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Virtual screening in drug discovery 

Computer-aided drug design (CADD) strategies are nowadays widely employed in different areas of 

medicinal chemistry along the different steps of the drug development process, from hit identification 

to lead optimization campaigns. The expensive and time consuming trial-and-error approach can be 

often replaced by a rational drug design approach, which can benefit the guide and support of 

molecular modelling and computational studies. Hit identification is undoubtedly the drug design 

stage to which in silico techniques can offer the most valuable help, thanks to the application of virtual 

screening (VS) protocols enabling the discovery of novel and structurally diverse active ligands from 

libraries of commercially available compounds. 

VS strategies can be divided in receptor-based and ligand-based approaches. Receptor-based VS 

methods are the most used and profitable strategies for in silico hit identification, since they exploit 

structural knowledge about the target protein.1 The availability of at least an X-ray crystallographic 

or NMR structure of the target receptor is thus an essential prerequisite for the development of 

receptor-based VS protocols, although homology modelling can sometimes supply with reliable 

receptor models when no structural information about the target of interest is available.2 When 

possible, chemical knowledge of one or more reference ligands with experimentally confirmed 

activity towards the target of interest can also be employed in receptor-based approaches. In the ideal 

situation, a ligand-protein co-crystal structure providing both types of information and displaying the 

bioactive conformation of the ligand bound to the target receptor can be used as a reference for 

receptor-based methods, as in the case of receptor-based pharmacophore modeling. By following this 
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approach, the fundamental ligand-protein interactions observed in the X-ray complex, known to be 

the main responsible for the activity of bound ligand and related compounds, can be used to generate 

one or multiple pharmacophore models to be employed in pharmacophore-based VS studies. In these 

studies, libraries of up to millions of commercial compounds can be filtered with the aim of 

identifying molecules that can reproduce the pattern of fundamental interactions represented by the 

pharmacophore model and are thus supposed to show affinity for the target receptor.3 In the recent 

years, receptor-based pharmacophore screenings have been widely applied and proved to be efficient 

hit finding strategies for several different target receptors including hCAs.4–11 

The principal and most popular computational approach belonging to receptor-based strategies is 

however represented by docking, which constitutes the gold standard technique for predicting the 

potential binding mode of small-molecule ligands within a target receptor. Docking studies are thus 

widely used in medicinal chemistry for evaluating the most energetically favored disposition of 

experimentally active compounds within their protein targets12 and for rationalizing structure-activity 

relationships (SAR) among series of related compounds.13 Nevertheless, docking approaches proved 

to be a very profitable computational tool also in VS campaigns, allowing the discovery of novel 

compounds active towards many different types of protein targets and expanding the chemical space 

of their known ligands.14 However, docking reliability often raised some criticism.15 In fact, the 

performance of docking procedures should be generally tested through self-docking (at least) or 

possibly with cross-docking studies before applying them for VS workflows, while the use of special 

parametrizations, force-fields or post-docking procedures seem to be valuable strategies for 

improving docking accuracy when dealing with metalloenzymes such as hCAs.16–18 Anyway, classic 

high-throughput molecular docking demonstrated to be a useful VS strategy for identifying novel 

hCAs inhibitors even when used alone, without employing other structure-based or ligand-based 

approaches.19–21 

Molecular dynamics (MD) simulations constitute another receptor-based technique that can be 

employed in VS workflows. For instance, MD simulations can be performed to refine the target 
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protein structures to be used for docking and other receptor-based methods, relaxing the side chains 

of the protein residues and eliminating possible steric clashes.21 However, MD studies can be 

employed within VS workflows to perform a thorough evaluation of single ligand binding modes 

predicted by docking for few top-scored hit compounds selected through the previous VS steps. The 

behavior of the corresponding ligand-protein complexes is studied by creating a solvated system with 

explicit water molecules where both the receptor and the bound ligand are provided with sufficient 

energy to move freely as in a cellular environment. Through such analysis, it is possible to evaluate 

the stability of the ligand disposition and the ligand-protein interactions predicted by docking for the 

selected compounds and to assess the reliability of their binding mode. MD simulations studies can 

thus be employed as a qualitative post-docking filter in the final step of VS workflows to discard 

those hit compounds whose key interactions with the protein are not properly conserved during the 

simulations.22–24 

Ligand-based similarity strategies, uniquely based on the molecular structure and properties of known 

reference compounds experimentally confirmed as active ligands towards the target of interest, are 

typically the only possible option when no structural information about the target receptor is available. 

