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We provide a rigorous construction of Markovian master equations for a wide class of quantum systems that
encompass quadratic models of finite size, linearly coupled to an environment modeled by a set of independent
thermal baths. Our theory can be applied for both fermionic and bosonic models in any number of physical
dimensions and does not require any particular spatial symmetry of the global system. We show that, for
nondegenerate systems under a full secular approximation, the effective Lindblad operators are the normal modes
of the system, with coupling constants that explicitly depend on the transformation matrices that diagonalize the
Hamiltonian. Both the dynamics and the steady-state (guaranteed to be unique) properties can be obtained with
a polynomial amount of resources in the system size. We also address the particle and energy current flowing
through the system in a minimal two-bath scheme and find that they hold the structure of Landauer’s formula,
being thermodynamically consistent.
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I. INTRODUCTION

In the past decade, the study of quantum many-body sys-
tems in contact with some external environment has been
receiving a great deal of attention, in view of the amazing
possibilities offered by a number of experimental platforms.
Atomic and molecular optical systems [1], as well as cou-
pled QED cavities [2,3] and optomechanical resonators [4],
to mention a few of them, enable us to achieve a remark-
able degree of control and readability in their microscopic
components so that genuine quantum phenomena stemming
from a nontrivial interplay of the coherent quantum dynam-
ics and dissipative effects may be carefully addressed in the
near future. Prototypical situations include the emergence of
collective and critical behaviors [5–8], quantum transport phe-
nomena [9,10], and quantum information processing based
on the generation and manipulation of entangled subsystems
[11,12] or on quantum annealing [13–15].

From a theoretical point of view, addressing the many-body
quantum dynamics in a driven-dissipative context is consid-
ered a formidable task and several approximations need to be
invoked. The modelization of an open quantum system itself
poses delicate conceptual issues, at the stage when the reduced
dynamics of the system S under scrutiny is posed in the form
of a master equation [16,17]. Among the most commonly em-
ployed frameworks are the Caldeira-Leggett or the spin boson
model [18,19]. The situation becomes more involved if S is
composed of many interacting subsystems so that, depending
on the employed approximations, the resulting master equa-
tion may not even preserve complete positivity of the density
operator ρS (t ), as for the Redfield equations [20]. However,
it can be shown that, within the Markovian hypothesis, which
holds provided the bath relaxation timescales are much shorter

than the timescales of interest of the system dynamics, the
time evolution of ρS (t ) follows a well-behaved master equa-
tion of the Lindblad-Gorini-Kossakowski-Sudarshan (LGKS)
type [21,22].

Notwithstanding this approximation, it is rather intuitive to
observe that, if interactions among the various constituents of
the system are properly taken into account, the environment
would introduce incoherent excitation mechanisms acting be-
tween the different subsystems (see, e.g., Ref. [16]). Then
the resulting master equation would require the knowledge
of the eigendecomposition of the system Hamiltonian HS ,
a task which is typically hard to achieve, especially when
the number of constituents increases. For this reason, a vast
majority of works in the many-body realm usually rely on
heuristic approaches and describe the effects of the environ-
ment on the system through local forms of master equations:
The common scenario is that of a LGKS master equation
with Lindblad jump operators acting locally in the physical
space of the system (see, e.g., Refs. [23–38] and references
therein). It turns out that, for quantum optical implementa-
tions, the conditions leading to such local approximation are
typically satisfied [1,39]; therefore, this formalism constitutes
the standard choice for theoretical investigations of this kind
of system.

Unfortunately, the nonlocal terms neglected in the above-
mentioned treatment are crucial to describe currents flowing
into the system, as typically occurring in solid-state devices.
Indeed, local forms of master equations may lead to apparent
thermodynamic inconsistencies, as pointed out in Ref. [40],
or failure in grasping the critical behavior [41]. This spurred
the quantum information community to investigate the emerg-
ing differences between global and local master equations
[42–53] and to find possible alternative schemes [54–59].
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In this paper we take a step forward in the treatment of
open quantum many-body systems and provide a full micro-
scopic derivation of (nonlocal) LGKS master equation for
the wide class of quadratic models. Existing investigations
of LGKS master equations for quadratic many-body sys-
tems typically rely on a local system-environment approach
[25,33,60–64]. The possibility of having a nonlocal equation
has been considered much more rarely [65,66] and a rig-
orous microscopic derivation has been performed only for
specific systems [67–71]. A related class of quadratic bosonic
system has been also studied exactly, i.e., without even
making the Born-Markov approximation [72]. Here we put
forth a statistics-independent formalism for generic quadratic
systems.

The method proposed here overcomes the limitations of
local approaches by making use of the spectrum of such
systems, which represent one of the scarce, yet paradigmatic,
examples of exactly solvable quantum many-body systems.
Despite the fact that quadratic models cannot be deemed
as truly interacting, being mappable into free-quasiparticle
systems, they are able to disclose a wealth of interesting phe-
nomena including topological phase transitions and critical
behaviors [73,74].

Our treatment goes through the diagonalization of HS ,
which requires a number of resources scaling as twice the
number N of sites, thus allowing us to address systems with up
to a few thousand sites. In fact, it is possible to evaluate any
kind of two-point observable (as particle or energy current)
and higher-order correlation through the application of the
Wick theorem. We also stress that the analysis presented here
works both for bosonic and for fermionic particles and is
not restricted to any special geometry or symmetry in the
system, being applicable to a variety of situations, which
encompass existing setups recently addressed in the literature
[70,71].

The paper is organized as follows. In Sec. II we intro-
duce the framework we are going to focus on, which enables
us to describe the temporal evolution of a quantum system
coupled to an external bath, under the weak-coupling, Born-
Markov, and secular approximations. Section III contains a
brief description of quadratic quantum many-body systems
and summarizes the general procedure that is needed to di-
agonalize them. In Sec. IV we explicitly construct a class of
Markovian master equations for quadratic systems, following
the self-consistent microscopic derivation outlined in Sec. II
which brings us to nonlocal dissipators. Details on the proce-
dure to obtain the temporal behavior and the asymptotics of
two-point observables and higher-order correlators are pro-
vided in Sec. V, where we also show that, for the master
equation constructed in Sec. IV, the steady state is unique. In
Sec. VI we specialize to a minimal quantum-transport setup
composed of a one-dimensional system coupled to two baths
at different temperatures and chemical potentials. We discuss
the possibility to establish steady-state particle and energy
currents, highlighting the emergence of thermoelectric effects
and showing the consistency with the thermodynamics, by
proving the validity of the Onsager relation. We conclude
with a summary and perspectives for future work, in Sec. VII.
Appendixes A and B discuss the subtleties that may emerge
when the system Hamiltonian supports zero-energy modes

and/or degenerate eigenenergies, which are cases that need
to be treated separately.

II. MARKOVIAN MASTER EQUATION

We consider a quantum mechanical system S interacting
with another quantum system E that acts as an external envi-
ronment. By definition, the universe U = S ∪ E (system plus
environment) is a closed system and the time evolution of its
density operator ρU (t ) is ruled by the Hamiltonian

HU = HS ⊗ IE + IS ⊗ HE + Hint, (1)

where HS (HE ) denotes the free Hamiltonian of S (E), IS
(IE ) is the corresponding identity operator, and Hint is a term
describing the system-environment interaction.

The system’s reduced density operator can be found by
tracing out the environmental degrees of freedom, through
the identification ρS (t ) ≡ TrE [ρU (t )]. Under the dynamical
semigroup hypothesis, such a reduction leads to the so-called
LGKS Markovian master equation [16,17,21,22]

dρS (t )

dt
= −i{H, ρS (t )}− + D[ρS (t )], (2a)

where H is a Hermitian operator, generally differing from HS .
The superoperator D[·] is responsible for the dissipation and
can be cast in the form

D[ρ] =
∑
i, j

ai j (2LiρL†
j − {L†

j Li, ρ}+), (2b)

where ai j are coupling constants and Lj are the Lindblad
operators.

The notation used above,

{X,Y }ζ ≡ XY + ζY X, (3)

with ζ = ±1, distinguishes between the anticommutator
(ζ = +1) and the commutator (ζ = −1) of two operators. For
the sake of clarity in the notation, hereafter we will be working
in units of h̄ = kB = 1.

Finding suitable expressions for the quantities entering
Eqs. (2) from a given microscopic model can be a labo-
rious problem, especially for complex systems. On most
occasions, phenomenologically derived local system-bath
coupling schemes are assumed, so typically the Lindblad op-
erators Lj act on an appropriate spatial coordinate (e.g., a
single site of a quantum lattice model). Despite the successes
achieved in describing a variety of situations, as for quantum
optical devices [39], it has been shown that such an approach
can lead to contradictory results, which may lead to a violation
of the second principle of thermodynamics [40]. For example,
this can happen if different parts of S are strongly coupled to
each other, a fact which clearly hints at a breakdown of such
a local approximation.

