
ar
X

iv
:2

10
1.

04
00

2v
1 

 [
m

at
h.

L
O

] 
 3

 J
an

 2
02

1

ON THE VALUE GROUP OF THE TRANSSERIES

ALESSANDRO BERARDUCCI AND PIETRO FRENI

Abstract. We prove that the value group of the field of transseries

is isomorphic to the additive reduct of the field.
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1. Introduction

Given a real closed field (K,+, ·, <), the possibility of defining an
ordered exponential on it, that is, a ordered group isomorphism exp :
(K,+, <) → (K>0, · <), is strictly connected to the properties of its
natural valuation (i.e. the valutation whose valuation ring is given by
the elements bounded in absolute value by some natural number). For
example if an exponential exists, then the valuation group v(K) is
isomorphic to an additive complement of the valuation ring. In [9] it
is shown that for ordered fields that are maximal with respect to their
natural valuation this condition fails unless the value group is trivial (in
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2 ALESSANDRO BERARDUCCI AND PIETRO FRENI

which case K ⊆ R), so maximal non-archimedean ordered fields do not
admit an exponential. In [10] the same property is used, the other way
around, to show that, given a regular uncountable cardinal κ, there is
a non-trivial group M such that the field K = R((M))κ ⊆ R((M)) of
κ-bounded generalized series admits an exponential map.
In [3] the authors study the related property of admitting an isomor-

phism Ω : (K,+, <) → (M,+, <), where M ⊆ K>0 is an embedded
multiplicative copy of the value group. They call such an isomorphism
omega-map, in analogy to Conway’s omega map on Surreal numbers
[4], and prove that, for fields of the form R((M))κ, its existence implies
the existence of an exponential map. Moreover, for fields of the same
form, the converse holds under the additional hypothesis that the value
group M is order isomorphic to its positive cone M

>1.
The above results leave open the question whether the field T of

LE-transseries [5] admits an omega-map, as it is not a field of the form
R((M))κ. Besides R, transseries are arguably the most important exam-
ple of an exponential field. They are an important tool in asymptotic
analysis and have been used by Ecalle [6] to give a positive solution to
Dulac’s conjecture (the finiteness of limit cycles in planar polynomial
vector fields).
The main result of the paper is that the value group of T is iso-

morphic to T itself as an ordered additive group. This is proved by
explicitly constructing an omega-map Ω : T → M

LE where MLE is the
group of transmonomials.
Finally, abstracting some tools which have been useful in the con-

struction we generalize results in [3] to a much wider class of fields.

We describe below the main ideas of the paper. In the case of
exponential fields of the form K = R((M))κ treated in [3], any or-
der isomorphism η : M → M

>1 naturally induces an isomorphism
H : K → R((M>1)) of ordered R-vector spaces from the field to the
canonical complement of its valuation ring. This in turn induces an
omega-map.
When considering the case of T, we follow a similar approach but

there are many additional complications. We recall that T is a subfield
of R((MLE)). Any order isomorphism M

LE → M
LE,>1 induces an

embedding of ordered R-vector spaces T → R((MLE,>1)), however there
is no guarantee that its image is T↑ := T ∩ R((MLE,>1)). In this paper
we show that M

LE is order isomorphic to M
LE,>1 and we produce a

particular order isomorphism η : MLE → M
LE,>1 which induces an
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isomorphism of ordered R-vector spaces T → T↑. This in turn will
induce an omega-map (Theorem 8.7).
In the above process we are lead to consider an ideal of subsets of

M
LE (generated by subgroups) and characterize T as the field of series

in R((MLE)) with support in the ideal (Section 6). A subset of MLE

will be called bounded if it belongs to the ideal and a map η : MLE →
M

LE,>1 will be called bounded if it maps bounded sets to bounded
sets. The proof of the main result is then reduced to the problem of
constructing a bounded order isomorphism η : MLE → M

LE,>1 with
bounded inverse. This is achieved in Lemma 8.6.

Endowing groups of monomials with suitable ideals of subsets yields
flexible constructions of many intereresting fields, encompassing T, the
κ-bounded series and the field of Puiseux series (Definition 9.1). Some
results of [3] generalize easily to this new setting (see Theorem 9.5).
For simplicity of notation throughout the paper we work with fields

whose residue field is R, but with minor modifications we could have
taken any other model of the first order theory of (R, exp).

2. Hahn fields

Given a multiplicatively written ordered abelian group M denote by
R((M)) the field of Hahn’s generalized series (cfr. [7]) with monomials
from M, real coefficients and reverse-well-ordered support

R((M)) = {f ∈ RM : supp(f) is reverse-well-ordered}

where
supp(f) = {m ∈ M : f(m) 6= 0}

denotes the support of the series. The value of f at m is referred to as
the coefficient of the monomial m in the series f or the coefficient of
f at m and written as fm := f(m).
The set R((M)) is naturally an ordered field extension of R. Sums

and multiplication by scalars in R are defined termwise and order is
lexicographic, or equivalently f > 0 if and only if fmax supp(f) > 0.
Multiplication has a Cauchy-like definition

(fg)m =
∑

no=m

fngo

and the fact that the supports of f and g are reverse well ordered
ensures that the sum on the right hand side has only finitely many
non-zero terms and that the support supp(fg) ⊆ supp(f) supp(g) is
still reverse-well-ordered.
Given a set I, an I-indexed family of series (fi ∈ R((M)) : i ∈ I)

is said to be summable if the union of the supports of its elements
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⋃

i∈I supp(fi) is reverse well ordered and for every m ∈ M the set
{i : fi,m 6= 0} is finite: in such a case the formal sum is defined as

∑

i∈I

fi := g where gm :=
∑

m∈supp(fi)

fi,m.

