
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing
https://doi.org/10.1007/s11554-021-01070-6

ORIGINAL RESEARCH PAPER

Implementing a real‑time, AI‑based, people detection and social
distancing measuring system for Covid‑19

Sergio Saponara1 · Abdussalam Elhanashi1 · Alessio Gagliardi1

Received: 1 November 2020 / Accepted: 2 January 2021
© The Author(s) 2021

Abstract
COVID-19 is a disease caused by a severe respiratory syndrome coronavirus. It was identified in December 2019 in Wuhan,
China. It has resulted in an ongoing pandemic that caused infected cases including many deaths. Coronavirus is primarily
spread between people during close contact. Motivating to this notion, this research proposes an artificial intelligence system
for social distancing classification of persons using thermal images. By exploiting YOLOv2 (you look at once) approach,
a novel deep learning detection technique is developed for detecting and tracking people in indoor and outdoor scenarios.
An algorithm is also implemented for measuring and classifying the distance between persons and to automatically check
if social distancing rules are respected or not. Hence, this work aims at minimizing the spread of the COVID-19 virus by
evaluating if and how persons comply with social distancing rules. The proposed approach is applied to images acquired
through thermal cameras, to establish a complete AI system for people tracking, social distancing classification, and body
temperature monitoring. The training phase is done with two datasets captured from different thermal cameras. Ground
Truth Labeler app is used for labeling the persons in the images. The proposed technique has been deployed in a low-cost
embedded system (Jetson Nano) which is composed of a fixed camera. The proposed approach is implemented in a distrib-
uted surveillance video system to visualize people from several cameras in one centralized monitoring system. The achieved
results show that the proposed method is suitable to set up a surveillance system in smart cities for people detection, social
distancing classification, and body temperature analysis.

Keywords COVID-19 · Neural network · Social distancing · Temperature analysis · Jetson nano · Distributed surveillance
system

1 Introduction

COVID-19 is a disease caused by a new coronavirus which
appeared in China in December 2019. COVID-19 symptoms
include mainly fever, cough, chills, and shortness of breath,
body aches, loss of taste, and smell. COVID-19 can be
severe, and in many cases, it has caused death. The corona-
virus can spread from one person to another as diagnosed by
researchers in laboratories. This pandemic has spread to over
188 countries around the world [1]. On October 15, 2020,
WHO (World Health Organization) declared that there have
been 38,394,169 confirmed COVID-19 cases and 1089,047
deaths [2] around the world. The uncertainty, underpinning,

and complexity of the coronavirus have made it difficult to
predict the duration and spread of this pandemic. As of yet,
there is no vaccine available. Prevention involves wearing
masks and washing hands frequently. An infected person
should stay at home when people are sick to prevent spread-
ing this pandemic to the others. This situation forces the
global community and governments to find the best mitiga-
tion plan to stop the spread of coronavirus. Nations stopped
their business and closed the border and public places such
as schools and workplaces to avoid people’s interactions. It
has been reported that all infected countries who applied the
lock-down for their communities achieved a reduction of the
number of COVID-19 cases and the number of deaths from
this pandemic.

Fever or chills are common symptoms of coronavirus.
Researchers in China found that 99% of people infected with
the coronavirus presented with a high temperature. Ther-
mal cameras and non-contact infrared thermometers, which

 * Sergio Saponara
 sergio.saponara@iet.unipi.it

1 Dip. Ingegneria Dell’Informazione University of Pisa, Via
G. Caruso 16, 56122 Pisa, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-021-01070-6&domain=pdf

 Journal of Real-Time Image Processing

1 3

are non-contact instruments, can be used to measure body
temperature. This approach can monitor a person’s surface
temperature to limit the spread of coronavirus infections.

Based on the information from the World Health Organi-
zation, social distancing is the best practice where individu-
als can minimize physical contact with possible COVID-19
carriers by maintaining a certain distance between one per-
son and another. The main target is to provide a compre-
hensive tool and effective technologies that can be utilized
to enforce social distancing. Technologies could play an
important role to facilitate social distancing practice. In such
a context, Artificial Intelligence (AI) and information and
communication technology (ICT) can be used in addressing
this challenge.

This research aims at mitigating the spread of this virus in
communities and saving the lives of people. In this work, we
propose a deep learning object detection model for people
detection in combination with an implemented algorithm for
social distancing classification on thermal images. Hereafter,
the paper is organized as follows: after the introduction of
COVID-19 in Sects. 1, 2 presents the research background
and related work. Section 3 shows an overview of object
detection. Section 4 presents the proposed methodology to
define a measuring system for people detection and social
distancing check. Section 5 shows the experimental results
and Sect. 6 describes the implementation of the proposed
approach on embedded hardware. Conclusions are drawn
in Sect. 7.

2 Research background and related work

Social distancing and temperature screening are effective
tools for preventing the spread of disease. They have been
suggested by many organizations, including the World
Health Organization (WHO) [3]. Russel et al. [4] studied
the effects of social distancing techniques on the spread of
coronavirus. This paper presented scientific location contact
patterns to produce the trajectory of an outbreak by utilizing
susceptible exposed infected removed (SEIR) methods. The
authors also mentioned that the sudden lifting of social dis-
tancing could increase the infection and spread of the virus
between people. Nabil Kahale [5] highlighted the impact of
social distancing measures. The study aimed to derive an
approximation that shows how early social distancing meas-
ures can reduce economic loss and the number of new infec-
tions significantly. At the time when coronavirus is begun
spreading across the individuals and society, research and
scientists are starting to find out the best solution to elimi-
nate the spread of this pandemic [6, 7]. Jennifer Berglund
[8], suggested tracking a person infected with COVID-19
using GPS and built-in applications in smartphones. How-
ever, this technology has limitations on tracking individuals

who have no Wi-Fi or cell signals. On the other hand, some
authorities utilize drones with mounted video cameras to
track the gathering of individuals in the outdoor area [9,
10]. Such technology is suitable for monitoring COVID-19
which could amid the coronavirus outbreak.

