristics of S and will be denoted
by (γ3, γ4,∆2(ϕ)).

In the special case ϕ = ωp,δ with p ∈ (1,∞) and δ ∈ [0,∞) we say that S has
(p, δ)-structure and call (γ3, γ4, p) its characteristics.

Closely related to an operator with ϕ-structure is the function Fϕ : R
3×3 → R3×3

sym

defined via

Fϕ(P) :=
√
aϕ(|Psym|)Psym =

√
ϕ′(|Psym|)|Psym|

|Psym| Psym , (2.24)

where the second representation holds only for Psym 6= 0. However, this form is
convenient since it shows that Fϕ is derived from the potential

ψ(t) :=

t
ˆ

0

√
ϕ′(s)s ds . (2.25)

5Here we use the notation (2.15) also for a more general function U (not necessarily a balanced
or even a regular N-function).
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It is easily seen that ψ ∈ C1(R≥0) ∩C2(R>0). In the special case of an operator S
with (p, δ)-structure we have with ω = ωp,δ

F(P) := Fω(P) =
√
aω(|Psym|)Psym =

(
δ + |Psym|

) p−2
2 Psym , (2.26)

which is consistent with the notation used in the previous literature, as explained
in the introduction, cf. (1.3).

To derive a very important result for operators with ϕ-structure we need the
following result, which explains also the link (and the choice of a similar name)
between the characteristics of a balanced N-function ϕ, and the characteristics of
an operator derived from a potential ϕ.

Proposition 2.27. Let ϕ be a balanced N-function with characteristics (γ1, γ2).
Let T = ∂ϕ be derived from the potential ϕ. Then, T has ϕ-structure with charac-
teristics depending only on γ1 and γ2.

Proof. It follows from Lemma 2.10 that the ∆2-constant of ϕ depends only on γ2.
We have for all P ∈ R3×3 with Psym 6= 0

∂klTij(P) =
ϕ′(|Psym|)
|Psym|

(
δsymij,kl −

P sym
ij P sym

kl

|Psym|2

)
+ ϕ′′(|Psym|)

P sym
ij P sym

kl

|Psym|2 , (2.28)

where δsymij,kl :=
1
2 (δikδjl + δilδjk). Using (2.8) we obtain from this, for all j, k, l,m,

∣∣∂klTij(P)
∣∣ ≤ 2

ϕ′(|Psym|)
|Psym| + ϕ′′(|Psym|) ≤ (2 + γ2) aϕ(|Psym|) ,

which proves (2.23b). From (2.28), (2.8), and γ1 ≤ 1 we obtain for P,Q ∈ R3×3

with Psym 6= 0

3∑

i,j,k,l=1

∂klTij(P)QijQkl

=
ϕ′(|Psym|)
|Psym|

(
|Qsym|2 − |Psym ·Qsym|2

|Psym|2

)
+ ϕ′′(|Psym|) |P

sym ·Qsym|2
|Psym|2

≥ γ1
ϕ′(|Psym|)
|Psym|

(
|Qsym|2 − |Psym ·Qsym|2

|Psym|2

)
+ γ1

ϕ′(|Psym|)
|Psym|

|Psym ·Qsym|2
|Psym|2

= γ1 aϕ(|Psym|) |Qsym|2 ,

which proves (2.23a). �

We can now formulate the following crucial result for our investigations (cf. [36,
Section 6]).

Proposition 2.29. Let ϕ be a balanced N-function with characteristics (γ1, γ2).
Let S have ϕ-structure with characteristics (γ3, γ4,∆2(ϕ)) and let Fϕ be defined in
(2.24). Then, we have for all P,Q ∈ R3×3 that

(
S(P)− S(Q)

)
· (P−Q) ∼ aϕ(|Psym|+ |Psym −Qsym|) |Psym −Qsym|2 (2.30)

∼ |Fϕ(P)− Fϕ(Q)|2 , (2.31)

|S(P)− S(Q)| ∼ aϕ(|Psym|+ |Psym −Qsym|) |Psym −Qsym| , (2.32)

where the constants of equivalence depend only on γ1, γ2, γ3, and γ4.
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Proof. First of all note that, due to Lemma 2.10 and Lemma 2.9, ϕ and ϕ∗ satisfy
the ∆2-condition with ∆2-constants depending only on γ1 and γ2. Using (2.23)
and Lemma 2.16 we get that for all P,Q ∈ R3×3 with Psym 6= 0

(
S(P)− S(Q)

)
· (P−Q)

=

1
ˆ

0

3∑

i,j,k,l=1

∂klSij
(
θP+ (1− θ)Q

)
(P −Q)ij(P −Q)kl dθ

∼
1
ˆ

0

aϕ(|θPsym + (1− θ)Qsym|) dθ |Psym −Qsym|2

∼ aϕ(|Psym|+ |Psym −Qsym|) |Psym −Qsym|2 ,

which proves (2.30) with constants of equivalence depending only on γ1, γ2, γ3, and
γ4. From (2.30) we immediately obtain, also using that S is symmetric,

aϕ(|Psym|+ |Psym −Qsym|) |Psym −Qsym|2 ≤ c
(
S(P) − S(Q)

)
· (P−Q)

≤ c |S(P)− S(Q)||Psym −Qsym| ,

with constants depending only on γ1, γ2, γ3, and γ4. This proves one inequality in
(2.32). The other follows from

|S(P)− S(Q)| =
( 3∑

i,j=1

( 3∑

k,l=1

1
ˆ

0

∂klSij
(
θP+ (1− θ)Q

)
(P −Q)kl dθ

)2) 1
2

≤ c

1
ˆ

0

aϕ(|θPsym + (1− θ)Qsym|) dθ |Psym −Qsym|

≤ c aϕ(|Psym|+ |Psym −Qsym|) |Psym −Qsym| ,

with constants depending only on γ1, γ2, γ3, and γ4. Here, we used again (2.23b),
the symmetry of ∂klSij with respect to k, l, and Lemma 2.16.

To show (2.31) we use that Fϕ defined in (2.24) possesses ψ-structure, where ψ
is defined in (2.25). We have using (2.8), for all t > 0, that

ψ′′(t) t =

(
ϕ′′(t) t+ ϕ′(t)

)
t

2
√
ϕ′(t) t

∼ ϕ′(t) t√
ϕ′(t) t

= ψ′(t) .

This shows that ψ is a balanced N-function with characteristics (1+γ12 , 1+γ22 ). Thus,
Proposition 2.27 yields that Fϕ has ψ-structure with characteristics depending only
on γ1 and γ2. The already proven equivalence (2.32) reads in this case as

|Fϕ(P)− Fϕ(Q)|2 ∼
(
aψ(|Psym|+ |Psym −Qsym|)

)2 |Psym −Qsym|2 , (2.33)

with constants of equivalence depending only on γ1 and γ2. From the definition of
ψ we get, for all t > 0,

(
aψ(t)

)2
=

(√
ϕ′(t) t

t

)2

= aϕ(t) ,

which together with (2.33) yields (2.31). This finishes the proof. �

Let us finish this section by proving a useful result for the operator occurring
in (1.1).
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Proposition 2.34. Let the operator T = ∂U , derived from a potential U , have
ϕ-structure, with characteristics (γ3, γ4,∆2(ϕ)). If ϕ is a balanced N-function with
characteristics (γ1, γ2), then U is a balanced N-function satisfying for all t > 0

γ3
γ2
ϕ′′(t) ≤ U ′′(t) ≤ γ4

γ1
ϕ′′(t) . (2.35)

The characteristics of U is equal to
(
γ3
γ4

γ2
1

γ2
, γ4γ3

γ2
2

γ1

)
.

Proof. For P = t√
3
Id, t > 0, Q = 1√

3
Id we get |P| = t, |Q| = 1. Thus, (2.23a),

(2.23b), and the definition of aϕ yield

γ3
ϕ′(t)

t
≤

3∑

i,j,k,l=1

∂klTij(P)QijQkl = U ′′(t) ≤ γ4
ϕ′(t)

t
.

This implies (2.35), since ϕ is balanced. The remaining assertions follow from
Lemma 2.12. �

Remark 2.36. Proposition 2.34 states that U is a balanced N-function with char-
acteristics depending only on the characteristics of S and on the characteristics
of ϕ. Consequently, Lemma 2.10 and Lemma 2.9 yield that U and U∗ satisfy the
∆2-condition, with ∆2-constants depending only on the characteristics of S and the
characteristics of ϕ.

2.4. Approximations of a nonlinear operator. We now define the (A, q)-ap-
proximation and prove the relevant properties, needed in the sequel. Note that
the (A, q)-approximation in the special case p ≥ 2 and q = 2 was introduced in a
slightly different form in [32] (in that reference the potential depends on |Psym|2).
The idea behind is that the operator induced by the (A, q)-approximation for q = 2
has linear growth at infinity (cf. [32, Lemma 2.22]) and consequently, one can work
on the level of this (A, 2)-approximation within the standard Hilbertian theory.

Definition 2.37 ((A, q)-approximation of a scalar real function). Given a function
U ∈ C1(R≥0)∩C2(R>0) satisfying U(0) = U ′(0) = 0 we define for A ≥ 1 and q ≥ 2
the (A, q)-approximation UA,q ∈ C1(R≥0) ∩ C2(R>0) via

UA,q(t) :=

{
U(t) t ≤ A ,

α2,q t
q + α1,q t+ α0,q t > A .

Consequently, the constants αi,q = αi,q(U), i = 0, 1, 2, are given by

α2,q =
1

q(q − 1)

U ′′(A)

Aq−2
,

α1,q = U ′(A)− 1

q − 1
U ′′(A)A ,

α0,q = U(A)− U ′(A)A+
1

q
U ′′(A)A2 .

Remark 2.38. If ϕ is a regular N-function and q = 2, the definition of the (A, 2)-
approximation ϕA,2 and the properties of ϕ immediately imply that there exists a
constant c(A,ϕ) such that for all t ≥ 0 there holds

aϕA,2(t) =
(ϕA,2)′(t)

t
≤ c(A,ϕ) .

Next, we define the (A, q)-approximation of an operator derived from a potential.
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Definition 2.39 ((A, q)-approximation of an operator derived from a potential).
Let the operator S = ∂U be derived from the potential U . Then, we define for
given A ≥ 1 and q ≥ 2 the (A, q)-approximation SA,q := ∂UA,q of S as the op-
erator derived from the potential UA,q, i.e., SA,q satisfies SA,q(0) = 0 and for all
P ∈ R3×3 \ {0} there holds

SA,q(P) := ∂UA,q(|Psym|) = (UA,q)′(|Psym|)
|Psym| Psym = aUA,q (|Psym|)Psym .

As explained in the introduction, for an operator with (p, δ)-structure, for large
p, we need also multiple approximations, which we define now.

Definition 2.40 (Multiple approximation of an operator). Let the operator S have
(p, δ)-structure for some p ∈ (2,∞) and δ ∈ [0,∞) and let S be derived from the
potential U . For given N ∈ N and qn ∈ [2, p], n = 0, . . . , N with q0 = p, qN = 2
and qn > qn+1, n = 0, . . . , N − 1, and An ≥ 1, n = 1, . . . , N with An+1 ≥ An + 1,
n = 1, . . . , N − 1, we set

U0 := U, S0 := S, ω0 := ωp,δ, F0 := Fω0 , a0 := aω0 ,

and then recursively

Un := (Un−1)An,qn , Sn := ∂Un, ωn := (ωn−1)An,qn , Fn := Fωn , an := aωn ,

for n = 1, . . . , N . We call Un, Sn, ωn, Fn, and an, n = 1, . . . , N , multiple
approximation of U , S, ωp,δ, F, and a, respectively.

Remark 2.41. As we will see later on (for the parabolic problem in three-space di-
mensions) strictly speaking the multiple approximation is not needed for p ∈ (1, 133 ).
Since in the definition of a multiple approximation the case N = 1 is included,
also a single (A, q)-approximation is a special case of a multiple approximation.
To unify the presentation we also call the (A, 2)-approximation for p ∈ (1, 133 )

multiple approximation. In this case we have U1 = UA,2, S1 = SA,2 = ∂U1,
ω1 = (ω0)A,2 = (ωp,δ)

A,2, F1 = Fω1 , and a1 = aω1 .

In the following we derive various properties of multiple approximations for an
operator S which is derived from a potential U and has (p, δ)-structure. In partic-
ular, we need to carefully track any possible dependence of the various constants
and on the parameters An, n = 1, . . . , N . We start with a single approximation,
showing in particular independence of the characteristics of ϕA,q on A ≥ 1.

Lemma 2.42. Let ϕ be a balanced N-function with characteristics (γ1, γ2). Then,
for all A ≥ 1 and q ≥ 2 the (A, q)-approximation ϕA,q is a balanced N-function with
characteristics

(
γ1,max {γ2, q − 1}

)
.

Proof. By construction we have

ϕA,q ∈ C1(R≥0) ∩C2(R>0), ϕA,q(0) = (ϕA,q)′(0) = 0,

(ϕA,q)′′(t) > 0 for t > 0 .

For t ≤ A we have ϕA,q(t) = ϕ(t), while ϕA,q(t)
t = α2,q t

q−1 +α1,q +
α0,q

t , for t > A,

which implies that ϕA,q is a regular N-function, since

lim
t→0+

ϕA,q(t)

t
= 0 and lim

t→+∞

ϕA,q(t)

t
= ∞ ,

where we used in the first limit that ϕ is an N-function. From ϕA,q(t) = ϕ(t), for
t ≤ A, we get, for all t ∈ (0, A], that

γ1(ϕ
A,q)′(t) ≤ (ϕA,q)′′(t) t ≤ γ2 (ϕ

A,q)′(t) , (2.43)



NATURAL SECOND-ORDER REGULARITY FOR ELLIPTIC/PARABOLIC PROBLEMS 15

since ϕ is balanced. On the other hand, for t ≥ A we have

(ϕA,q)′(t)

(ϕA,q)′′(t) t
=
qα2,q t

q−1 + α1,q

q(q − 1)α2,q tq−1
=: gA(t).

