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Simple Summary: Alterations in cholesterol level play an important role in cancer development.
Lipid transfer proteins (LTPs) are involved in cholesterol distribution between organelles. Among
LTPs, some members of steroidogenic acute regulatory-related lipid transfer (START) protein family
regulate the cholesterol transportation between organelles and have been revealed as critical for
cancer development. This review highlights the recent discoveries of the StAR-related lipid transfer
protein domain 3 (STARD3) member of START proteins in cancer development and progression.
Blocking cholesterol transportation through the inhibition of STARD3 activity could be an important
strategy to treat cancer.

Abstract: Cancer is one of the major causes of death in developed countries and current therapies
are based on surgery, chemotherapeutic agents, and radiation. To overcome side effects induced
by chemo- and radiotherapy, in recent decades, targeted therapies have been proposed in second
and even first lines. Targeted drugs act on the essential pathways involved in tumor induction,
progression, and metastasis, basically all the hallmark of cancers. Among emerging pathways,
the cholesterol metabolic pathway is a strong candidate for this purpose. Cancer cells have an
accelerated metabolic rate and require a continuous supply of cholesterol for cell division and
membrane renewal. Steroidogenic acute regulatory related lipid transfer (START) proteins are a
family of proteins involved in the transfer of lipids and some of them are important in non-vesicular
cholesterol transportation within the cell. The alteration of their expression levels is implicated in
several diseases, including cancers. In this review, we report the latest discoveries on StAR-related
lipid transfer protein domain 3 (STARD3), a member of the START family, which has a potential role
in cancer, focusing on the structural and biochemical characteristics and mechanisms that regulate its
activity. The role of the STARD3 protein as a molecular target for the development of cancer therapies
is also discussed. As STARD3 is a key protein in the cholesterol movement in cancer cells, it is of
interest to identify inhibitors able to block its activity.

Keywords: STARD3; targeted drugs; cholesterol; steroidogenic acute regulatory transfer proteins;
inhibitors; cancer
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1. Introduction

Cancer, one of the leading causes of death worldwide [1], is a complex disease in
which the number of cells increases uncontrollably. Alterations in the DNA and different
risk factors, such as physical inactivity, smoking, unbalanced diet, and the environment are
involved in this process [2]. The World Health Organization (WHO) has estimated that the
number of cancer patients and related deaths could increase rapidly with the growth and
aging of the population or as a result of unhealthy lifestyles [3–5]. The highest number of
cases and deaths are from breast, lung, and colorectal cancers in women and prostate, lung,
and colorectal cancers in men. However, the incidence also continues to increase for other
cancers such as the pancreas, kidney, stomach, liver, oral cavity, and melanoma of the skin
in both sexes [1,6].

To reduce cancer mortality, a better biological understanding of these malignancies
could lead to the development of more specifics and effective drugs prolonging the quality
of life and the survival of cancer patients [7]. Following this idea, researchers are focusing
on the identification of different proteins for the successful development of molecular-
targeted therapies that can block novel signaling pathways [8–13]. In recent years, various
molecular-targeted agents have been approved by the US Food and Drug Administration
(FDA), including small molecules and antibodies [12] used to target the proteasome [14],
cyclin-dependent kinases (CDKs) [15], epidermal growth factor receptor (EGFR) [16], vas-
cular endothelial growth factor (VEGF) [17], poly (ADP-ribose) polymerase (PARP) [18,19],
and programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) [20]. Among novel
molecular targets, cholesterol metabolism has received increasing attention due to its role in
cancer development [21,22]. Recent studies have suggested that cancer cells reprogram the
cholesterol metabolism to regulate the permeability and fluidity of the cell membrane and
increase the transduction of intracellular survival signals [23–25]. Zhuang et al. provided
evidence that cholesterol, through the formation of lipid rafts, is a mediator of signal
transduction processes relevant to prostate cancer cell survival and disease progression
both in vivo and in vitro [26].