Recently, the problem of classifying and detecting the
objects in an image is solved, thanks to the improvements
in computer vision and deep learning in general. Accord-
ingly, computer vision development has focused on vari-
ous interesting and challenging topics, such as neural style
transfer, segmentation, and tracking, and of course object
detection [11].

Deep learning is an artificial intelligence function (AI)
that emulates the tasks of the human brain in data processing
and object detection. It can be referred to as a neural network
with a sophisticated algorithm. The history of the neural net-
work dates to 1940 [12]. The original intention of the neu-
ral network is to solve learning problems ethically [13]. A
convolutional neural network (CNN) is widely used in deep
learning models for object detection. CNN is a deep learning
algorithm that takes an input image and assigns the learnable
weights and biases for various classes in an image and differ-
entiates them from one to another. The convolutional neural
network has been made evolution which can be implemented
on an embedded system with a low-resolution input and low
complexity [14]. There are various deep learning models
such as R-CNN, Single-shot detector (SSD), and YOLO
which are applied in different applications for object detec-
tion. These models are efficient algorithms for movement
estimation in video scenes. Ebrahim et al. [15], proposed a
technical approach for detecting people using video frames.
The author utilized a background subtraction and Gaussian
mixture with a deep learning detector for people detection.
In method [16], the authors presented a deep learning (CNN)
technique for human detection. They utilized a combination
of deep learning and machine learning methods to achieve
high accuracy and less computation for people detection.
Unfortunately, this method had problems with low speed for
real-time detection. In method [17], researchers suggested a
method on static crowds for a group of people that stayed in
the same location for a long time. They utilized the mean of
class as support vector machine (SVM) to categorize patches
as essential crowds and these patches are extracted by text
features.

Recent developments showed that the identification of
individuals through video surveillance cameras can be
achieved by face [18], and a person’s manner of walking.
However, the detection of a person under crowds’ technique
is difficult and hard to optimize.

In method [19], the authors presented a solution for
detecting pedestrians with a low-resolution camera by uti-
lizing background subtraction by extracting foreground sil-
houettes and classifying them in real-time.

Journal of Real-Time Image Processing

1 3

3 Overview of object detection

Object detection systems place a bounding box around the
objects and associate the correct object’s category with
each bounding box. Deep learning is an effective method to
perform object detection. In [20], Ross Girshick explored a
regional convolutional neural network detector (R-CNN).
This model consists of four stages. It starts with introducing
the images into the input layer, then it extracts the regional
proposals, after that it computes the features by CNN, and
finally, it classifies these features, see Fig. 1. R-CNN uses
selective search algorithms to generate region proposals. It
takes a huge amount of time as it would have to classify the
regions per image. R-CNN cannot be implemented in real-
time object detection as it takes 47 s for each image. R-CNN
cannot be trained at one time. Rather, it needs to train every
part independently.

Fast R-CNN is another version of the regional proposal
algorithm, which was presented by the same author of
R-CNN model [21]. Fast R-CNN enhanced the drawbacks
from R-CNN to build faster object detection algorithm. It is
similar to the R-CNN algorithm. However, the input image
is fed to the convolutional neural network to generate a con-
volutional feature map instead of feeding region proposals
to CNN. The region proposal is warped into squares in this
model. Using region of interest (ROI) pooling layer, these
regions are reshaped into a fixed size which can be fed into
a fully connected layer. Softmax layer is used in this archi-
tecture to predict the class of region and the offset values of
the bounding box. Figure 2 shows the schematic diagram for
fast R-CNN detector.

Both algorithms (R-CNN and Fast R-CNN) use selec-
tive search to find the region proposals. This process a slow
and time-consuming which is affecting the performance for
neural network algorithm.

Recent improvements in object detection deep learn-
ing include other algorithms such as YOLO and YOLOv2.
You look at one or (YOLO) is a state-of-the-art deep learn-
ing object detection. It was presented by Joseph Redmon
et al. [22]. YOLO uses a single neural network to the whole
image. It divides the image into regions and predicts the

bounding boxes and the probabilities for each region. These
bounding boxes are weighted by predicted probabilities.

YOLO detector looks full image at one time; therefore,
its predictions are informed by the context in the image. It
predicts with single network evaluation, unlike other object
detectors such as (R-CNN) which requires thousands for a
single image. YOLO algorithms take the input image and
split into S ×S grids. It extracts the features from each grid.
It predicts the bounding boxes with confidence scores for
the predicted classes in the bounding boxes, see Fig. 3. Each
grid cell detects bounding boxes and confidence scores. The
bounding box consists of five predictions which are repre-
sented with (x, y, w, h) and the confidence score. The (x, y)
coordinates reflect the center of the bounding box of the grid
cell. The (w, h) represents the width and the height of the full
image. The confidence scores represent the measurement of
how confident the detector is that the box contains the object
to be predicted.