A monomial m ∈ M is usually identified with the series having coef-
ficient 1 at m and 0 at other monomials. A term is then a series of
the form t = km with k ∈ R. With such a convention, for every re-
verse well ordered set S of monomials, a family of terms of the form
(kmm : m ∈ S) is summable: elements of R((M)) are thus usually writ-
ten as

∑

m∈S fmm for some reverse well ordered S ⊆ M or as
∑

i<α kimi

where α is an ordinal number and (mi : i < α) is a strictly decreasing
α-sequence in M.

For every element f of R((M)) \ {0} it makes sense to talk about the
leading monomial, coefficient and term of f , which we denote respec-
tively as

lm(f) := max supp(f), lc(f) := flm(f), lt(f) := lm(f)lc(f).

Since R((M)) is an ordered field it makes sense to define dominance and
archimedean equivalence on non-zero elements. These notions have an
easy characterization in terms of the leading term of a series.

Definition 2.1. For x, y ∈ R((M))\{0}, we have the following relations

(1) dominance: x � y ⇐⇒ ∃n ∈ N, |x| < n|y| ⇐⇒ lm(x) ≤
lm(y);

(2) comparability: x ≍ y ⇐⇒
(

x � y & y � x
)

⇐⇒ lm(x) =
lm(y);

(3) strict dominance: x ≺ y ⇐⇒
(

x � y & x 6≍ y
)

⇐⇒ lm(x) <
lm(y);

(4) asymptotic equivalence: x ∼ y ⇐⇒ x − y ≺ x ⇐⇒ lt(x) =
lt(y).

Series that are ≻ 1 are said to be infinite whereas elements ≺ 1 will be
said to be infinitesimal.

Remark 2.2. The function lm : R((M)) \ {0} → M, where we endow
M with the opposite order, is a field valuation whose residue field is R
and whose valuation ring is the set of series f such that supp(f) ≤ 1.
It is called archimedean valuation.

Remark 2.3. We recall that an extension of valued fields is immediate
if it preserves the value group and residue field. It is worth mentioning
that R((M)) is maximal in the sense that it has no proper immediate
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extension (see [8, p.193, Satz 26]). Thus every proper ordered field
extension F ⊇ R((M)) has non-zero elements that are not comparable
to any element of R((M)).

Remark 2.4. Every element of f =
∑

i<α kimi of R((M)) decomposes
uniquely as

f = f ↑ + f ◦ + f ↓

where supp(f ↑) > 1, f ◦ ∈ R and f ↓ ≺ 1, whereas every non-zero
element f decomposes multiplicatively as

f = lm(f)lc(f)

(

1 +
f − lt(f)

lt(f)

)

where lm(f) ∈ M, lc(f) ∈ R \ {0} and f−lt(f)
lt(f)

≺ 1.

Remark 2.5. It may worth remarking that in the definitions above one
could have considered any ordered field k instead of R: in this case
instead of � one must consider the k-dominance relation defined as
x �k y ⇔ ∃k ∈ k, |x| < k|y|.

If (M, ·, 1,≺) is an orderd group we will denote by M
≻1 the set of

elements of M greater than 1.

Fact 2.6. If N is a multiplicatively written ordered abelian group, k
is a subfield of R((N)) and M ⊆ N is a subgroup such that M≻1 > k,
then for every ordinal α, every strictly decreasing sequence (mi)i<α of
elements of M, and every sequence (ki)i<α of elements of k, the family
kimi is summable.

Proof. Just note that supp(kimi) < supp(kjmj) for i > j. �

Definition 2.7. In the hypothesis of Fact 2.6 we denote the set of
elements of the form

∑

i<α kimi with ki ∈ k and mi ∈ M as k((M)):
this is a subfield of R((N)) isomorphic to the field of generalized series
with coefficients from k and monomials from M.
More generally if Γ is a subset of N, k is a subfield of R((N)), and

k < 〈Γ〉≻1, where 〈Γ〉 is the subgroup generated by Γ, then k((Γ)) will
denote the k-vector subspace of R((N)) consisting of the series of the
form

∑

i<α kimi with all mi laying in Γ and ki laying in k.
For example if k = R then every Γ ⊆ N satisfies the hypothesis, so

given any Γ ⊆ N, R((Γ)) is the set of series with support included in Γ.

Remark 2.8 ([3, Cor. 2.19] or [5, §1.4]). Let k ⊆ R((N)) be a subfield
and let M1,M2 ⊆ N be subgroups such that M≻1

2 > M
≻1
1 > k. Then

k((M1))((M2)) = k((M1M2)).
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In particular every series f ∈ k((M1M2)) has a unique representation
as

f =
∑

i<α

kimi with ki ∈ k((M1)) and mi ∈ M2 for every i < α.

3. Transseries

The field T of transseries is a subfield of a field of the form R((MLE))
where M

LE is a suitable ordered multiplicative group called the group
of transsmonomials. We shall not define T, but in this and the following
section we list all the properties needed in this paper. In particular we
shall need the fact that T is the union of the subfields Tn,λ in Definition
4.2. This representation of T will be used to introduce the ideal of
subsets of MLE mentioned in the introduction.