Intracellular cholesterol and its synthesis are mediated by a complex protein network,
including sterol regulatory element-binding proteins (SREBPs) [27–29], SREBP cleavage-
activating protein (SCAP) [28–30], 3-hydroxy-3-methylglutaryl coenzyme A reductase
(HMG-CoA reductase) [29], insulin induced-genes (Insigs) [28,31], cytosolic sterol car-
rier protein 2 (SCP2), fatty acid-binding protein (FABP) transfer sterols [29,32], oxysterol
binding proteins (OSBPs) [33], protein aster-A (GRAMD1) [34], late endosomal oxysterol-
binding protein homologue (ORP1L) [35]; and Niemann Pick type-C1 protein (NPC1),
Niemann–Pick type-C2 protein (NPC2) [36], and Steroidogenic acute regulatory (StAR)
related lipid transfer proteins (START) [29,37]. These proteins are involved in the vesic-
ular traffic of cholesterol through the endocytic and secretory pathways as well as in
non-vesicular exchange between organelles [29,37]. Currently, non-vesicular cholesterol
transport has gained great interest in the scientific community due to the possible associa-
tion between lipid transfer proteins (LTP) and cancer development [29]. START proteins are
a family of LTPs involved in different cellular processes, including non-vesicular cholesterol
transport [38]. The START family is composed of 15 members grouped into six subfamilies
according to the similarity of the amino acid sequence and ligand binding (Figure 1) [38,39].
There are published data that suggest that StAR-related lipid transfer domain-3 (STARD3),
a membrane-targeted START protein, regulates the cholesterol accumulation in endosomes
and mediates its inter-organelle distribution [40–42]. STARD3 is a member of a subfamily
of lipid trafficking proteins that are characterized by a C-terminal START domain, a central
FFAT domain, and an N-terminal MENTAL domain. Different studies have reported the
association of STARD3 expression with several cancer types [43–46], and in breast cancer
patients, a high level of STARD3 is associated with metastasis, local recurrence, and shorter
overall survival [47,48]. Differently from others START proteins, STARD3 is mapped in
17q12-21, a chromosomal region frequently amplified in many cancers including breast,



Cancers 2021, 13, 4693 3 of 21

colorectal, and gastric cancers [49–51]. For these reasons, STARD3 could be considered a
potential oncogene for which the first inhibitor was reported [52].
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Figure 1. Schematic representation of the START proteins grouped into six subfamilies. START (StAR-
related lipid-transfer domain), Mt (mitochondrial targeting sequence), MENTAL (MLN64 NH(2)-
terminal domain), PH (pleckstrin homology domain), FFAT (two phenylalanines in an acidic tract),
RhoGAP (Rho-GTPase-activating domain), SAM (sterile alpha motif domain), THIO (thioesterase
active domain), and FHA (N-terminal Forkhead-associated domain). a.a.—amino acids. Arrows
indicate overexpression (up) or downregulation (down) of protein in cancer.

To the best of our knowledge, for the first time, we summarize the role of STARD3 in
cancer and computational strategies to propose possible binding sites of potential STARD3
inhibitors and challenges for the discovery of new inhibitors.

2. The Role of Intracellular Cholesterol in Cancer Development

Several studies indicated the association between cholesterol levels and cancer devel-
opment [21]. In fact, serum cholesterol is associated with an increased risk of more than
10% in prostate cancer recurrence [53,54]. Other studies also suggest its association with
an increased risk of colorectal [55,56], lung [57,58], and breast cancers (BC) [59,60]. The
use of statins, a class of lipid-lowering medications, is associated with a reduction risk of
melanoma, non-Hodgkin lymphoma, and endometrial and breast cancers [61–63]. The
effect of statins after colorectal cancer diagnosis is described in another report highlighting
a dose-dependent reduction in colorectal cancer mortality linked with statin administra-
tion [64]. On the other hand, epidemiological studies demonstrated contrasting results
between serum cholesterol and cancer; in some cases, it was found that low level of choles-
terol and statins are associated with oncogenic effects [65]. These data suggest that the
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alteration of one of the multiple mechanisms that regulate cholesterol homeostasis could
promote cancer development.

Recent studies have shown that intracellular cholesterol levels in cancer cells may
be more important than serum cholesterol levels [66]. Moreover, intracellular cholesterol
homeostasis varies between different cancer types, and consequently, its cellular activity
change [67]. Therefore, intracellular cholesterol level seems to be more important than
dietary cholesterol level in cancer development. Cholesterol is an essential component of
mammalian cells and comprises approximately 30% of the plasma membrane [68]. This
type of structural lipid is synthesized in the liver and transported by low-density lipopro-
tein (LDL) to target cells throughout the body [69]. The intracellular cholesterol uptake is
mediated by membrane receptors, including LDL receptors, several LDL receptor-related
proteins (LRP1, LPR2, LRP5, LRP6, and LPR8), and others [70]. Inside the cells, the distribu-
tion of cholesterol occurs through vesicular and non-vesicular transport mechanisms [71,72].
Indeed, there are differences in the cholesterol content between the membranes of cell
organelles, which are partially attributed to the interaction of cholesterol with membrane
phospholipids [71]. Interestingly, non-vesicular transport plays an important role in main-
taining the correct distribution of cholesterol between organelles [72], and several proteins,
such as the START family, are involved, as described below [38,73–75].