YOLO predicts several bounding boxes for each grid cell.
In the training stage, it only requires one predictor of the
bounding box to be responsible for each class. The predic-
tor is assigned to predict an object which has the highest
Intersection over Union value (IoU) for the ground truth.
This process leads to specialization within the bounding
boxes prediction. YOLO algorithms use sum-squared error
between the ground truth and predictions of bounding boxes
for loss. This sum squared error computes the classification,
localization, and confidence losses for the model. There-
fore, YOLO is optimized with the following loss function

Fig. 1 The schematic diagram for R-CNN detector

Fig. 2 The schematic diagram for Fast R-CNN detector

Fig. 3 Schematic diagram for YOLO: input image which splits into
S×S grids, each grid predicts the bounding boxes and the confidence
scores and finally, the score encodes the probability with bounding
box on the detected class

 Journal of Real-Time Image Processing

1 3

to enhance its performance during the training process,
see Eq. (1). YOLOv2 is the second version of YOLO. It is
an object detection system targeted for real-time process-
ing. It has several improvements to YOLO as explored in
YOLO9000 paper [23]. YOLOv2 resolved the issues which
were encountered with YOLO, thus improving the process-
ing accuracy and speed for the architecture. It enhanced
the errors of localization for the classes to be predicted in
the images. It uses batch normalization in all convolutional
layers.

where: �coord is a constant used to increase the weight for the
first two terms of the loss function. B is the number of box
predictions for each cell. s2 is the number of cells. 1obj

i,j
 is

equal to 1 if there is an object in cell i and confidence of
the jth predictor of this cell is the highest among all the
predictors of this cell. xi,yi represent the location of centroid
of the anchor box. wi is the width of the anchor box. hi is the
height of the anchor box. Ci is the confidence score whether
there is an object or no.

∧

Ci is the box confidence score of the
box j in cell i . �noobj weights down the loss when detecting
background. 1noobj

i,j
 is the complement of 1obj

ij
 . 1obj

i
 = 1 if an

object appears in the cell i , otherwise 0. pi(c) is the classifi-
cation loss.

∧
p
i(c) is the conditional class probability for class

c in cell i.
Batch normalization helps the regularization of the

model. It eliminated the requirement for using the dropout
layers to overcome the overfitting problems. It improves the
normalization for its input by defining the variance values
and means over the mini-batch and it calculates the activa-
tion as seen in Eq. (2)

where x̂i is the normalize value. xi is the element of the
input. �B is the mini-batch mean. �2

B
 is the batch variance.

∈ is the property of Epsilon and enhances the mini batch
when the variance value is small.

(1)

�coord

s2�
i=0

B�
j=0

1
obj

i,j
[(xi −

∧
xi)

2
+

�
yi −

∧
y
i)
2

�

+ �coord

s2�
i=0

B�
j=0

1
obj

i,j
[(
√
w
i
−

�
∧
wi)

2

+

�√
hi −

�
∧

hi)
2

�

+

s2�
i=0

B�
j=0

1
obj

i,j
(Ci −

∧

Ci)
2
+ �noobj

s2�
i=0

B�
j=0

1
noobj

i,j
(Ci −

∧

Ci)
2

+

s2�
i=0

1
obj

i

�
c∈class

(pi(c) −
∧
p
i(c))

2,

(2)x̂i =
xi − �B√
�2
B
+ �

,

We used anchor boxes to make bounding boxes on the
detected objects in the images. These boxes are a set of
predefined rectangular boxes with a specific width and
height. Anchor boxes are defined to capture the scale and
ratio of certain classes that are to be detected and typically
selected based on the sizes of the objects in the training
dataset. K-mean clustering was used to select a good set
of labeled boxes in the training dataset in MATLAB. It
is essential to have the correct sizes of these bounding
boxes (height, width) for YOLOv2 to detect the targeted
objects accurately. Intersection over Union (IoU) score of
k-means was measured to determine the required number
of these bounding boxes for the detector. The advantage
of using anchor boxes is to prevent utilizing more boxes
which could lead to overfitting and poor performance for
YOLOv2 model.

4 Proposed methodology

4.1 Social distancing detector steps

This section discusses the essential steps which are
attempted to establish a workflow for monitoring social
distancing on thermal images as seen in Fig. 4:

1. Prepare the thermal images or streaming a video from a
thermal camera which contains people.

2. Applying the deep learning object detector to detect peo-
ple in thermal images or video streams.

3. Check the number of persons that are in the images or
video stream.

4. Compute the distance between the centroid of the bound-
ing boxes which are enclosed to the detected people.

5. Finally, the algorithm will decide for safe or unsafe
social distancing based on the number of persons and

Fig. 4 The steps involved for people detection and social distancing
classification on thermal images

Journal of Real-Time Image Processing

1 3

the measured distance between the centroid of bounding
boxes.

4.2 Neural network design

A Deep Neural Network (DNN) application is used in MAT-
LAB to construct YOLOv2 neural network layers. Then
the designed DNN is ported in embedded platforms like
NVIDIA Jetson Nano. We built a CNN with 29 layers, see
Fig. 5. This is to establish a light-weight model to fit the
real-time implementation of CNN inference also in low-cost
embedded platforms, such as those of IoT nodes. The neural
network layers include the input layer, middle layers, and
subnetwork of YOLOv2 layers.

The proposed approach starts with the input image
layer, which introduces the input image with a size of
(224 × 224 × 3) for our detector. A set of middle layers was
used, which includes batch normalization, convolutional,
max-pooling, and Relu (rectified linear unit) layers. Convo-
lutional layers were used to map the features for the images.
The size of the filter was set to (3 × 3). It defines the height
and width of the regions in the input image. Batch normali-
zation layers were used to regularize the model and elimi-
nate the overfitting problem. ReLU activation functions were
utilized to introduce the non-linearity to the neural network.

