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Abstract

The Simple Plant Location Problem (SPLP) is a well-known NP-
hard optimisation problem with applications in logistics. Although
many families of facet-defining inequalities are known for the associated
polyhedron, very little work has been done on separation algorithms.
We present the first ever polynomial-time separation algorithm for the
SPLP that separates exactly over an exponentially large family of facet-
defining inequalities. We also present some promising computational
results.

Keywords: facility location; combinatorial optimisation; branch-and-
cut

1 Introduction

The Simple Plant Location Problem (SPLP), also known as the Uncapaci-
tated Facility Location Problem, is a well-known optimisation problem aris-
ing in logistics applications (see, e.g., [14, 23, 25, 30]). We are given a set
I of facilities and a set J of clients. The cost of opening facility i ∈ I is
denoted by fi, and the cost of assigning client j ∈ J to facility i ∈ I is cij .
The task is to decide which facilities to open, and to assign each client to
an open facility, at minimum cost.

The SPLP is an NP-hard combinatorial optimisation problem [3, 23].
The standard integer programming formulation of the SPLP is due to Balin-
ski [3]. Let m denote |I| and n denote |J |. For each i ∈ I, define a binary
variable yi, taking the value 1 if and only if facility i is opened. For each
i ∈ I and j ∈ J , define a binary variable xij , taking the value 1 if and only
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if client j is assigned to facility i. The formulation is then:

min
∑

i∈I
∑

j∈J cijxij +
∑

i∈I fiyi (1)

s.t.
∑

i∈I xij = 1 (j ∈ J) (2)

xij ≤ yi (i ∈ I, j ∈ J) (3)

(x, y) ∈ {0, 1}mn+m. (4)

We call (2) assignment constraints and (3) variable upper bounds (VUBs).
Many families of valid and facet-defining inequalities have been derived

for the above formulation [5, 10, 11, 13, 15, 17, 19]. On the other hand, very
little work has been done on separation algorithms. Indeed, until the present
paper, exact polynomial-time separation algorithms were known only for one
family of inequalities, the so-called odd cycle inequalities [6, 7, 8]. Moreover,
the odd cycle inequalities do not define facets in general [11, 15].

In this paper, we focus on some facet-defining inequalities due to Cho
et al. [11], which we call 3-client inequalities. Our main contribution is
to describe an exact separation algorithm for the 3-client inequalities. To
our knowledge, our algorithm is the first ever separation algorithm for the
SPLP that (a) runs in polynomial time, and (b) separates exactly over an
exponentially large family of facet-defining inequalities.

The paper is structured as follows. Section 2 is a brief literature review.
Section 3 presents the separation algorithm. (A faster separation algorithm
is also presented for a less general family of inequalities.) In Section 4, we
present some computational results and some concluding remarks.

Throughout the paper, we assume that the reader is familiar with the
polyhedral approach to combinatorial optimisation (see [9, 12, 22]). We let
P (m,n) denote the convex hull of all pairs (x, y) ∈ Rmn+m that satisfy (2)–
(4). We sometimes write x(i, j) for xij and y(i) for yi. Moreover, sometimes
we write x(S : T ) for

∑
i∈S

∑
j∈T xij and y(S) for

∑
i∈S yi. Finally, when

we say “trivial bounds”, we mean the constraints xij ≥ 0 for all i ∈ I and
j ∈ J and the constraints yi ≤ 1 for all i ∈ I.

2 Literature Review

Since the literature on the SPLP is vast, we focus here on papers of direct
relevance, and refer the reader to the surveys [14, 23, 25, 30] for more details.
We cover valid inequalities in Subsection 2.1 and separation algorithms in
Subsection 2.2.

2.1 Some valid inequalities

Cornuéjols and Thizy [15] showed that the assignment constraints give a
complete and non-redundant description of the affine hull of P (m,n). They
also showed that the VUBs and trivial bounds define facets. Cho et al. [10]
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showed that P (m,n) is completely described by the assignment constraints,
VUBs and trivial bounds when at least one of m and n is less than 3.
Otherwise, more inequalities are needed.