Published data indicated that cancer cells showed higher levels of intracellular choles-
terol compared to nontumor cells [76–78]. Cancer cells require high amounts of nucleic
acids, proteins, and lipids for their survival [79]. Thus, to cope with these high requirements,
cancer cells modify their metabolism. Among metabolic changes, cancer cells increase the
de novo lipid biosynthesis including cholesterol synthesis [80–82]. It has been reported that
several cancer cell types have higher membrane cholesterol levels and are richer in lipid
rafts [77]. Cholesterol accumulation participates in the formation of sphingolipid-rich mem-
brane microdomains and stimulates the progression and migration of cancer cells [23–25].
Human breast (MDA-MB-231 and MCF-7) and prostate cancer (LNCaP and PC-3) cell
lines had a higher cholesterol level compared to their nontumorigenic counterparts [77].
It was demonstrated that a decrease in cholesterol from plasma membrane is related to
anoikis-like apoptosis and the progressive increases in membrane cholesterol could con-
tribute to the expansion of rafts/caveolae in order to potentiate oncogenic pathways [77].
Badana et al. showed that methyl-β-cyclodextrin, a cholesterol depleting agent, has an
effect on lipid rafts of breast cancer cell lines (MDA-MB468 and MDA-MB231), decreases
cell proliferation and migration, and induces apoptosis [83].

Likewise, Raghu et al. demonstrated that lipid raft disruption in several breast cancer
cell lines caused a decrease in migration and cell invasion compared with nontumor
cells [84,85].

Intracellular cholesterol and lipid rafts are associated with an increasing number
of oncogenic signals and proteins involved in cancer progression, cell invasion, and
metastasis. It has been demonstrated that AKT/mTORC1/SREBP pathway (Protein
kinase B/mammalian target of rapamycin complex 1/sterol and regulatory element-
binding protein pathway) induces the synthesis of cholesterol and contributes to tumor cell
growth [21,86]. In prostate cancer, upregulation of the intracellular cholesterol levels medi-
ated by the AKT pathway promoted cancer aggressiveness and bone metastases [87,88].
Additionally, the activation of aberrant p53-mediated cholesterol synthesis induces the
proliferation of breast cancer cells via prenylation of Rho GTPase proteins [66]. An in-
crease in the expression of some START proteins has also been associated with cancer cell
proliferation, metastases, and resistance to chemotherapy [21,38,44,89].

3. Role of Protein-Related Lipid Transfer (START)/Domain (STARD) Family in Cancer

In humans, there are 15 members of START domain proteins, which are subdivided
into six groups according to their amino acid sequence similarity and lipid ligands [90,91].
Groups 1 and 2 consist of cholesterol-binding proteins (STARD1/D3 and STARD4/D5/D6,
respectively); group 3 binds multiple ligands, such as phosphatidylcholine (STARD2,
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(phosphatidylcholine transfer protein) PCTP/D7/D10) and ceramides (STARD11); group 4
proteins contain the Rho-GTPase-activating domain (STARD8/D12/D13); group 5 con-
tains two thioesterase active domains (STARD14/D15); while group 6 consists of only a
single member STARD9 with a motor domain and an FHA domain (N-terminal Forkhead
associated domain) (Figure 1) [91,92].

Alterations of START proteins may cause several pathological conditions [89], includ-
ing cancer, by modifying critical signaling pathways (Table 1).

Table 1. Summary of START proteins and their alteration in human diseases.

Name Alias Function Disease Description References

STARD1 StAR Cholesterol transport
Congenital lipoid

adrenal
hyperplasia

Mutations induced a failure
to transport cholesterol to

the inner mitochondria
membrane

[93]

STARD2 PCTP-like
Lipid

(phosphatidylcholine)
transport

Diabetes
Functional inactivation

decreases hepatic glucose
production

[94]

STARD3 MLN64 Cholesterol transport BC
Overexpression and

amplification in breast
cancer (BC)

[45,95]

STARD4 START only Cholesterol transport BC

Overexpression is
associated with shorter,
distant, metastasis-free

survival time

[96]

STARD5 START only Cholesterol transport Colon cancer;
Diabetes

Overexpression in colon
cancer; overexpressed in

kidneys of a diabetic mouse
model

[97,98]

STARD7 GTT1
Lipid

(phosphatidylcholine)
transport

Cancer

Overexpression in
trophoblast cancer,

colorectal cancer, B chronic
lymphatic leukemia

[99–103]

STARD8 DLC3
Stimulates the
hydrolysis of

phosphatidylinositol
Cancer/metastasis

Overexpression inhibits
tumor growth and

progression
[104–107]

STARD10 PCTP-like

Lipid
(phosphatidylcholine

and phos-
phatidylethanolamine)

transport

BC; Diabetes
Overexpression in BC;
regulation of insulin

secretion
[108–112]