The flaw of this phenomenological approach resides in
the lack of an appropriate derivation process for the master
equation from the microscopic dynamics. The standard way
to do that can be summarized as follows [16]. Without loss
of generality, one first needs to write the spectral decompo-
sition of the system Hamiltonian HS = ∑

k ωk|k〉〈k| and the
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interaction Hamiltonian as Hint = ∑
α Oα ⊗ Rα (where Oα

acts on S and Rα acts on E). This leads to

H = HS + HLS ≡ HS +
∑
α,β;ω

Sαβ (ω)O†
α (ω)Oβ (ω), (4a)

D[ρ] =
∑
α,β;ω

�αβ (ω)[2Oβ (ω)ρO†
α (ω) − {O†

α (ω)Oβ (ω), ρ}+],

(4b)

where HLS is a Lamb-shift correction,

Oα (ω) ≡
∑
k,q

δωq−ωk ,ω|k〉〈k|Oα|q〉〈q| (5)

are the eigenoperators of HS , and

�αβ (ω) = 1

2

∫ ∞

−∞
dτ eiωτ 〈R̃†

α (τ )Rβ〉, (6)

Sαβ (ω) = 1

2i

∫ ∞

0
dτ [eiωτ 〈R̃†

α (τ )Rβ〉 − e−iωτ 〈R†
αR̃β (τ )〉]. (7)

In the above expressions, 〈·〉 is the mean value calculated
with the environmental density operator ρE , supposed to
be constant by means of the Born-Markov hypothesis, and
X̃ (τ ) ≡ eiHE τ Xe−iHE τ . It is also important to highlight that
Eqs. (4) are obtained after a full secular approximation, the
validity of which is based on the assumption that the system’s
eigenfrequencies {ωk} are either degenerate or well spaced
with respect to the system’s typical evolution timescale [16].
In this work we assume this condition to be valid, thus ex-
cluding the presence of quasidegeneracies. If they do occur,
a more general partial secular approximation needs to be
invoked [52]: Without it, nonphysical results may emerge [as
the absence of heat transport between different temperature
reservoirs (see Ref. [75])]. We leave this interesting issue to a
future investigation.

The crucial point of Eqs. (4) is the spectral decomposition
of HS , which is required to find the eigenoperators Oα (ω).
In general, this is difficult to exploit and this is the reason
why the microscopic derivation is rarely used in physical
situations, apart from specific cases of very simple quantum
systems (for example, a single quantum spin or a bunch of
coupled qubits). Below we apply this derivation to the class of
quadratic quantum many-body systems which can be effec-
tively diagonalized with a polynomial amount of resources in
the system size.

III. QUADRATIC QUANTUM SYSTEMS

In this section we summarize the basic properties of
quadratic quantum systems, as they constitute a paradig-
matic example of many-body systems [76], focusing on the
procedure that is needed to effectively obtain their spectral
decomposition. Consider a system S defined on a lattice with
N > 1 sites and denote by a j (a†

j ) the annihilation (creation)
operator associated with the jth site, where j = 1, . . . , N . The
set of these operators obeys the canonical rules

{ai, a†
j}ζ = δi j, {ai, a j}ζ = {a†

i , a†
j}ζ = 0, (8)

where we have adopted the notation of Eq. (3), so ζ stores in-
formation about the statistics of the components of S: ζ = +1

implies anticommutation rules, holding for a fermionic sys-
tem, while ζ = −1 is for commutation rules, holding for a
bosonic system.

The most general free Hamiltonian of a quadratic system
is given by

HS =
N∑

i, j=1

[
Qi ja

†
i a j + 1

2
(Pi ja

†
i a†

j + P∗
i ja jai )

]
. (9)

The terms with coefficients Qi j are called normal terms,
while those with coefficients Pi j are called anomalous
(or pairing) terms, since their presence makes HS non-
number-conserving. Note that the Hermiticity of HS and the
constraints in Eq. (8) impose the conditions

Q† = Q, PT = −ζP (10)

on the coefficient matrices. In this work we assume for sim-
plicity that Qi j and Pi j are time-independent coefficients.
However, it is quite straightforward to generalize our con-
struction below to the case of time-dependent Hamiltonians.

The spectral decomposition of HS can be obtained through
a Bogoliubov-Valatin (BV) transformation, which formulates
the task in terms of a standard linear-algebra eigenvalue prob-
lem. To fix the notation, below we provide a brief description
of it, referring to [76–78] for a more detailed discussion.

We first define the 2N-dimensional Nambu field vector

a† = (a†
1, . . . , a†

N , a1, . . . , aN ), (11)

where blackboard bold letters denote objects existing in the
doubled Nambu space on which the field vector acts. The
canonical rules (8) translate into

{aμ,a†
ν}ζ = I(ζ )

μν , (12)

where I(ζ ) ≡ (I 0
0 ζ I), with I the N × N identity matrix. With

these definitions, the quadratic Hamiltonian (9) takes the
compact form

HS = 1
2 (a†Ha + ζ TrQ), (13)

where

H ≡
(

Q P
−ζP∗ −ζQ∗

)
(14)

is often referred to as the Bogoliubov–de Gennes Hamilto-
nian. Note that Eq. (10) implies that H is Hermitian; however,
the latter can be seen as a coefficient matrix in the Nambu
space and not as an actual Hamiltonian operator.

Let us now define the operators {bk}k=1,...,N through the
canonical transformation

a j =
N∑

k=1

(Ajkbk + Bjkb†
k ). (15)

In the Nambu space this can be written as

a = Tb, T ≡
(

A B
B∗ A∗

)
. (16)
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To preserve the canonical rules {bμ,b†
ν}ζ = I(ζ )

μν on the oper-
ators bk , we have to impose

I(ζ )
μν = {aμ,a†

ν}ζ =
∑
σ,τ

Tμσ {bσ ,b†
τ }ζT †

τν, (17)

leading us to the condition

TI(ζ )T † = I(ζ ), (18)

or in terms of the A and B matrices,

A†A + ζBT B∗ = AA† + ζBB† = I, (19a)

A†B + ζBT A∗ = ABT + ζBAT = 0. (19b)

Using the transformation (16), we can write Eq. (13) as

HS = 1
2 [b†(I(ζ )T−1DT )b + ζ TrQ], (20)

where we used Eq. (18) and defined D ≡ I(ζ )H. One can
prove that [76–78], if D is diagonalizable with real eigenval-
ues, then it is always possible to choose T in such a way to
obtain T−1DT = diag(ω1, . . . , ωN ,−ω1, . . . ,−ωN ), where
ω j � 0 (note that, if the matrix D has a null eigenvalue, this
always comes in pairs and thus has an even degeneracy). In
this case, expanding the Nambu representation,

HS = 1

2

N∑
k=1

ωk (b†
kbk − ζbkb†

k ) + ζ

2
TrQ

=
N∑

k=1

ωkb†
kbk + ζ

2

[
TrQ −

N∑
k=1

ωk

]
, (21)

where we have used bkb†
k = 1 − ζb†

kbk and ζ 2 = 1. This is
the diagonalized form of the Hamiltonian HS : The set {ωk}
is the spectrum of excitations and bk assumes the role of the
annihilation operator of a normal mode (or quasiparticle exci-
tation) with energy ωk . If T can be chosen in this way, Eq. (15)
is called a BV transformation and the matrices A and B are
the BV matrices. Note that for fermionic systems (ζ = +1)
it is always possible to perform such a transformation, since
D = H is Hermitian, and hence always diagonalizable with
real eigenvalues. In contrast, for bosonic systems (ζ = −1)
this is not always the case; nonetheless, it can be shown that
if HS is stable (i.e., H is positive definite) then D has real
positive eigenvalues ω j > 0 and the BV transformation can
be performed [76–78]. Situations where zero-energy bosonic
modes (also known as soft modes) are present are trickier to
handle, as they can require a special type of diagonalization
[79], which we do not discuss here. From a numerical point
of view, note that the problem of finding T is equivalent in
complexity to the diagonalization of D, which is a matrix of
size 2N × 2N .