Let p ≥ 3 be an odd integer. Let s1, . . . , sp be distinct location indices,
let t1, . . . , tp be distinct client indices, and take indices modulo p, so that
sp+1 is identified with s1. The odd cycle inequality

p∑
i=1

(
x(si, ti) + x(si, ti+1)

)
≤

p∑
i=1

y(si) + ⌊p/2⌋ (5)

is valid [10, 15]. Odd cycle inequalities define facets if and only if p = 3
[11, 15]. For larger p, they must be strengthened (“lifted”) to make them
facet-defining [11, 15].

Following [17], we will call the odd cycle inequalities with p = 3 3-cycle
inequalities. Cho et al. [10] showed that the 3-cycle inequalities, together
with the assignment constraints, VUBs and trivial bounds, give a complete
description of P (m,n) when m = 3.

Cho et al. [11] presented an interesting generalisation of the 3-cycle in-
equalities. Let j1, j2 and j3 be three client indices, and let S12, S13, S23 and
S123 be disjoint subsets of I. (One of the four subsets is permitted to be
empty.) Then the following inequality is valid and facet-defining:

2x
(
S12 : {j1, j2}

)
+ 2x

(
S13 : {j1, j3}

)
+ 2x

(
S23 : {j2, j3}

)
+

x
(
S123 : {j1, j2, j3}

)
≤ 2 + 2 y

(
S12 ∪ S13 ∪ S23

)
+ y

(
S123

)
. (6)

We will call (6) 3-client inequalities. Note that the 3-client inequalities
with

∣∣S12

∣∣ = ∣∣S13

∣∣ = ∣∣S23

∣∣ = 1 and S123 = ∅ are equivalent to the 3-cycle
inequalities. Cho et al. [10] showed that the 3-client inequalities, together
with the assignment constraints, VUBs and trivial bounds, give a complete
description of P (m,n) when n = 3.

Several additional families of inequalities are presented in [1, 5, 10, 11,
13, 15, 17, 19]. We omit details for brevity.

2.2 Separation algorithms

To our knowledge, before the present paper, exact polynomial-time separa-
tion algorithms were known only for the odd cycle inequalities (5).

Caprara & Fischetti [6] showed that odd-cycle separation can be reduced
to a series of O(mn) shortest (s, t)-path problems in a graph with O(mn)
nodes and O

(
m2n

)
edges. Although this algorithm runs in polynomial time,

it is too slow to be useful in practice.
A faster odd-cycle separation algorithm, running in O

(
m2(m+n)

)
time,

was given in [7]. Although this is still rather slow, the algorithm actually
returns m odd cycle inequalities, each of which can be checked for violation.
Computational results obtained with this algorithm are given in [8].
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Unfortunately, the results in [8] indicate that odd cycle inequalities typ-
ically close only a small proportion of the integrality gap. This may be due
to the fact, mentioned above, that the inequalities do not define facets in
general.

The only other separation algorithm we are aware of is due to Aardal
[1]. In Subsection 5.3 of her paper, she defines a family of inequalities that
generalises the odd cycle inequalities, and devises a heuristic separation
algorithm for them. The inequalities are not facet-defining in general. As
far as we can tell, the separation heuristic runs in O

(
m2n2

)
time, but it can

yield up to m violated inequalities in a single call.
To close this section, we mention that, at present, the leading exact

algorithms for the SPLP are the ones in [16, 26, 28]. Strangely, none of
them exploit the above-mentioned results on polyhedra and separation. A
possible explanation is that, for many instances, the continuous relaxation
of the Balinski formulation already gives a reasonably tight lower bound
[2, 27].