STARD11 CERT Ceramide transport Cancer

Overexpression in HER2+
breast cancer and

downexpression in
triple-negative BC

[113,114]

STARD12 DLC1 GTPase-activating
protein Cancer

Deletion in liver cancer;
downregulation in lung, BC,
colon, and prostate cancer

[106,115–117]

STARD13 DLC2 GTPase-activating
protein Cancer

Downregulation in lung,
breast, ovarian, uterine,

renal, gastric, rectal, colon,
glioma, and liver tumors

[106,118–121]

STARD15 ACOT12 acyl-CoA thioesterase 12 Hepatocellular
cancer (HCC)

Downregulation and
associated with HCC
metastasis and poor

survival of HCC patients

[122]
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STARD4 was found to be overexpressed in breast cancer and associated with distant
metastasis-free survival time. Knockdown experiments have shown that STARD4 induces
cell proliferation and migration and decreases apoptosis [96].

STARD5 is a cytosolic protein involved in sterol transport, expressed predominantly
in liver Kupfer cells and in kidney [97,123]. It was observed that STARD5 is able to bind
not only to cholesterol but also 25-hydroxycholesterol, a potent mediator of inflammatory
processes and regulatory oxysterol [123]. The function of STARD5 in cancer develop-
ment is unclear. However, STARD5 induction upon endoplasmic reticulum (ER) stress
suggests a role of this protein in the development of neoplasia through alterations of the
intracellular cholesterol distribution, implying modifications in membrane fluidity and
permeability [124]. Sharon et al. described that the expression of STARD5 is significantly
increased in about 70% of human colon cancer tissue compared with normal controls,
highlighting that this protein could be involved in colon cancer proliferation [98].

STARD7 is a phosphatidylcholine (PC) transfer protein that mediates the uptake of PC
by the mitochondria [125]. Several RT-PCR analyses in different tumor cell lines showed
that STARD7 had a high expression in human-trophoblast-derived cells (HTR8-SVneo,
JAR, and JEG-3), colorectal adenocarcinoma (HT29 and Caco-2 cells), and hepatocellular
carcinoma HepG2 cells [126]. In contrast, low expression of this protein was found in hu-
man breast adenocarcinoma MCF7 cells, human cervix adenocarcinoma HeLa cells, human
melanoma SK-MEL-31 cells, human lung adenocarcinoma A549 cells, human promyelo-
cytic leukemia HL-60 cells, and human acute myelocytic leukemia K-562 cells [99,126].

STARD9 is localized in the centrioles. Torres et al. indicated that this protein has an
important role in the integrity of the pericentriolar materials and could be a trigger for
apoptosis in STARD9-deficient cells. Although the role of STARD9 in cancer development
is still unknown, the inhibition of STARD9 function may be an appropriate approach to
inhibit the division of cancer cells [127,128].

Several works suggest the role of STARD10 in deregulating cell growth and tumori-
genesis. This protein is highly expressed in approximately 60% of human breast cancer
cell lines, in 30% of primary breast carcinomas, and in mouse mammary tumors [110].
STARD10 was found to be coexpressed with ERBB2 in certain breast carcinoma cell lines,
suggesting an increase in cell proliferation for tumors expressing both proteins [110,129].

STARD11/CERT belongs to the phospholipid/ceramide subgroup of START family
and is characterized by pleckstrin homology domain (PH), a middle region of two pheny-
lalanines in an acidic tract (FFAT), and a START domain in the C-term. Its physiological
role has been revealed by Hanada et al.—thanks to the PH domain, it is bound to Golgi
apparatus while the FFAT motive interacts with ER by VAP proteins, leaving the START
domain free to mediate trafficking of ceramide at membrane contact sites between the ER
and the Golgi [130]. STARD11’s role in cancer is controversial. Immunohistochemistry
analysis on breast cancer tissue samples has revealed that STARD11 is downregulated
in the basal-like BC subtype [113] but, conversely, CERT expression is overexpressed in
HER2-positive BC and associated with poor prognoses [114]. Moreover, data analysis on
clinical trials have associated STARD11 levels expression to paclitaxel resistance in BC [131]
and ovarian cancer [132].

Conversely, published data have shown that Rho GTPase-activating proteins (STARD12/D13)
inhibited cancer cell growth. Numerous studies have indicated that STARD12 inhibited
the cell growth, invasiveness, and tumorigenicity of human breast, ovarian, liver, nasopha-
ryngeal, and non-small-cell lung cancer cells [117,133–135]. Likewise, STARD13 has been
shown to inhibit the proliferation of liver and breast cancer cells and, moreover, suppress
the Ras-induced transformation of rodent cells [136,137]. STARD15 has also been consid-
ered a target to inhibit neoplastic cell growth. This protein has been linked to cholesterol
metabolism, as its activity increases when cholesterol synthesis is inhibited [91].