Let us finally address the special case of a normal system,
in which all the anomalous terms are absent, i.e., Pi j = 0 in
Eq. (9). In such a case, the free Hamiltonian can be simply
written as HS = a†Qa, after defining the N-dimensional field
vector a† = (a†

1, . . . , a†
N ). Thus, the problem of diagonalizing

D translates into that of diagonalizing the Hermitian matrix
Q. Given the unitary matrix A which diagonalizes it, the

transformation a = Ab is able to solve the problem, since

HS = b†(A†QA)b =
N∑

k=1

ωkb†
kbk, (22)

where ωk are the eigenvalues of Q. This coincides with a
BV transformation with B = 0 (i.e., there is no mixing be-
tween annihilation and creation operators); in that case, the
constraints (19) guarantee that A is a unitary matrix and thus
the total number of particles N ≡ ∑

i a†
i ai coincides with the

total number of quasiparticles NQ ≡ ∑
k b†

kbk .

IV. CONSTRUCTION OF THE MASTER EQUATION FOR
QUADRATIC SYSTEMS

In this section we show how to explicitly derive a realistic
LGKS master equation for quadratic systems, following the
microscopic derivation outlined in Sec. II and the diagonal-
ization procedure described in Sec. III. This will lead to a
nonlocal system-bath coupling, which can nevertheless be
handled within the BV formalism.

A. Definition of the universe Hamiltonian

The first step consists in the specification of the universe
Hamiltonian (1) for the quadratic model in Eq. (9). We sup-
pose that the environment consists of a set of NB independent
thermal baths, indexed by n ∈ {1, . . . , NB}, each of them char-
acterized by a temperature Tn and a chemical potential μn.
It is reasonable to assume that they are all described by a
continuous free model such that

HE =
NB∑

n=1

∫
dk εn(k)c†

n(k)cn(k) ≡
NB∑

n=1

HE,n, (23)

where the spectrum εn(k) � 0 is assumed to be non-negative.
The operators cn(k) fulfill the canonical rules

{cn(k), c†
m(q)}ζ = δnmδ(k − q), (24a)

{cn(k), cm(q)}ζ = {c†
n(k), c†

m(q)}ζ = 0 (24b)

and satisfy the relations (for any ζ = ±1)

{HE , cn(k)}− = −εn(k)cn(k), (25a)

{HE , c†
n(k)}− = εn(k)c†

n(k). (25b)

Moreover, by the hypothesis of independent thermal baths,
the environmental reduced density operator ρE assumes the
factorized form

ρE =
NB⊗

n=1

e−(HE,n−μnNE,n )/Tn

Tr[e−(HE,n−μnNE,n )/Tn ]
, (26)

where NE,n ≡ ∫
dk c†

n(k)cn(k). From this we can easily obtain
the two-point expectation values

〈cn(k)cm(q)〉 = 〈c†
n(k)c†

m(q)〉 = 0, (27a)

〈c†
n(k)cm(q)〉 = δnmδ(k − q) fn(εn(k)), (27b)

with

fn(ε) ≡ [ζ + e(ε−μn )/Tn ]−1 (28)
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FIG. 1. Schematic picture of the system-environment interaction
setting with NB = 3, as described by Eq. (29). Gray dots stand for the
lattice sites of the system S, while colored circles denote the external
baths composing the environment E . The highlighted regions in the
lattice denote the sets of sites In coupled to the nth bath. Note that
the sketch is not to scale, since real baths are typically much larger
than the system.

being either the Fermi-Dirac distribution (if ζ = +1) or the
Bose-Einstein distribution (if ζ = −1). We note that hereafter
we always assume ζ = +1 (for fermions) or ζ = −1 (for
bosons) in Eqs. (8), (24), and (28), thus ignoring the cases
where the system and the bath components obey different
statistics. The latter, mixed, case can however be easily taken
into account using the same formalism.

As for the system-environment interaction, we consider
a general linear coupling between the environment variables
and the sites of the system, that is,

Hint =
NB∑

n=1

∑
p∈In

∫
dk gn(k)wp,n(ap + a†

p)[cn(k) + c†
n(k)],

(29)
where the index p runs over the set In gathering the lattice
sites which are physically coupled to the nth bath; this allows
us to consider various kinds of interactions, even inhomoge-
neous ones (see the sketch in Fig. 1). The complex coefficient
gn(k) quantifies the interaction strength between the kth mode
of the nth bath and the system [in the Markovian hypothesis,
it is reasonable to assume that gn(k) is uniform over the
system sites to which the kth mode of the nth bath is coupled].
The coefficient wp,n is a site-dependent weight which can be
used to take into account, for instance, inhomogeneous spatial
distributions of the couplings to a common environment. The
interaction Hamiltonian can also be written in the canonical
form Hint = ∑NB

n=1 On ⊗ Rn, where

On =
∑
p∈In

wp,n(ap + a†
p), (30a)

Rn =
∫

dk gn(k)[cn(k) + c†
n(k)]. (30b)

B. Eigenoperators of the system Hamiltonian

Now suppose {|x〉 = |x1, . . . , xN 〉} is the orthonormal ba-
sis of the diagonalized quadratic Hamiltonian (21), where
xk ∈ N is the occupation number associated with the kth
normal mode (xk ∈ {0, 1} for fermionic systems, while

xk ∈ {0, 1, 2, . . .} for bosonic systems). The energy of |x〉 is
given by E (x) ≡ ∑N

k=1 xkωk . With this notation, the definition
of the eigenoperator (5) associated with On becomes

On(ω) =
∑
p∈In

wp,n

∑
x,y

δE (y)−E (x),ω|x〉〈x|(ap + a†
p)|y〉〈y|.

(31)
Using the BV transformation (15), we can see that

〈x|ap|y〉 =
N∑

k=1

(Apk〈x|bk|y〉 + Bpk〈x|b†
k|y〉). (32)

The states |x〉 and |y〉 must be equal, except for their value
at the kth position, in order to have a nonzero expression. In
particular, the matrix element 〈x|bk|y〉 is nonzero if and only
if bk|y〉 = |x〉, which implies

|x〉〈y| = bk, E (y) − E (x) = ωk, (33a)

while a nonzero value of 〈x|b†
k|y〉 implies

|x〉〈y| = b†
k, E (y) − E (x) = −ωk . (33b)

We can then write∑
x,y

δE (y)−E (x),ω|x〉〈x|ap|y〉〈y|

=
∑

k

(
Apkδω,ωk bk + Bpkδω,−ωk b†

k

)
(34)

and similarly, for a†
p,∑

x,y

δE (y)−E (x),ω|x〉〈x|a†
p|y〉〈y|

=
∑

k

(
B∗

pkδω,ωk bk + A∗
pkδω,−ωk b†

k

)
. (35)

Adding Eq. (34) to (35), we finally obtain the complete set of
eigenoperators of HS as defined in Eq. (31),

On(ω) =
∑
p∈In

wp,n

N∑
k=1

[
φpkδω,ωk bk + φ∗

pkδω,−ωk b†
k

]
, (36)

where we have introduced the matrix

φ ≡ A + B∗ (37)

for convenience of notation.
It is important to stress that, although the interaction opera-

tor On has a local shape (it acts only on In), the corresponding
eigenoperator is intrinsically nonlocal, since it is composed of
delocalized excitation operators. We recover a local shape of
On(ω) only after assuming that there is no coupling between
the different sites of S . For example, taking a normal Hamil-
tonian with B = 0 and assuming ωk 
 � ∀ k, the Kronecker
δ’s in Eq. (36) can be pulled out of the sum over k to obtain

On(ω) 

∑
p∈In

wp,n[δω,�ap + δω,−�a†
p] (38)

and this would have a local shape. Intuitively, this is equivalent
to saying that the ap themselves are the normal modes of the
system. For general quadratic Hamiltonians, there is no reason
to assume that the local approximation is valid, so to obtain
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physically consistent results, one would necessarily have to
stick with Eq. (36).

The next step should be to put the expression (36) we
obtained for On(ω) into the microscopic dissipator of Eq. (4b).
Notice that, in our case, the greek indices α and β should be
replaced with n and m. Before doing that, it is convenient
to calculate explicitly the Fourier transform �nm(ω) of the
environment correlation functions, defined in Eq. (6).