Observe that for fixed A ≥ 1 there holds limt→∞ gA(t) = 1
q−1 , while

gA(A) =
ϕ′(A)

ϕ′′(A)A
∈
[
γ−1
2 , γ−1

1

]
.

From (gA)′(t) = − 1
tq−2

α1,q

qα2,q
it follows that the sign of the derivative depends only

on α1,q = ϕ′(A) − ϕ′′(A)A. Thus, gA(t) is monotone. Distinguishing between
α1,q ≥ 0 and α1,q ≤ 0, using γ1 ≤ 1 and γ2 ≥ 1, as well as (2.43), one easily sees
that for all t ≥ 0 there holds

min
{ 1

γ2
,

1

q − 1

}
≤ gA(t) ≤ 1

γ1
,

implying the assertion. �

Corollary 2.44. For all A ≥ 1 and q ≥ 2 the (A, q)-approximation (ωp,δ)
A,q

of
ωp,δ with p ∈ (1,∞) and δ ∈ [0,∞) is a balanced N-function with characteristics

(
min {1, p− 1},max {1, p− 1, q − 1}

)
.

Proof. This follows immediately from Lemma 2.17 and Lemma 2.42. �

We have the following analogue of Proposition 2.34 for (A, q)-approximations of
U and ϕ.

Lemma 2.45. Let ϕ be a balanced N-function with characteristics (γ1, γ2). Let the
operator S = ∂U have ϕ-structure with characteristics (γ3, γ4,∆2(ϕ)). For A ≥ 1
and q ≥ 2 let UA,q and ϕA,q be the (A, q)-approximation of U and ϕ, respectively.
Then, there holds for all t > 0

γ3
γ2

(ϕA,q)′′(t) ≤ (UA,q)′′(t) ≤ γ4
γ1

(ϕA,q)′′(t) .

Proof. By definition we have UA,q(t) = U(t) and ϕA,q(t) = ϕ(t) for t ≤ A. Thus,
the assertions for t ≤ A follow from (2.35). For t ≥ A we have (UA,q)′′(t) =

U ′′(A) t
q−2

Aq−2 and (ϕA,q)′′(t) = ϕ′′(A) t
q−2

Aq−2 . Thus, for t ≥ A the assertion follows
again from (2.35). �

The properties of the function UA,q proved in the previous lemmas allow us to
show that the operator SA,q has ϕA,q-structure.

Proposition 2.46. Let ϕ be a balanced N-function with characteristics (γ1, γ2).
Let the operator S = ∂U have ϕ-structure with characteristics (γ3, γ4,∆2(ϕ)). For
A ≥ 1 and q ≥ 2 let UA,q and ϕA,q be the (A, q)-approximation of U and ϕ,
respectively. Then, the operator SA,q := ∂UA,q has both UA,q-structure and ϕA,q-
structure, with characteristics depending only on γ1, γ2, γ3, γ4, and q.

Proof. The operator SA,q is derived from the potential UA,q which, according to
Proposition 2.34 and Lemma 2.42, is a balanced N-function with characteristics(
γ3
γ4

γ2
1

γ2
,max {q − 1, γ4γ3

γ2
2

γ1
}
)
. Thus, the proof of Proposition 2.27 shows that SA,q

has UA,q-structure with characteristics

(γ3
γ4

γ21
γ2
, 2 + max

{
q − 1,

γ4
γ3

γ22
γ1

}
,∆2(U

A,q)
)
,
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where ∆2(U
A,q) depends only on max {q − 1, γ4γ3

γ2
2

γ1
}, according to Lemma 2.10.

Now Lemma 2.45 yields that the operator SA,q has ϕA,q-structure with character-
istics

(γ23
γ4

γ21
γ22
,
γ4
γ1

(
2 + max

{
q − 1,

γ4
γ3

γ22
γ1

})
,∆2(ϕ

A,q)
)
.

Lemma 2.42 and Lemma 2.10 yield that ∆2(ϕ
A,q) depends only on max {γ2, q − 1}.

This finishes the proof. �

We have the following crucial result (cf. Proposition 2.29).

Proposition 2.47. Let ϕ be a balanced N-function with characteristics (γ1, γ2).
Let the operator S = ∂U have ϕ-structure with characteristics (γ3, γ4,∆2(ϕ)). For
A ≥ 1 and q ≥ 2 let ϕA,q and SA,q be the (A, q)-approximation of ϕ and S, re-
spectively, and let FϕA,q be defined in (2.24). Then, we have for all P,Q ∈ R3×3

that

(SA,q(P) − SA,q(Q)) · (P−Q) ∼ aϕA,q (|Psym|+ |Psym −Qsym|) |Psym −Qsym|2 ,
∼ |FϕA,q (P) − FϕA,q(Q)|2,

|SA,q(P)− SA,q(Q)| ∼ aϕA,q (|Psym|+ |Psym −Qsym|) |Psym −Qsym| ,

where the constants of equivalence depend only on γ1, γ2, γ3, γ4, and q.

Proof. This is a direct consequence of Proposition 2.46 and Proposition 2.29. �

Remark 2.48. For the limiting processes, it is of fundamental relevance that in
Proposition 2.47 the constants do not depend on A ≥ 1.

Based on Proposition 2.47 we can prove the validity of equivalent expressions
for ∇Fϕ(Du) which play a crucial role in the proof of regularity for the problem
(1.1) (cf. [12, 13, 37]). To this end, we define for a sufficiently smooth operator
S : R3×3 → R3×3

sym the functions Pi : R
3×3 → R, i = 1, 2, 3 via

Pi(P) := ∂iS(P) · ∂iP =

3∑

j,k,l,m=1

∂jkSlm(P) ∂iPjk ∂iPlm ,

and emphasize that there is no summation over the index i.
If Sn, n ∈ {1, . . . , N}, is a multiple approximation of S we define analogously

Pni : R
3×3 → R, i = 1, 2, 3, for n ∈ {1, . . . , N}, via

P
n
i (P) := ∂iS

n(P) · ∂iP =

3∑

j,k,l,m=1

∂jkS
n
lm(P) ∂iPjk ∂iPlm .

Proposition 2.49. Let the operator S have (p, δ)-structure for some p ∈ (1,∞) and
δ ∈ [0,∞), with characteristics (γ3, γ4, p) and let S be derived from a potential U
with characteristics (γ1, γ2). For given N ∈ N let Sn, n ∈ {1, . . . , N} be a multiple
approximation of S. If for a vector field v : Ω ⊂ R3 → R3 there holds Fn(Dv) ∈
W 1,2(Ω), then we have for i = 1, 2, 3 and a.e. in Ω the following equivalences

|∂iFn(Dv)|2 ∼ an(|Dv|) |∂iDv|2

∼ P
n
i (Dv) ,

|∂iSn(Dv)|2 ∼ an(|Dv|)Pni (Dv) .

(2.50)

where the constants of equivalence depend only on γ1, γ2, γ3, γ4, p, and qn, for
n = 1, . . . , N .
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Proof. For h > 0 and i = 1, 2, 3 let ∆+
i v(x) := v(x + h ei) − v(x) and d+i v(x) :=

h−1∆+
i v(x) be the classical increments and difference quotients in direction ei

of the canonical basis. The standard theory of difference quotients (cf. [16]) and
Fn(Dv) ∈W 1,2(Ω) yield that d+i F

n(Dv) → ∂iF
n(Dv) a.e. and in L2

loc(Ω) as h→ 0
and

ˆ

Ωh

|d+i Fn(Dv)|2 dx ≤ c ,

where the constant c is independent of h, and where we used the notation

Ωh :=
{
x ∈ Ω

∣∣ d(x, ∂Ω) > 2h
}
.

Thus, Proposition 2.47, Lemma 2.69 for p ≤ 2, and Lemma 2.51 for p > 2 yield
that

ˆ

Ωh

|d+i Dv|2 dx ≤ c ,

with c independent of h (even if it may depend on δ and An). Consequently, we
obtain that Dv ∈ W 1,2(Ω), and d+i Dv → ∂iDv, ∆+

i Dv → 0 a.e. and in L2
loc(Ω),

as h→ 0. Proposition 2.47 yields

|d+i Fn(Dv)(x)|2 ∼ an(|Dv(x)|+ |∆+
i Dv(x)|) |d+i Dv(x)|2 ,

which implies, using the above proved convergences, (2.50)1 as h→ 0.
Proposition 2.46 shows that Sn has ωn-structure, which implies

P
n
i (Dv) =

3∑

j,k,l,m=1

∂jkS
n
lm(Dv) ∂iDjkv ∂iDlmv ∼ an(|Dv|)|∂iDv|2 ,

showing (2.50)2. To prove (2.50)3 we use the definition of Pni and (2.50)1,2 to get

an(|Dv|)
(
P
n
i (Dv)

)2 ≤ an(|Dv|) |∂iSn(Dv)|2|∂iDv|2 ∼ P
n
i (Dv) |∂iSn(Dv)|2 ,

which implies

an(|Dv|)Pni (Dv) ≤ c |∂iSn(Dv)|2 .

On the other hand, the fact that Sn has ωn-structure and (2.50)1,2 imply that
Pi(P) = 0 if and only if P = 0. Consequently, we obtain

|∂iSn(Dv)|2 ≤
3∑

k,l=1

|∂klSn(Dv) ∂iDklv|2 ≤ c (an(|Dv|))2 |∂iDv|2

≤ c an(|Dv|) |∂iFn(Dv)|2 ≤ c an(|Dv|)Pni (Dv) .

Note that all constants just depend on the quantities indicated in the formulation
of the assertion. This yields the reverse estimate, proving (2.50)3. �

To derive a priori estimates and to perform the limiting process we need esti-
mates, which do not involve the parameters An, for n = 1, . . . , N . We restrict
ourselves to the case that ϕ = ωp,δ = ω with p ∈ (1,∞) δ ∈ [0,∞) and distinguish
between the cases p ≤ 2 and p > 2 for the sake of a simpler presentation.
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2.5. Some estimates specific to the case p > 2. In this section we prove some
results, which are specific of the case p > 2. In particular, in the case p ≥ 13

3 we
need multiple approximations, which makes the results more technical.

Lemma 2.51. For given p > 2, δ > 0, and N ∈ N let an, n ∈ {1, . . . , N}, be a

multiple approximation of a0. Then, there exist Ân = Ân(δ, p, q1, . . . , qn) ≥ 1 such

that for all An ≥ max {δ, Ân} the function an is non-decreasing and satisfies for all
t ≥ 0

1

(p− 1)2q1−2
δp−2 ≤ 1

p− 1

δp−qn

2q1−2
aωqn,δ

(t) ≤ an(t) ,

an(t) ≤ p− 1

qn − 1
2p−2 (An−1)

p−qn−1 aωqn−1,δ
(t) ,

an(t) ≤ p− 1

qn − 1
2p−2 a0(t) .

(2.52)

Proof. For ease of presentation we show the assertion just in the first two cases, i.e.,
n = 1, 2. The remaining cases follow in the same way and are left to the interested
reader.

The case (n = 1) : For simplicity we set A := A1 and q := q1. For t ≤ A we have
a1(t) = a0(t) = (δ + t)p−2. Thus, q0 = p > q ≥ 2 implies

δp−2 ≤ δp−q (δ + t)q−2 ≤ (δ + t)p−2 ,

and 1
(p−1)2q−2 ≤ 1 ≤ p−1

q−1 (1 + δ)p−2, which proves (2.52) for n = 1 and t ≤ A.

Moreover, (δ + t)p−2 is an increasing function in t.
For t ≥ A we have

a1(t) = q α2,q t
q−2
(
1 +

α1,q

q α2,q tq−1

)
=: q α2,q t

q−2gA(t) , (2.53)

where αi,q = αi,q(ω
0), i = 1, 2. The expressions for the coefficients αi,q, i = 1, 2,

imply gA(A) = (q − 1) (ω0)′(A)
(ω0)′′(A)A , limt→∞ gA(t) = 1, and

(gA)′(t) =
α1,q(1− q)

q α2,q tq
= (q − 1)2

Aq−1

tq

( 1

q − 1
− (ω0)′(A)

(ω0)′′(A)A

)
. (2.54)

From the properties of ω0 it follows that limt→∞
(ω0)′(t)
(ω0)′′(t)t =

1
q−1 and that (ω0)′(t)

(ω0)′′(t)t

is strictly monotone increasing. Thus, for A ≥ Â(p, q, δ) the expression in the
parenthesis in (2.54) is non-negative and thus gA is a non-decreasing function.
Consequently, we get that a1 is a non-decreasing function, since q α2,q t

q−2 is in-
creasing for q > 2 (non-decreasing for q = 2). Using these properties and that ω0

is balanced we obtain that for t ≥ A ≥ Â there holds

q − 1

p− 1
≤ gA(t) ≤ 1 . (2.55)

It remains to estimate the factor in front of gA in (2.53). From the expression for

α2,q we get that q α2,q t
q−2 = (ω0)′′(A)

q−1

(
t
A

)q−2
. Thus, using (2.18), t ≥ A ≥ δ ≥ 0,

and 2 ≤ q < p we obtain

q α2,q t
q−2 ≤ p− 1

q − 1

(δ +A)p−2

Aq−2
tq−2 =

p− 1

q − 1

( δ
A

+ 1
)p−2

Ap−q tq−2

≤ p− 1

q − 1
2p−2Ap−q (δ + t)q−2 =

p− 1

q − 1
2p−2

(δ + t

A

)q−p
(δ + t)p−2

≤ p− 1

q − 1
2p−2 (δ + t)p−2 . (2.56)
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For A ≥ δ we get that t ≥ 2−1 (δ+ t) for all t ≥ A. Using this, the definition of ω0,
(2.18), 2 ≤ q < p and t ≥ A ≥ δ ≥ 0 we obtain

q α2,q t
q−2 ≥ 1

q − 1

(δ +A)p−2

Aq−2
tq−2 ≥ 1

q − 1
(δ +A)p−q

1

2q−2
(δ + t)q−2

≥ δp−q

q − 1

1

2q−2
aq,δ(t) ≥

δp−2

p− 1

1

2q−2
. (2.57)

The inequalities (2.55)–(2.57) imply (2.52) for n = 1 and t ≥ A ≥ max{δ, Â}. This
completes the proof for n = 1.