In summary, the expression and activity of several START proteins may be involved
in tumor development and metastasis. Here, we will focus on STARD3 and discuss its role
in cancer development.
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4. Structural Analysis of STARD3

The human STARD3 protein is composed of 445 residues. The first 170 residues corre-
spond to the transmembrane portion that comprises four helical regions of approximately
20 residues [138]. Unfortunately, there is no 3D information in the literature concerning
this protein region, nor is it possible to construct a homology model [139,140]. The only
possibility to obtain a 3D model of this protein region would be the development of an ab
initio model [141].

The domain that distinguishes STARD3 from the other START domain proteins is
called MENTAL (MLN64 NH2-terminal). This domain anchors the protein to late endoso-
mal membranes, exposes the START domain in the cytosol, and mediates homotypic as well
as heterotypic interactions between STARD3 and its paralog, the STARD3 N-terminal like
(STARD3NL) protein [42]. This domain interacts with cholesterol in vivo, supporting the
possibility that it acts as a sterol reservoir [91,142]. The protein region corresponding to the
170–445 sequence constitutes the cytoplasmatic domain of the protein, which is responsible
for binding to cholesterol. Two crystal structures of the apo START domain, at 2.2 Å and
1.74 Å resolution, were published (1EM2 [143] and 5I9J [144] PDB code, respectively). As
shown in Figure 2, the domain adopts a helix-grip fold with a nine-stranded β-sheet and
three α-helices, with the cavity entrance guarded by an omega loop (Ω1) that connects the
β5 and β6 strands.
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position between the secondary structure of STARD1 (3P0L, orange [145]), STARD3 (5I9J, yellow [146]), STARD4 (6L1D,
white [147]), STARD5 (2R55, salmon [148]), and STARD6 (2MOU, green [149]). RSMD values for the alignments compared
with STARD3: STARD1, 1.3 Å; STARD4, 2.8 Å; STARD5, 2.7 Å; STARD6, 3.0 Å.

An analysis with BLAST software [150] indicated that among the other human pro-
teins, beyond its close paralogue STARD3NL (STARD3 N-terminal like), STARD1 is the
one with the highest similarity, is smaller than STARD3, and shows 31.6% of conserved
residues with respect to STARD3. In addition, the cholesterol molecule located within
the STARD1–START binding pocket has a lower degree of freedom than the cholesterol
molecule within the STARD3–START tunnel, indicating differences in the orientation of
the cholesterol ring within the cavities of each protein [151]. The other STAR proteins show
a lower level of similarity; however, as shown in Figure 2, a superimposition between
the available human STARD1, STARD3, STARD4, STARD5, and STARD6 x-ray structures
highlights the same secondary structure. In STARD3 and STARD1, the conserved Arg351
(STARD3), an acidic residue at position 332 (Asp in STARD3 and Glu169 in STARD1), and
the conserved Gln421 (position 258 in STARD1) are identical or highly conserved residues,
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which could be important for ligand binding. Interestingly, the electron-density maps
reported by Horvath and coworkers for STARD3 (5I9J PDB code [146]) highlight two alter-
native conformations for Arg351—one of which is able to form a salt-bridge with Asp332
that partially blocks the internal cavity of the protein and could act as an allosteric trigger
point in the communication with retinal proteins and enzymes involved with xanthophyll
transport and metabolism [144].

5. Binding Mode of Cholesterol with STARD3

Photoaffinity labelling studies suggested that the cholesterol molecule located within
the STARD1–START binding pocket has a lower degree of freedom than the cholesterol
molecule within the STARD3–START tunnel, indicating differences in the orientation of
the cholesterol ring within the cavities of each protein [151]. The x-ray structures reported
in the literature represent an important tool for the analysis of STARD3 but cannot clearly
shed light on the orientation of cholesterol as no x-ray complexes between STARD3 and
cholesterol have been reported in literature until now. Cavity analysis of the x-ray structure
revealed the presence of a single potential binding site for cholesterol. As shown in Figure 2,
this cavity is delimited by seven β-sheets and two of the three α-helices. In 2000, Tsujishita
et al. hypothesized that the 3-hydroxyl group of cholesterol could interact with Arg351,
and the rest of the molecule could make extensive hydrophobic contacts with the other
residues of the cavity [143].

In order to provide a possible orientation of cholesterol inside STARD3, in 2006,
Murcia et al. [152] generated an ensemble of 100 protein conformations by means of a 1-ns
molecular dynamics (MD) simulation at 500 K, in which the protein’s backbone remained
harmonically restrained. After the docking of cholesterol, the 20 best-scoring solutions for
each protein conformation were further analyzed.