C. Environment correlation functions

Let us start by using Eq. (30b) to write

〈R̃†
n(τ )Rm〉 =

∫
dk

∫
dq g∗

n(k)gm(q)

×〈eiHE τ [cn(k) + c†
n(k)]e−iHEτ [cm(q) + c†

m(q)]〉.
(39)

This expression can be simplified by means of the Baker-
Campbell-Hausdorff formula, according to which, given two
generic operators X and Y ,

eXYe−X = evY if {X,Y }− = vY, v ∈ C. (40)

Remembering that the operators cn(k) must satisfy Eq. (25),
the second line in Eq. (39) can be written as

e−iεn (k)τ 〈cn(k)[cm(q) + c†
m(q)]〉

+ eiεn (k)τ 〈c†
n(k)[cm(q) + c†

m(q)]〉. (41)

Due to Eqs. (27), such expectation values can be explicitly
calculated as

δnm{e−iεn(k)τ [1 − ζ fn(εn(k))] + eiεn(k)τ fn(εn(k))}. (42)

The only nonzero values for the environment correlation func-
tions occur when n = m; therefore, the only relevant term
reads

〈R̃†
n(τ )Rn〉 =

∫
dk|gn(k)|2{eiεn (k)τ fn(εn(k))

+ e−iεn (k)τ [1 − ζ fn(εn(k))]}.
(43)

The Fourier transform of e±iετ is 2πδ(ω ± ε); therefore,

�nn(ω) = π

∫
dk|gn(k)|2{δ(ω + εn(k)) fn(εn(k))

+ δ(ω − εn(k))[1 − ζ fn(εn(k))]}.
(44)

It is now convenient to define the spectral density associ-
ated with the nth bath as

Jn(ω) ≡ π

∫
dk|gn(k)|2δ(ω − εn(k)). (45)

Since εn(k) � 0, we have Jn(ω) = 0 for ω < 0. In this way,
Eq. (44) can be rewritten as

�nn(ω) =
⎧⎨
⎩
Jn(ω)[1 − ζ fn(ω)] if ω > 0
Jn(−ω) fn(−ω) if ω < 0
Jn(0)[1 + (1 − ζ ) fn(0)] if ω = 0.

(46)

D. Calculation of the dissipator

In the preceding section we showed that the matrix �(ω)
is diagonal in the bath index n. This means that, in our case,

Eq. (4b) acquires the diagonal form

D[ρ] =
∑
n;ω

�nn(ω)[2On(ω)ρO†
n(ω) − {O†

n(ω)On(ω), ρ}+].

(47)
We can now plug in the expression for On(ω) reported in
Eq. (36). Let us first look at the term On(ω)ρO†

n(ω):

On(ω)ρO†
n(ω)

=
∑

p,s∈In

wp,nw
∗
s,n

N∑
k,q=1

[
φpkδω,ωk bk + φ∗

pkδω,−ωk b†
k

]
× ρ

[
φ∗

sqδω,ωq b†
q + φsqδω,−ωq bq

]
. (48)

For the sake of simplicity, let us now suppose that the system
S does not have degenerate eigenenergies and that it does not
support a zero-energy mode, which means that ωk = ωq only
if k = q and there is no k such that ωk = 0. If this is the case,
then the sum over k and q in Eq. (48) reduces to

N∑
k=1

[
φpkφ

∗
skδω,ωk bkρb†

k + φ∗
pkφskδω,−ωk b†

kρbk
]
. (49)

The same simplification can be performed on the other terms
of Eq. (47). The computation is quite straightforward and the
result is

D[ρ] =
∑
n;k

�n,k[�nn(ωk )(2bkρb†
k − {b†

kbk, ρ}+)

+�nn(−ωk )(2b†
kρbk − {bkb†

k, ρ}+)], (50)

where

�n,k ≡
∑

p,s∈In

wp,nw
∗
s,nφpkφ

∗
sk =

∣∣∣∣∣
∑
p∈In

wp,nφpk

∣∣∣∣∣
2

� 0. (51)

Note that the sum over ω has been performed taking advantage
of the Kronecker δ’s. For the sake of compactness in the
notation, hereafter we will always implicitly assume that the
index k runs from 1 to N , the bath index n runs from 1 to NB,
and the index p runs in In.

We can now use Eq. (46) to finally obtain

D[ρ] =
∑
n;k

γn,k[[1 − ζ fn(ωk )](2bkρb†
k − {b†

kbk, ρ}+)

+ fn(ωk )(2b†
kρbk − {bkb†

k, ρ}+)], (52)

where we have introduced the coupling constants

γn,k ≡ Jn(ωk )�n,k � 0. (53)

We emphasize that this dissipator is valid as long as ωk �= 0 for
all k. If the system S supports a zero-energy mode, one can
nevertheless follow the same kind of procedure, but special
care must be taken when manipulating products of eigenop-
erators, as in Eq. (48). We defer a discussion of this case
to Appendix A. Attention should be also paid if the system
supports degenerate eigenenergies; the reader can find details
on this issue in Appendix B.

It is worth mentioning that, if one would have chosen the
local approximate version for the eigenoperators (38), the
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dissipator would have taken the form

D(l)[ρ] =
∑
n;p

Jn(�)[[1 − ζ fn(�)](2apρa†
p − {a†

pap, ρ}+)

+ fn(�)(2a†
pρap − {apa†

p, ρ}+)], (54)

which is basically the usual local dissipator, where
γ (↑)

p ≡ ∑
n Jn(�) fn(�) and γ (↓)

p ≡ ∑
n Jn(�)[1 − ζ fn(�)]

quantify the population and depopulation rates of the pth site
[25,26,28,33,60–62].

E. Lamb-shift correction

To conclude the construction, we have to calculate the
Lamb-shift correction (4a) to the free system Hamiltonian. In
the definition of the matrix S(ω) reported in Eq. (7), the envi-
ronment correlation functions appear and the same argument
as before applies; therefore, only diagonal terms with n = m
remain. This implies that

HLS =
∑
n;ω

Snn(ω)O†
n(ω)On(ω). (55)

Inserting Eq. (36), we get

HLS =
∑
n;k

�n,k[Snn(ωk )b†
kbk + Snn(−ωk )bkb†

k]. (56)

Neglecting a constant which will not appear in the master
equation, since HLS only enters via a commutator, we can
safely rewrite

HLS =
∑
n;k

�n,k[Snn(ωk ) − ζSnn(−ωk )]b†
kbk . (57)

To proceed further, we now have to calculate Snn(ω). The
term 〈R̃†

n(τ )Rn〉 has been already calculated in Eq. (43). The
other term can be obtained through the same procedure, which
leads to

〈R†
nR̃n(τ )〉 =

∫
dk|gn(k)|2{eiεn(k)τ [1 − ζ fn(εn(k))]

+ e−iεn (k)τ fn(εn(k))}. (58)

Using the formula
∫ ∞

0 e±iετ dτ = πδ(ε) ± i P[1/ε], where
P[1/ε] stands for the Cauchy principal value distribution, we
see that

Snn(ω) =
∫

dk|gn(k)|2
{

P
1

ω + εn(k)
fn(εn(k))

+ P
1

ω − εn(k)
[1 − ζ fn(εn(k))]

}
.

The quantity which enters in the Lamb-shift correction (57)
is Snn(ω) − ζSnn(−ω). Using the previous expression and the
definition of the spectral density in Eq. (45), we can then write

HLS =
N∑

k=1

ϕkb†
kbk, (59)

where

ϕk = 1

π

NB∑
n=1

�n,k

[
P

∫ Jn(ε)

ωk − ε
dε + ζ P

∫ Jn(ε)

ωk + ε
dε

]
, (60)

and this is the most general expression we can write without
making assumptions about the spectral density. Note that, if
we assume our baths to have a very large bandwidth with
respect to the frequencies of the system,

Jn(ε) 
 γ > 0 ∀ ε � 0, (61)

the spectral density can be pulled out from the integrals,
which then become zero by means of the principal value sign.
Therefore, in such a case one can safely assume HLS = 0.
Otherwise, for the general case, one should evaluate the ex-
pression (60) according to the specific system-environment
coupling model. In any case, the Hermitian operator H which
appears in the master equation [Eq. (4a)] is simply given by

H =
N∑

k=1

ω̃kb†
kbk, (62)

with ω̃k ≡ ωk + ϕk .
Summarizing, we showed that it is possible to obtain a

global LGKS master equation for nondegenerate quadratic
systems of the form in Eq. (2) where the Hermitian operator
H coincides with a possibly shifted version of the quadratic
Hamiltonian of the system (9) and the dissipator D[ρ] is given
by Eq. (52). Notably, D[ρ] has the same form of the dissipator
for the interaction between a harmonic oscillator and a bath, as
can be guessed from the fact that a diagonalized Hamiltonian
(21) is equivalent to a superposition of independent harmonic
oscillators. However, there are two important differences here:
The Lindblad operators are nonlocal (they are the normal
modes of the system bk) and the effective coupling constants
γn,k explicitly depend on the BV matrices via Eq. (53). The
matrices A and B contain information about the spatial dis-
tribution of the normal modes [see Eq. (15)]; therefore, we
expect this spatial form to influence the couplings with the
environment, as it should be.