Definition 3.1. Denote by T the field of LE-transseries in a formal
variable x as described in [5] and letMLE be the group of LE-transserial
monomials. Note that

T ⊆ R((MLE)).

Let
T↑ = R((MLE,≻1)) ∩ T

be the R-vector space of the transseries whose support only contains
infinite monomials and observe that T = T↑ ⊕ R ⊕ o(1) where o(1) is
the set of infinitesimal transseries. The elements of T↑ are called purely
infinite.

Fact 3.2. Recall that T admits an exponential function exp : T → T>0

making it into an elementary extension of the ordered field of real num-
bers with the natural exponential function. The function exp restricts
to an ordered group isomorphisms

exp | :
(

T↑,+, 0, <
)

≃
(

M
LE, ·, 1, <

)

and this suffices to determine exp on the whole T via the formula

(3.1) exp(f) = exp(f ↑) exp(f ◦)
∑

n∈N

(f ↓)n

n!

The compositional inverse of exp is called logarithm, log : T>0 →
T, and has an analogous piecewise characterization in terms of the
multiplicative decomposition: for f > 0 one has
(3.2)

log(f) = log(lm(f)) + log(lc(f)) +
∑

n>0

(−1)n+1ε

n
ε =

f − lt(f)

lt(f)

For g > 0 we define f g := exp(g log(f)).
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Definition 3.3 (Normal form). Since M
LE = exp(T↑), every element

f ∈ T has a unique representation as

f =
∑

i<α

rie
γi

where α is an ordinal, ri ∈ R\{0} for every i < α, (γi)i<α is a strictly de-
creasing sequence of elements of T↑ and eγi = exp(γi); we call

∑

i<α rie
γi

the normal form of f .

4. Stratification

Below we work in the field T of LE-transseries in the formal variable
x.

Definition 4.1. For n ∈ N, let logn be the n-fold composition of
log and let expn be the n-fold composition of exp. We extend this
notation to the case n ∈ Z with the convention that expn = log−n. For
example log1(x) = log(x), log0(x) = x and log−1(x) = exp(x). Now let
expZ(x) = {expn(x) | n ∈ Z}. For λ ∈ expZ(x) and n ∈ Z, we define
λn = expn(λ) so that

λ−n = logn(λ).

Definition 4.2. For λ ∈ expZ(x) and n ∈ N let us consider the follow-
ing inductively defined subsets of T:

(1) M0,λ := λR, T0,λ = R((M0,λ)), J0,λ = R((M≻1
0,λ)).

(2) Mn+1,λ := eJn,λ , Tn+1,λ = Tn,λ((Mn+1,λ)), Jn+1,λ := Tn,λ((M
≻1
n+1,λ)).

For this to be well defined one needs to observe that for each n ∈ N

we have Tn,λ < M
≻1
n+1,λ (see Definition 2.7 and Remark 2.8) and that

Tn,λ((Mn+1,λ)) ⊆ T. For the verification of these facts the reader must
refer to the original definition of the LE-transseries in [5] or to the
equivalent definition in [2, Prop. 4.12] (see in particular [2, Lemma
4.14]). From [5] or [2, Prop. 4.18] it also follows that

T =
⋃

n,λ

Tn,λ

where n ∈ N and λ ∈ expZ(x). In fact in the union it suffices to take λ
of the form x−k with k ∈ N (rather than k ∈ Z). This depends on the
fact that Tn,exp(λ) ⊆ Tn+1,λ. Notice that in [5] T and exp are defined
by a simultanous induction, while in [2] the transseries are defined as
a subfield of Conway’s surreal numbers No with the exponentiation
coming from No. For a short account of the latter approach and all
the relevant definitions see also [1].
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Definition 4.3. Although T is not a maximal valued field, its subfields
Tn,λ are maximal, indeed

Tn,λ = R((Nn,λ))

where Nn,λ = Tn,λ ∩M
LE. The subgroups Nn,λ ⊆ M

LE can be induc-
tively generated as follows:

(1) N0,λ = M0,λ.
(2) Nn+1,λ = Nn,λMn+1,λ.

Remark 4.4. For n ∈ N we have M
≻1
n+1,λ > Nn,λ and a direct lexico-

graphic product

Nn+1,λ = M0,λM1,λ · . . . ·Mn+1,λ,

so R((Nn,λ))((Mn+1,λ)) = R((Nn+1,λ)).

Definition 4.5. We define T
↑
n,λ = R((N≻1

n,λ)) and observe that T↑ =
⋃

n,λT
↑
n,λ.

Remark 4.6 (Various normal forms). Since M
≻1
n+1,λ > Nn,λ we have

N
≻1
n+1,λ =

(

Nn,λMn+1,λ)
≻1 = N

≻1
n,λ∪(Nn,λM

≻1
n+1,λ) andN

≻1
n,λ < Nn,λM

≻1
n+1,λ,

so applying R((−)) we get T↑
n+1,λ = T

↑
n,λ + Jn+1,λ and by induction we

easily obtain

(4.1) T
↑
n,λ = J0,λ + . . .+ Jn,λ.