(n = 2) : For simplicity we set B := A2 ≥ A1 =: A and r := q2, q := q1. For
t ≤ B we have a2(t) = a1(t). Thus, p > q > r ≥ 2 implies

δp−2 ≤ δp−r (δ + t)r−2 ≤ δp−q (δ + t)q−2 ,

which together with (2.52) for n = 1 shows (2.52)1 for n = 2 and t ≤ B. The
estimate (2.52)2,3 for n = 2 and A ≤ t ≤ B follows from a2(t) = a1(t), (2.53), (2.55),
the estimates in (2.56) and r < q; while for t ≤ A it follows from a2(t) = a0(t),
δ ≤ A, 2 ≤ r < q < p, and

(δ + t)p−2 = (δ + t)p−q (δ + t)q−2 ≤ 2p−q (δ + t)q−2 .

For t ≥ B we have

a2(t) = r α2,r t
r−2
(
1 +

α1,r

q α2,r tr−1

)
=: r α2,r t

r−2hB(t) , (2.58)

where αi,r = αi,r(ω1), i = 1, 2. The expressions of the coefficients αi,r, 1 = 1, 2,

imply hB(B) = (r − 1) (ω1)′(B)
(ω1)′′(B)B , limt→∞ hB(t) = 1, and

(hB)′(t) =
α1,r(1− r)

r α2,r tr
= (r − 1)2

Br−1

tr

( 1

r − 1
− (ω1)′(B)

(ω1)′′(B)B

)
. (2.59)

In the proof of Lemma 2.42 we showed that limt→∞
(ω1)′(t)
(ω1)′′(t) t = 1

q−1 and that
(ω1)′(t)
(ω1)′′(t) t is strictly monotone. Thus, for B ≥ B̂(p, q, r, δ) the expression in the

parenthesis in (2.59) is non-negative and thus hB is a non-decreasing function.
Consequently, we get that a2 is a non-decreasing function, since r α2,r t

r−2 is in-
creasing for r > 2. Using these properties and Lemma 2.42 for ω1 we obtain that

for t ≥ B ≥ B̂ there holds

r − 1

p− 1
≤ hB(t) ≤ 1 . (2.60)

It remains to estimate the factor in front of hB in (2.58). From the expressions for

α2,r and (ω1)′′(B) we get that r α2,r t
r−2 = (ω1)′′(B)

r−1

(
t
B

)r−2
= (ω0)′′(A)

r−1

(
B
A

)q−2( t
B

)r−2
.

Thus, using (2.18), the definition of ω1, 2 ≤ r < q < p and 0 ≤ δ ≤ A ≤ B ≤ t we
obtain

r α2,r t
r−2 ≤ p− 1

r − 1

( δ
A

+ 1
)p−2 ( t

B

)r−q
Ap−q tq−2

≤ p− 1

r − 1
2p−2Ap−q (δ + t)q−2 =

p− 1

r − 1
2p−2

(δ + t

A

)q−p
(δ + t)p−2

≤ p− 1

r − 1
2p−2 (δ + t)p−2 .
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For B ≥ A ≥ δ we get that t ≥ 2−1 (δ + t) for all t ≥ B. Using this, the definition
of ω0, (2.18), 2 ≤ r < q < p and t ≥ B ≥ A ≥ δ ≥ 0 we obtain

r α2,r t
r−2 ≥ 1

r − 1

(δ +A)p−2

Aq−2
Bq−r tr−2 ≥ 1

r − 1
(δ +A)p−q Bq−r

1

2r−2
(δ + t)r−2

≥ δp−r

r − 1

1

2r−2
ar,δ(t) ≥

δp−2

r − 1

1

2r−2
.

The last two inequalities and (2.60) imply (2.52) for n = 2 and t ≥ B ≥ max{A, B̂}.
This completes the proof for n = 2. �

In the proof of regularity we will need mainly the following corollary.

Corollary 2.61. Let the operator S = ∂U , derived from the potential U , have
(p, δ)-structure with p > 2 and δ > 0, and characteristics (γ3, γ4, p). For N ∈ N let
ωn, Fn, Sn, n ∈ {1, . . . , N}, be a multiple approximation of ω0, F0, S0. Then, for

all An ≥ max {δ, Ân} with Ân from Lemma 2.51 and all t ≥ 0 there holds

δp−2

(p− 1)2q1−1
t2 ≤ δp−qn

(p− 1)2q1−2
ωqn,δ(t) ≤ ωn(t) ≤ p− 1

qn − 1
2p−2 ω0(t) ,

ωn(t) ≤ p− 1

qn − 1
2p−2 (An−1)

p−qn−1 ωqn−1,δ(t) , (2.62)

(ωn)∗(t) ≤ (p− 1)2q1−3

δp−2
t2 .

Moreover, for all P ∈ R3×3 there holds

|Fn(P)|2 ∼ ωn(|Psym|) ,
c δp−qn |Fωqn,δ

(P)|2 ≤ |Fn(P)|2 ,
|Sn(P)| ≤ c (An−1)

p−qn−1 (ωqn−1,δ)
′(|Psym|)

(2.63)

with constants c depending only on γ3, γ4, qn, q1 and p.

Proof. The proof of the estimates (2.62)1,2 is a direct application of the previous
lemma, the definition in (2.15), ωn(0) = ωqn,δ(0) = ωqn−1,δ(0) = 0 and integration.

Estimate (2.62)3 follows from (2.62)1,2 and the equivalent definition of the com-
plementary function since

(ωn)∗(t) := sup
s≥0

s t− ωn(s)

≤ sup
s≥0

s t− δp−2

(p− 1)2q1−1
s2

=
(p− 1)2q1−3

δp−2
t2 .

The estimates (2.63) follow immediately from the definition of multiple approxima-
tions of S, F, ω, a; Proposition 2.47 and (2.62). �

Let us finish this section with a more technical estimate needed in the proof of
regularity in the case p > 2.

Lemma 2.64. For given p > 2, δ ≥ 0 and N ∈ N let an, ωn and n ∈ {1, . . . , N},
be a multiple approximation of a0 and ω0 with An ≥ max {δ, 1}, respectively. Then,
there exists a constant c = c(p, q1, . . . , qn) such that for all s, t ≥ 0 there holds

an(t) s2 ≤ c
(
δp + ωn(s) + ωn(t)

)
. (2.65)
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Proof. The assertion follows essentially from Young inequality and the expressions
for the coefficients of the approximations. However, we have to distinguish several
cases. For ease of presentation we show the assertion just in the first two cases, i.e.,
n = 1, 2. The remaining cases follow in the same way and are left to the interested
reader.

The case (n = 1) : For simplicity we set A := A1 and q := q1. For t ≤ A we have
a1(t) = a0(t) = (δ + t)p−2. For s, t ≤ A Young inequality with p

2 and p
p−2 , δ ≥ 0

and p > 2 yield

(δ + t)p−2 s2 ≤ c
(
(δ + t)p + sp

)
≤ c

(
δp + (δ + t)p−2t2 + (δ + s)p−2s2

)
,

which implies (2.65) for s, t ≤ A, since Corollary 2.11 implies

(δ + t)p−2t2 ∼ ω0(t) = ω1(t) , (2.66)

valid for t ≤ A.
Next, assume that s, t ≥ A. Since ω1 is balanced with characteristics (1, p− 1),

the definition of ω1 implies for t ≥ A that there holds

a1(t) =
(ω1)′(t)

t
∼ (ω1)′′(t) =

(ω0)′′(A)

Aq−2
tq−2 , (2.67)

with constants of equivalence depending only on p. This and Young inequality with
q
2 and q

q−2 imply

a1(t) s2 ≤ c(p, q)
(ω0)′′(A)

Aq−2

(
tq−2 t2 + sq−2 s2

)
= c

(
(ω1)′′(t) t2 + (ω1)′′(s) s2

)
,

which yields (2.65) for s, t ≥ A, since Corollary 2.11 shows (ω1)′′(t) t2 ∼ ω1(t).
Next, assume s ≤ A ≤ t. Using (2.67), Young inequality with p

p−2 and p
2 , δ ≥ 0,

(2.66), (2.67), and again (ω1)′′(t) t2 ∼ ω1(t) we obtain

a1(t) s2 ≤ c(p)

(( (ω0)′′(A)

Aq−2

) p
p−2

t
q−2
p−2 p + sp−2 s2

)

≤ c

(
(ω0)′′(A)

Aq−2
tq−2 t2

( (ω0)′′(A)

Aq−2

) p
p−2−1

t
q−2
p−2 p−q + ω1(s)

)

≤ c

(
ω1(t)

( (ω0)′′(A)

Aq−2

) 2
p−2

t2
q−p
p−2 + ω1(s)

)
.

(2.68)

Using (ω0)′′(A) ∼ (δ +A)p−2, max{1, δ} ≤ A and q < p we get

((ω0)′′(A)

Aq−2

) 2
p−2

t2
q−p
p−2 ≤ c

(δ +A)2

A2

t2
q−p
p−2

A2 q−2
p−2−2

≤ c
( t
A

)2 q−p
p−2 ≤ c ,

which together with the last estimate implies (2.65) for s ≤ A ≤ t.
Finally, for t ≤ A ≤ s we get

a1(t) s2 = (δ + t)p−2 s2 = (δ + t)p−2
( (ω0)′′(A)

Aq−2

)− 2
q
((ω0)′′(A)

Aq−2

) 2
q

s2 .

We use Young inequality with q
q−2 and q

2 , (2.67) and again (ω1)′′(t) t2 ∼ ω1(t) to

arrive at

a1(t) s2 ≤ c(p, q)

(
(δ + t)q

p−2
q−2

((ω0)′′(A)

Aq−2

) −2
q−2

+
(ω0)′′(A)

Aq−2
sq−2 s2

)
.

From (ω0)′′(A) ∼ (δ +A)p−2, p > q ≥ 2, t ≤ A and δ ≥ 0 we obtain

(δ + t)q
p−2
q−2

( (ω0)′′(A)

Aq−2

) −2
q−2 ≤ c (δ + t)p (δ +A)q

p−2
q−2−p+2−2 p−2

q−2

≤ c (δ + t)p ≤ c (δp + (δ + t)p−2 t2) ,
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which together with (2.66), (2.67) and the last estimate yields (2.65) for t ≤ A ≤ s.
This finishes the proof for n = 1.

The case (n = 2) : For simplicity we additionally set B := A2 and r := q2. For
s, t ≤ B we have a2(t) = a1(t). Thus, the assertion (2.65) for n = 2 is already
proved in the case n = 1 above. In the case s, t ≥ B we proceed exactly as in
the case s, t ≥ A for n = 1 just replacing ω1, ω0, q and A by ω2, ω1, r and B,
respectively.

In the case s ≤ B ≤ t we have to distinguish between s ≤ A and A ≤ s ≤ B.
In the former case we use the analogue of (2.67) for a2 and proceed as in (2.68) to
arrive at

a2(t) s2 ≤ c(p)

(
ω2(t)

( (ω1)′′(B)

Br−2

) 2
p−2

t2
r−p
p−2 + ω2(s)

)
.

Using (ω1)′′(B) = (ω0)′′(A)
Aq−2 Bq−2 ≤ (p− 1) (δ+A)p−2

Aq−2 Bq−2, 1 ≤ A ≤ B and r < q < p
we get the estimate

((ω1)′′(B)

Br−2

) 2
p−2

t2
r−p
p−2 ≤ c

(δ +A)2

A2

(A
B

)2 p−q
p−2
( t
B

)2 r−p
p−2 ≤ c ,

which together with the last estimate implies (2.65) for s ≤ A ≤ B ≤ t. For
A ≤ s ≤ B ≤ t we have

a2(t) s2 ≤ (ω1)′′(B)

Br−2
tr−2

( (ω0)′′(A)

Aq−2

)− 2
q
((ω0)′′(A)

Aq−2

) 2
q

s2 .

Using Young inequality with q
q−2 and q

2 , the analogue of (2.67) for a2 and a1, and

(ω2)′′(t) t2 ∼ ω2(t) we get

a2(t) s2 ≤ c(p, q)

(
tq

r−2
q−2

( (ω0)′′(A)

Aq−2

) −2
q−2
( (ω1)′′(B)

Br−2

) q
q−2

+
(ω0)′′(A)

Aq−2
sq−2 s2

)

≤ c

(
ω2(t) t2

r−q
q−2

A2

((ω0)′′(A))
2

q−2

((ω1)′′(B)

Br−2

) 2
q−2

+ ω2(s)

)
.