V. STEADY STATE

It is known that every LGKS master equation admits at
least one steady state, which is reached in the long-time limit
t → ∞. A more interesting point concerns the uniqueness
of such a state. In the literature, a number of theorems have
been proposed to characterize the conditions under which
one can have a unique steady state; however, a conclusive
statement on this subject is not simple to obtain [80]. Nev-
ertheless, the Spohn theorem [81] is sufficient to guarantee
the uniqueness of the steady state for the master equation
constructed in Sec. IV. Such theorem states that, if the set
of Lindblad operators {Li} is self-adjoint and its bicommutant
{Li}′′ equals the entire operator space, then the steady state
is unique. We remind the reader that the commutant {Li}′ is
defined as the set of operators which commute with all of the
Li and the bicommutant {Li}′′ is simply the commutant of the
commutant.

In our case, {Li} = {bk} ∪ {b†
k}. By definition, this is a self-

adjoint set, since for every bk the adjoint b†
k always belongs to

the set itself. Moreover, due to the canonical rules, we know
that there is no operator which simultaneously commutes with
both bk and b†

k , except for the trivial one αI , α ∈ C. It follows
that the commutant {Li}′ is trivial and the bicommutant {Li}′′
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equals the entire operator space. Due to the Spohn theorem,
we can therefore conclude that the steady state is unique:
The long-time dynamics is characterized by a well-defined
relaxation process. Obviously, in general, we have no reason
to believe that this relaxation is of the thermal kind, since the
environment density operator ρE in Eq. (26) is not character-
ized by a single temperature. We then expect to deal with a
nontrivial nonequilibrium steady state.

Let us see how to characterize this steady state through the
observables. We start from the adjoint version of our master
equation, which can be written as

dOH (t )

dt
= i{H, OH (t )}− +

∑
n,k

γn,k[[1 − ζ fn(ωk )]

× [2b†
kOH (t )bk − {b†

kbk, OH (t )}+]

+ fn(ωk )[2bkOH (t )b†
k − {bkb†

k, OH (t )}+]], (63)

where OH (t ) denotes the Heisenberg form of a Schrödinger
observable O. From this it is possible to calculate the evolution
of the expectation value 〈OH (t )〉. First of all, we consider two-
point observables in quasiparticle operators. The calculation
is quite lengthy but straightforward, so here we just show the
result

d

dt
〈b†

kbk〉 = −2
∑

n

γn,k〈b†
kbk〉 + 2

∑
n

γn,k fn(ωk ), (64a)

d

dt
〈b†

kbq〉 =
[

i(ω̃k − ω̃q) −
∑

n

(γn,k + γn,q)

]
〈b†

kbq〉, (64b)

d

dt
〈b†

kb†
q〉 =

[
i(ω̃k + ω̃q) −

∑
n

(γn,k + γn,q)

]
〈b†

kb†
q〉, (64c)

d

dt
〈bqbk〉 =

[
− i(ω̃k + ω̃q) −

∑
n

(γn,k + γn,q)

]
〈bqbk〉,(64d)

where in Eq. (64b) it is assumed that k �= q. Note that all the
four-point terms cancel each other, leaving us with only two-
point quantities. Every equation is closed on its own and each
of them can be easily integrated, leading to

〈b†
kbk〉(t ) =

∑
n γn,k fn(ωk )∑

n γn,k

[
1 − exp

(
−2

∑
n

γn,kt

)]

+〈b†
kbk〉0 exp

(
−2

∑
n

γn,kt

)
, (65a)

〈b†
kbq〉(t ) = 〈b†

kbq〉0 exp

(
i(ω̃k − ω̃q)t −

∑
n

(γn,k + γn,q)t

)
,

(65b)

〈b†
kb†

q〉(t ) = 〈b†
kb†

q〉0 exp

(
i(ω̃k + ω̃q)t −

∑
n

(γn,k + γn,q)t

)
,

(65c)

〈bqbk〉(t ) = 〈bqbk〉0 exp

(
−i(ω̃k + ω̃q)t −

∑
n

(γn,k + γn,q)t

)
,

(65d)

where the subscript 〈·〉0 indicates the expectation value at time
t = 0. If

∑
n γn,k �= 0, the t → ∞ limit leads to

〈b†
kbq〉s = δkq

∑
n γn,k fn(ωk )∑

n γn,k
, 〈b†

kb†
q〉s = 〈bqbk〉s = 0, (66)

where the subscript 〈·〉s refers to the expectation value for
the steady state. The only nonzero quantities are the diagonal
occupations, which tend to the average of the Fermi-Dirac
(or Bose-Einstein) distributions associated with the NB baths,
each weighted by the corresponding effective coupling γn,k .
This is an intuitive result, which confirms the nonequilibrium
feature of the steady state. Only in the case of perfectly
identical baths fn(ωk ) ≡ f (ωk ), we recover 〈b†

kbk〉s = f (ωk ),
independently of the details of the interaction. Note that pre-
vious works have highlighted the appearance of steady-state
coherences in the presence of (quasi)degeneracies [67–69],
while here coherences are completely washed out; this fact
is known to be rooted in the full secular approximation that
we assumed.

Equations (65) cease to be valid if for some pair (k, q) it
happens that γn,k = γn,q = 0 for all n. In that case, we have
to go back to Eqs. (64) to understand that the new time-
dependent solutions are

〈b†
kbq〉(t ) = 〈b†

kbq〉0ei(ω̃k−ω̃q )t , (67a)

〈b†
kb†

q〉(t ) = 〈b†
kb†

q〉0ei(ω̃k+ω̃q )t , (67b)

meaning that the expectation values remain the same as the
initial ones, apart from a phase factor of free evolution. This
is consistent with the general idea of open quantum system,
since γn,k = 0 means that the kth mode is decoupled from
the nth bath and it only undergoes the unitary part of the
evolution.

Equipped with Eqs. (66) and (67), we can now calculate the
steady-state correlation functions in real space Ci j ≡ 〈a†

i a j〉s

and Fi j ≡ 〈a†
i a†

j〉s. In order to calculate C, first note that

a†
i a j =

N∑
k,q=1

(A∗
ikA jqb†

kbq + B∗
ikB jqbkb†

q

+ A∗
ikB jqb†

kb†
q + B∗

ikA jqbkbq), (68)

which, evaluated for the steady state, becomes

Ci j =
∑

k

(A∗
ikA jk〈b†

kbk〉s + B∗
ikB jk〈bkb†

k〉s)

=
∑

k

[(A∗
ikA jk − ζB∗

ikB jk )〈b†
kbk〉s + B∗

ikB jk], (69)

where in the second equality we used bkb†
k = 1 − ζb†

kbk . This
result can be written in a compact matrix form as

C = A∗�AT − ζB∗�BT + B∗BT , (70)

where we have defined the quasiparticle correlation matrix
�kq ≡ 〈b†

kbq〉s. The same procedure can be used to get

F = A∗�B† − ζB∗�A† + B∗A†. (71)

We conclude this section by observing that higher-order
observables can be calculated in a similar fashion by means
of the Wick theorem. For example, the four-point correlator
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IL IR

FIG. 2. Sketch of the two-bath configuration proposed to study
transport properties, in the particular case of one-dimensional lat-
tices. The gray dots stand for the lattice sites, while the colored boxes
stand for the regions of influence IL and IR of the two baths.

Gi j ≡ 〈c†
i cic

†
j c j〉s − 〈c†

i ci〉s〈c†
j c j〉s is easily seen to be equal to

Gi j = Fi jF ∗
ji − ζCi jCji + δi jCii.

VI. TWO-BATH CONFIGURATION

The presence of a system-environment interaction can be
responsible for the appearance of currents into the system, in
general both of the electric kind (particle current) and of ther-
mal kind (energy and heat current). The standard way to deal
with the analysis of transport properties in quantum systems
is based on the nonequilibrium Green’s-function approach
or the Landauer-Büttiker scattering matrix formalism [82].
However, quite recently the master equation started to appear
as well, as an interesting alternative framework [83,84]. In this
section we follow this research line and highlight the emer-
gence of currents in the steady state of our master equation.

The derivation of Sec. IV is completely general and holds
for any interaction setting. In order to develop a frame-
work which best describes the typical experimental transport
measurements, we specialize to the case of a two-bath con-
figuration NB = 2. For the sake of clarity, in Fig. 2 we show
a sketch of the situation for the specific case of a one-
dimensional lattice. However, we recall that our formalism
does not depend on the number of physical dimensions of the
system.