3 Separation Algorithms

We now turn our attention to separation. In Subsection 3.1, we present
an exact separation algorithm for the 3-client inequalities (6), which runs
in O

(
mn3

)
time. In Subsection 3.2, we discuss ways to speed up the algo-

rithm in practice. Then, in Subsection 3.3, we present an exact separation
algorithm for the (less general) 3-cycle inequalities, which runs in O

(
m2n

)
time.

Throughout this section, we let (x∗, y∗) denote the fractional point to
be separated. We assume w.l.o.g. that (x∗, y∗) satisfies the assignment con-
straints (2), the VUBs (3) and the trivial bounds.

3.1 Separation for 3-client inequalities

Before presenting our separation algorithm for 3-client inequalities, we will
need the following lemma.

Lemma 1 If two or more of the sets S12, S13, S23 and S123 are empty, then
the 3-client inequality (6) remains valid, but it is implied by the assignment
constraints (2) and VUBs (3).

Proof. If S13 and S23 are empty, then the 3-client inequality reduces to

2x
(
S12 : {j1, j2}

)
+ x

(
S123 : {j1, j2, j3}

)
≤ 2 + 2 y

(
S12

)
+ y

(
S123

)
.

This is implied by (a) the assignment constraints on j1 and j2, (b) the VUBs
on S12 and {j1, j2}, and (c) the VUBs on S123 and j3. A similar argument
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applies if S12 and S13 are empty, or S12 and S23 are empty. If S23 and S123

are empty, then the 3-client inequality reduces to

2x
(
S12 : {j1, j2}

)
+ 2x

(
S13 : {j1, j3}

)
≤ 2 + 2 y

(
S12 ∪ S13

)
.

This is implied by (a) the assignment constraint on j1 (taken twice), (b) the
VUBs on S12 and j2, and (c) the VUBs on S13 and j3. □

We are now ready to present our separation algorithm for 3-client in-
equalities.

Proposition 1 The separation problem for the 3-client inequalities (6) can
be solved exactly in O

(
mn3

)
time.

Proof. There are O
(
n3

)
possible ways to select the client triple {j1, j2, j3}.

For each such triple, we can find the facility sets S12, S13, S23 and S123

that minimise the slack of the inequality (or, equivalently, maximise the
violation) as follows. For each i ∈ M , compute the following four quantities:

2
(
x∗(i, j1) + x∗(i, j2)− y∗i

)
2
(
x∗(i, j1) + x∗(i, j3)− y∗i

)
2
(
x∗(i, j2) + x∗(i, j3)− y∗i

)
x∗(i, j1) + x∗(i, j2) + x∗(i, j3)− y∗i .

If at least one of these quantities is positive, then place i in S12, S13, S23

or S123, respectively, according to which of the quantities is the largest.
Otherwise, do not place i in any of those sets.

Note that, for a given client triple and a given i, one can compute the
four quantities in constant time. Thus, for a given triple, one can compute
S12, S13, S23 and S123, and check the resulting inequality for violation, in
O(m) time.

One small complication is that, for a given client triple, more than one of
the sets S12, S13, S23 and S123 may turn out to be empty. If that happens,
then, by Lemma 1, no 3-client inequality is violated for that triple. □

3.2 Exploiting sparsity

Since a running time of O
(
mn3

)
is rather high, we now show how to speed

up the algorithm, by exploiting the sparsity of the LP solution. We will
need the following three lemmas.

Lemma 2 If a 3-client inequality is violated, then y∗i < 1 for all i ∈ S12 ∪
S13 ∪ S23 ∪ S123.

5



Proof. Suppose that y∗i = 1 for some i ∈ S12. This implies that y∗ satisfies
y
(
S12

)
≥ 1 or, equivalently, −2y

(
S12

)
≤ −2. Add to this (i) two times the

assignment constraints on clients j1 and j2, (ii) two times the VUBs for the
client j3 and the facilities in S13 and S23, and (iii) the VUBs for the client
j3 and the facilities in S123. The resulting inequality dominates the 3-client
inequality.