From (ω1)′′(B) = (ω0)′′(A)
Aq−2 Bq−2, q > r ≥ 2 and t ≥ B we obtain

t2
r−q
q−2

A2

((ω0)′′(A))
2

q−2

( (ω1)′′(B)

Br−2

) 2
q−2

=
( t
B

)2 r−q
q−2 ≤ 1 ,

which together with the last estimate yields (2.65) for A ≤ s ≤ B ≤ t.
In the case t ≤ B ≤ s we have to distinguish between t ≤ A and A ≤ t ≤ B. In

the former case we have

a2(t) s2 = (δ + t)p−2
( Br−2

(ω1)′′(B)

) 2
r
((ω1)′′(B)

Br−2

) 2
r

s2 ,

which by Young inequality with r
r−2 and r

2 , and the analogue of (2.67) for a2 yields

a2(t) s2 ≤ c(p, r)

(
(δ + t)r

p−2
r−2

( Br−2

(ω1)′′(B)

) 2
r−2

+ ω2(s)

)

≤ c

((
δp + a0(t)

)
(δ + t)2

p−r
r−2

B2

((ω1)′′(B))
2

r−2

+ ω2(s)

)
.

From (ω1)′′(B) = (ω0)′′(A)
Aq−2 Bq−2, q > r ≥ 2, δ ≥ 0 and B ≥ A ≥ t we obtain

(δ + t)2
p−r
r−2

B2

((ω1)′′(B))
2

r−2

≤
( δ + t

δ +A

)2 p−r
r−2

(A
B

)2 q−r
r−2 ≤ 1 ,
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which together with a0(t) = a2(t), t ≤ A, and the last estimate yields (2.65) for
t ≤ A ≤ B ≤ s. For A ≤ t ≤ B ≤ s we have

a2(t) s2 ≤ (ω0)′′(A)

Aq−2
tq−2

( Br−2

(ω1)′′(B)

) 2
r
( (ω1)′′(B)

Br−2

) 2
r

s2 ,

which, by Young inequality with r
r−2 and r

2 and (2.67) for a2 and a1, yields

a2(t) s2 ≤ c(p, r)

(
tr

q−2
r−2

((ω0)′′(A))
r

r−2

Ar
q−2
r−2

B2

((ω1)′′(B))
2

r−2

+ ω2(s)

)

≤ c

(
ω2(t) t2

q−r
r−2

((ω0)′′(A))
2

r−2

A2 q−2
r−2

B2

((ω1)′′(B))
2

r−2

+ ω2(s)

)
.

Using (ω0)′′(A) ∼ (δ + A)p−2 and (ω1)′′(B) = (ω0)′′(A)
Aq−2 Bq−2, q > r ≥ 2 and B ≥ t

we obtain

t2
q−r
r−2

((ω0)′′(A))
2

r−2

A2 q−2
r−2

B2

((ω1)′′(B))
2

r−2

≤ c
( t
B

)2 q−r
r−2 ≤ 1 ,

which together with the last estimate yields (2.65) for A ≤ t ≤ B ≤ s. This finishes
the proof of the case n = 2. �

2.6. Some estimates specific of the case 1 < p ≤ 2. For completeness we
deduce estimates for the case p ∈ (1, 2], which are the counterpart of those proved
in the previous section and which can be used to prove the regularity results also in
the case p ∈ (1, 2]. Note that in this case it is enough to use a single approximation
with q = 2.

Lemma 2.69. For p ∈ (1, 2] and δ > 0 let ω = ωp,δ and a = aω. For A ≥ 1 and
q = 2 we set ωA := ωA,2 and aA := aωA,2 . Then, the function aA is non-increasing
and satisfies for all t ≥ 0

(p− 1) a(t) ≤ aA(t) ≤ δp−2 ,

(p− 1) (δ +A)p−2 ≤ aA(t) .
(2.70)

Proof. The statement is clear for t ≤ A using aA(t) = a(t) = (δ + t)p−2, 0 ≤ δ,
t ≤ A, and p ≤ 2. Moreover, (δ + t)p−2 is a non-increasing function in t.

For t ≥ A we have aA(t) = ω′′(A) + ω′(A)−ω′′(A)A
t . Thus, we get that aA(A) =

(δ+A)p−2, limt→∞ aA(t) = (δ+A)p−3
(
δ+(p−1)A

)
and (aA)′(t) = −ω′(A)−ω′′(A)A

t2 ≤
0 in view of (2.18), and p ≤ 2, hence proving that aA is non-increasing also for t > A
(contrary to the case p > 2 we do not have any restriction on the choice of A). This
yields

(δ +A)p−2 ≥ aA(t) ≥ (δ +A)p−3((p− 1)A+ δ) ≥ (p− 1) (δ +A)p−2 ,

which immediately implies the assertions using δp−2 ≥ (δ+A)p−2 and (δ+A)p−2 ≥
(δ + t)p−2 in view of t ≥ A, and p ≤ 2. �

As in the case p > 2 we would need mainly the following corollary in the proof
of regularity.

Corollary 2.71. Let the operator S, derived from the potential U , have (p, δ)-
structure with p ∈ (1, 2] and δ > 0. Denote ω = ωp,δ, F = Fω and for A ≥ 1 set
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ωA := ωA,2, FA := FωA and SA := SA,2. Then, there holds for all t ≥ 0 that

(p− 1)ω(t) ≤ ωA(t) ≤ δp−2

2
t2 ,

p− 1

2
(δ +A)p−2 t2 ≤ ωA(t) ,

(ωA)∗(t) ≤ (p− 1) (∆2(ω
∗))M ω∗(t) ,

(2.72)

where M ∈ N0 is chosen such that (p − 1)−1 ≤ 2M . Moreover, for all P ∈ R3×3

there holds

|FA(P)|2 ∼ ωA(|Psym|) ,

c |F(P)|2 ≤ |FA(P)|2 ,
|SA(P)| ≤ c δp−2|Psym| ,

(2.73)

with constants c depending only on γ3, γ4, and p.

Proof. Assertions (2.72)1,2 follow from (2.70)1,2, the definition of a, aA, ω(0) =
ωA(0) = 0 and integration. Using the first inequality in (2.72)1 we get for all t ≥ 0
that

(ωA)∗(t) = sup
s≥0

s t− ωA(s)

≤ (p− 1) sup
s≥0

s
t

p− 1
− ω(s)

= (p− 1)ω∗
( t

p− 1

)
≤ (p− 1) (∆2(ω

∗))M ω∗(t) ,

with M ∈ N0 as chosen above. This proves (2.72)2. The inequalities in (2.73)
follow from Proposition 2.47 with Q = 0, the definition of aA, the fact that ω,
ωA are balanced, (2.72)1, the equivalences for F and S in Proposition 2.29, and
Lemma 2.69. �

3. On the existence and uniqueness of regular solutions

In this section we prove our main result, namely Theorem 3.4, i.e., the existence
and uniqueness of regular solutions of (1.1), solely based on appropriate assump-
tions on the regularity (but not on the size) of the data. From now on we will
restrict to the case p > 2, but with a few (but non completely trivial) changes
the same arguments can be applied also to the case p ∈ (1, 2], where a single ap-
proximation would be enough. Even if the theory of approximation gives a unified
approach valid for all p, we decided to focus on the case p > 2 since many estimates
should be changed, starting already from the a priori estimates and we think that
explaining the steps that need to be changed in the case p ≤ 2 would fragment the
presentation in such a way that the readability of the paper would be much more
difficult. Since the result in the case p ≤ 2 is already contained in [37] and [12, 13],
using a different approximation, we preferred to skip them. Nevertheless, they will
be presented in a forthcoming paper [14].

Definition 3.1 (Regular solution). Let the operator S in (1.1), derived from a
potential U , have (p, δ)-structure for some p ∈ (1,∞), and δ ∈ [0,∞) fixed but
arbitrary. Let Ω ⊂ R3 be a bounded domain with C2,1 boundary, and let I = (0, T ),
T ∈ (0,∞), be a finite time interval. Then, we say that u is a regular solution of

(1.1) if u ∈ Lp(I;W 1,p
0 (Ω)) satisfies for all ψ ∈ C∞

0 (0, T ) and all w ∈W 1,p
0 (Ω)

T̂

0

(∂u(t)
∂t

,w
)
ψ(t) + (S(Du(t)),Dw)ψ(t) dt =

T̂

0

(f(t),w)ψ(t) dt ,
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and fulfils

u ∈ L∞(I;W 1,2
0 (Ω)) ∩W 1,2(I;L2(Ω)),

F(Du) ∈ L∞(I;L2(Ω)) ∩ L2(I;W 1,2(Ω)),

Remark 3.2. Note that we are focusing on the “natural” second order spatial
regularity, especially we are proving that F(Du) ∈ L2(I;W 1,2(Ω)). In the parabolic
case it is possible, at the price of some more restrictive hypotheses on the data, also
to prove that F(Du) ∈ W 1,2(I;L2(Ω)). This result can be obtained independently
on what we prove later on and nevertheless implies also some simplifications of the

argument concerning the treatment of the time derivative. The regularity of ∂F(Du)
∂t

would be needed in case of time-discretization to prove optimal convergence results,
as done in [13].

Remark 3.3. To formulate clearly the dependence on the data in the various esti-
mates we introduce the quantity

|||u0, f |||2 :=

ˆ

Ω

|u0|2 + ω(|Du0|) dx+

T̂

0

ˆ

Ω

|f |2 dx dt .

Using the equivalences ωp,δ(t)+ δp ∼ tp+ δp and ω∗(t) ∼ (δp−1 + t)p
′−2t2, valid for

all p ∈ (1,∞), t, δ ≥ 0 with constants of equivalence just depending on p, together
with Korn and Poincarè inequalities, one easily checks that |||u0, f ||| is finite if

u0 ∈ W 1,p
0 (Ω) and f ∈ L2(I × Ω), provided that p ≥ 6

5 .

We can now state the main result of this paper.

Theorem 3.4. Let the operator S in (1.1), derived from a potential U , have (p, δ)-
structure for some p ∈ (2,∞), and δ ∈ (0,∞) fixed but arbitrary. Let Ω ⊂ R3 be
a bounded domain with C2,1 boundary, and let I = (0, T ), T ∈ (0,∞), be a finite

time interval. Assume that u0 ∈ W 1,p
0 (Ω) and f ∈ L2(I × Ω).

Then, the system (1.1) has a unique regular solution with norms depending only
on the characteristics of S, δ−1, T , Ω, and |||u0, f |||.

To prove Theorem 3.4 we use an approximate problem, obtained by replacing
the operator S = ∂U with (p, δ)-structure by the last item SN = ∂UN of a special
multiple approximation Sn, n = 1, . . . , N , of S, i.e.,

SN (P) =
(ωN )′(|Psym|)

|Psym| Psym = aN (|Psym|)Psym ,

which we define now.

Definition 3.5 (Special multiple approximation). Let the operator S = ∂U , derived
from a potential U , have (p, δ)-structure for some p > 2 and δ > 0 with charac-
teristics (γ3, γ4, p). We call Sn, Un, ωn, and an, n = 1, . . . , N , a special multiple
approximation of S, U, ωp,δ, and aωp,δ

if it is a multiple approximation generated by

N := ⌈p−2
2 ⌉, exponents

qn := p− 2n for n = 1, . . . , N − 1 and qN := 2 ,

and parameters An, n = 1, . . . , N satisfying the conditions in Definition 2.40 and
in Corollary 2.61.

Remark 3.6. (i) Let Sn, n = 1, . . . , N , be a special multiple approximation as in
Definition 3.5. Lemma 2.17 and a successive application of Proposition 2.46, and
Lemma 2.10 yields that for each n = 1, . . . , N the operator Sn has ωn-structure
with characteristics depending only on the characteristics of S, i.e., on γ3, γ4, p,
due to the special choice of qj, j = 1, . . . , N . The special choice of qj, j = 1, . . . , N ,
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Lemma 2.17 and Lemma 2.42 imply that the characteristics of ωn, n = 1, . . . , N ,
depends only on p. Thus, the constants in Proposition 2.49 as well as in Propo-
sition 2.47 and Corollary 2.61 applied to Sn, n = 1, . . . , N , depend only on the
characteristics of S.

(ii) In view of (i), Lemma 2.51, and Remark 2.38 the operator SN has (2, δ)-
structure with characteristics depending on p, γ3, γ4, ω

N−1, and AN .

In view of the previous remark we can work in the W 1,2-setting, which is suf-
ficient to justify all forthcoming computations, which is the main reason for the
introduction of these approximations.

3.1. The approximate problem and some global regularity in time. We
have the following result on existence and uniqueness of time-regular solutions of
the approximate problem.

Proposition 3.7. Let the operator S = ∂U , derived from the potential U , have
(p, δ)-structure for some p ∈ (2,∞) and δ ∈ (0,∞). Assume that u0 ∈ W 1,p

0 (Ω)
and f ∈ L2(I × Ω). Let SN be the last item of a special 6 multiple approximation
Sn, n = 1, . . . , N , of S as in Definition 3.5. Then, the approximate problem

∂uN

∂t
− divSN (DuN ) = f in I × Ω ,

uN = 0 on I × ∂Ω ,

uN (0) = u0 in Ω ,

(3.8)

possesses a unique strong solution uN , i.e., uN ∈W 1,2(I;L2(Ω)) with FN (DuN ) ∈
L∞(I;L2(Ω)), which satisfies for all ψ ∈ C∞

0 (0, T ) and all w ∈W 1,2
0 (Ω)

T̂

0

(∂uN (t)

∂t
,w
)
ψ(t) + (SN (DuN (t)),Dw)ψ(t) dt =

T̂

0

(f(t),w)ψ(t) dt . (3.9)

In addition, the solution uN satisfies the estimate

esssup
t∈I

‖uN (t)‖22 + ‖FN (DuN (t))‖22 + δp−2‖∇uN (t)‖22

+ δp−2

T̂

0

‖DuN (t)‖22 dt+
T̂

0

∥∥∥∂u
N (t)

∂t

∥∥∥
2

2
dt ≤ C

(
1 + |||u0, f |||2

)
,

(3.10)

with C depending only on the characteristics of S, δp−2, and Ω.