It follows that

Nn+1,λ = M0,λM1,λ · . . . ·Mn+1,λ = λR exp(T↑
n,λ),

thus Tn+1,λ = R((λR exp(T↑
n,λ))). In other words every f ∈ Tn+1,λ can

be written as
f =

∑

i<α

riλ
sieαi

where α is an ordinal, ri ∈ R \ {0}, si ∈ R, αi ∈ T
↑
n,λ and (λsieαi)i<α is

strictly decreasing. We can also write it in the form

f =
∑

i<α

rie
βi

where βi = si log(λ) + αi (this is the normal form of Definition 3.3).
Recalling that Tn+1,λ = Tn,λ((Mn+1,λ)) = Tn,λ((e

Jn,λ)) we also have a
representation of the form

f =
∑

i<α

kie
γi

where ki ∈ Tn,λ and γi ∈ Jn,λ.
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Definition 4.7. It is convenient to extend Definition 4.2 to the case
when n ∈ Z, so we put

(1) M−1,λ = 1.
(2) T−1,λ = R.
(3) J−1,λ = R log(λ).

and for n < −1 we put Mn,λ = 1,Tn,λ = R and Jn,λ = {0}.

Proposition 4.8. For all n ∈ Z and λ ∈ expZ(x),

(1) Mn+1,λ
−1

⊇ Mn,λ.
(2) Tn+1,λ

−1
⊇ Tn,λ.

(3) Jn+1,λ
−1

⊇ Jn,λ.

Proof. The case n = −1 follows from the following inclusions:

• M0,λ
−1

= λR
−1 ⊇ 1 = M−1,λ;

• T0,λ
−1

= R((λR
−1)) ⊇ R = T−1,λ;

• J0,λ
−1

= R((λR>0

−1 )) ⊇ J−1,λ.

We can then conclude by an easy induction argument. �

5. Levels

Our next goal is to represent the ordered vector space T↑ as a lexico-
graphic direct sum

⊕

n∈Z Jn of suitable subspaces which can be char-
acterized in terms of “levels”. Since exp(T↑) = M

LE, this will also
induce a decomposition of MLE as a direct sum of multiplicative sub-
roups Mn = exp(Jn−1).
Recall that x is the formal variable of T and x−k = logk(x). Mapping

x to x−k will induce an automorphism of T sending Jn to Jn−k and Mn

in Mn−k.

Definition 5.1. For n ∈ Z we define:

(1) Tn =
⋃

k∈ZTn+k,x
−k
.

(2) Mn =
⋃

k∈Z Mn+k,x
−k
.

(3) Nn =
⋃

k∈Z Nn+k,x
−k
.

(4) Jn =
⋃

k∈Z Jn+k,x
−k
.

By Proposition 4.8 all the unions are increasing.

Remark 5.2. We have M
LE =

⋃

n∈N Nn and exp(Jn) = Mn+1 by Defi-
nitions 5.1 and 4.2

The following definion is needed to prove that the vector spaces Jn
are in direct sum.
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Definition 5.3 (Levels). Let f, g ≻ 1. We say that f and g have the
same level if there is n ∈ N such that logn(|f |) ≍ logn(|g|). We say
that f has level n ∈ Z if it has the same level of expn(x) and we write
in this case lv(f) = n. For f ≺ 1, we define lv(f) = lv(1/f). By
convention we also stipulate that the level of an element f ≍ 1 is −∞
and the level of 0 is undefined. We have:

(1) If 1 6≍
∑

i<α rie
γi ∈ T is in normal form, then lv(

∑

i<α rie
γi) =

lv(γ0) + 1.
(2) lv(xs) = 1 for all s ∈ R∗.

Remark 5.4. The function lv : T∗ → Z ∪ {−∞} satisfies:

(1) lv(fg) = max{lv(f), lv(g)}
(2) if 1 � f � g then lv(f) ≤ lv(g)
(3) if 1 ≺ f, g and lv(f) < lv(g), then |f | < |g|.

It follows that {m ∈ M
LE | lv(m) ≤ n} is a convex subgroup of MLE

for all n ∈ Z.

Proposition 5.5. For n ∈ Z we have:

(1) Jn is the field of transseries whose support only consists of infi-
nite monomials of level exactly n.

(2) Nn = {m ∈ M
LE | lv(m) ≤ n};

(3) Tn is the field of transseries whose support only contains mono-
mials of level less or equal than n.

Proof. One easily sees by induction that if n + k ≥ 0 and 1 6= m ∈
Mn+k,x

−k
then lv(m) = n. It follows in particular that if n ∈ Nn+k,x

−k

then lv(n) ≤ n and that equality holds if and only if n /∈ Nn+k−1,x
−k
.

Hence the monomials of level n are exactly those contained inM
6≍1
n Nn−1 =

Nn \Nn−1. All of (1)-(2)-(3) easily follow from this. �

Proposition 5.6. We have J>0
n+1 > Jn and T↑ is the direct sum

T↑ =
⊕

n∈Z

Jn

as an ordered R-vector space .

Proof. The inequality J>0
n+1 > Jn follows from Remark 5.4(3). The sum

is direct by Proposition 5.5(1) and it is equal to T↑ by Remark 4.6,
Equation 4.1. �

Corollary 5.7. The group M
LE is the multiplicative direct sum of the

subgroups Mn.
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6. Summability

In this section we introduce the ideal of subsets of MLE mentioned
in the introduction.