Maxpooling layers were used to downsample the images into
pooling regions. We applied (2 × 2) for the size of pooling
with a stride of (2 × 2) for all max-pooling layers in a neu-
ral network. ‘ReLU_5’ was used as the feature extraction
layer. This is to extract the features from neural network lay-
ers and then given as input to YOLOv2 subnetwork layers.
YOLOv2 layers were used in this detector which constructs
YOLOv2 detection network. YOLOv2 Subnetwork consists
of a batch of layers that include convolutional (yolov2cov),
batch normalization (yolov2Batch), ReLU (yolov2ReLU),
transform, and output layers. The transform layer was uti-
lized in YOLOv2 detector to stabilize the network for object
localization. This layer transforms the raw CNN output into
a form required to produce object detections. YOLOv2 out-
put layer was used which refines the location of bounding
boxes to the detected objects. The model was examined with
a neural network analyzer and reported zero errors.

4.3 Training

The designed network was trained with two different data-
sets of thermal images. Dataset I consists of 775 thermal
images of humans captured in various scenarios while
walking, running, or sneaking and in different body posi-
tions, as well as different motion speeds, maximizing the
simulated conditions for detecting people in the surveillance
and monitoring areas. These images were collected from
different sources on the internet. Dataset II consists of 800
images. These images are infrared images that were cre-
ated by FLIR company for thermal cameras [24]. We used
ground truth labeler application in MATLAB for labeling
the persons in the thermal images [25]. We split the images
into 70% for training, 20 for validation, and 10% for testing
for each dataset. The model has been trained with stochastic
gradient descent (sdgm) [26]. The learning rate parameter
in the training option was used to control the model change
in response to the error [27]. We started the learning rate
with 10–2. However, we noticed that the model was unstable
during the training process. The learning rate was fine-tuned
at 10–3, and the loss curve for mini-batch was steady with
small fluctuation, see Fig. 6. Table 1 shows Training Hyper-
Parameters for the proposed neural network.

4.4 Algorithm for distancing classification

We also implemented code in MATLAB to work with
bounding boxes of a detected person in the thermal images.
This code classifies and decides if persons in the image are
within safe distancing or not. We assigned a green color for
safe social distancing and red color for unsafe social dis-
tancing for the bounding boxes. First, we find the number
of persons in the images. If it is one person, a green color
is assigned for a bounding box of detected persons. When Fig. 5 Architecture of YOLOv2 Neural Network

 Journal of Real-Time Image Processing

1 3

we have two or more persons, then color is decided from
the function which is called find Color. This function will
determine if the bounding box is 2 or more and in addition
to that, it will calculate the distance between the centers of

bounding boxes for the detected person. The center points,
C (x, y) of bounding boxes is measured using the equation
as seen in Eq. (3).

where: C is the center point of the bounding box. Xmin and
Xmax are the minimum and maximum values for the corre-
sponding width of the bounding box. Ymin and Ymax are the
minimum and maximum values for the corresponding height
of the bounding box.

To measure the distance C1 (Xmax–Xmin), and C2
(Ymax–Ymin), between the center of each bounding box, we
used the Euclidean formula, see Eq. (4), where the distance
between pixels is translated in a metric distance (knowing
the range and field of view covered by the camera) and then
compared to a threshold value. In case of finding- color
function detects two bounding boxes and the distance is less
than the threshold value, these boxes will have a red color.
If this function detects two bounding boxes and the distance
is more than the threshold value, the color will be green
for these boxes. Figure 7 provides the measured distance
(D) between the center of each bounding box for a detected
person.

where: D is the distance between the centers of bounding
boxes.

Closed-circuit television (CCTV) cameras are installed in
such a way that they provide angle views on the ground plan.
To calculate the distance between the people effectively, a
top view of the ground plane is required. This can be per-
formed by applying a homography transformation to the four
points coordinates in the angled view. These four points can
be transformed as shown in the Eq. (5).

(3)C(X, Y) =
Xmin + Xmax

2
,
Ymin + Ymax

2
,

(4)D(C1,C2) =

√
(Xmax − Xmin)

2 + (Ymax − Ymin)
2,

Fig. 6 a Mini-Batch Loss Curve before fine-tuning, b Mini-Batch
Loss Curve after fine-tuning

Table 1 Training Hyper-
Parameters for the proposed
neural network

Parameter Method

Training options sdgm
L2 Regularization 0.06
Number of epochs 80
Verbose Frequency 50
Mini-batch size 16
Learning rate 0.001

Fig. 7 The measured distance (D) between the center of each bound-
ing box for a detected person

Journal of Real-Time Image Processing

1 3

where: Xcorn.ang and Ycorn.ang represent the pixel coordinates
of one of the four points in the CCTV view image Xcorn.top,
Ycorn.top represent the same point after transformed to the top
view. M is the homography matrix.

To estimate the distance between people in the real world,
the distance is calculated between the individuals using
Eq. 4 and four points coordinates with homography matrix
value. This distance is then scaled by factor S to have the
real-world distance between the individuals. The scaling
factor S is obtained by measuring a number of pixels in an
image that represents 1 m in the real-world.