If NB = 2, the dissipator defined in Eq. (52) is composed
of two terms, coming from n = 1 and 2. To have a more ap-
pealing notation, we drop the use of the index n and write the
dissipator as D[ρ] = DL[ρ] + DR[ρ], where the subscripts
L and R stand for left and right, respectively, referring to a
hypothetical physical position of the two baths (see Fig. 2).
We keep this notation in all the relevant quantities below.
For example, the effective coupling constants are denoted by
γL,k and γR,k and the quasiparticle correlation matrix is (for
γL,k, γR,k �= 0) given by

�kq = δkq
γL,k fL(ωk ) + γR,k fR(ωk )

γL,k + γR,k
. (72)

A. Particle and quasiparticle currents

Let us start the analysis of the steady-state currents with the
case of particle transport (i.e., the electric current). In order
to do that, we have to consider the evolution equation for
the total number of particles in the system N = ∑

i a†
i ai. The

corresponding adjoint master equation reads

dN
dt

= i{H,N }− + D(h)
L [N ] + D(h)

R [N ], (73)

where D(h)
L and D(h)

R stand for the adjoint forms of the dissi-
pators. To calculate the expectation values, it is convenient to
rewrite N using the normal modes bk . This is done by simply
taking the diagonal of Eq. (68), a†

i ai, and summing over the
index i:

N =
∑
k,q

[(A†A)kqb†
kbq + (B†B)kqbkb†

q

+ (A†B)kqb†
kb†

q + (B†A)kqbkbq] ≡
∑
k,q

Nkq. (74)

After a long but straightforward calculation, we obtain

{H,N }− =
∑
k,q

{(ω̃k − ω̃q)[(A†A)kqb†
kbq + ζ (B†B)kqb†

qbk] + (ω̃k + ω̃q)[(A†B)kqb†
kb†

q + ζ (B†A)kqbqbk]}, (75a)

D(h)
L [N ] = 2

∑
k

γL,k[ fL(ωk )(A†A − ζB†B)kk + (B†B)kk] −
∑
k,q

(γL,k + γL,q)Nkq, (75b)

D(h)
R [N ] = 2

∑
k

γR,k[ fR(ωk )(A†A − ζB†B)kk + (B†B)kk] −
∑
k,q

(γR,k + γR,q )Nkq. (75c)

Now, when all of this is evaluated for the steady state of the
master equation, the only nonvanishing contributions are the
diagonal normal ones. It is easy to see that the commutator in
Eq. (75a) vanishes, since the normal terms are multiplied by
a factor (ω̃k − ω̃q) which is zero for k = q. Using the above
definition for Nkq, we can see that the left dissipator is〈
D(h)

L [N ]
〉
s = 2

∑
k

γL,k (A†A − ζB†B)kk[ fL(ωk ) − 〈b†
kbk〉s],

and the same expression is valid for D(h)
R [N ], after substitut-

ing L → R. By definition d〈N 〉s/dt = 0, so we can conclude

that the adjoint master Eq. (73) translates in the condition

2
∑

k

γL,kSk[ fL(ωk ) − 〈b†
kbk〉s]

= −2
∑

k

γR,kSk[ fR(ωk ) − 〈b†
kbk〉s], (76)

where we have introduced the factor

Sk ≡ (A†A − ζB†B)kk . (77)

To get the particle current from this, we note that the
starting point (73) has the shape of a quantum continuity
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equation [85]

d〈N 〉
dt

= J (L)
N + J (R)

N , (78)

where J (L)
N is the net particle current flowing from the left

reservoir into the system, while J (R)
N is that flowing from the

right reservoir into the system. Evaluated for the steady state,
〈N 〉 does not change in time, meaning that J (L)

N = −J (R)
N ≡ JN ,

where JN is the steady-state particle current. However, this is
just the condition reported in Eq. (76) if we identify

JN ≡ 2
∑

k

γL,kSk[ fL(ωk ) − 〈b†
kbk〉s]. (79)

To conclude the derivation we just have to insert the value of
〈b†

kbk〉s. If γL,k = 0 we have zero contribution from the kth
term of the sum, so Eq. (72) can be safely used to get

JN =
∑

k

′ 2SkγL,kγR,k

γL,k + γR,k
[ fL(ωk ) − fR(ωk )], (80)

where the prime in
∑′

k means that the sum runs only over
those k such that γL,k, γR,k �= 0. This expression has precisely
the shape of the Landauer-Büttiker formula, obtained with the
scattering matrix approach: The current is given by the differ-
ence between the Fermi-Dirac (or Bose-Einstein) distributions
of the two baths, weighted by a transfer factor which measures
the easiness of the scattering process [82].

It is interesting to focus on the role of the quantity Sk ,
which appears in the transfer factor. In order to do that, it is
useful to construct a quantum continuity equation for the total
number of quasiparticles NQ = ∑

k b†
kbk , instead of particles.

In such a case, we have

dNQ

dt
= i{H,NQ}− + D(h)

L [NQ] + D(h)
R [NQ], (81)

which is a greatly simplified situation, with respect to the
previous one, since we do not need a BV transformation here.
As a matter of fact, the steady-state quasiparticle current can
be directly seen to be

JNQ =
∑

k

′ 2γL,kγR,k

γL,k + γR,k
[ fL(ωk ) − fR(ωk )], (82)

which is the same as the particle current in Eq. (80) but
without Sk . Note that here the transfer factor is the same
as the well-known one for a set of independent ballistic
channels [82].

Remember that if HS does not contain anomalous terms,
we can arrange the BV transformation in such a way to make
N = NQ. Obviously, in this case the two kinds of currents
coincide JN = JNQ and indeed this is confirmed by the value
Sk ≡ 1 (since B = 0 and A is unitary). In the general case,
Sk �= 1 and the particle current has a different transfer factor.
For this reason we propose calling Sk an anomaly factor, since
it emerges because of the presence of anomalous terms in the
system Hamiltonian HS . The presence of Sk makes the particle
transfer factor deviate from the standard form, and thus it is a
potentially crucial quantity of our theory. A more thorough
study of the anomaly factor and its effects on the transport
properties is beyond the scope of the present work.

B. Energy current

The steady-state quasiparticle current JNQ has no actual
experimental meaning, since the particles are the physical
entities which actually move along the system. However, JNQ

is important for the study of energy-related phenomena, since
the quasiparticles are the mathematical objects which are re-
sponsible for thermal transport, if present. Indeed, a quantum
continuity equation for the free Hamiltonian of the system HS
can be constructed from the adjoint master equation

dHS
dt

= D(h)
L [HS ] + D(h)

R [HS ], (83)

where we have used {H, HS}− = 0. From this, it is easy to see
that the steady-state energy current is

JE =
∑

k

′ 2ωkγL,kγR,k

γL,k + γR,k
[ fL(ωk ) − fR(ωk )]. (84)

This expression is the same as JNQ , apart from the appearance
of ωk in the transfer factor, for dimensionality reasons. This
looks like the natural generalization of previous results ob-
tained in the literature in simpler contexts (see, e.g., Ref. [48]).

C. Heat current and consistency with the thermodynamics

To create an imbalance fL �= fR which can generate the
currents, we have control of both the chemical potentials μn

and the temperatures Tn of the two baths. Note that a particle
current can be created even with a temperature imbalance only
and, in the same way, an energy current with an electrical
imbalance only. These are the so-called thermoelectric effects,
which are known to exist in many-body systems [85,86].

In our context it is worth elaborating on this issue, be-
cause it is an easy way to test the detailed balance condition,
which is known to be valid for any LGKS master equa-
tion with an equilibrium steady state. The master equation
constructed in this work has an equilibrium steady state in
the case of identical baths, where 〈b†

kbk〉s = f (ωk ). The link
between the detailed balance condition (characterizing an
equilibrium situation) and the thermoelectric effects (charac-
terizing a nonequilibrium situation) is the Onsager relation
[87]. To properly define it, let us assume to have infinites-
imal imbalances μL/R = μ ± �μ/2 and TL/R = T ± �T/2.
In standard many-body theory, this is sufficient to define the
steady-state heat current as JQ ≡ JE − μJNQ [85]. The ther-
moelectric transport coefficients are then defined by(

JNQ

JQ

)
=

(
�11 �12

�21 �22

)(
�μ/T
�T/T 2

)
, (85)

where {�i j} is the Onsager matrix. The Onsager relation tells
us that, if in the equilibrium situation the system obeys a
detailed balance condition, then the Onsager matrix is sym-
metric, that is, �12 = �21.