Definition 6.1. Given a family (mi)i<α of monomials in M
LE, we

say that (mi)i<α is T-summable if (mi)i<α is summable and the Hahn
series

∑

i<αmi belongs to T ⊆ R((MLE)). Note that if (mi)i<α is T-
summable, then for every sequence of non-zero real numbers (ri)i<α we
have

∑

i<α rimi ∈ T.

We give below a reformulation of T-summability which is more con-
venient for our treatment.

Definition 6.2. Given a set X , we say that X is a bornology on X if
it is an ideal in the posets of subsets of X whose union is X , that is:

(1) whenever Z ⊆ Y ∈ X one has Z ∈ X
(2) whenever Z, Y ∈ X one has Z ∪ Y ∈ X
(3)

⋃

X = X .

Given XX = (X,X ) we say that a subset S ⊆ X is X -bounded if it
is a subset of some element of X .
A map between sets endowed with a bornology f : XX → YY is said

to be bounded if the image of any bounded subset is a bounded subset.
A bijection is said to be bi-bounded if it is bounded with bounded
inverse.
Let Y ⊆ X and X a bornology on X , then Y naturally carries a

bornology
X |Y = {Z ∩ Y : Z ∈ X}

consisting of those subsets that are X -bounded when regarded as sub-
sets of X . It is the largest bornology making the inclusion a bounded
map.
Given a set X and a family of subsets F whose union is X , the

smallest bornology containing F is said to be the bornology generated
by F . If F is upward directed, the bornology generated by F is the
family of subsets of X that are contained in some F ∈ F .

Definition 6.3. We introduce the following bornologies onM
LE,T,T0[t

±1].

(1) M is the bornology onM
LE generated by the subgroups Nn,x

−k

for n, k ∈ N

(2) T is the bornology on T generated by the subfields Tn,x
−k

for
n, k ∈ N.

(3) We also consider on T0[t
±1] the bornology generated by the

subgroups E[t[m,n]] = tnE + · · ·+ tmE where E is a T -bounded
subfield of T0 and m ≤ n are in Z.
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Remark 6.4. With the above definition it follows that a set of mono-
mials S ⊆ M

LE is T-summable if and only if it is reverse well ordered
and M-bounded.

Remark 6.5. Note that M = T |MLE and that that exp and log are
bi-bounded maps with respect to the bornologies we just introduced as
exp(Tn,x

−k
) ⊆ Tn+1,x

−k
and log(T>0

n,x
−k
) ⊆ Tn,x

−k−1
.

7. The crucial isomorphism

We recall that Tn is the field of transseries whose support only con-
tains monomials of level less or equal than n and Jn is the field of
transseries whose support only consists of infinite monomials of level
exactly n. We shall prove that there is an isomorphism Tn

∼= Jn of
ordered vector spaces.

Proposition 7.1. For each n ∈ Z, there is an isomorphism of or-
dered R-vector spaces fn : Tn ≃ Jn. Moreover the isomorphism maps
Tn+k,x

−k
⊆ Tn onto Jn+k,x

−k
⊆ Jn for n + k ≥ −1 so it is bi-bounded

with respect to the bornologies T |Tn
and T |Jn.

Proof. It suffices to show that for each k, n ∈ Z such that n + k ≥ −1
there is an isomorphism fn+k,x

−k
: Tn+k,x

−k
≃ Jn+k,x

−k
and that these

isomorphisms can be glued together so to define the fn s as

fn :=
⋃

k≥−n−1

fn+k,x
−k

: Tn −→ Jn.

Easing the notation, we shall consider isomorphisms

fn,λ : Tn,λ
∼

−→ Jn,λ

for any λ ∈ logZ(x) and n ≥ −1, and we define them by induction on
n starting at n = −1.
Note that the relation Tn+1,λ = Tn,λ((e

Jn,λ)) holds for every n ≥ −1.
First let h : T → T be defined as

(7.1) h(x) =

{

x+ 1 if x ≥ 0
1

1−x
if x ≤ 0.

We shall use only the fact that h is an order isomorphism T ≃ T>0

mapping 0 to 1 and restricting to h| : Tn,λ
∼

−→ T>0
n,λ for every n ∈ Z

and λ ∈ expZ(x).
We build inductively fn,λ as follows: for n = −1 we just set

f−1,λ : T−1,λ = R
∼

−→ J−1,λ = log(λ)R f−1,λ(r) = log(λ)r
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Then to define fn+1,λ from fn,λ we use

Tn+1,λ = Tn,λ((exp(Jn,λ))) and Jn+1,λ = Tn,λ((exp(J
>0
n,λ))).

Assuming inductively that we have an isomorphism

fn,λ : Tn,λ
∼

−→ Jn,λ

composing with the order isomorphism h|Tn,λ
: Tn,λ ≃ T>0

n,λ we obtain
an induced order isomorphism

fn,λ ◦ h ◦ f−1
n,λ : Jn,λ

∼
−→ J>0

n,λ,

which in turn induces an isomorphism

fn+1,λ : Tn+1,λ
∼

−→ Jn+1,λ

as follows: every element x of Tn+1,λ may be written uniquely as

x =
∑

i<α

ki exp(γi) ki ∈ Tn,λ \ {0} γi ∈ Jn,λ

then one sends x to

fn+1,λ(x) =
∑

i<α

ki exp
(

fn,λ ◦ h ◦ f−1
n,λ(γi)

)

This way we end up with a family of isomorphisms fn,x
−k

: Tn,x
−k

∼
−→

Jn,x
−k
.