Proof. The proof is based on a standard Faedo-Galerkin approximation of (3.8).
The existence of solutions of the Galerkin approximations follows from the standard
Carathéodory theory for systems of ordinary differential equations. As pointed out
in Remark 3.6, the operator SN has (2, δ) structure, hence the system can be treated
essentially as the heat equation. In particular, once the existence of the Galerkin
solution uNk , k ∈ N, is obtained, passing to the limit as k → ∞ can be done within
the standard theory of evolutionary problems with monotone operators. Since this
is a standard procedure, we just derive the a priori estimates necessary for it.

6Observe that the results of this section, prior to the passage to the limit, are in fact valid for
any sequence of parameter qn as described in the definition of the multiple approximation.



NATURAL SECOND-ORDER REGULARITY FOR ELLIPTIC/PARABOLIC PROBLEMS 27

The first a priori estimate, derived by using uNk as test function in the Galerkin
approximation for uNk , is the following one:

1

2

d

dt
‖uNk ‖22 + c ‖FN(DuNk )‖22 ≤ cε

ˆ

Ω

(ωN )∗(|f |) dx + ε

ˆ

Ω

ωN(|uNk |) dx

≤ cε

ˆ

Ω

(ωN )∗(|f |) dx + εC

ˆ

Ω

ωN(|DuNk |) dx,

where we used in the first line Proposition 2.47 with Q = 0 together with Young
inequality, and in the second line

ˆ

Ω

ωN(|uNk |) dx ≤ CP

ˆ

Ω

ωN (|∇uNk |) dx ≤ CPCK

ˆ

Ω

ωN(|DuNk |) dx,

which follows from the modular versions of Poincarè and Korn inequalities in Or-
licz spaces (cf. [38, 22, 7]). Moreover, we absorb the last term on the left-hand
side of the previous estimate using

´

Ω ω
N(|DuNk |) dx ∼ ‖FN (DuNk )‖22 in view of

Corollary 2.61. Note that all constants are independent of An, n = 1, . . . , N , and
depend only on the characteristics of S and on Ω, due to Remark 3.6 and [38, 22, 7].
Moreover, from Corollary 2.61 and the definition of |||u0, f |||, it follows that

T̂

0

ˆ

Ω

(ωN )∗(|f |) dx ds ≤ c(p) δp−2 |||u0, f |||2 <∞ .

Hence, after the limiting procedure k → ∞ we arrive at

esssup
t∈I

‖uN(t)‖22 +
T̂

0

‖FN(DuN (s))‖22 ds+ δp−2

T̂

0

‖DuN (s)‖22 ds ≤ c |||u0, f |||2 ,

where we also used Corollary 2.61. Next, we take
∂uN

k

∂t as test function in the

Galerkin approximation, use the fact that SN = ∂UN is derived from the potential
UN ∼ ωn in view of Lemma 2.45, Lemma 2.12 and Proposition 2.34, to arrive at

t
ˆ

0

∥∥∥∂u
N
k (s)

∂t

∥∥∥
2

2
ds+

ˆ

Ω

ωN (|DuNk (t)|) dx ≤ c

ˆ

Ω

ωN (|Duk0 |) dx + c

t
ˆ

0

‖f(s)‖22 ds .

Since p > 2, we use Corollary 2.61 to arrive at
ˆ

Ω

ωN (|Duk0 |) dx ≤ c(p)

ˆ

Ω

ω(|Duk0 |) dx .

These properties together with Corollary 2.61 imply, after the limiting procedure
k → ∞, that for a.e. t ∈ [0, T ]

‖FN(DuN (t))‖22 + δp−2‖∇uN (t)‖22 +
T̂

0

∥∥∥∂u
N (s)

∂t

∥∥∥
2

2
ds ≤ c

(
1 + |||u0, f |||2

)
,

where we also used Corollary 2.61 and Korn inequality.
The uniqueness of the solution uN follows in a standard manner. �

Remark 3.11. Note that by the fundamental theorem of calculus of variations the
weak formulation (3.9) is equivalent to

(∂uN(t)
∂t

,w
)
+ (SN (DuN (t)),Dw) = (f(t),w) , (3.12)

being satisfied for a.e. t ∈ I and all w ∈W 1,2
0 (Ω).
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In order to prove existence and uniqueness of regular solutions to (1.1), by taking
the various limits An → ∞, we need to prove further regularity for the solution
uN , namely on the second order spatial derivatives, in such a way that DuN con-
verges almost everywhere. The regularity in the spatial variables requires an ad hoc
treatment (localization) for the Dirichlet boundary value problem. To do this we
adapt the argument introduced in [32] (treating the case p > 2) and that in [12, 13]
(treating the case p < 2). We sketch the relevant steps, pointing out the main new
aspects which are present in the time-dependent case.

3.2. Description and properties of the boundary. We assume that the bound-
ary ∂Ω is of class C2,1, that is for each point P ∈ ∂Ω there are local coordinates
such that in these coordinates we have P = 0 and ∂Ω is locally described by a
C2,1-function, i.e., there exist RP , R

′
P ∈ (0,∞), rP ∈ (0, 1) and a C2,1-function

gP : B2
RP

(0) → B1
R′

P
(0) such that

(b1) x ∈ ∂Ω ∩ (B2
RP

(0)×B1
R′

P
(0)) ⇐⇒ x3 = gP (x1, x2),

(b2) ΩP := {(x′, x3)
∣∣x′ = (x1, x2) ∈ B2

RP
(0), gP (x

′) < x3 < gP (x
′)+R′

P } ⊂ Ω,

(b3) ∇gP (0) = 0, and ∀x′ = (x1, x2)
⊤ ∈ B2

RP
(0) |∇gP (x′)| < rP ,

where Bkr (0) denotes the k-dimensional open ball with center 0 and radius r > 0.
Note that rP can be made arbitrarily small if we make RP small enough. In the
sequel we will also use, for 0 < λ < 1, the scaled open sets λΩP ⊂ ΩP , defined as
follows

λΩP := {(x′, x3)
∣∣ x′ = (x1, x2)

⊤ ∈ B2
λRP

(0), gP (x
′) < x3 < gP (x

′) + λR′
P }.

To localize near ∂Ω ∩ ∂ΩP , for P ∈ ∂Ω, we fix smooth functions ξP : R3 → R such
that

(ℓ1) χ 1
2ΩP

(x) ≤ ξP (x) ≤ χ 3
4ΩP

(x),

where χA(x) is the indicator function of the measurable set A. For the remaining
interior estimate we localize by a smooth function 0 ≤ ξ0 ≤ 1 with spt ξ0 ⊂ Ω0,
where Ω0 ⊂ Ω is an open set such that dist(∂Ω0, ∂Ω) > 0. Since the boundary ∂Ω
is compact, we can use an appropriate finite sub-covering which, together with the
interior estimate, yields the global estimate.

Let us introduce the tangential derivatives near the boundary. To simplify the
notation we fix P ∈ ∂Ω, h ∈ (0, RP

16 ), and simply write ξ := ξP , g := gP . We

use the standard notation x = (x′, x3)
⊤ and denote by ei, i = 1, 2, 3 the canonical

orthonormal basis in R3. In the following lower-case Greek letters take values 1, 2.
For a function f with spt f ⊂ spt ξ we define for α = 1, 2 tangential translations:

fτ (x
′, x3) = fτα(x

′, x3) := f
(
x′ + h eα, x3 + g(x′ + h eα)− g(x′)

)
,

tangential differences ∆+f := fτ − f , and tangential difference quotients d+f :=
h−1∆+f . For simplicity we denote ∇g := (∂1g, ∂2g, 0)

⊤ and use the operations
(·)τ , (·)−τ , ∆+(·), ∆+(·), d+(·) and d−(·) also for vector-valued and tensor-valued
functions, intended as acting component-wise.

We will use the following properties of the difference quotients, all proved in [6].

Lemma 3.13. Let v ∈ W 1,1(Ω) such that sptv ⊂ spt ξ. Then

∇d±v = d±∇v + (∂3v)τ ⊗ d±∇g,

Dd±v = d±Dv + (∂3v)τ
s
⊗ d±∇g,

div d±v = d±divv + (∂3v)±τd
±∇g

∇v±τ = (∇v)±τ + (∂3v)±τd
±∇g,

where
s
⊗ is defined component-wise also for scalar and tensor-valued functions.
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As for the classical difference quotients, Lq-uniform (with respect to h > 0)
bounds for d+f imply that ∂τf belongs to Lq(spt ξ).

Lemma 3.14. It holds7 that, if f ∈ W 1,1(Ω), then we have for α = 1, 2

d+f → ∂τf = ∂ταf := ∂αf + ∂αg ∂3f as h→ 0, (3.15)

almost everywhere in spt ξ, (cf. [32]). If we define, for 0 < h < RP

ΩP,h =
{
x ∈ ΩP

∣∣ x′ ∈ B2
RP−h(0)

}
,

and if f ∈ W 1,q
loc (Ω), 1 ≤ q <∞, then

ˆ

ΩP,h

|d+f |q dx ≤ c

ˆ

ΩP

|∂τf |q dx.

Moreover, if d+f ∈ Lq(ΩP,h0), 1 < q <∞, and if

∃ c1 > 0 :

ˆ

ΩP,h0

|d+f |q dx ≤ c1 ∀h0 ∈ (0, RP ) and ∀h ∈ (0, h0),

then ∂τf ∈ Lq(ΩP ) and
ˆ

ΩP

|∂τf |q dx ≤ c1.

Remark 3.16. All assertions of the previous lemma also hold in Orlicz spaces
generated by N-functions ϕ ∈ ∆2, as can be easily seen by adapting the proof carried
out in [23] to this situation.

The following variant of formula of integration by parts will be often used.

Lemma 3.17. Let spt g ∪ spt f ⊂ spt ξ = spt ξP and 0 < h < RP

16 . Then

ˆ

Ω

fg−τ dx =

ˆ

Ω

fτg dx.

Consequently,
´

Ω

fd+g dx =
´

Ω

(d−f)g dx. Moreover, if in addition f and g are

smooth enough and at least one vanishes on ∂Ω, then
ˆ

Ω

f∂τg dx = −
ˆ

Ω

(∂τf)g dx.

Also the following properties of the difference quotient will be used in the sequel.

Lemma 3.18. Let spt g ⊂ spt ξ. Then

(d−g)τ = −d+g, (d+g)−τ = −d−g, d−gτ = −d+g.

Lemma 3.19. Let spt g ∪ spt f ⊂ spt ξ. Then

d±(fg) = f±τ d
±g + (d±f) g.

7Note that ∂τf denotes a tangential derivative, and to avoid confusion with time derivatives,

the latter will be always denoted as ∂f
∂t

.
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3.3. A first regularity result in space. We start proving spatial regularity for
the approximate problem. The estimates proved in this intermediate step are uni-
form with respect to An, n = 1, . . . , N , only (a) in the interior of Ω and (b) in
the case of tangential derivatives. On the contrary estimates depend on An in the
normal direction. Nevertheless, this allows later on to use the equations point-wise
to prove in a different way estimates independent of An, n = 1, . . . , N , in the nor-
mal direction. Thus, we can pass to the limit with An → ∞, to treat the original
problem in the non-degenerate case.

We observe that by using a translation method, the result below is proved rig-
orously for the solutions we constructed.

Proposition 3.20. Let the operator S = ∂U , derived from the potential U , have
(p, δ)-structure for some p ∈ (2,∞), and δ ∈ (0,∞) with characteristics (γ3, γ4, p).

Let Ω ⊂ R3 be a bounded domain with C2,1 boundary and assume that u0 ∈W 1,p
0 (Ω)

and f ∈ L2(I × Ω). Let SN be the last item of the special multiple approximation
Sn, n = 1, . . . , N , of S from Definition 3.5. Then, the unique strong solution uN

of the approximate problem (3.8) satisfies for a.e. t ∈ I

t
ˆ

0

ˆ

Ω

ξ20 |∇FN (DuN (s))|2 + δp−2ξ20 |∇2uN (s)|2 dx ds ≤ c0 ,

t
ˆ

0

ˆ

Ω

ξ2P |∂τFN (DuN (s))|2 + δp−2ξ2P |∂τ∇uN (s)|2 dx ds ≤ cP ,

(3.21)

where c0 = c0(δ
2−p‖f‖22 , |||u0, f |||, ‖ξ0‖1,∞, γ3, γ4, p), while the constant related to

the neighborhood of P is such that cP = cP (δ
2−p‖f‖22 , |||u0, f |||, ‖ξP ‖1,∞, ‖gP ‖C2,1 ,

γ3, γ4, p). Here, ξ0(x) is a cut-off function with support in the interior of Ω and,
for arbitrary P ∈ ∂Ω, the tangential derivative is defined locally in ΩP via (3.15).

Proposition 3.20 and Proposition 3.7 imply uN (t) ∈W 2,2(Ω) and ∂uN

∂t (t) ∈ L2(Ω)
for a.e. t ∈ I. Hence, equations (3.8) hold point-wise a.e. in I × Ω.

We employ this to deduce the following result, by using the equations in a point-
wise sense, yielding however a critical dependence on the approximation of the
operator.

Proposition 3.22. Under the assumptions of Proposition 3.20 there exists a con-
stant C1 > 0 such that, provided in the local description of the boundary there holds
rP < C1 in (b3), where ξP is a cut-off function with support in ΩP , then there holds
for a.e. t ∈ I

t
ˆ

0

ˆ

Ω

ξ2P |∂3FN (DuN (s))|2 + δ2−pξ2P |∂3DuN (s)|2 dx ds ≤ CN , (3.23)

where CN = CN (δ2−p, δ2−p‖f‖22 , |||u0, f |||, ‖ξP ‖1,∞, ‖gP ‖C2,1 , γ3, γ4, p, AN , ωN−1).