5 Experimental results

The technique proposed in Sect. 4 was examined with
two testing datasets to evaluate the capability of detection
and localization of persons in the thermal images. These
datasets have been made challenging, which encountered a
realistic situation by capturing body temperature on people
from real thermal cameras. Motivating to that, we selected

(5)

⎡
⎢⎢⎢⎣

Xcorn.top

Ycorn.top
1

⎤
⎥⎥⎥⎦
= M ∗

⎡⎢⎢⎣

Xcorn.ang

Ycorn.top
1

⎤
⎥⎥⎦
,

these datasets for our experiments. YOLOv2 and distance
classification algorithms were applied to these thermal
images. YOLOv2 model detects people and provides the
bounding box information. After people detection, the
Euclidean distance between each detected centroid pair
is computed using the detected bounding box and its cen-
troid information based on dimensions of (x, y) for each
bounding box. As a further step, we designed and trained
R-CNN and Fast R-CNN models for people detection with
the same training datasets. We compared these R-CNN and
Fast R-CNN architectures with the technique proposed in
Sect. 4 using the same testing datasets of thermal images.
To measure the efficiency of the proposed approach, the
parameters on which the three architectures are evaluated
include accuracy, precision, and recall values using con-
fusion matrix criteria, see Eq. (6). Based on the results
from these experiments, the new proposed detector showed
good performance for people detection, social distanc-
ing classification on thermal images in both datasets, see
Fig. 8. It achieved significant results with two datasets and
overcomes R-CNN and Fast R-CNN detectors see Table 2.
YOLOv2 neural network looks the entire image at one
time, unlike R-CNN and Fast R-CNN methods which see
only the generated region proposals. Therefore, the pro-
posed technique reduces the problem of background mis-
takes and improves the localization of detected persons
in the image. In addition to that, the proposed approach
shows better accuracy in comparison to other methodolo-
gies [28, 29], and [30], see Table 3. According to these

Fig. 8 Sample Images from a, b Dataset I, c, d Dataset II

Table 2 Performance of this work vs. other object detectors

Accuracy (%) Precision (%) Recall (%)

Dataset I
 This work 95.6 95 96
 Fast R-CNN 91.2 92 90
 R-CNN 88.5 87 90

Dataset II
 This work 94.5 94 95
 Fast R-CNN 90.5 91 90
 R-CNN 86.5 86 86

Table 3 Performance of the proposed approach vs. other methodolo-
gies, averaging dataset I and II

Method Accuracy (%)

This work with Dataset I 95.6
This work with Dataset II 94.5
Sener et al. [28] 93.3
Rinkal et al. [29] 92.8
Yadav et at [30] 91

 Journal of Real-Time Image Processing

1 3

results, the methodology proposed in Sect. 4 is a promis-
ing one for people detection and social distancing clas-
sification on thermal images.

where TP stands for the number of true positive; TN stands
for the number of true negative; FP stands for the number
of false positive; FN stands for the number of false negative.

Experiments were carried on a computer with Intel®
Core TM I3-6006U CPU @ 2 GHz. MATLAB2020a was
adopted with its built-in applications such as Ground Truth
Labeler, Neural Network Designer. Jetson nano was used as
an embedded system test platform in Sect. 6.

5.1 Real‑time measurement of this work vs other
object detectors

The main objective of this research is to detect and recog-
nize individuals in real-time. We have to monitor and track
people’s movements by utilizing a video camera. The inven-
tion and evolution of deep learning have improved the tra-
ditional ways of object detection and recognition systems.
This technology is applied in several applications to identify
and locate the objects in images, and it showed encouraging
results for real-time detection [31]. To understand further,
experiments were carried to compare the proposed approach
and other deep learning detectors such as R-CNN and Fast
R-CNN. MATLAB was used with our test bench of videos
that were captured from a thermal camera. The three models
run simultaneously while frames per second were calculat-
ing for each model. Based on results from this experiment,
the neural network proposed in this work runs faster than
the other two detectors (Fast R-CNN and R-CNN). Note
that this work showed better results for real-time detection
comparable to the method [32], which proposed YOLOv3
detector. It is observed that R-CNN and Fast R-CNN have
low frames per second, which make them not suitable for
real-time applications. Figure 9 shows the comparative real-
time detection of this work versus other deep learning object
detectors.

(6)

Accuracy =
TP + TN

TP + FN + TN + FP
,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

6 Implementation of the proposed
approach on embedded hardware

6.1 Jetson nano (NVIDIA device)

Jetson nano NVIDIA system is a low-cost embedded device
but a powerful computer. It costs approximately $100 [33].
Jetson nano can run various advanced neural networks
including a full version of most popular deep learning (DL)
and machine learning (ML) frameworks such as Pytorch,
Caffe, Keras, and TensorFlow. This embedded device uses
TensorRT accelerator libraries which include Jetpack pack-
ages. Jetson nano is suitable for real-time applications in
different scenarios and is capable to process multiple high-
definition video streams.

Jetson nano includes CPU QUAD-core ARM A57 at
1.43 GHz and GPU 128-core Maxwell. The memory of the
device is 4 GB, 64-bit, LPDDR4 25.6 GB/s. Jetson nano has
a USB 2.0 Micro-B, 4 × USB 3.0. A standard camera module
with 8 M pixel resolution has been used in our experiments.
The camera was connected to the camera serial interface
(CSI) in Jetson nano. The trained neural network model and
social distancing classification algorithm defined in Sect. 4
has been deployed in Jetson nano and it runs as a standalone
application.