The glueing needed then follows from the following claim:

for every λ = x−k and every n ≥ −1, fn+1,log(λ) extends fn,λ.

To prove this claim we proceed by induction on n. For n = −1 we
easily see that for every r ∈ R we have

f0,log(λ)(r) = r exp(f−1,log(λ) ◦ h ◦ f−1
−1,log(λ)(0)) =

= r exp(f−1,log(λ) ◦ h(0)) =

= r exp(f−1,log(λ)(1)) = r log(λ) = f−1,λ(r).

As for the inductive case, assume fn+1,log(λ) extends fn,λ, and let us
prove that fn+2,log(λ) extends fn+1,λ: let x ∈ Tn+1,λ ⊆ Tn+2,log(λ), the
crucial observation is that if we write x as

x =
∑

i<α

ki exp(γi) ki ∈ Tn+1,log(λ) \ {0} γi ∈ Jn+1,log(λ)
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since x ∈ Tn+1,λ one has that actually ki ∈ Tn,λ and γi ∈ Jn,λ. Hence
recalling the inductive hypothesis we have

fn+2,log(λ)(x) =
∑

i<α

ki exp
(

fn+1,log(λ) ◦ h ◦ f−1
n+1,log(λ)(γi)

)

=

=
∑

i<α

ki exp
(

fn,λ ◦ h ◦ f−1
n,λ(γi)

)

= fn+1,λ(x).

This completes the proof. �

Remark 7.2. Note that by construction fn is strognly Tn−1-linear. More
preciesly, given a transseries of the form

∑

kie
γi where ki ∈ Tn−1 and

γi ∈ Jn−1, we have that

fn

(

∑

kie
γi

)

=
∑

kie
fn−1◦h◦f

−1

n−1
(γi).

This can be used to compute fn using as a base case fn ↾R which is
given by fn(r) = rxn. In particular f0(r) = rx. Let us also note that

fn ↾T0,xn
is given by fn(

∑

i<α rix
si
n ) =

∑

i<α rix
h(si)
n .

Example 7.3. Consider the transseries exp(xe−x). Its normal form is

exp(xe−x) =
∑

n∈N

xne−nx

n!
∈ T1,x ⊆ T2,x

We compute f1 and f2 on exp(xe−x).

• f1(exp(xe
−x)) =

∑

n≥0

xnef0◦h◦f
−1

0
(−nx)

n!
=

∑

n≥0

xne
1

n+1
x

n!
∈ J1,x, be-

cause
f0 ◦ h ◦ f−1

0 (−nx) = f0 ◦ h(−n) = 1
n+1

x.

• f2(exp(xe
−x)) = exp(xe−x)ef1◦h◦f

−1

1
(0) = exp(xe−x)ee

x

∈ J2,x

8. The group of monomials is order isomorphic to its

positive cone

In this section we show that there is a bi-bounded order isomorphism
M

LE ∼= M
LE,≺1. Since exp(T↑) = M

LE and exp is bi-bounded (Remark
6.5) this reduces to show that there is a bi-bounded order isomorphism
T ↑ ∼= T↑,>0. In turn this depends on the fact that T↑ is isomorphic
to the ordered vector space T0[t

±1] of Laurent polynomials over the
field T0. In fact we will show that, for any ordered field K, the vector
space K[t±1] is order isomophic to its positive cone. Since all the
relevant isomorphisms are bi-bounded with respect to the appropriate
bornologies, combining the isomorphisms we obtain our main result.
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Remark 8.1. Notice that for all n ∈ Z there is an automorphism Sn of
T preserving exp and infinite sums and sending x to xn = expn(x) (see
[5]). The restriction of Sn is an isomorphism Sn| : (Tn,+, ·, 0, 1, <) ≃
(T0,+, ·, 0, 1, <).

Proposition 8.2. There is a bi-bounded isomorphisms of ordered R-
vector spaces

F : T0[t
±1] → T↑.

where T0[t
±1] is the ordered ring of Laurent polynomials with coeffi-

cients from T0 ordered with the condition t > T0 and is endowed with
the bornology defined in Proposition 6.3.

Proof. It suffices to compose the isomorphisms

T0[t
±1] ≃

⊕

n∈Z

T0 ≃
⊕

n∈Z

Tn ≃
⊕

n∈Z

Jn ≃ T↑

More precisely, let fn : Tn → Jn be as in Proposition 7.1, then one
defines

F : T0[t
±1] → T↑, F (

∑

kit
i) =

∑

fn ◦ Sn(kn).

This is an ordered isomorphism by virtue of Proposition 5.6.
Notice that F (tiTn,x

−n−i
) = Jn,x

−n+i
, hence by linearity

F (Tn,x
−n
[t[−m,m]) =

∑

i∈[−m,m]

Jn,x
−n+i

.

To prove that F is bi-bounded it suffices to show that, as m ≤ n
range in Z, the sets Tn,x

−n
[t[−m,m] and

∑

i∈[−m,m] Jn,x−n+i
generate the

bornologies of T0[t
±1] and T↑ respectively. This is clear for T0[t

±1].
Now recall that the bornology of T↑ is generated by the sets T↑

n,x
−k

and, by Remark 4.6, Equation 4.1, for n ∈ N and k ∈ Z, setting
m = max{|n− k|, |k|}, we get

T↑
n,x

−k
⊆ Jn,x

−n−m
+ · · ·+ Jn,x

−n+m
⊆ T

↑
n+2m,x

−m−n
.