The obtained 2000 docking poses were clustered and, from the resulting four subfam-
ilies, the analysis of the binding energies for each of the ensembles generated with MD
simulations suggested two potential cholesterol orientations (defined as IN-1 and OUT-2),
with the IN-1 as the most probable.

Following this last binding hypothesis, cholesterol forms a hydrogen bond at the end
of the cavity with both the side chain and the backbone carbonyl of S362, and a series
of hydrophobic contacts [152]. In 2018, Kumar et al. reported a hypothetical binding
orientation of cholesterol into STARD3 obtained by means of an ensemble docking analysis.
Based on this approach, the ligand shows significant lipophilic interactions with Val314,
Trp404, Leu406, Leu410, Leu423, and Thr426. No H-bonds between the ligand and the
protein were observed [153].

In 2019, Lapillo et al. reported a third hypothesis regarding the interaction of choles-
terol inside STARD3 [43] by applying a consensus docking (CD) strategy [154] followed by
MD simulations and Molecular Mechanics Poisson–Boltzmann Surface Area (MM-PBSA)
calculations [155]. Following this approach, the phenanthrene core of cholesterol forms
hydrophobic interactions with V314, F388, W404, and L406, whereas the terminal aliphatic
chain interacts with A337, F347, and L410. Finally, in agreement with Murcia and cowork-
ers, the hydroxyl group of cholesterol forms an H-bond with the hydroxyl group of S362.

6. Role of STARD3 in Human Cancers

STARD3 is a transmembrane protein involved in cholesterol transfer and localized
in late endosomes (LE). STARD3 can also induce the movement of lysosomal cholesterol
into the mitochondria, stimulating steroidogenesis [156–159]. Several reports indicated
that elevated levels of mitochondrial cholesterol could inhibit apoptotic cell death in
different cancer types—in turn, inducing tumor progression [44,160]. STARD3 is mapped
in 17q12-21 close to the amplicon of the HER2 gene. It was demonstrated that several
of these genes, including STARD3, could functionally contribute to the proliferation of
cancer cells that present amplification of HER2 [161]. The amplification/overexpression of
STARD3 in cancer potentially could stimulate an independent steroidogenesis helping the
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promotion of hormone-driven cancers, such as breast and prostate cancers [45–47]. Vassilev
et al. found an increased level of STARD3 in 10% of breast cancer patients associated with
HER2 amplification, high Src activity, and poor patient survival [44].

Indeed, coamplification of STARD3 and HER2/receptor tyrosine-protein kinase erbB-2
(ERBB2) genes contributes to the proliferation and metastasis of breast cancer cells by
increasing membrane cholesterol and thereby improving oncogenic signaling [44,161–163].
Differently, downregulation of STARD3 has been demonstrated in triple-negative breast
cancer [164].

Yun et al. highlighted that a PPP1R1B–STARD3 fusion transcript was found to be
overexpressed in 21.7% of primary human gastric cancers but not in adjacent matched
normal gastric tissues [165]. In vitro experiments on MKN-28 cells demonstrated that
the overexpression of PPP1R1B–STARD3 significantly increased cell proliferation and
colony formation. This increased proliferation was mediated through the activation of
phosphatidylinositol-3-kinase (PI3K)/AKT signaling [165]). Furthermore, in in vivo experi-
ments on athymic nude mice bearing MKN-28 tumors, PPP1R1B–STARD3 enhanced tumor
growth. In a study by Qiu et al., the authors found a higher expression of STARD3 in tubu-
lar and papillary adenocarcinoma compared with poorly differentiated adenocarcinoma
cells. It was speculated that this data could be related to the abundance of mitochondria in
tubular and papillary adenocarcinoma cells [50].

In prostate cancer, it was found a linear correlation between the expression of STARD3
and CYP17, an enzyme involved in the steroid biosynthesis pathway [166]. In addition,
the authors thought that STARD3 and CYP17 expression in prostate cancer could lead to
steroidogenesis through continuous cholesterol transfer into the mitochondria, increasing
androgen biosynthesis via the catalytic activity of cytochrome CYP17. In this regard,
unbalanced expression of STARD3 and CYP17 is associated with a poor prognosis in
prostate cancer patients [46].