MATLAB environments and third-party packages were
utilized to generate the C code of the proposed approach
in the NVIDIA device. GPU coder was used for convert-
ing MATLAB code into an optimized CUDA code. Com-
pute unified device architecture or CUDA is an extension of
C programming language which is designed for NVIDIA
frameworks. Jetson nano was connected to the host com-
puter using an ethernet cable. MATLAB coder was uti-
lized to generate C code to Jetson nano. We used a parallel

Fig. 9 The comparison of this work vs other competing deep learning
detectors (R-CNN, Fast R-CNN, and YOLOv3) for real-time detec-
tion

Journal of Real-Time Image Processing

1 3

computing toolbox to solve complex computational and
data processing using a multicore processor and GPU. A
deep learning toolbox was utilized to provide a framework
to implement the neural network and algorithms in Jetson
nano. GPU support package for NVIDIA is used to deploy
the proposed algorithms in Jetson nano. This support pack-
age application enables the communication remotely to the
targeted NVIDIA hardware. Embedded coder was used for
code generation on Jetson nano. This tool improves the code
generation on hardware effectively. A JetPack developer AI
tool was installed in the NIVIDIA device. It is an environ-
ment variable application which is to be applicable for code
generation of the proposed deep learning architecture in
Jetson nano. Microsoft visual studio 2019 was installed as
a compiler generate GPU code in Jetson nano. CUDA Deep
Neural Network libraries were used to accelerate primitives
for neural network architecture.

6.2 Test the proposed algorithm on Jetson nano

The proposed algorithm was deployed in Jetson nano and
run as a standalone application to evaluate its performance.
A Raspberry Pi camera model V2 was exposed to another
personal computer that simulated a number of videos that
were captured from a thermal camera. While the proposed
algorithm was running in the NIVIDIA device, we recorded
various parameters. We measured the average frames per
second for the proposed approach on Jetson nano and we
compared the achived results with other different methods,
see Table 4. According to the results from this experiment,

our approach showed the best result for the real-time which
reached up to 27 fps.

We measured also the power consumption for Jetson
nano. We removed all Jetson nano accessories such as a
mouse, monitor, and keyboard. We measured the power
consumption at 1.24 W when the deployed algorithm is off.
When the distance classification algorithm was executed, the
power consumption was recorded at 4.4 W. Table 5 shows
the power measurement of the NVIDIA device in different
scenarios.

We recorded the measurement of Graphics Process-
ing Unit (GPU) and the Central Processing Unit (CPU) %
resource utilization in Jetson device. The GPU is designed
to process the graphic operations and the CPU runs the
operating system and applications. These characteristics
are essential to assess its computation processing. The
table shows the measured values for the GPU and CPU
processors while the proposed algorithm was executed in
the targeted hardware. Moreover, we measured the tem-
perature of Jetson nano while the proposed approach was
in execution. The temperature was measured at 54.5 °C for
GPU and 54.1 for CPU, see Table 6. Further to our experi-
ments, we measured the memory size for the deployed

Table 4 The real-time measurement for the proposed approach vs
other methods

Method Real-
time in
(fps)

The proposed approach 27
Rezaei e al. [34] 24.1
Punn, et al. (YOLOv3) [32] 23
Pouw et al. [35] 10

Table 5 Power consumption measurement in different scenarios

Algorithm status Power
measure-
ment (W)

Jetson nano without
monitor, keyboard,
mouse

Off 1.24
Running 4.40

Jetson nano with monitor,
keyboard, mouse

Off 2.24
Running 5.40

Table 6 The % resource utilization and temperature measurement for
the GPU and CPU in Jetson nano while our method is running on it

Performance % Tem-
perature
(°C)

Jetson nano (GPU) 99 54.5
Jetson nano (CPU) 70.1 54.1

Fig. 10 Comparison of the proposed approach verses other pre-
trained models in terms of memory size

 Journal of Real-Time Image Processing

1 3

algorithm in Jetson nano, which is 14 MB. This is the
advantage of the proposed approach in comparison to the
other pre-trained models such as VGG16, Alexnet, and
Resnet50 in method [29]. Figure 10 shows the compari-
son between the proposed approach with other pre-trained
models in terms of memory size. These architectures use
massive CNN layers which need a large disk size for the
deployment on the targeted embedded system. This could
affect real-time performance while the algorithm is run-
ning on low-cost embedded devices. This is the advan-
tage of the proposed approach versus the pre-trained CNN
models and it can be superior for real-time detection.

6.3 Distributed surveillance video system for social
distancing

Video surveillance cameras are an effective monitoring sys-
tem for authorities to visualize how people are acting and
their compliance with social distancing. In our research, we
implemented a distributed surveillance camera system based
on embedded devices.

The proposed system is composed of multiple Jetson nan-
odevices with, each combined with a video camera. Each
camera is connected to one Jetson nanodevice, which repre-
sents a smart node in the system architecture. Jetson nanode-
vices were upgraded with Wi-Fi for internet connection. All
Jetson nanodevices were connected to the computer through
a router using a static IP address from each node. The router
directs the video streaming of each node and serves as a net-
working device to the centralized surveillance management
system (personal computer), see Fig. 11.

MobaXterm application in Windows 10 was used to
establish communication between the centralized surveil-
lance management system (personal computer) and Nvidia
Jetson nano nodes [36]. The communication was established
using an OpenSSH application with respect to the defined IP
address of each node. Secure Shell or OpenSSH is a remote

information communication technology protocol that allows
users to control and transfer data between computers. The
system is built with a multi-access point of IP addresses
through OpenSSH sessions in the MobaXterm software.
Each OpenSSH session communicates with Jetson nano
node through its defined IP address. The latency time was
measured between the computer and Jetson boards at 0.3 ms.
The proposed approach is suitable for a distributed surveil-
lance system that can visualize people detection and social
distancing classification on thermal images from several
Jetson nanodevices in one centralized surveillance manage-
ment system.