�

Proposition 8.3. Given an ordered field K and a bornology on K
on K generated by subfields, consider the bornology K[t] generated by
subgroups of the form E[t[m,n]] = Etm + · · · + Etn as E ranges in the
K-bounded subfields of K and m ≤ n range in Z. There are:

(1) a bi-bounded order isomorphism h : K ≃ K>0

(2) a bi-bounded order isomorphism H : K[t±1] ≃ K[t±1]>0 extend-
ing h where K[t±1] is the additive group of all Laurent polyno-
mials, with the ring order induced by t > K.
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Proof. (1) An order isomorphism can be defined piecewise, e.g. setting

h(x) =

{

x+ 1 if x ≥ 0
1

1−x
if x ≤ 0.

One easily sees that since h is defined only in terms of the order and
of field operations and constants, for every subfield L ⊆ K it restricts
to h| : L ≃ L>0, hence it is bi-bounded.

(2) This is a bit more involved. We will define order isomorphisms
A and B as in the diagram below

K[t±1] Z
>

×K[t−1]

K[t±1]>0

A

H
B

and define H as the composition H := B−1 ◦ A. Here Z
>

× K[t−1]
denotes the product of Z and K[t−1] endowed with the lexicographic
total order, that is (x, y) < (x′, y′) if and only if x < x′ or x = x′ and
y < y′.
In order to define the isomorphisms A let us observe that the set

tnK[t−1] of Laurent polynomials of degree ≤ n can be partitioned into
three order-convex subsets

tnK[t−1] = Ln ∪ tn−1K[t−1] ∪ Un

with
Ln < tn−1K[t−1] < Un

where Ln is the set of negative Laurent polynomials of degree n and
Un is the set of positive Laurent polynomials of degree n, that is:

Ln := tn−1K[t−1] +K<0tn

Un := tn−1K[t−1] +K>0tn.

It follows that we can write K[t±1] as the disjoint union

K[t±1] =
⋃

n>0

Ln ∪K[t−1] ∪
⋃

n>0

Un.

By point (1) we have order isomorphisms K ≃ K>0 ≃ K<0. It follows
that we can write down induced order isomorphisms

un : Un → {n} ×K[t−1], y + xtn 7→
(

n, t−ny + h−1(x)
)

ln : Ln → {−n} ×K[t−1], y − xtn 7→
(

− n, t−ny − h−1(x)
)

where y ranges in tn−1K[t−1] and x in K>0.
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Thus we can define an order isomorphism A : K[t±1] → Z
>

×K[t−1]
as the union

A =
⋃

n>0

ln ∪ A0 ∪
⋃

n>0

un : K[t±1] → Z
>

×K[t−1]

where A0 : K[t−1] ≃ {0} × K[t−1] is the obvious isomorphism y 7→
(0, y).

Similarly K[t±1]>0 decomposes as a disjoint union

K[t±1]>0 =
⋃

n∈Z

Un with Un < Un+1,

and again we can define the order isomorphism B : K[t±1]>0 → Z
>

×
K[t−1] as the union for n ∈ Z of un : Un ≃ {n} ×K[t−1]:

B =
⋃

n∈Z

un : K[t±1]>0 → Z
>

×K[t−1].

In order to prove that H : B−1◦A : K[t±1] → K[t±1]>0 is bi-bounded
it suffices to prove that for any subfield E of K we have

E[t[−n,n]]>0 ⊆ H(E[t[−n,n]]) ⊆ E[t[−2n,2n]]>0.

Computing A and B on E[t[−n,n]], where E is a subfield of K, we
have

A(E[t[−n,n]]) =
⋃

|k|≤n

{k} ×E[t[−|k|−n,0]],

B(E[t[−n,n]]) =
⋃

|k|≤n

{k} × E[t[−k−n,0]].

From this we see that clearly B(E[t[−n,n]]) ⊆ A(E[t[−n,n]]) ⊆ B(E[t[−2n,2n]]).
The claim follows applying B−1. �

Definition 8.4. By Proposition 8.3 point (2), setting K = T0, K =
T |T0

, we get an order isomorphism

H : T0[t
±1] → T0[t

±1]>0

which is bi-bounded with respect to the bornology of Definition 6.3.

Definition 8.5. Let F : T0[t
±1] → T↑ be the ordered R-vector space

isomorphism described in Proposition 8.2. We define H and η as fol-
lows:

H = F ◦ H ◦ F−1 : T↑ → T↑,>0

η = exp ◦H ◦ log : MLE → M
LE,≻1.
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Lemma 8.6. The map

η : (MLE, <) ≃ (MLE,≻1, <)

is a bi-bounded order isomorphism.

Proof. We know that all the maps exp,H, F are bi-bounded order iso-
morphisms hence η, being a composition of them and their inverses has
to be a bi-bounded isomorphism (see Remark 6.5, Proposition 8.2 and
Proposition 8.3). �

Theorem 8.7. The ordered group of transserial monomials M
LE is

isomorphic to the ordered additive reduct of T.