Remark 3.24. We consider only the case δ > 0 and in the estimates of the two
above propositions all dependencies on δ are traced in a precise and explicit way,
showing how they deteriorate in the degenerate case. The degenerate problem could
be treated by assuming more stringent assumptions on the regularity of the data
(namely the regularity of the right-hand side f). The same phenomenon is well-
known to happen even for the p-Laplace problem. In that case sharpness of addi-
tional assumptions and links with the fractional regularity of the solution are proved
and discussed in detail by Brasco and Santambrogio [15] and the references therein.
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Proof of Proposition 3.20. Fix P ∈ ∂Ω and define in ΩP

w := d−(ξ2d+(uN | 1
2ΩP

)),

where ξ := ξP , g := gP , and h ∈ (0, RP

16 ) and use the function w extended by zero
outside of ΩP as a test function in (3.12). This yields, using the properties of the
difference quotient in Lemma 3.13, Lemma 3.17, Lemma 3.19, for a.e. t ∈ I

t
ˆ

0

ˆ

Ω

ξ2d+
∂uN (s)

∂t
· d+uN (s) dx ds+

t
ˆ

0

ˆ

Ω

ξ2d+SN (DuN (s)) · d+DuN (s) dx ds

= −
t
ˆ

0

ˆ

Ω

ξ2d+SN (DuN (s)) ·
(
∂3u

N (s)
)
τ

s
⊗ d+∇g dx ds

− 2

t
ˆ

0

ˆ

Ω

d+SN (DuN (s)) · ξ∇ξ
s
⊗ d+uN dx ds

+

t
ˆ

0

ˆ

Ω

SN ((DuN )τ ) ·
(
2ξ∂3ξd

+uN
) s
⊗ d+∇g dx ds

+

t
ˆ

0

ˆ

Ω

SN ((DuN )τ ) ·
(
ξ2d+∂3u

N
) s
⊗ d+∇g dx ds

+

t
ˆ

0

ˆ

Ω

f(s) · d−(ξ2d+uN (s)) dx ds =:
5∑

j=1

t
ˆ

0

Ij(s) ds .

Proposition 2.47 yields for a.e. s ∈ I the following equivalence
ˆ

Ω

ξ2
∣∣d+FN (DuN (s))

∣∣2 dx ∼
ˆ

Ω

ξ2d+SN (DuN (s)) · d+DuN (s) dx ,

with constants depending only on the characteristics of S, due to Remark 3.6. This
equivalence provides the “natural” quantity on the left-hand side. We estimate
the integrals Ij , j = 1, . . . , 5, similarly as in [6]. Note that all constants in the
following can depend on the characteristics of S and that other dependencies will
be indicated.

We start estimating the first one as

I1 ≤ c

ˆ

Ω

ξ2|d+DuN | aN (|DuN |+ |∆+DuN |)|(∇uN )τ | |d+∇g| dx

≤ c ‖g‖C1,1



ˆ

Ω

ξ2 aN (|DuN |+ |∆+DuN |)|d+DuN |2 dx




1/2

×

×



ˆ

Ω

ξ2aN (|DuN |+ |∆+DuN |)|(∇uN )τ |2 dx




1/2

≤ ε ‖ξ d+FN (DuN )‖22 + C
(
δp +

ˆ

Ω

ωN (|DuN |) dx
)
,

where we used Proposition 2.47, Hölder and Young inequalities, Lemma 2.64, the
convexity and ∆2-condition of the balanced N-function ωN , the substitution theo-
rem and Korn inequality. The constant C depends on ‖g‖C1,1 and ε−1. Note that
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in view of
´

Ω

ωN(|DuN |) dx ∼ ‖FN(DuN )‖22, estimate (3.10), and the substitution

theorem the right-hand side of the last estimate is finite. This comment also applies
to the estimates of the other terms Ij , j = 1, . . . , 5.

The second term is estimated more or less in the same way

I2 ≤ c

ˆ

Ω

ξ|d+DuN | aN (|DuN |+ |∆+DuN |)|∇ξ||d+uN | dx

≤ c ‖∇ξ‖2∞
(
ˆ

Ω

ξ2 aN (|DuN |+ |∆+DuN |)|d+DuN |2 dx
)1/2

×

×
(
ˆ

Ω∩spt ξ

aN (|DuN |+ |∆+DuN |)|d+uN |2 dx
)1/2

≤ ε ‖ξ d+FN (DuN )‖2 + C(ε−1, ‖ξ‖1,∞)
(
δp +

ˆ

Ω

ωN (|DuN |) dx
)
,

where we additionally used Remark 3.16.
To estimate the integral I3 we use that due to Proposition 2.47 there holds

|SN (P)| ≤ c (ωN)′(|Psym|). Using this, Young inequality, (2.6), the substitution
theorem, Remark 3.16 and Korn inequality we get

|I3| ≤ c(‖ξ‖1,∞, ‖g‖C2,1)

ˆ

Ω

(ωN)∗(|SN ((DuN )τ )|) + ωN (|d+uN |) dx

≤ C(‖ξ‖1,∞, ‖g‖C2,1)

ˆ

Ω

ωN(|DuN |) dx.

The integral I4 is estimated by using Lemma 3.17–Lemma 3.19 to obtain

|I4| =
∣∣∣
ˆ

Ω

(
− ξ2d+SN (DuN )d+∇g + SN (DuN )d+(∇g) d−(ξ2)

) s
⊗ ∂3u

N

+ SN (DuN )(ξ2)−τ d
−d+∇g

s
⊗ ∂3u

N dx
∣∣∣

≤ ε ‖ξ d+FN (DuN )‖22 + c(ε−1, ‖ξ‖1,∞, ‖g‖C2,1)
(
δp +

ˆ

Ω

ωN(|DuN |) dx
)
,

where the first term was treated as I1, while the other two were treated as I3 .
On the other hand, the integral related to the right-hand side can be estimated

as follows

I5 ≤ c(ε−1) δ2−p‖f‖22 + ε δp−2

ˆ

Ω

|d−(ξ2d+uN )|2 dx

≤ c(ε−1) δ2−p‖f‖22 + c(‖ξ‖1,∞, ‖g‖C1,1) δ
p−2

ˆ

Ω

|DuN |2 dx

+ ε c δp−2

ˆ

Ω

ξ2 |d+DuN |2 dx

≤ c(ε−1) δ2−p‖f‖22 + c(‖ξ‖1,∞, ‖g‖C1,1) δ
p−2

ˆ

Ω

|DuN |2 dx

+ ε c

ˆ

Ω

|d+FN (DuN )|2 dx,
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where we used standard properties of the difference quotient in L2, Korn inequality,
the substitution theorem, as well as Proposition 2.47, and Lemma 2.51, which yield
δp−2|d+DuN |2 ≤ c |d+FN (DuN )|2.

Observing that d+ ∂uN

∂t = ∂d+u
N

∂t , choosing ε > 0 sufficiently small, and using
(3.10) we proved that for a.e. t ∈ I

1

2

ˆ

Ω

ξ2|d+uN (t)|2 dx+ c

t
ˆ

0

ˆ

Ω

ξ2
∣∣d+FN (DuN (s))

∣∣2 dx ds

≤ 1

2

ˆ

Ω

ξ2|d+u0|2 dx+ c(‖ξ‖1,∞, ‖g‖C2,1 , δ
2−p‖f‖22 , |||u0, f |||, γ3, γ4, p)

≤ C0(‖ξ‖1,∞, ‖g‖C2,1 , δ
2−p‖f‖22 , |||u0, f |||, γ3, γ4, p) ,

(3.25)

where we also used the assumption on the data. Since C0 does not depend on h > 0,
it follows by Lemma 3.14 that for a.e. t ∈ I

t
ˆ

0

ˆ

Ω

ξ2
∣∣∂τFN (DuN (s))

∣∣2 dx ds ≤
t
ˆ

0

ˆ

Ω

ξ2
∣∣d+FN (DuN (s))

∣∣2 dx ds ≤ C0 ,

proving the estimate for the first term in (3.21)2. Next, observe that Proposi-
tion 2.47 and Lemma 2.51 imply

δp−2

t
ˆ

0

ˆ

Ω

ξ2|d+DuN (s)|2 dx ds ≤
t
ˆ

0

ˆ

Ω

ξ2
∣∣d+FN (DuN (s))

∣∣2 dx ds ≤ C0 .

Now we proceed exactly as in the proof of [11, (3.12)–(3.14)] for the special choice
ϕ(t) = t2 to get

δp−2

t
ˆ

0

ˆ

Ω

ξ2|d+∇uN (s)|2 dx ds (3.26)

≤ δp−2

t
ˆ

0

ˆ

Ω

ξ2|d+DuN (s)|2 dx ds+ c(‖ξ‖1,∞, ‖g‖C1,1) δ
p−2

t
ˆ

0

ˆ

Ω

|DuN (s)|2 dx ds

≤ C0 + c(‖ξ‖1,∞, ‖g‖C1,1) δ
p−2

t
ˆ

0

ˆ

Ω

|DuN (s)|2 dx ds .

This, the a priori estimate (3.10), and Lemma 3.14 finally shows for a.e. t ∈ I

δp−2

t
ˆ

0

ˆ

Ω

ξ2|∂τ∇uN |2 dx ≤ C(‖ξ‖1,∞, ‖g‖C2,1 , δ
2−p‖f‖2 , |||u0, f |||, γ3, γ4, p) ,

proving the estimate for the second term in (3.21)2.

The same argument used with a test function ξ0 with compact support in Ω, and
standard difference quotients can be used to prove (3.21)1. �

Corollary 3.27. Under the assumptions of Proposition 3.20 there holds a.e. in
I × Ω

∣∣∂τFN (DuN )
∣∣2 ∼ aN (|DuN |)|∂τDuN |2

with constants depending only on the characteristics of S.
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Proof. Proposition 2.47 implies
∣∣d+FN (DuN )

∣∣2 ∼ aN (|DuN |+ |∆DuN |)|d+DuN |2 .
The estimates (3.25), (3.26) and Lemma 3.14 yield that a.e. in I × Ω there holds
d+FN (DuN ) → ∂τF

N (DuN ) and d+DuN → ∂τDuN as h → 0. These observa-
tions immediately imply the assertion. �

Now we prove the result on the regularity in the “normal” direction from (3.23),
which is valid up to the boundary, but is dependent on the chosen multiple approx-
imation.

Proof of Proposition 3.22. Thanks to the previous results we can re-write the equa-
tions in (3.8) a.e. in I × Ω as follows

−∂u
N
i

∂t
+

3∑

k=1

∂k3S
N
i3 (DuN )∂3Dk3u

N +

2∑

α=1

∂3αS
N
i3 (DuN )∂3D3αu

N = fi ,

where

fi := −fi −
2∑

γ,σ=1

∂γσS
N
i3 (DuN )∂3Dγσu

N −
3∑

k,l=1

∂klS
N
iβ(DuN )∂βDklu

N ,

for i = 1, 2, 3. We now proceed as in [12, Eq. (3.3)] and multiply these equations

by ∂3D̂i3u
N , where D̂αβu

N = 0, for α, β = 1, 2, D̂α3u
N = D̂3αu

N = 2Dα3u
N , for

α = 1, 2, D̂33u
N = D33u

N and sum over i = 1, 2, 3. Since SN has ωN -structure we
get

−
3∑

i=1

∂uNi
∂t

∂3D̂i3u
N + γ aN (|DuN |)|b|2 ≤ |f||b| a.e. in I × Ω ,

where bi := ∂3Di3u
N and where the constant γ just depends on the characteristics

of S.
By straightforward manipulations (cf. [11, Sections 3.2 and 4.2]) we obtain that

a.e. in I × ΩP it holds

|f| ≤ c
(
|f |aN (|DuN |

) (
|∂τ∇uN |+ ‖∇g‖∞|∇2uN |

)
,

|b| ≥ 2|b̃| − |∂τ∇uN | − ‖∇g‖∞|∇2uN | ,

for b̃i := ∂233u
N
i , i = 1, 2, 3. Consequently we get a.e. in I × ΩP

−
3∑

i=1

∂uNi
∂t

∂3D̂i3u
N + 2γ aN(|DuN |)|b̃|2

≤ c
[
|f |+ aN (|DuN |)

(
|∂τ∇uN |+ ‖∇g‖∞|∇2uN |

)]
|b| .

We then add on both sides, for α = 1, 2 and i, k = 1, 2, 3, the term (which is finite
a.e.)

2γ aN(|DuN |) |∂α∂iuNk |2 ,
use the estimate |b| ≤ |∇2uN | and Young inequality, yielding

−
3∑

i=1

∂uNi
∂t

∂3D̂i3u
N + 2γ aN (|DuN |)|∇2uN |2

≤ γaN(|DuN |)|∇2uN |2+ c |f |2
aN(|DuN |)+c a

N(|DuN |)
(
|∂τ∇uN |2+‖∇g‖2∞|∇2uN |2

)
,

where in the right-hand side we used also the definition of the tangential derivative
(cf. (3.15)). Next, we choose the sets ΩP such that ‖∇g‖∞ = ‖∇gP (x1, x2)‖∞,ΩP
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is small enough, so that we can absorb the last term from the right-hand side. We
finally arrive at the following pointwise inequality

−
3∑

i=1

∂uNi
∂t

∂3D̂i3u
N + γ aN (|DuN |)|∇2uN |2

≤ c

( |f |2
aN(|DuN |) + aN (|DuN |) |∂τ∇uN |2

)
a.e. in I × ΩP .