7 Conclusion and future work

This research presented an intelligent surveillance system for
people tracking and social distancing classification based on
thermal images. The proposed technique achieved promis-
ing results for people detection in terms of evaluation the
accuracy and precision of the detector comparable to the
other deep learning models. A specific algorithm was imple-
mented on bounding boxes to distinguish between safe and
unsafe conditions, respectively, marking as green and red
the bounding box for detected persons. The proposed tech-
nique showed better results for real-time performance vs
other object detectors. The proposed approach can be imple-
mented in a distributed video surveillance system; indeed,
it is a suitable solution for the authorities to visualize the
compliance of people with social distancing and at the same
time screening their body temperature. In the future, we will
utilize this methodology on mobile cameras, e.g., mounted
on an autonomous drone system, and hence drones are sim-
pler to operate and more effective to capture fast actions of
the detected objects from different angles. We will extend
our research to use and experiment people detection by also
applying 3-D dimensions to have three parameters (x, y, z),
in which we can perceive uniform distribution distance in
the entire image and eliminating the perspective effect. In
addition to that, the newly released YOLOv4 detector [37]
will be also considered.

Acknowledgements We thank the Islamic Development Bank for their
support to the Ph.D. work of A. Elhanashi and the Crosslab MIUR
project.

Funding Open Access funding provided by Università di Pisa.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated

Fig. 11 Smart Surveillance distributed video system for people detec-
tion and social distancing classification

Journal of Real-Time Image Processing

1 3

otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Team, T.V., D.J.: Coronavirus: a visual guide to the outbreak. 6
Mar. Available at: https ://www.bbc.co.uk/news/world -51235 105
(2020)

 2. covid19.who.int. (n.d.). WHO coronavirus disease (COVID-19)
dashboard. Available at: https ://covid 19.who.int [Accessed 1 Jul
2020]

 3. Advice for the public on COVID-19—World Health Organiza-
tion. WHO www.who.int/emerg encie s/disea ses/novel -coron aviru
s-2019/advic e-for-publi c

 4. Prem, K., et al.: The effect of control strategies to reduce social
mixing on outcomes of the covid19 epidemic in Wuhan, China: a
modeling study. The Lancet Public Health, (2020)

 5. Kahale, N.: On the economic impact of social distancing
measures. SSRN Electron. J. (2020). https ://doi.org/10.2139/
ssrn.35784 15

 6. Sonbhadra, S.K., et al.: Target specific mining of covid-19 schol-
arly articles using the one-class approach. https ://arxiv .org/
pdf/2004.11706 .pdf (2020)

 7. Punn, N., et al.: Automated diagnosis of covid-19 with limited
posteroanterior chest x-ray images using fine-tuned deep neural
networks. arXiv :2004.11676 (2020)

 8. Tracking COVID-19: There is an app for that – EMBS. EMBS
– Your Global Connection to the Biomedical Eng. Community
https ://www.embs.org/pulse /artic les/track ing-covid -19-there
s-an-app-for-that/

 9. Robakowska, M., et al.: The use of drones during mass events.
Disaster Emerg. Med. J. 2(3), 129–134 (2017)

 10. Harvey, J., LaPlace, A.: Megapixels.cc: Origins, ethics, and pri-
vacy implications of publicly available face recognition image
datasets. Available: https ://megap ixels .cc/ (2019)

 11. Georgievski, B.: Object detection and tracking in 2020.
Medium. https ://blog.netce tera.com/objec t-detec tion-and-track
ing-in-2020-f10fb 6ff9a f3 (2020)

 12. Pitts, W., McCulloch, W.: How we know universals the perception
of auditory and visual forms. Bull. Math. Biophys. 9(3), 127–147
(1947)

 13. Zhao, Z.-Q., Zheng, P., Xu, S.-T., Wu, X.: Object detection with
deep learning: a review. IEEE Trans. Neural Networks Learn.
Syst. 30(11), 3212–3232 (2019)

 14. Wang, X., Ng, H.W., Liang, J.: Lapped convolutional neural net-
works for embedded systems. In: 2017 IEEE Global Conf. on
Signal and Information Processing (GlobalSIP), Montreal, QC,
2017, pp. 1135–1139

 15. Kajabad, E.N., Ivanov, S.V.: People detection and finding attrac-
tive areas by the use of movement detection analysis and deep
learning approach. Procedia Comput. Sci. 156, 327–337 (2019).
(ISSN 1877-0509)

 16. Brunetti, A., Buongiorno, D., Francesco, G., Bevilacqua, V.: Neu-
rocomputing computer vision and deep learning techniques for
pedestrian detection and tracking: a survey. Neurocomputing 300,
17–33 (2018)

 17. Manfredi, M., Vezzani, R., Calderara, S., Cucchiara, R.: Detection
of static groups and crowds gathered in open spaces by texture
classification. Pattern Recognit. Lett. 44, 39–48 (2014)

 18. Huang, P., Hilton, A., Starck, J.: Shape similarity for 3d video
sequences of people. Int. J. Comput. Vis. 89(2–3), 362–381 (2010)

 19. Alahi, A., Bierlaire, M., Vandergheynst, P.: Robust real-time
pedestrians’ detection in urban environments with low-resolution
cameras. Transp. Res. Part C Emerg. Technol. 39, 113–128 (2014)

 20. Girshick, R.: Rich feature hierarchies for accurate object detection
and semantic segmentation. IEEE CVPR, pp. 580–587, (2015)

 21. Girshick, R.: Fast R-CNN. IEEE Int. Conf. Comput. Vis. (2015)
 22. Redmon, J.: You only look once: Unified, real-time object detec-

tion. IEEE CVPR, pp. 779–788 (2016)
 23. Redmon, J., et al.: YOLO9000: better, faster, stronger. IEEE

CVPR (2017)
 24. FLIR Thermal Dataset for Algorithm Training, FLIR Systems.