The cases in which i belongs to S13 or S23 are similar.
Now suppose that y∗i = 1 for some i ∈ S123. This implies that y∗ satisfies

−y
(
S123

)
≤ −1. Add to this (i) the assignment constraints on clients j1,

j2 and j3, (ii) the VUBs for the client j1 and the facilities in S12 and S13,
(iii) the VUBs for the client j2 and the facilities in S12 and S23, and (iv)
the VUBs for the client j3 and the facilities in S13 and S23. The resulting
inequality implies the 3-client inequality. □

Lemma 3 If a 3-client inequality is violated, then there exists a most-
violated inequality such that all of the x variables appearing on the left-hand
side of the inequality are positive at (x∗, y∗).

Proof. Suppose that a 3-client inequality is violated, and x∗(i, j1) = 0 for
some i ∈ S12. Due to the VUBs, x∗(i, j2) ≤ y∗i . Thus, we can remove i from
S12 without decreasing the violation of the inequality. By symmetry, the
same argument applies for j2, j3, S13 and S23.

Now suppose that x∗(i, j1) = 0 for some i ∈ S123. If x
∗(i, j2)+x∗(i, j3) ≤

y∗i , we can delete i from S123 without decreasing the violation of the in-
equality. Otherwise, we can move i from S123 to S23 without decreasing the
violation of the inequality. A similar argument applies to j2 and j3. □

Lemma 4 If a 3-client inequality is violated, then there exists a most-
violated inequality such that y∗i > 0 for all i ∈ S12 ∪ S13 ∪ S23 ∪ S123.

Proof. Suppose that a 3-client inequality is violated, and y∗i = 0 for some
i ∈ S12. Due to the VUBs, x∗(i, j1) and x∗(i, j2) must both be zero. Then, if
we delete i from S12, the violation of the inequality is unchanged. A similar
argument applies to S13, S23 and S123. □

The above three lemmas lead us to define the following three sets:

E =
{
(i, j) : i ∈ I, j ∈ J, x∗ij > 0, y∗i < 1

}
I∗ =

{
i ∈ I : 0 < y∗i < 1, ∃j ∈ J : x∗ij > 0

}
J∗ =

{
j ∈ J : ∃i ∈ I∗ : x∗ij > 0

}
.

One can think of I∗ and J∗ as forming the node sets of a bipartite graph,
and E as being the edge set.

We are now ready for the main result in this section.
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Theorem 1 The separation problem for the 3-client inequalities (6) can be
solved exactly in O

(
|J∗|2 |E|

)
time.

Proof. Given Lemmas 2 to 4, we can assume w.l.o.g. that (a) {j1, j2, j3} ⊆
J∗, (b) S12 ∪ S13 ∪ S23 ∪ S123 ⊆ I∗, and (c) if xij appears on the left-hand
side of the 3-client inequality, then (i, j) ∈ E.

To exploit these facts, we begin by computing, for each client j ∈ J∗, a
list of the locations i ∈ I∗ for which (i, j) ∈ E. We let d(j) denote the degree
of client j ∈ J∗, which is the size of the associated list. This computation
takes only O

(
|E|

)
time in total. Once this is done, we can compute the

four quantities more quickly for each given client triple {j1, j2, j3}, by only
considering locations that are in the relevant lists. The total time taken over
all triples is:∑
{j1,j2,j3}⊆J∗

O
(
d(j1) + d(j2) + d(j3)

)
= O

(
|J∗|2

∑
j∈J∗

d(j)

)
= O

(
|J∗|2 |E|

)
as stated. □

Note that the algorithm presented in the proof of Theorem 1 can return
several violated inequalities in a single call.

3.3 Separation for 3-cycle inequalities

Recall (from Subsection 2.1) that the 3-cycle inequalities are a special case
of the 3-client inequalities, and always define facets of P (m,n). For what
follows, we will find it helpful to have a separation algorithm for the 3-cycle
inequalities in particular.