(3.28)

We multiply (3.28) by ξ2, and integrate for a.e. t ∈ I over the sub-domain

(0, t)× ΩP,ε := (0, t)×
{
x ∈ ΩP

∣∣ gP + ε < x3 < gP +R′
P

}
,

for 0 < ε < R′
P . This shows, using also Young inequality, that

γ

t
ˆ

0

ˆ

ΩP,ε

ξ2aN(|DuN |)|∇2uN |2dx ds

≤
t
ˆ

0

ˆ

ΩP,ε

c ξ2
( |f |2
aN (|DuN |) + aN(|DuN |) |∂τ∇uN |2

)
+ ξ2

∣∣∣∣
∂uN

∂t

∣∣∣∣ |∇
2uN | dx ds

≤
t
ˆ

0

ˆ

Ω

c ξ2

(
|f |2 +

∣∣∂uN

∂t

∣∣2

aN (|DuN |) + aN (|DuN |) |∂τ∇uN |2
)
dx ds

+
γ

2

t
ˆ

0

ˆ

ΩP,ε

ξ2aN (|DuN |)|∇2uN |2 dx ds .

Now we absorb the last term from the right-hand side in the left-hand side. More-
over, we use that aN is bounded from below by c δp−2 (cf. Lemma 2.51), the as-
sumption on f and (3.10) to estimate the first term on the right-hand side. To
handle the second term we first use that aN is bounded from above by a constant
c depending on p, γ3, γ4, ω

N−1, and AN (cf. Remark 2.38, Remark 3.6) and then
we use the estimate (3.21)2. These estimates result in

T̂

0

ˆ

ΩP,ε

ξ2aN (|DuN |)|∇2uN |2 dx dt ≤ C(AN , ωN−1, δ
2−p, |||u0, f |||) .

By monotone convergence for ε→ 0, this shows that

T̂

0

ˆ

Ω

ξ2aN (|DuN |)|∇2uN |2 dx dt ≤ C(AN , ωN−1, δ
2−p, cP ) .

Using Lemma 2.51 we finally get also

δp−2

T̂

0

ˆ

Ω

ξ2|∇2uN |2 dx dt ≤ C(AN , ωN−1, δ
2−p, cP ) .

The last two estimates together with Proposition 2.49 and the definition of the
tangential derivatives (cf. (3.15)) finish the proof of Proposition 3.22. �
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3.4. Uniform estimates for the second order spatial derivatives. We now
improve the estimate in the normal direction in the sense that we will show that they
are bounded uniformly with respect to the parameters An, for all n = 1, . . . , N . The
used method is an adaption to the time evolution problem and the case p > 2 of the
treatment in [12, 37] in the case p < 2 (cf. [13]). In particular, it involves a technical
steps to justify the treatment of the time derivative, which is an adaptation of the
method used in [31, 39].

Lemma 3.29. Let ∂Ω ∈ C2,1 and let v ∈ L2(I;W 2,2(Ω)∩W 1,2
0 (Ω))∩W 1,2(I;L2(Ω)).

Then, for all t ∈ [0, T ] it holds

−
t
ˆ

0

ˆ

Ω

∂v

∂t
∂233v dx dt =

1

2
‖∂3v(t)‖22 −

1

2
‖∂3v(0)‖22.

Proof. Note that the assumptions on v already imply, by parabolic interpolation,
that v ∈ C(I;W 1,2

0 (Ω)). We give an elementary proof, by heat regularization, since
the direct integration by parts is not justified under the given assumptions. In fact,
we have that ∂v

∂t = 0 on the boundary, but is it not clear if this holds also in the

sense of traces. Let us define ϕ := ∂v
∂t −∆v ∈ L2(I ×Ω) and ψ := v(0) ∈W 1,2

0 (Ω)
and approximate these functions by sequences of smooth and compactly supported
functions ϕn and ψn, respectively. Let vn be the solution of boundary initial value
problem

∂vn
∂t

−∆vn = ϕn in I × Ω,

vn = 0 on I × ∂Ω ,

vn(0) = ψn in Ω .

(3.30)

By energy methods, one obtains directly that there exists a unique solution vn
belonging to L2(I;W 2,2(Ω) ∩W 1,2

0 (Ω)) ∩W 1,2(I;L2(Ω)). Moreover, we have

‖vn − vk‖L2(I;W 2,2(Ω)∩W 1,2
0 (Ω))∩W 1,2(I;L2(Ω))

≤ c ‖ϕn −ϕk‖L2(I×Ω) + c ‖ψn −ψk‖W 1,2(Ω) for k, n ∈ N ,

which implies that (vn) is a Cauchy sequence in the spaces on the left-hand side.

Let u be the limit in L2(I;W 2,2(Ω) ∩W 1,2
0 (Ω)) ∩W 1,2(I;L2(Ω)) of the sequence

vn. By passing to the limit in (3.30) we see that u− v is a solution of (3.30) with
vanishing data. Thus, by uniqueness we proved that

vn → v in L2(I;W 2,2(Ω) ∩W 1,2
0 (Ω)) ∩W 1,2(I;L2(Ω)) ∩C(I;W 1,2

0 (Ω)) . (3.31)

Next, testing by the “second order time derivative” of vn, which can be justified
with the help of an Galerkin approximation (cf. [10, 21]), one gets that

∥∥∥∥
∂vn(t)

∂t

∥∥∥∥
2

2

+

t
ˆ

0

∥∥∥∥
∂∇vn(s)

∂t

∥∥∥∥
2

2

ds ≤ c

t
ˆ

0

∥∥∥∥
∂ϕn(s)

∂t

∥∥∥∥
2

2

ds+ c ‖ψn‖2W 2,2(Ω) ≤ c(n) .

This proves that ∂vn

∂t ∈ L2(I;W 1,2(∂Ω)) →֒ L2(I;W 1/2(∂Ω)). Thus, ∂vn

∂t = 0 holds

in the sense of traces in L2(I;W 1/2(∂Ω)) and we obtain

−
t
ˆ

0

ˆ

Ω

∂vn
∂t

∂233vn dx dt =

t
ˆ

0

ˆ

Ω

∂2vn
∂t∂3

∂3vn dx dt =
1

2
‖∂3vn(t)‖22 −

1

2
‖∂3vn(0)‖22 .

Passing with n→ ∞, which is justified by (3.31), we proved the assertion. �
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Proposition 3.32. Let the same hypotheses as in Theorem 3.4 be satisfied with
δ > 0 and let the local description gP of the boundary and the localization function
ξP satisfy (b1)– (b3) and (ℓ1) (cf. Section 3.2). Then, there exists a constant C2 > 0

such that the time-regular solution uN ∈ L∞(I;W 1,2
0 (Ω)) ∩ L2(I;W 2,2(Ω)) of the

approximate problem (3.8) satisfies for every P ∈ ∂Ω and for a.e. t ∈ I

t
ˆ

0

ˆ

Ω

ξ2P |∂3FN (DuN (s))|2 dx ds ≤ C ,

provided rP < C2 in (b3), with C depending on the characteristics of S, δ2−p‖f‖22 ,
|||u0, f |||, ‖ξP ‖1,∞, ‖gP ‖C2,1 , and C2.

Proof. We adapt the strategy in [12, Proposition 3.2] to the time-dependent prob-
lem. Fix an arbitrary point P ∈ ∂Ω and a local description g = gP of the boundary
and the localization function ξ = ξP satisfying (b1)– (b3) and (ℓ1). In the following
constants c, C can always depend on the characteristics of SN , hence on those of
S, i.e., on γ3, γ4, and p. First we observe that Proposition 2.49 and Remark 3.6
yield that there exists a constant C0, depending only on the characteristics of S
such that

1

C0
|∂3FN (DuN )|2 ≤ P

N
3 (DuN ) a.e. in I × Ω .

Thus, we get, using also the symmetry of both DuN and SN ,

1

C0

t
ˆ

0

ˆ

Ω

ξ2|∂3FN (DuN )|2 dx ds (3.33)

≤
t
ˆ

0

ˆ

Ω

ξ2∂3S
N
αβ(DuN ) ∂3Dαβu

N dx ds+

t
ˆ

0

ˆ

Ω

ξ2∂3S
N
3α(DuN ) ∂αD33u

N dx ds

+

t
ˆ

0

ˆ

Ω

3∑

j=1

ξ2∂3S
N
j3(DuN ) ∂23u

N
j dx ds

=: J1 + J2 + J3 .

The terms J1 and J2 can be estimated exactly as in [12], if one replaces ϕ′′(|DuN |)
used there with the equivalent quantity aN (|DuN |). Let us sketch the main steps.
All missing details can be found in [12]. To treat J2 we multiply and divide by√
aN (|DuN |), use Proposition 2.49 and Young inequality, to show that, for any

given λ > 0, it holds

|J2| ≤λ

t
ˆ

0

ˆ

Ω

ξ2|∂3FN (DuN )|2 dx ds+ cλ−1

2∑

β=1

t
ˆ

0

ˆ

Ω

ξ2|∂βFN (DuN )|2 dx ds ,

for some constant cλ−1 depending on λ−1. To treat the term J1 we first use the
algebraic identity ∂3Dαβu

N = ∂αD3βu
N + ∂βD3αu

N − ∂β∂αu
N
3 . The first two

terms in the resulting equation are treated as J2, while in the term with ∂β∂αu
N
3

we use the definition of tangential derivatives (3.15). This results in three terms,
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where one is again treated as J2. This procedure leads to8

|J1| ≤λ

t
ˆ

0

ˆ

Ω

ξ2|∂3FN (DuN )|2 dx ds

+ cλ−1

(
1 + ‖∇g‖2∞

) 2∑

β=1

t
ˆ

0

ˆ

Ω

ξ2|∂βFN (DuN )|2 dx ds

+

t
ˆ

0

ˆ

Ω

ξ2|∂3SN (DuN )| |∇2g| |DuN | dx ds

+

∣∣∣∣

t
ˆ

0

ˆ

Ω

ξ2∂3S
N
αβ(DuN ) ∂α∂τβu

N
3 dx ds

∣∣∣∣ .

(3.34)

In the last but one term in (3.34) we multiply and divide by
√
aN (|DuN |), use

Proposition 2.49, Young inequality and aN (|DuN |)|DuN |2 ∼ |FN (|DuN |)|2 (cf. Pro-
position 2.47), yielding that it is estimated by

λ

t
ˆ

0

ˆ

Ω

ξ2|∂3FN (DuN )|2 dx ds+ cλ−1 ‖∇2g‖2∞
t
ˆ

0

ˆ

Ω

|FN (DuN )|2 dx ds .

To handle the last term in (3.34) we want to perform the crucial partial integration,
which reads (neglecting the localization ξ)

t
ˆ

0

ˆ

Ω

∂3S
N
αβ(DuN ) ∂α∂τβu

N
3 dx ds =

t
ˆ

0

ˆ

Ω

∂αS
N
αβ(DuN ) ∂3∂τβu

N
3 dx ds

=

t
ˆ

0

ˆ

Ω

∂αS
N
αβ(DuN ) ∂τβD33u

N dx ds .

Again, we multiply and divide by
√
aN(|DuN |), use Proposition 2.49, Young in-

equality, Corollary 3.27, and the definition of the tangential derivatives, yielding
that the last term is estimated by

c

2∑

α=1

t
ˆ

0

ˆ

Ω

|∂αFN (DuN )|2 dx ds+ c

2∑

β=1

t
ˆ

0

ˆ

Ω

|∂τβFN (DuN )|2 dx ds

≤ c

2∑

α=1

t
ˆ

0

ˆ

Ω

|∂ταFN (DuN )|2 dx ds+ c ‖∇g‖2∞
t
ˆ

0

ˆ

Ω

|∂3FN (DuN )|2 dx ds .

The presence of the localization ξ leads to several additional terms, which all can
be handled as in [12]. All together we arrive at the following estimate

8The estimated terms correspond to the terms A and B3 in [12].
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|J1|+ |J2| ≤
(
λ+ cλ−1 ‖∇g‖2∞

)
t
ˆ

0

ˆ

Ω

ξ2|∂3FN (DuN )|2 dx ds

+ cλ−1

2∑

β=1

t
ˆ

0

ˆ

Ω

ξ2|∂τβFN (DuN )|2 dx ds

+ cλ−1

(
1 + ‖∇ξ‖2∞

)
t
ˆ

0

ˆ

Ω

|FN (|DuN |)|2 dx ds .