Available at: https ://www.flir.com/oem/adas/adas-datas et-form/
 25. MathWorks Team: Using ground truth for object detection https

://www.mathw orks.com MATLAB central file exchange. Oct. 24,
2019 (2019)

 26. Glorot, X., et al.: Understanding the difficulty of training deep
feedforward neural networks. Int. Conf. Artificial Intell Stat.
(2010)

 27. Brownlee, J.: Deep learning with python, machine learning mas-
tery (2017)

 28. Sener, F., et al.: Two-person interaction recognition via spatial
multiple instances embedding. J. Vis. Comm. Image Repre. 32,
63 (2015)

 29. Rinkal, K., et al.: Real-time social distancing detector using social
distancingnet-19 deep learning network. SSRN Electron. J. (2020)

 30. Yadav, S.: Deep learning based safe social distancing and face
mask detection in public areas for covid-19 safety guidelines
adherence. Int. J. Res. Appl. Sci. Eng. Technol. 8 (2020)

 31. Shubham, P., et al.: Real-time object detection using deep learn-
ing: a survey. Int. Res. J. Eng. Tech. 6(10), 2395–0056 (2019)

 32. Punn, N., et al.: Monitoring COVID-19 social distancing with per-
son detection and tracking via fine-tuned YOLO v3 and Deepsort
techniques. https ://arxiv .org/abs/2005.01385 , (2020)

 33. Jetson Nano Developer Kit.: Retrieved from https ://devel oper.
nvidi a.com/embed ded/jetso n-nano-devel oper-kit (2020)

 34. Rezaei, M., Azarmi, M.: DeepSOCIAL: social distancing moni-
toring and infection risk assessment in COVID-19 Pandemic.
Appl. Sci. 10, 7514 (2020)

 35. Pouw, C., Schadewijk, F., Toschi, F., Corbetta, A.: Monitoring
physical distancing for crowd management: real-time trajectory
and group analysis. PLoS ONE 15, e0240963 (2020). https ://doi.
org/10.1371/journ al.pone.02409 63

 36. Mobatek (n.d.) MobaXterm free Xserver and tabbed SSH client
for Windows. [online] mobaxterm.mobatek.net.

 37. Bochkovskiy, A, et al.: YOLOv4: optimal speed and accuracy of
object detection. https ://arxiv .org/pdf/2004.10934 , (2020)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Sergio Saponara is a Full Professor of Electronics and leader of the
I-CAS (Integrated and embedded Circuits and Systems) lab, at Dipar-
timento di Ingegneria della Informazione, Università di Pisa, via G.
Caruso 16, 56122, Pisa, Italia.

Abdussalam Elhanashi is a Ph.D. student at the I-CAS (Integrated and
embedded Circuits and Systems) lab, Dipartimento di Ingegneria della
Informazione, Università di Pisa, via G. Caruso 16, 56122, Pisa, Italia.

Alessio Gagliardi is a PhD student at at the I-CAS (Integrated and
embedded Circuits and Systems) lab, Dipartimento di Ingegneria della
Informazione, Università di Pisa, via G. Caruso 16, 56122, Pisa, Italia.

http://creativecommons.org/licenses/by/4.0/
https://www.bbc.co.uk/news/world-51235105
https://covid19.who.int
http://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
http://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
https://doi.org/10.2139/ssrn.3578415
https://doi.org/10.2139/ssrn.3578415
https://arxiv.org/pdf/2004.11706.pdf
https://arxiv.org/pdf/2004.11706.pdf
http://arxiv.org/abs/2004.11676
https://www.embs.org/pulse/articles/tracking-covid-19-theres-an-app-for-that/
https://www.embs.org/pulse/articles/tracking-covid-19-theres-an-app-for-that/
https://megapixels.cc/
https://blog.netcetera.com/object-detection-and-tracking-in-2020-f10fb6ff9af3
https://blog.netcetera.com/object-detection-and-tracking-in-2020-f10fb6ff9af3
https://www.flir.com/oem/adas/adas-dataset-form/
https://www.mathworks.com
https://www.mathworks.com
https://arxiv.org/abs/2005.01385
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://doi.org/10.1371/journal.pone.0240963
https://doi.org/10.1371/journal.pone.0240963
https://arxiv.org/pdf/2004.10934

	Implementing a real-time, AI-based, people detection and social distancing measuring system for Covid-19
	Abstract
	1 Introduction
	2 Research background and related work
	3 Overview of object detection
	4 Proposed methodology
	4.1 Social distancing detector steps
	4.2 Neural network design
	4.3 Training
	4.4 Algorithm for distancing classification

	5 Experimental results
	5.1 Real-time measurement of this work vs other object detectors

	6 Implementation of the proposed approach on embedded hardware
	6.1 Jetson nano (NVIDIA device)
	6.2 Test the proposed algorithm on Jetson nano
	6.3 Distributed surveillance video system for social distancing

	7 Conclusion and future work
	Acknowledgements
	References