Ligand-based, and in particular 2D-similarity methods such as topological and fingerprint searches, 

showed to be useful approaches for identifying hCAs inhibitors,25,26 probably because they are 

constituted by three main functional moieties: a) a zinc-binding group (ZBG, often represented by a 

sulfonamide group) coordinating the prosthetic zinc ion of the enzyme, b) a central core (often an 

aromatic ring) and c) a terminal tail that can show either lipophilic or hydrophilic character. Ligand-

based techniques are often used in combination with structure-based approaches, especially in the 

initial steps of the VS workflow, since they are generally less time consuming and can be employed 

to rapidly filter large compound databases with the aim of discarding those ligands that are too 

structurally different with respect to the reference active ligands and thus less likely to show affinity 

for the target receptor.27,28 Interestingly, ligand-based pharmacophores and substructure searches 
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proved not only to be valuable for selecting potential hCA ligands endowed with known ZBGs, but 

also to identify novel inhibitors with atypical zinc-chelating moieties.2,5 

 

Virtual screening studies identifying novel carbonic anhydrase inhibitors 

A remarkable example of how ligand-based and receptor-based strategies can be successfully 

combined into a hierarchic VS workflow that led to the discovery of new hCA ligands was reported 

by Klebe and collaborators in 2002.29 The study was aimed at assessing the general potential of VS 

for lead discovery and hCA II was selected as a suitable target for this purpose. As a first step of the 

VS protocol, a dataset of about 99’000 drug-like compounds belonging from Maybridge and 

LeadQuest databases and respecting the Lipinski rules was created and subjected to a substructure 

filter, in order to retain only compounds bearing a series of functional moieties already described as 

ZBGs in other zinc proteases, including sulfonamide, amide, hydroxamic and carboxylic groups. In 

this way, only about 5900 potential zinc chelators were retained from the initial dataset. After this 

preliminary filter, the selected compounds were subjected to a receptor-based pharmacophore 

screening. The pharmacophore model was generated through an analysis of the hCA II binding site 

regions in which a potential ligand could form energetically favorable interactions. The mapping of 

the binding hot spots into hCA II catalytic site was performed using four different and complementary 

methods (i.e. LUDI, GRID, SuperStar and DrugScore), which essentially searched for favorable H-

bond acceptor, H-bond donor and hydrophobic interactions and using 13 different ligand-protein X-

ray reference structures. By considering the hot spots and contours maps obtained using the different 

computational methods, as well as the experimental disposition of the 13 sulfonamide ligands co-

crystalized with hCA II, a receptor-based pharmacophore model including five features was 

eventually generated using UNITY software. The model included an H-bond donor and an H-bond 

acceptor feature representing the interactions of the ligand sulfonamide group with the key anchoring 

residue T199, a couple of hydrophobic features representing the central core of the ligands and a 

further H-bond acceptor group representing a possible interaction with the side chain of Q92. By 
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considering this latter feature and one of the hydrophobic features as optional, the pharmacophore 

model successfully retrieved 35 known hCA II ligands (the 13 crystallographic compounds and other 

22 hCA II inhibitors selected from literature) that were used to enrich the subset of about 5900 

potential zinc binders. However, more than a half of these compounds (about 3300) passed the 

pharmacophore-based filter and the retrieved ligands were thus subjected to a further ligand-based 

filter through the flexible superposition with FlexS software on two reference co-crystallized 

inhibitors selected for having a small and a big molecular shape. Out of the 2237 compounds for 

which a superposition could be computed by the software, the 100 top-scored ligands were then 

docked into the hCA II binding site with FlexX. A final set of 13 compounds was eventually selected 

after visual inspection of the docking poses, based on the pharmacophore features matched, the key 

ligand-protein interactions maintained and docking score calculated by both FlexX and DrugScore 

scoring functions. The final compounds were purchased and subjected to enzymatic assays, together 

with the reference inhibitor acetazolamide, and the results revealed an inhibitory activity for 11 out 

of the 13 tested compounds. In fact, only two hydroxamic acid derivatives showed no hCA II 

inhibition, while all other sulfonamide ligands presented an inhibitory potency ranging from low 

micromolar to subnanomolar values (pIC50 values between 5.26 and 9.21). Two of the active 

compounds, including the most potent one, were then co-crystallized with hCA II and the two X-ray 

structures (PDB codes 1KQW and 1KQR) further demonstrated the reliability of the VS workflow, 

since the two ligands respected the pharmacophore model in their experimental binding modes, which 

differed of less than 1.5 Å in terms of root mean squared deviation (RMSD) from the best docking 

poses selected by DrugScore. 