Proof. Consider the isomorphism of ordered R-vectors spaces

H : T → T↑

defined by H(
∑

rimi) =
∑

riη(mi). Note that H is well defined be-
cause η is bounded and it is an isomorphism because its inverse is
bounded. Now define

Ω : (T, 0,+, <) → (MLE, 1, ·, <)

as the composition Ω = exp ◦H . Then Ω is the desired isomorphism.
�

9. Generalizing a result on omega-maps

In [3] it is shown that a field of the form R((M))<κ admits an omega-
map if and only if admits an exponential and M is order isomorphic to
M

>1. We generalize this result to the case when instead of R((M))<κ

we have a subfield of R((M)) induced by a bornology on M.

Definition 9.1. Given an ordered group (M, ·, 1, <), if Γ is a subset
of M and G is a bornology on Γ we define

R((ΓG)) :=
⋃

S∈G

R((S)),

that is, the subspace of R((Γ)) consisting of well founded sums with
G-bounded support.

Remark 9.2. Let (M, ·, 1, <) be an ordered abelian group and let M
be a bornology generated by subgroups. Then:

• R((MM)) ⊆ R((M)) is a subfield (as it is a directed union of
fields).

• if ε ∈ R((MM)) is infinitesimal and (kn)n∈N is a N-sequence in
R, then

∑

n∈N

knε
n ∈ R((MM)).
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It follows in particular that in order for fields of the form R((MM)) to
have an exponential it suffices that they have one restricted to purely
infinite elements, the extension being constructed as in Equation 3.1.

Example 9.3. Let (M, ·, 1, <) be a multiplicatively written ordered
abelian group.

(1) If κ is an uncountable regular cardinal, the familyMκ of subsets
ofM having cardinality strictly less than κ is a bornology which
can be generated by subgroups. The field R((MMκ

)) is the field
of κ-bounded Hahn-series and is also denoted by R((M))κ.

(2) The family g of subsets contained in some finitely generated
subgroups of M is the smallest bornology on M generated by
subgroup. The field R((Mg)) is called field of grid based series
(cfr [11]).

(3) Taking M = xQ we obtain the field of Puiseux series R((xQ
g )).

(4) The field T of LE-transseries coincides with R((MLE
M )) where M

is the bornology in Definition 6.3.

Remark 9.4. If f : ΓG → ∆D is a bounded increasing map between total
orders, then the natural induced map F : R((Γ)) → R((∆)) defined as

F
∑

i<α

kiγi =
∑

i<α

kif(γi)

maps R((ΓG)) into R((∆D)).

The following results generalizes Theorem 4.1 of [3].

Proposition 9.5. Let N be a multiplicatively written ordered abelian
group and let N be a bornology generated by subgroups of N. For the
field K = R((NN )), denote by K the bornology on K generated by the
subfields of the form R((N′)) as N

′ ranges in the N -bounded subgroups
of N, then the following are equivalent:

(1) there is an ordered bi-bounded isomorphism (K,+, 0, <,K) ≃
(N, ·, 1, <,N ) between the field and its group of values v(K) =
N;

(2) K admits a bi-bounded isomorphism exp | : (K↑,+, 0, <,K|) ≃
(N, ·, 1, <,N ) and an ordered bi-bounded map (N,N , <) ≃ (N≻1,N|, <
)

where N| and K| denote the restrictions of the bornologies N and K to
N

≻1 and K↑ respectively.

Proof. Assume (1) holds, that is we have an isomorphism Ω : (K,+, 0, <
,K) ≃ (N, ·, 1, <,N ) and let h : K → K>0 be defined by the formula 7.1
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(Proof of Proposition 7.1): it is easy to check that then

Ω ◦ h ◦ Ω−1 : (N, ·, 1, <,N ) ≃ (N≻1, ·, 1, <,N|)

is a bi-bounded chain isomorphism, hence it allows us to define an
isomorphism G : (K↑,+, 0, <) → (K,+, 0, <), as the only strongly
R-linear map that restricts to Ω ◦ h−1 ◦ Ω−1 : N

≻1 → N (see Re-
mark 9.4). G is then bi-bounded w.r.t. to K and K|. The composite
Ω ◦ G is the sought exponential restricted to purely infinite elments
Ω ◦ G = exp | : (K↑,+, 0, <) ≃ (N, ·, 1, <): it is bi-bounded because it
is a composition of bi-bounded isomorphisms.
On the other hand assuming (2) if we have an isomorphism η : (N,N , <
) ≃ (N≻1,N|, <) we can immediately define an isomorphism H :
(K,+, 0, <,K) → (K↑,+, 0, <,K|) as the only strongly R-linear map
restricting to η and set Ω = exp ◦H : it is again bi-bounded because it
is a composition of bi-bounded maps. �

Remark 9.6. By Remark 9.2, the condition (2) of Proposition 9.5 is
equivalent to K admitting a surjective exponential which restricts to a
bi-bounded isomorphism exp | : (K↑,+, 0, <,K|) ≃ (N, ·, 1, <,N ) and
a bi-bounded order isomorphism (N,N , <) ≃ (N≻1,N|, <).

Remark 9.7. If we consider the case of a groupN endowed with the ideal
of subgroups Nκ consisting of the subgroups with cardinality strictly
less than κ for some fixed regular uncountable cardinal κ, then Propo-
sition 9.5 and Remark 9.6 tell us that K = R((N))κ admits an isomor-
phism Ω : (K,+, 0, <) ≃ (N, ·, 1, <) with its archimedean value group
v(K) ≃ N if and only if N ≃ N

≻1 and K admits a surjective exponen-
tial such that exp(K↑) = N. This implies Theorem 4.1 of [3] (see also
Theorem 3.4 therein).
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