Although the molecular mechanism is still unclear, these data show that a high ex-
pression of STARD3 influences the accumulation of membrane cholesterol, which could
contribute to cancer aggressiveness. Some studies have demonstrated its role in cholesterol
shuttling between ER and endosomes [167]. The integral ER membrane proteins vesicle-
associated membrane-protein (VAMP)-associated protein (VAP) is a protein family (VAP-A
and VAP-B) found in almost all eukaryotes, which interact with STARD3 [42,44,167,168].
STARD3 has a nonconventional FFAT motif (it contains two nonconventional phenylala-
nines in an acidic tract (FFAT) protein motif) with seven core residues in an acidic flanking
region that contains a serine residue at the 4th position instead of an acidic residue and
is able to bind VAP proteins and MOSPD2 (motile sperm domain-containing protein 2)
through the interaction with the MSP domain [169] (Figure 3). It was supposed that ab-
normal ER structures called karmellae could be produced by ER–endosome interaction in
response to overexpression of STARD3, which can block the LE and inhibit its maturation
to lysosomes (Figure 3B) [167,170–172].

Under this state, lysosomal degradation activity could be compromised. Cell surface
growth factors receptors, such as HER2, may be not degraded, leading to uncontrolled
cell growth as a consequence of a continuing signal transduction [149]. Along these
lines, STARD3 may increase the progression of HER2-positive cancer. This hypothesis is
supported by the experimental data obtained by Vassilev and colleagues, who showed that
STARD3 overexpression enhances oncogenic signals in breast cancer cell lines [45].

Another possible molecular mechanism played by STARD3 during tumorigenesis is
through mitochondrial intermembrane trafficking of cholesterol [21,160]. Although mito-
chondria have a low content of cholesterol compared with other organelles, as mentioned
above, cancer cells have higher levels of mitochondrial cholesterol that could constrain cell
death by inhibiting the release of apoptotic proteins from mitochondria. Some researchers
hypothesized that STARD3 could be involved in cholesterol transport from late endosomes
to the ER and subsequently to the mitochondria via the mitochondria-associated ER mem-
brane (MAM) [167,173,174]. The authors indicated that the STARD3–VAP complex could
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induce the formation of membrane contact sites (MCS) [174] (Figure 4). Although the
STARD3–MOSPD2 complex does not participate in the formation of ER–mitochondria
MCS [175], the association of the ER with both late endosomes and mitochondria through
MCSs scaffolded by VAPs may contribute to cholesterol transport [167,174]. It was demon-
strated that STARD3 depletion dramatically reduced lysosome–mitochondria MCS in
NPC1-deficient cells, indicating the crucial role of STARD3 in the MCS formation and the
regulation of cholesterol transport to the mitochondria [158,176].
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As STARD3 is a cholesterol-specific START protein, the challenge is to switch off
the abnormal function or expression of this protein in cancer cells. In line with this
data, STARD3 could be a molecular target for therapeutic treatments pointed to the lipid
metabolism of neoplastic cells.

STARD3 Somatic Mutations in Cancer

An analysis of the COSMIC (Catalog of Somatic Mutations in Cancer) database reveals
a number of STARD3 somatic mutations in several tumor types. COSMIC is an expert-
curated database of somatic mutations reported in the scientific literature or from the
Cancer Genome Project, exploring the impact of somatic mutations in human cancer [177].
The data from COSMIC refers to 38,259 unique samples from patients with different
types of cancer including breast, lung, liver, ovary, skin, nervous system, intestinal, and
stomach cancer (retrieved on 26 April 2021). The analysis was conducted applying the
following filter/criteria: it was considered only mutations present in tumor samples (not
cultured samples) where both tumor samples and germ-line samples of the same patient
have been analyzed and the variant allele is present only in the tumor sample (confirmed
somatic mutation); or no germ-line allele information was available, but the variant has
been reported ‘Confirmed Somatic’ in a normal–tumor sample pair from another patient.
Moreover, concerning single point mutations, we included in our analysis only mutations
present in tumor samples that are previously reported or confirmed to be somatic and are
predicted to be pathogenic by the FATHMM algorithm.

Overall, the analysis revealed the existence of 88 somatic mutations affecting STARD3.
The results showed that mutations are distributed over the entire length of the protein,
with a slight prevalence in the START domain (49%) compared with the MENTAL domain
(38.6%) (Supplementary Table S1). The most frequent mutation is present in residue 117
(R117Q) in 5 patients with adenocarcinoma (3 in the intestine and 2 in the stomach). The
same mutation is also reported in thyroid and prostate cancer, but tumor samples are not
specified; for this reason, they were not included in the analysis. Only one pathogenic
mutation (0.99 predicted score) is present in the FFAT-like motif of the protein. This
missense mutation leads to the replacement of the amino acid serine with leucine at
position 209 and is present in a dedifferentiated liposarcoma. It has been reported by Di
Mattia et al. that the phosphorylation of this serine (4th residue of the FFAT motif) of
STARD3 is necessary for ER–endosome contact formation in vivo and for sterol transfer
function in vitro [169]. It is, therefore, possible to hypothesize that when this amino acid
is mutated to leucine there is an abrogation of ER–endosome contact sites since it was
previously reported that the substitution of the other amino acids of the FFAT-like motif
(residue 207 and 208) abrogates ER–endosome contacts [42]. Regarding gene expression
levels, our analysis reported 404 tumor samples where STARD3 is overexpressed with
a Z-score level higher than 2. Of relevance are the percentages of some tumor types in
which STARD3 is overexpressed: breast cancer (123 out of 883 samples; 13.9%), large
intestine cancer (25 out of 182 samples; 13.7%), liver cancer (29 out of 224 samples; 12.9%),
pancreatic cancer (15 out of 109 samples; 13.76%), upper aerodigestive tract cancer (20 out
of 118 samples; 16.9%), urinary tract cancer (35 out of 303 samples; 11.5%) (Figure 5).
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7. STARD3 Inhibitors