It is not difficult to modify the separation algorithm for odd cycle in-
equalities, described in [7], to obtain an O

(
m2(m + n)

)
-time separation

algorithm for the 3-cycle inequalities. We do not go into details, because we
will show that one can do better.

To aid the reader, we write the 3-cycle inequalities explicitly as:

3∑
i=1

(
x(si, ti) + x(si, ti+1)

)
≤

3∑
i=1

y(si) + 1. (7)

We also refer to the sets I∗, J∗ and E, and the client degrees d(j), that were
defined in the previous subsection.

We will use the following three lemmas.

Lemma 5 If a 3-cycle inequality is violated, then (a) {s1, s2, s3} ⊆ I∗, (b)
{t1, t2, t3} ⊆ J∗, and (c) if xij appears on the left-hand side of the inequality,
then (i, j) ∈ E.

Proof. Similar to Lemmas 2 to 4. □
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Lemma 6 Suppose we construct a graph, say G̃, with vertex set I∗ and edge
set Ẽ, as follows. An edge {i, i′} is included in Ẽ if and only if there exists
at least one client j ∈ J∗ such that both (i, j) and (i′, j) lie in E. The weight
of the edge {i, i′} is set to:

min
j∈J∗

{
1 + y∗(i) + y∗(i′)− 2x∗(i, j)− 2∗x(i′, j)

}
. (8)

Then, a violated 3-cycle inequality exists if and only if there exists in G̃ a
triangle with total weight less than 1.

Proof. The 3-cycle inequality can be written in the form:

3∑
k=1

(
1 + y(sk) + y(sk+1)− 2x(sk, tk+1)− 2x(sk+1, tk+1)

)
≥ 1.

The result then follows from Lemma 5. □

Lemma 7 If a 3-cycle inequality is violated, then at least one of the six x
variables appearing on the left-hand side must take a value larger than 1/3
at (x∗, y∗).

Proof. Let LHS denote the left-hand side of (7). Suppose that all six x
variables take a value less than or equal to 1/3. Then (x∗, y∗) satisfies the
inequality LHS≤ 2. Now, summing together the VUBs for all six x variables,
we obtain the inequality LHS ≤ 2

∑3
i=1 y(si). These two inequalities imply

the 3-cycle inequality. □

Now, for each edge {i, i′} ∈ Ẽ, let j(i, i′) denote the client achieving
the minimum in (8). We call the edge {i, i′} “promising” if at least one of
x∗

(
i, j(i, i′)

)
and x∗

(
i′, j(i, i′)

)
exceeds 1/3. By Lemma 7, any triangle in G̃

that yields a violate 3-cycle inequality must contain at least one promising
edge. We also have the following lemma:

Lemma 8 The number of promising edges in Ẽ is O(|E|).

Proof. For a given client j ∈ J∗, there can exist at most two x vari-
ables that exceed 1/3, due to the assignment constraints. So the number of
promising edges involving client j is less than 2d(j), and the total number
of promising edges is less than 2|E|. □

We can now present our main result for the 3-cycle inequalities.

Proposition 2 The separation problem for the 3-cycle inequalities can be
solved in O

(
|I∗| |E|

)
time.
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Proof. We first show that Ẽ can be constructed in O
(
|I∗| |E|

)
time. For

each client j ∈ J∗, there are d(j) edges in E. Thus, one need check only(
d(j)
2

)
facility pairs {i, i′} for the given client j. Each such pair should be

included in Ẽ. The total time needed to construct Ẽ is∑
j∈J∗

O
(
d2(j)

)
= |I∗|

∑
j∈J∗

O
(
d(j)

)
= O

(
|I∗| |E|

)
Note that we can update the weights of the edges in Ẽ as we go along.