(3.35)

In this estimate we used for the terms with ∂βF
N (DuN ) the definition of the

tangential derivative in (3.15) to get
ˆ

Ω

ξ2|∂βFN (DuN )|2 dx ≤
ˆ

Ω

ξ2|∂τβFN (DuN )|2 dx

+ ‖∇g‖2∞
ˆ

Ω

ξ2|∂3FN (DuN )|2 dx .
(3.36)

Also the term J3 is treated essentially as in [12]. Since in this step the equation
(3.8) is used, in addition we have to handle the term with the time derivative. More
precisely, we re-write the equations (3.8) as follows

∂3S
N
j3(DuN ) =

∂uNj
∂t

− f j − ∂βS
N
jβ(DuN ) a.e. in I × Ω ,

multiply it by ∂33u
N , use the algebraic identity

∂j∂ku
N
i = ∂jDiku

N + ∂kDiju
N − ∂iDjku

N , (3.37)

treat all terms without the time derivative as I3 in [12, p. 186] and integrate by

parts the term involving ∂uN

∂t , use Lemma 3.29, to get the following

J3 =

3∑

j=1

t
ˆ

0

ˆ

Ω

ξ2
∂uNj
∂t

∂233u
N
j − ξ2

(
f j + ∂βS

N
jβ(DuN )

)(
2∂3Dj3u

N − ∂jD33u
N
)
dx ds

= −1

2

ˆ

Ω

ξ2|∂3uN (t)|2 dx+1

2

ˆ

Ω

ξ2|∂3uN (0)|2 dx−2

3∑

j=1

t
ˆ

0

ˆ

Ω

ξ∂3ξ
∂uNj
∂t

∂3u
N
j dx ds

+
3∑

j=1

t
ˆ

0

ˆ

Ω

ξ2
(
fj + ∂βS

N
jβ(DuN )

)(
2∂3Dj3u

N − ∂jD33u
N
)
dx ds

≤ −1

2

ˆ

Ω

ξ2|∂3uN (t)|2 dx+
1

2

ˆ

Ω

ξ2|∂3uN (0)|2 dx (3.38)

+
(
λ+ cλ−1 ‖∇g‖2∞

)
t
ˆ

0

ˆ

Ω

ξ2|∂3FN (DuN )|2 dx ds

+ cλ−1

2∑

β=1

t
ˆ

0

ˆ

Ω

ξ2|∂τβFN (DuN )|2 dx ds+ c

t
ˆ

0

ˆ

Ω

ξ3|∂3uN |2 dx ds

+ c ‖∇ξ‖2∞
t
ˆ

0

ˆ

Ω

∣∣∣∂u
N

∂t

∣∣∣
2

dx ds+ cλ−1

t
ˆ

0

ˆ

Ω

|f |2
aN (|DuN |) dx ds ,
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where we used again (3.36). Now we choose in the estimates (3.35), (3.38) first
λ > 0 small enough and then the covering of the boundary ∂Ω such that ‖∇g‖∞ is
small enough in order to absorb in the left-hand side of (3.33) the term involving
∂3F

N (DuN ). This way we obtain the following estimate

ˆ

Ω

ξ3|∂3uN (t)|2 dx+
1

C0

t
ˆ

0

ˆ

Ω

ξ2|∂3FN (DuN (s))|2 dx ds

≤
ˆ

Ω

ξ3|∂3u0|2 dx+ c
2∑

β=1

T̂

0

ˆ

Ω

ξ2|∂τβFN (DuN (s))|2 dx ds

+ c

T̂

0

ˆ

Ω

|f(s)|2
aN (|DuN (s)|) + |FN (DuN (s))|2 +

∣∣∣∂u
N (s)

∂t

∣∣∣
2

dx ds

+ c

T̂

0

ˆ

Ω

ξ3|∂3uN (s)|2 dx ds

with constants depending only on the characteristics of S, ‖g‖C2,1 , and ‖ξ‖1,∞.

Using the uniform estimates (3.10), (3.21) and the lower bound in Lemma 2.51,
which yields

T̂

0

ˆ

Ω

|f |2
aN (|DuN |) dx ds ≤ Cδ2−p

T̂

0

ˆ

Ω

|f |2 dx ds,

we get from the last estimate the assertion of Proposition 3.32. �

Choosing now an appropriate finite covering of the boundary (for the details see
also [11]), Proposition 3.20 and Proposition 3.32 yield the following result:

Proposition 3.39. Let the same hypotheses as in Theorem 3.4 with δ > 0 be
satisfied. Then, it holds for a.e. t ∈ I

t
ˆ

0

‖∇FN (DuN (s))‖22 ds ≤ C

with C depending only on the characteristics of S, |||u0, f |||, δ2−p‖f‖22, δp−2 and
∂Ω. In particular is C independent of An, n = 1, . . . , N .

3.5. Multiple Passage to the limit. From Proposition 3.7 and Proposition 3.39
we obtain the following estimate, uniform with respect to An ≥ 1, n = 1, . . . , N ,
and valid for a.e. t ∈ I.

‖uN (t)‖21,2+‖FN(DuN (t))‖22 +
t
ˆ

0

∥∥∥∥
∂uN (s)

∂t

∥∥∥∥
2

2

+‖∇FN(DuN (s))‖22 ds ≤ C (3.40)

with C depending only on the data of the problem (1.1).
Note that the functions uN and FN depend (implicitly) on the parameters An.

Since these parameters are relevant for the various limiting processes, we now
start to write these dependencies in an explicit way. The uniform estimates for
uN (t,x, A1, . . . , AN ) and FN (DuN (t,x, A1, . . . , AN )) are inherited by taking ap-
propriate limits of the various An. In particular, we will define (when the limit
exists in appropriate spaces)

uN−1(t,x, A1, . . . , AN−1) := lim
AN→∞

uN (t,x, A1, . . . , AN−1, AN ),
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and then inductively

un−1(t,x, A1, . . . , An−1) = lim
An→∞

un(t,x, A1, . . . , An−1, An) n = 1, . . . , N,

in such a way that the function u := u0 will be shown to be the unique regular
solution to the initial boundary value problem (1.1).

Proof of Theorem 3.4. From estimate (3.40) we obtain that uN is uniformly bounded
in W 1,2(I;L2(Ω)) ∩ L∞(I;W 1,2(Ω)) and that FN (DuN ) is uniformly bounded in
L∞(I;L2(Ω)) ∩ L2(I;W 1,2(Ω)).

These bounds directly imply that there exists a sequence ANk
→ ∞ (which we

call again AN ), a vector field uN−1(t,x, A1, . . . , AN−1), and a tensor field F̂N−1

lim
AN→∞

uN = uN−1 weakly in W 1,2(I;L2(Ω)) ,

lim
AN→∞

uN = uN−1 weakly* in L∞(I;W 1,2(Ω)) ,

lim
AN→∞

FN (DuN ) = F̂N−1 weakly in L2(I;W 1,2(Ω)) ,

lim
AN→∞

FN (DuN ) = F̂N−1 weakly* in L∞(I;L2(Ω)) .

(3.41)

From ‖FN (DuN )‖L2(I;W 1,2(Ω) ≤ C it follows, using Proposition 2.49, the lower

bound on aN proved in Lemma 2.51, and the identity (3.37), that

δp−2‖∇2uN‖L2(I;W 2,2(Ω)) ≤ C (3.42)

with C depending only on the data of the problem (1.1), but independent of AN .
The estimates (3.40), (3.42) and the Aubin-Lions compactness lemma imply that
(up to a further sub-sequence)

lim
AN→∞

DuN = DuN−1 a.e. in I × Ω and strongly in L2(I × Ω),

for all fixed An, with n = 1, . . . , N − 1. Next, we observe that since

lim
AN→∞

aN (t) = aN−1(t) ,

uniformly for t belonging to compact sets in R≥0 (but in reality even more since
aN (t) = aN−1(t) for all 0 ≤ t ≤ AN ), it follows by the definition of FN and SN

that a.e. in I × Ω and for all fixed An, n = 1, . . . , N − 1, there holds

lim
AN→∞

FN (DuN (A1, . . . , AN−1, AN )) = FN−1(DuN−1(A1, . . . , AN−1)) ,

lim
AN→∞

SN (DuN (A1, . . . , AN−1, AN )) = SN−1(DuN−1(A1, . . . , AN−1)) .
(3.43)

In fact, by the definition of multiple approximation it follows that for all given
P ∈ R3×3 and for all fixed A1, . . . , AN−1 it holds

lim
AN→∞

FN (P, A1, . . . , AN−1, AN ) = FN−1(P, A1, . . . , AN−1),

lim
AN→∞

SN (P, A1, . . . , AN−1, AN ) = SN−1(P, A1, . . . , AN−1),

hence

FN (DuN (t,x, A1, . . . , AN−1, AN ))− FN−1(DuN−1(t,x, A1, . . . , AN−1)),

= FN (DuN (t,x, A1, . . . , AN−1, AN ))− FN−1(DuN (t,x, A1, . . . , AN−1, AN )),

+ FN−1(DuN (t,x, A1, . . . , AN−1, AN ))− FN−1(DuN−1(t,x, A1, . . . , AN−1)),

and the first line on the right-hand side vanishes for large enough AN , by the
properties of the multiple approximation; while the second one converges to zero
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due to the continuity of FN−1 and the point-wise convergence of DuN . The same
argument applies also to SN .

The classical result stating that the weak limit in Lebesgue spaces and the
a.e. limit coincide (cf. [25]) and (3.41) imply that

F̂N−1 = FN−1(DuN−1(A1, . . . , AN−1)) in L2(0, T ;W 1,2(Ω)) .

This identification, the convergences in (3.41), and the lower semicontinuity of
norms proves that, for a.e. t ∈ I, it holds

‖uN−1(t)‖2W 1,2 + ‖FN−1(DuN−1(t))‖22

+

t
ˆ

0

∥∥∥∥
∂uN−1(s)

∂t

∥∥∥∥
2

2

+ ‖∇FN−1(DuN−1(s))‖22 ds ≤ C
(3.44)

with a constant C depending on the data of the problem (1.1), but independent of
An, for n = 1, . . . , N − 1.

We have now to pass to the limit in the weak formulation (3.9) of the approximate
problem (3.8). Since, in view of (3.41), we easily deal with the time derivative and
the right-hand side f , the crucial point is the justification of the limit

T̂

0

(SN (DuN (t)),Dw)ψ(t) dt →
T̂

0

(SN−1(DuN−1(t)),Dw)ψ(t) dt, (3.45)

for all ψ ∈ C∞
0 (I) and all w ∈ C∞

0 (Ω). At the moment we already know that
limAN→∞ SN (DuN ) = SN−1(DuN−1) holds a.e. in I × Ω. Thus, to conclude it
is sufficient to show that SN (DuN ) is bounded uniformly with respect to N in
Lq(I ×Ω), for some q > 1. To this end we observe that Corollary 2.61, Proposition
2.29, the definition of FωqN ,δ

in (2.26), and qN ≥ 2 imply that for all P ∈ R3×3

there holds

|FN (P)|2 ≥ c δp−qN |FωqN ,δ
(P)|2 = c δp−qN (δ + |Psym|)qN−2|Psym|2

≥ c δp−qN |Psym|qN .
(3.46)

The a priori bound (3.40) and parabolic embedding imply that FN (DuN ) is bounded

in L
10
3 (I × Ω) by a constant depending only on the data of problem (1.1). This

together with (3.46) and 5
3q ≥ q + 4

3 , valid for all q ≥ 2, implies

‖DuN‖
LqN+4

3 (I×Ω)
≤ C

with a constant independent of AN . Corollary 2.61 also implies that

|SN (DuN (t,x))| ≤ cA
p−qN−1

N−1 (ωqN−1,δ)
′(|DuN (t,x)|)

≤ C A
p−qN−1

N−1

(
δqN−1−1 + |DuN (t,x)|qN−1−1

)
.

Hence, the latter estimates prove that

‖SN(DuN )‖
L(4/3+qN )/(qN−1−1)(I×Ω)

≤ C(AN−1),

where the constant C depends on the data of the problem (1.1), on AN−1, but

is independent of AN . Thus, we can infer that there exists ŜN−1 such that (up
possibly to a further relabelled sub-sequence)

lim
AN→∞

SN (DuN ) = ŜN−1 weakly in L(4/3+qN )/(qN−1−1)(I × Ω) , (3.47)

provided (4/3 + qN )/(qN−1 − 1) > 1, which is equivalent to

qN−1 − qN <
7

3
,
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which motivated the choice of qn in Definition 3.5. Using again the classical result
stating that the weak limit in Lebesgue spaces and the a.e. limit coincide (cf. [25])
we infer from (3.43) and (3.47) that

ŜN−1 = SN−1(DuN−1(A1, . . . , AN−1)) in L( 4
3+qN )/(qN−1−1)(I × Ω) ,

which in turn implies (3.45). Thus we proved that uN−1 satisfies (3.44) and

T̂

0

(∂uN−1(t)

∂t
,w
)
ψ(t) dt+

T̂

0

(SN−1(DuN−1(t)),Dw)ψ(t) dt =

T̂

0

(f(t),w)ψ(t) dt ,

for all ψ ∈ C∞
0 (I) and all w ∈ C∞

0 (Ω).

At this point we can repeat exactly the same argument by replacing N with
N − 1. Thus, one obtains inductively that for all n = 1, . . . , N − 1 there holds

T̂

0

(∂un−1(t)

∂t
,w
)
ψ(t) dt+

T̂

0

(Sn−1(Dun−1(t)),Dw)ψ(t) dt =

T̂

0

(f(t),w)ψ(t) dt ,

for all ψ ∈ C∞
0 (I) and all w ∈ C∞

0 (Ω). After N iterations we find, using also the

density of C∞
0 (Ω) in W 1,p

0 (Ω) in the last step, that the vector field u0 =: u is a
regular solution of the original problem problem (1.1). This finishes the proof of
Theorem 3.4. �

Let us finish with stating the corresponding result to Theorem 3.4 in the steady
case. This result can be proved, with many simplifications due to the absence of the
time derivative and the better embedding results in the steady case (cf. Section 1.1),
exactly in the same way as the unsteady result Theorem 3.4. Thus, we have the
following result:

Theorem 3.48. Let Ω ⊂ R3 be a bounded domain with C2,1 boundary, and assume
that f ∈ L2(Ω). Let the operator S, derived from a potential U , have (p, δ)-structure
for some p ∈ (2,∞), and δ ∈ (0,∞) fixed but arbitrary.

Then, there exists a unique regular solution of the steady version of the sys-
tem (1.1), i.e., u ∈ W 1,p

0 (Ω) fulfils for all w ∈ C∞
0 (Ω)

ˆ

Ω

S(Du) ·Dw dx =

ˆ

Ω

f ·w dx ,

and satisfies F(Du) ∈ W 1,2(Ω) with norm depending only on the characteristics of
S, δ−1, Ω, and ‖f‖2.
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2010. Skript.
[17] A. Cianchi and V. G. Maz’ya. Optimal second-order regularity for the p-Laplace system. J.

Math. Pures Appl. (9), 132:41–78, 2019.
[18] A. Cianchi and V. G. Maz’ya. Second-order regularity for parabolic p-Laplace problems. J.

Geom. Anal., 30(2):1565–1583, 2020.
[19] A. Cianchi and V.G. Maz’ya. Global Lipschitz regularity for a class of quasilinear elliptic

equations. Comm. Partial Differential Equations, 36(1):100–133, 2011.
[20] E. DiBenedetto. Degenerate Parabolic Equations. Universitext. Springer-Verlag, New York,

1993.
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