We expect the Onsager relation to be valid in the context
of transport through quadratic systems. In order to verify that,
let us start by noticing that we can perform the expansion

fL(ωk ) − fR(ωk ) 
 ∂ f (ωk )

∂T
�T + ∂ f (ωk )

∂μ
�μ, (86)
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where f (ω) ≡ [ζ + e(ω−μ)/T ]−1. With this formula, we can
rewrite the currents as

JNQ = ∂FN

∂T
�T + ∂FN

∂μ
�μ, (87a)

JE = ∂FE

∂T
�T + ∂FE

∂μ
�μ (87b)

after introducing

FN ≡
∑

k

′ 2γL,kγR,k

γL,k + γR,k
f (ωk ),

FE ≡
∑

k

′ 2γL,kγR,k

γL,k + γR,k
ωk f (ωk ).

We note that the same kind of expansion was performed in
Ref. [70] for the infinite bosonic tight-binding chain. Here we
have shown that it is actually valid for generic finite quadratic
Hamiltonians, provided the correct expressions for FN and FE

are used.
Comparing Eqs. (87) with the definition of the Onsager

matrix in Eq. (85), we immediately obtain the transport co-
efficients in terms of derivatives of the generating functions
FN and FE as

�11 = T
∂FN

∂μ
, �22 = T 2

(
∂FE

∂T
− μ

∂FN

∂T

)
, (88a)

�12 = T 2 ∂FN

∂T
, �21 = T

(
∂FE

∂μ
− μ

∂FN

∂μ

)
. (88b)

Using the fact that

T
∂ f (ωk )

∂T
= (ωk − μ)

∂ f (ωk )

∂μ
, (89)

we finally see that

�12 = T 2 ∂FN

∂T
= T 2

∑
k

′ 2γL,kγR,k

γL,k + γR,k

∂ f (ωk )

∂T

= T
∑

k

′ 2γL,kγR,k

γL,k + γR,k
(ωk − μ)

∂ f (ωk )

∂μ

= T
∑

k

′ 2γL,kγR,k

γL,k + γR,k

[
ωk

∂ f (ωk )

∂μ
− μ

∂ f (ωk )

∂μ

]

= T

(
∂FE

∂μ
− μ

∂FN

∂μ

)
= �21, (90)

which is precisely the Onsager relation. This is an important
conceptual result, since it shows that our approach to quantum
transport through quadratic systems permits us to reobtain
long-standing results in the context of nonequilibrium ther-
modynamics.

VII. CONCLUSIONS AND OUTLOOK

We have discussed how to derive a wide class of
Lindblad-type master equations for generic quadratic quan-
tum many-body systems, where the interaction with a set
of independent thermal baths is properly taken into account.
Having relaxed the commonly employed local approxima-
tion for the system-environment coupling, the only limitation
of our treatment resides in the Born-Markov and secular

hypotheses. In particular, our approach reconciles all the
thermodynamic inconsistencies that may emerge in ordinary
many-body approaches where the Lindblad jump operators act
locally in the physical space of the system.

The resulting nonlocal master equations can be easily
solved to obtain time-dependent correlation functions, using
an amount of resources analogous to that for a local approach
(i.e., scaling polynomially in the system size). This paves the
way for the study of nonequilibrium Markovian dynamics of
quadratic quantum systems, in situations where nonlocality
cannot be overlooked (as in solid-state [88] or hybrid pho-
tonic devices [89]), with up to a few thousand sites. Within
our framework, interactions should be treated at a mean-field
level.

Several many-body aspects are worth investigating, in-
cluding the emergence of dissipation-driven transitions, the
role of a time-dependent external driving, and the robustness
of quantum transport phenomena or of topological states to
the presence of unitary and/or dissipative disorder. It would
also be tempting to study thermodynamic processes at the
nanoscale in the context of heat engines [86,90], where the
presence of critical modes may affect the heat-to-work effi-
ciency [91].

Finally, investigations in the context of quadratic systems
could be pushed further to develop more accurate master
equations, going beyond the Born-Markov and secular ap-
proximations. In fact, we believe this is a mandatory step to
address the description of more realistic situations.

APPENDIX A: SYSTEMS WITH A ZERO-ENERGY MODE

In Sec. IV D we provided the calculation of a rigorous
nonlocal dissipator [reported in Eq. (52)], valid as long as the
system of interest S is nondegenerate and does not support
a zero-energy mode. In this Appendix we relax the second
hypothesis: We still have nondegenerate eigenenergies, but
a zero mode is now present. According to the discussion of
Sec. III, here we limit our analysis to the case of a fermionic
zero mode (ζ = 1).

The starting point is Eq. (48), from which we clearly
obtain additional terms with respect to Eq. (49). As a conven-
tion, let us indicate with k = 0 the index associated with the
zero-energy mode ω0 = 0. The equivalent of the expression
(49) is∑

p,s;k

[
φpkφ

∗
skδω,ωk bkρb†

k + φ∗
pkφskδω,−ωk b†

kρbk
]

+
∑
p,s

δω,0[φp0φs0b0ρb0 + φ∗
p0φ

∗
s0b†

0ρb†
0]. (A1)

The same thing can be done for the other terms in Eq. (47) and
the result is

D[ρ] = D(st)[ρ] +
∑

n

2�nn(0)(�n,0b0ρb0 + �∗
n,0b†

0ρb†
0),

(A2)
where D(st)[ρ] is the standard dissipator of Eq. (50) and

�n,k ≡
∑

p,s∈In

wp,nws,nφpkφsk =
( ∑

p∈In

wp,nφpk

)2

. (A3)
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Here D[ρ] can be written in the LGKS form by extracting the
term k = 0 from D(st)[ρ] and putting it in the additional term.
If we call D(st)

>0 [ρ] the term D(st)[ρ] deprived of the k = 0 term,
it is possible to see that

D[ρ] = D(st)
>0 [ρ] +

∑
n

�nn(0)

[
2

(√
�n,0b0 + �∗

n,0√
�n,0

b†
0

)

× ρ

(
�n,0√
�n,0

b0 + √
�n,0b†

0

)

−
{(

�n,0√
�n,0

b0 + √
�n,0b†

0

)

×
(√

�n,0b0 + �∗
n,0√

�n,0
b†

0

)
, ρ

}
+

]
, (A4)

where, without loss of generality, we have assumed
�n,0, �n,0 �= 0 and we used that |�n,0|2 = �2

n,0.
To obtain a simpler expression, we will limit ourselves to

the case of a real system Hamiltonian HS , where � ≡ �.
The complex case can be handled in a similar manner. Using
Eq. (46) to express �nn(ω), we finally reach

D[ρ] = D(st)
>0 [ρ] + D0[ρ], (A5a)

where

D0[ρ] = �[2(b0 + b†
0)ρ(b0 + b†

0) − {(b0 + b†
0)2, ρ}+] (A5b)

and we have introduced the constant

� ≡
∑

n

Jn(0)�n,0 =
∑

n

γn,0. (A5c)

As before, to conclude the derivation of the master equa-
tion, we should check for the Lamb-shift correction. With the
same procedure as before, it is easy to see that

HLS = H (st)
LS , (A6)

where H (st)
LS is the expression in Eq. (56). Therefore, the shape

of the Lamb-shift correction is not influenced by the presence
of the zero mode (in the fermionic case).

The set of Lindblad operators is now {Li} = {bk} ∪ {b†
k} ∪

{b0 + b†
0}. This is still a self-adjoint set with a trivial commu-

tant, so the Spohn theorem is valid [81] and the steady state
of the dynamics is unique also in this case. As before, it can
be characterized by two-point observables in the quasiparticle
operators 〈b†

kbq〉, 〈bkbq〉, and 〈b†
kb†

q〉. If k, q �= 0 it is easy to
see that the evolution equations reduce to the ones reported in
Eqs. (64); therefore, the nonzero components of the quasipar-
ticle correlation matrix � are unaffected by the presence of
the zero mode. The other relevant equations turn out to be

d

dt
b†

0b0 = −4�b†
0b0 + 2�, (A7a)

d

dt
b†

0bq =
[

i(ω̃0 − ω̃q) − 2� −
∑

n

γn,q

]
b†

0bq − 2�b0bq,

(A7b)

d

dt
b0bq =

[
− i(ω̃0 + ω̃q) − 2� −

∑
n

γn,q

]
b0bq − 2�b†

0bq,

(A7c)

where it is implicitly assumed that q �= 0. All the other equa-
tions can be obtained from these by taking their adjoints.
Notice that now we have obtained a coupled system of dif-
ferential equations. Nevertheless, the above system is linear
and can be easily solved to obtain

〈b†
0b0〉(t ) =

[
〈b†

0b0〉0 − 1

2

]
e−4�t + 1

2
, (A8a)

〈b†
0bq〉(t ) = 1

2
exp

(
i(ω̃0 − ω̃q)t −

∑
n

γn,qt

)

× [〈b†
0bq〉0(e−4�t + 1) + 〈b0bq〉0(e−4�t − 1)],

(A8b)

〈b0bq〉(t ) = 1

2
exp

(
−i(ω̃0 + ω̃q)t −

∑
n

γn,qt

)

× [〈b†
0bq〉0(e−4�t − 1) + 〈b0bq〉0(e−4�t + 1)].