Until now, there has only been one STARD3 inhibitor reported in the literature. The
binding interactions of cholesterol inside STARD3 provided by Lapillo et al. [43] led to the
definition of a structure-based pharmacophore model generated with LigandScout [178],
which was used for virtual screening (VS) studies. Approximately 1,700,000 molecules were
filtered using this approach and only the 5456 molecules that showed the double H-bond
donor/acceptor feature and at least three other features were subjected to a CD protocol.

After a virtual screening approach, 42 compounds showed a good level of consensus
and were subjected to MD simulations to assess the stability of their predicted binding.
After the analysis, eight compounds were tested for their ability to inhibit the STARD3
activity. Only compound VS1 showed good activity (IC50 of 35 µM). Figure 6 shows a
schematic 2D representation of the main interactions of this compound inside STARD3.
The amino acids T313, V314, A337, R351, S362, W404, L406, T408, L410, L423, T426, and
F430 are involved in the interaction with VS1 and details were reported in [43].

On the other hand, Chitrala et al. used a ligand-based virtual screening to identify
ligands against ZINC (727 842 molecules with 3D structures). The D (-)-TAR inhibitor (PDB
code: 1EM2) in complex with the crystal structure 3D coordinates of the START domain
of STARD3, was selected from the Protein Databank (PDB) as the receptor model. Only
three molecules were found to have high affinity in vitro as potent inhibitors of STARD3,
indicating an alternative use of this technique in the drug discovery process [179].
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8. Prospective and Conclusions

Cancer cells are characterized by uncontrolled cell growth, migration, and invasion,
as well as high lipid metabolism. Many of these processes are influenced by lipid-transfer
proteins (LTPs), which can modulate the lipid levels, including cholesterol, and thus,
modify diverse signaling pathways.

START proteins are a family of LTP involved in non-vesicular cholesterol transport.
These proteins play an important function in intracellular cholesterol distribution and
are associated with the development of different cancer types. Thus, the identification
of specific START proteins that induce development of neoplastic pathologies could be
utilized for therapeutic interventions.

The data discussed herein suggest that STARD3 has a role on cholesterol transportation
in tumor cells. In different types of cancers, such as steroid hormone-driven cancers (breast
and prostate cancers), the amplification/overexpression of STARD3 could promote intra-
neoplastic autonomous steroidogenesis and contribute primarily to the development of
the malignancy. In-depth molecular studies are needed to clarify which protein partners
cooperate with STARD3 in each specific cancer type and to identify the molecular networks
that could act to compensate STARD3 alterations for better therapeutic approaches.

The development of anti-STARD3-targeted therapies represents a promising strategy
for cancer patients with elevated STARD3 expression. Up to now, only one inhibitor has
been developed by our group. The VS1 compound is able to inhibit cholesterol interactions
with STARD3 in the low micromolar range. This compound represents a starting point for
the development of novel STARD3-targeted therapeutic agents with high selectivity and
potency in the nanomolar range.
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Abbreviations
START Steroidogenic Acute Regulatory transfer
STARD3 STAR-related lipid transfer domain-3
FDA Food and Drug Administration
CDKs cyclin-dependent kinase
EGFR epidermal growth factor receptor
VEGF vascular endothelial growth factor
PARP poly (ADP-ribose) polymerase
PD-1 programmed death-1
PD-L1 programmed death-ligand 1
LTP lipid transfer protein
LDL low-density lipoprotein
MLN64 metastatic lymph node clone 64 protein
MENTAL (MLN64 NH (2)-terminal domain)
ER Endoplasmic Reticulum
LE Late Endosome
VAP vesicle-associated membrane-protein-associated protein
MSP Major sperm protein domain
MCS Membrane contact sites
MD molecular dynamic
CD Consensus docking
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