To complete the proof, we must show that one can check all triangles
efficiently. To do this, one simply takes each of the O(|E|) promising edges,
and each of the O(|I∗|) candidates for the third facility, and checks if the
sum of the three associated edges is less than 1. □

We remark that this algorithm can return several violated inequalities in a
single call.

4 Computational Experiments

In this section, we perform computational experiments, to see whether the
3-client inequalities are useful in practice.

4.1 Experimental setup

For a given SPLP instance, we begin by solving the initial LP relaxation,
which is obtained from (1)-(4) by replacing the constraints (4) with the
trivial bounds. Since this LP relaxation is highly degenerate, we use an
interior-point method rather than the simplex method. To be specific, we
use the Barrier solver of the CPLEX callable library (v. 12.10).

After the initial relaxation has been solved, we run a cutting-plane al-
gorithm that uses the separation routines described in Subsections 3.2 and
3.3. To re-optimise the LP after adding cuts, we use a dual simplex algo-
rithm: the DualOpt solver of the CPLEX callable library. For more details,
see Algorithm 1.

All code was written in C++ and compiled using g++ with -O3 optimi-
sations. All experiments were run on a 2.299 GHz AMD Opteron 6376 with
16Gb RAM under a 64 bit Linux operating system (Ubuntu 20.04).

4.2 Test instances

Several sets of benchmark instances are available in the UFLlib [29]. For
some instances, such as the planar Euclidean ones, the lower bound from
the initial LP relaxation is already very close to the optimum. This led us to
select the following sets of instances, each of which has an average integrality
gap of more than 1%:
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Algorithm 1: Cutting-Plane Algorithm for the SPLP

input : Number of facilities n, number of clients m,
facility costs fi, assignment costs cij

Solve initial LP (with Barrier);
Record the lower bound LB1;
// 3-cycle phase

repeat
Set cuts-found to false;
Call separation algorithm for 3-cycle inequalities;
if any 3-cycle inequalities are violated by more than 10−4 then

Add the inequalities to the LP;
Set cuts-found to true;

end
if cuts-found = true then

Re-optimise LP (with DualOpt);
Delete 3-cycle inequalities with slack > 0.1;

end

until cuts-found = false;
Record the lower bound LB2;
// 3-client phase

repeat
Set cuts-found to false;
Call separation algorithm for 3-client inequalities;
if any 3-client inequalities are violated by more than 10−4 then

Add the inequalities to LP;
Set cuts-found to true;

end
if cuts-found = true then

Re-optimise LP (with DualOpt);
Delete 3-client inequalities with slack > 0.1;

end

until cuts-found = false;
Record the lower bound LB3;
output: Lower bounds LB1, LB2 and LB3

10



• The BK instances. These were created following the scheme described
in Bilde & Krarup [4]. There are 10 instances of types “B” and “C”,
and 100 instances of types “D” and “E”, making 220 in total. The
cij are random integers in the range [0, 1000]. The fi are random for
the B and C instances, but constant for the D and E instances. These
instances are fairly easy to solve exactly.

• The M* instances of Kratica et al. [24]. We selected the instances with
m = n ∈ {100, 200, 300, 500}, for which optimal solution values are
known (e.g., [16, 28]). There are 5 instances of each size, making 20 in
total. In these instances, there is a negative correlation between the
facility costs and assignment costs.

• The KG instances. These were created by Ghosh [18] using a similar
scheme to that of Koerkel [20]. They come in two types, symmetric
and asymmetric. We selected the ones with m = n ∈ {250, 500},
for which optimal solutions are known (e.g., [16, 28]). There are 15
instances of each type and size, making 60 in total.

• Instances from Kochetov & Ivanenko [21], which we call KI. They only
have m = n = 100. The ones of type “A”, “B” and “C” are designed
to have large integrality gaps, and they are surprisingly challenging for
exact methods. The ones of type “U” have costs taken from a uniform
distribution. There are 30 instances of each type, making 120 in total.
Optimal solutions are known for all of these instances [21].