(A8c)

For t → ∞, the first relation indicates that 〈b†
0b0〉s = 1

2 ,
independently of the interaction setting. The other quantities
decay to zero, provided

∑
n γn,q �= 0 [if this is not the case,

they display an oscillatory behavior, analogously to Eq. (67)].
We conclude that the quasiparticle correlation matrix is now
given by

�kq =
⎧⎨
⎩

δkq

∑
n γn,k fn (ωk )∑

n γn,k
if k, q �= 0

1
2 if k = q = 0
0 otherwise.

(A9)

However, the expressions for the correlation functions in real
space [Eqs. (70) and (71)] remain unaffected.

The same kind of calculation can be performed to study
the steady-state currents in a minimal two-bath configuration.
For example, the adjoint master equation for the total number
of particles N acquires an additional term D(h)

0 [N ] = D0[N ]
with respect to Eq. (73), which is equal to

D0[N ] = 2�
∑

k

{[(B†B + B†A)k0 − (A†A + B†A)0k]

× (b†
0bk + b0bk ) − [(A†A + A†B)k0

− (B†B + A†B)0k](b†
kb0 + b†

kb†
0)}

+ 2�(A†A − B†B)00. (A10)

When evaluated for the steady state, only the terms with
〈b†

0b0〉s remain and therefore we can immediately see that
〈D0[N ]〉s = 0. This means that the particle current in Eq. (80)
is not affected by the presence of the zero-energy mode,
provided the term k = 0 is excluded from the sum. The same
reasoning can be applied to the quasiparticle current and the
energy current, where the additional term to the adjoint master
equation turns out to be

D0[NQ] = 2�(1 − 2b†
0b0) (A11)

and then 〈D0[NQ]〉s = 0, as before.
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APPENDIX B: SYSTEMS WITH DEGENERATE
EIGENENERGIES

The analysis performed in Sec. IV D is valid for nondegen-
erate systems, so ωk = ωq only if k = q. In this Appendix we
briefly discuss how it is possible to include the presence of
degenerate eigenenergies into our formalism.

Let us start from Eq. (48) and suppose that the system S
possesses M different energy eigenspaces, labeled by an index
λ = 1, . . . , M. We indicate with Aλ the set of normal-mode
indices associated with the λth eigenspace, with eigenvalue
ωλ. For the moment, let us also suppose for the sake of
simplicity that there are no zero-energy modes, i.e., ωλ �= 0,
for all λ. Then

On(ω)ρO†
n(ω) =

∑
p,s∈In

M∑
λ=1

∑
u,v∈Aλ

wp,nw
∗
s,n[δω,ωλ

φpuφ
∗
svbuρb†

v

+ δω,−ωλ
φ∗

puφsvb†
uρbv]. (B1)

The same thing can be done for the other terms of Eq. (47)
and the result for the dissipator is

D[ρ] =
∑
n;λ

∑
u,v∈Aλ

[
�(n,λ)

uv �nn(ωλ)(2buρb†
v − {b†

vbu, ρ}+)

+�(n,λ)
vu �nn(−ωλ)(2b†

uρbv − {bvb†
u, ρ}+)

]
, (B2)

where

�(n,λ)
uv ≡

∑
p,s∈In

wp,nw
∗
s,nφpuφ

∗
sv (B3)

are the elements of a rank-1 Hermitian matrix. Notice that
this quantity constitutes the generalization to the degenerate
case of the quantity �n,k defined in Eq. (51). The index λ

here is needed to indicate that u, v ∈ Aλ; therefore, it fixes
the dimension of the matrix.

Once we use Eq. (46) to write �nn(ω), Eq. (B2) is already a
dissipator in the LGKS form, which can eventually be studied.
Notice that it is not diagonal anymore and the Spohn the-
orem then ceases to be valid. This means that the presence
of degeneracies in HS can make the system develop multiple
steady-state solutions.

It is also worth pointing out that the inequality �n,k � 0
translates here in a positive-semidefiniteness requirement for
the matrix �(n,λ). In order to see that, note that for fixed (n, λ),
the matrix �(n,λ) is Hermitian, hence it is diagonalized by a
unitary matrix U (n,λ). Let us then write

U (n,λ)†�(n,λ)U (n,λ) ≡ �̃(n,λ), (B4)

where �̃(n,λ) is a real diagonal matrix. For its elements, we
can see that

�̃(n,λ)
ww =

∑
p,s∈In

∑
u,v∈Aλ

U (n,λ)∗
uw wp,nφpuφ

∗
svw

∗
s,nU

(n,λ)
vw

=
⎛
⎝∑

p∈In

∑
u∈Aλ

U (n,λ)∗
uw wp,nφpu

⎞
⎠(∑

s∈In

∑
v∈Aλ

U (n,λ)
vw w∗

s,nφ
∗
sv

)

=
∣∣∣∣∣∣
∑
p∈In

∑
u∈Aλ

U (n,λ)∗
uw wp,nφpu

∣∣∣∣∣∣
2

� 0.

Notice also that the same procedure can be used to calculate
the Lamb-shift correction, which turns out to be the matrixlike
generalization of Eq. (59),

HLS =
M∑

λ=1

∑
u,v∈Aλ

ϕuvb†
ubv, (B5)

where

ϕuv ≡
NB∑

n=1

�(n,λ)
vu [Snn(ωλ) − ζSnn(−ωλ)]. (B6)

We conclude by considering the case in which we also
relax the constraint on the absence of zero-energy modes
for fermionic systems. Let us indicate with A0 the set of
normal-mode indices associated with the eigenspace with
ω0 = 0. Equation (B1) then clearly acquires an additional term
given by∑

p,s∈In

∑
u,v∈A0

δω,0wp,nws,n[φpuφsvbuρbv + φ∗
puφ

∗
svb†

uρb†
v].

The dissipator becomes

D[ρ] = D(st)[ρ] +
NB∑

n=1

∑
u,v∈A0

�nn(0)

× [
� (n,0)

uv (2buρbv − {bvbu, ρ}+)

+� (n,0)∗
uv (2b†

uρb†
v − {b†

vb†
u, ρ}+)

]
, (B7)

where D(st)[ρ] is the dissipator in Eq. (B2) and

� (n,λ)
uv ≡

∑
p,s∈In

wp,nws,nφpuφsv (B8)

is the generalization to the degenerate case of the quantity �n,k

defined in Eq. (A3). As done in Appendix A, at this point it is
sufficient to extract the term with λ = 0 from D(st)[ρ] and put
it in the additional term to obtain a LGKS dissipator.
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dynamic consistency of the optomechanical master equation,
Phys. Rev. A 98, 052123 (2018).

[52] M. Cattaneo, G. Giorgi, S. Maniscalco, and R. Zambrini, Local
versus global master equation with common and separate baths:
Superiority of the global approach in partial secular approxima-
tion, New J. Phys. 21, 113045 (2019).

[53] E. Mascarenhas, F. Damanet, S. Flannigan, L. Tagliacozzo, A. J.
Daley, J. Goold, and I. de Vega, Nonreciprocal quantum trans-
port at junctions of structured leads, Phys. Rev. B 99, 245134
(2019).

[54] F. Barra, The thermodynamic cost of driving quantum systems
by their boundaries, Sci. Rep. 5, 14873 (2015).

[55] G. Katz and R. Kosloff, Quantum thermodynamics in strong
coupling: Heat transport and refrigeration, Entropy 18, 186
(2016).

[56] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito, Quan-
tum and Information Thermodynamics: A Unifying Framework
Based on Repeated Interactions, Phys. Rev. X 7, 021003
(2017).

[57] G. De Chiara, G. Landi, A. Hewgill, B. Reid, A. Ferraro,
A. J. Roncaglia, and M. Antezza, Reconciliation of quantum
local master equations with thermodynamics, New J. Phys. 20,
113024 (2018).

[58] A. Hewgill, G. De Chiara, and A. Imparato, Quantum thermo-
dynamically consistent local master equations, Phys. Rev. Res.
3, 013165 (2021).

[59] D. Farina, G. De Filippis, V. Cataudella, M. Polini, and V.
Giovannetti, Going beyond local and global approaches for
localized thermal dissipation, Phys. Rev. A 102, 052208 (2020).
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