4.3 Results

As mentioned above, our code generates three lower bounds (LB1, LB2 and
LB3). For each instance and each bound, we computed the “percentage
gap”, by which we mean the difference between the lower bound and the
optimum, expressed as a percentage of the optimum. We also computed
the percentage of the initial gap that was closed by the 3-cycle and 3-client
inequalities.

Table 1 displays the following for each set of instances: the name, the
number of facilities m, the number of clients n, the mean percentage gap for
each of the three bounds, and the percentage gap closed by the two types
of inequalities. We see that the 3-cycle inequalities perform rather poorly,
closing a significant amount of gap only for the BK instances of type B. The
3-client inequalities, on the other hand, close a substantial portion of the
gap for all of the BK and M* instances, and do reasonably well on the uniform
KI instances.

Table 2 displays, for each set of instances, the mean time (in seconds)
taken to compute each the three lower bounds. It is apparent that using
3-cycle inequalities leads to only a modest increase in running time. On the
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% gap % gap closed

Set m n LB1 LB2 LB3 3-cycle 3-client

BK-B 30 80 1.87 1.04 0.07 51.27 78.38
BK-C 50 100 6.08 5.75 3.86 7.72 42.85
BK-D 30 80 7.16 7.08 2.82 2.18 64.05
BK-E 50 100 9.19 9.15 5.64 0.65 39.21

MO 100 100 2.85 2.69 0.91 6.21 71.19
MP 200 200 4.20 4.11 2.16 2.90 52.25
MQ 300 300 4.04 4.01 2.20 0.81 46.87
MR 500 500 6.52 6.50 4.83 0.37 26.56

KG-S 250 250 1.46 1.45 1.24 4.89 13.33
KG-S 500 500 1.36 1.36 1.32 0.90 2.74

KG-A 250 250 1.41 1.41 1.09 4.79 13.76
KG-A 500 500 1.36 1.36 1.32 1.48 3.38

KI-A 100 100 25.63 25.63 25.21 0.01 1.63
KI-B 100 100 21.10 20.93 20.54 0.79 2.65
KI-C 100 100 28.15 28.15 28.08 0.00 0.25

KI-U 100 100 4.64 3.91 3.43 17.00 27.90

Table 1: Average percentage gap and percentage gap closed
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Set m n LB1 LB2 LB3

BK-B 30 80 0.09 0.14 0.80
BK-C 50 100 0.12 0.18 3.23
BK-D 30 80 0.11 0.12 37.89
BK-E 50 100 0.12 0.13 146.25

MO 100 100 0.45 0.67 55.92
MP 200 200 2.32 5.42 972.55
MQ 300 300 7.62 15.15 7606.92
MR 500 500 34.10 86.95 36077.78

KG-S 250 250 5.24 6.21 2394.32
KG-S 500 500 38.20 43.44 1481.43

KG-A 250 250 4.82 5.72 2061.74
KG-A 500 500 38.05 51.86 1627.31

KI-A 100 100 0.22 0.23 1.84
KI-B 100 100 0.25 0.32 1.53
KI-C 100 100 0.20 0.20 1.45

KI-U 100 100 0.40 0.57 1.91

Table 2: Average time taken to compute lower bounds

other hand, using 3-client inequalities turned out to be more time-consuming
than we had hoped. As far as we can tell, the main bottleneck was the re-
optimisation of the LPs, rather than the separation algorithm itself. This
may be due to degeneracy.

We believe that it would be worthwhile devising effective exact and/or
heuristic separation algorithms for other families of valid inequalities for the
SPLP. It would also be worthwhile designing and testing a full branch-and-
cut algorithm for hard SPLP instances.
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[14] G. Cornuéjols, G.L. Nemhauser & L.A. Wolsey (1990) The uncapaci-
tated facility location problem. In: P.B. Mirchandani & R.L. Francis
(eds.), Discrete Location Theory, pp. 1–54. New York: Wiley.
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