Another example of receptor-based pharmacophore screening focused on hCA II was reported in 

2011 by Supuran, Sechi and co-workers, which identified a novel low micromolar inhibitor 

incorporating an unusual ZBG.5 In this work, high-resolution X-ray structures of hCA II in complex 

with sulfonamide inhibitors were aligned and used as input ligand-protein complexes for generating 

a receptor-based pharmacophore model using MOE software. The model obtained included four 
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different features: a metal ligator feature and two H-bond acceptor features, representing the 

sulfonamide group of the reference experimental ligands, and a big hydrophobic/aromatic feature 

representing both their central aromatic scaffold and the terminal moieties constituting the ligands’ 

tails. Moreover, excluded volume constraints were generated using the binding site of hCA II in the 

X-ray structure in complex with 3-[4-(aminosulfonyl)phenyl]propanoic acid (PDB code 2NNO). The 

pharmacophore model was used to screen the ZINC lead-like database,30 collecting about 970’000 

drug-like compounds, from which about 37’400 ligands were retained as hits. The subset of selected 

compounds was then further filtered by excluding all molecules bearing sulphur atoms, with the aim 

of excluding from the following VS step all sulfonamide ligands and compounds bearing 

sulfonamide-like groups, so that to retain only potential hCA II with different ZBGs. The about 4600 

retained compounds were then docked into the structure of hCA II  using FlexX and only the best 29 

compounds were subjected to a further docking evaluation using Autodock4. Among these final 

compounds, a small molecule with a unique original structure was selected to be purchased and 

subjected to enzymatic assays. The results showed that the compound was able to inhibit hCA II with 

low micromolar potency (Ki = 9.0 µM) and demonstrated selectivity over hCA I (Ki = 410.0 µM). 

Despite the activity of the identified ligand was not high, the compound was characterized by an 

unusual ZBG, represented by a gem-dihydroxil-keto moiety that was supposed to coordinated the 

zinc ion and to form H-bonds with the key anchoring residues T199 and T200 of hCA II (Figure X). 

The presence of a trifluoromethyl group connected to the germinal diol was also supposed to enhance 

the polarization of the two hydroxyl groups, thus favoring metal chelation. 
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Figure 1. Schematized binding mode of the VS hit identified by Supuran and Sechi. 

 

Receptor-based pharmacophore modelling and screening were also successfully applied for the 

identification of novel hCA VII inhibitors by De Luca and co-workers, which discovered two novel 

nanomolar sulphonamide inhibitors.6 The pharmacophore model was generated based on the X-ray 

structures of hCA VII in complex with the well-known inhibitors acetazolamide (PDB code 3ML5) 

and ethoxzolamide (PDB code 3MDZ). The two aligned co-crystal structures were used as input 

structures for LigandScout software to generate two corresponding receptor-based pharmacophore 

models, which were then merged into a single final model including six total features: three H-bond 

acceptor, one H-bond donor and two hydrophobic features. The H-bond donor and a closely placed 

H-bond acceptor represented the sulfonamide groups of the co-crystallized ligands, a second H-bond 

acceptor represented the interaction with the side chain of T200 shared by both inhibitors through 

their endocyclic nitrogen, while the other three features corresponded to moieties present in either 

one or the other inhibitor. The merged model was validated using a set of 22 hCA inhibitors reported 

in literature and used to filter a focused library of about 6300 compounds bearing sulfonamide 

moieties retrieved from the ZINC database. The screening was performed with the software Catalyst, 

which assigned a fit score valued to reference and database compounds based on the geometric 

matching between their structures and the pharmacophore features of the model. Since 13 out of the 

22 reference actives showed a fit score value higher than 3, this threshold was employed to filter the 
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database compounds, thus obtaining 299 best fitting compounds. After a visual inspection of the 

pharmacophore hits, 34 ligands selected based on their structural diversity were then docked into the 

X-ray structure of hCA VII in complex with acetazolamide (PDB code 3ML5) using GOLD software. 

Considering the fitness score calculated by GoldScore scoring function for the docked compounds, 

the ligand-protein interactions predicted in their docking poses and the commercial availability of the 

molecules, two final compounds were purchased and subjected to enzymatic assays. The ligands 

showed inhibitory activities against hCA VII in the nanomolar range (Ki values of 62.9 and 39.4 nM, 

see Table 1), thus demonstrating the reliability of the VS workflow. Nevertheless, the ligands also 

showed comparable or even higher potency against other hCA isoforms, particularly hCA I (Ki values 

of 8.9 and 8.6 µM), as the ligands potency for this isoform was higher than that reported for the 

reference inhibitors. 

 

Table 1. Ki values against hCAs showed by compounds 1 and 2 

 

  

 Ki (nM) 

 hCA I hCA II hCA VII hCA IX hCA XIV 

1 8.6 6.3 62.9 66.0 19.4 

2 8.9 73.2 39.4 53.2 7.6 

 

A ligand-based pharmacophore screening, in combination with other techniques, was instead used in 

a VS study reported in 2009 by Thiry and co-workers, aimed at identifying new hCA IX sulfonamide 

inhibitors.2 The model was generated using the MOE software, on the basis of the structures of 10 

known inhibitors reported in literature, with strong activity against hCA IX and selectivity over hCA 

II. Although being structurally different, the 10 active ligands all shared a sulfonamide moiety as 

ZBG; therefore, the compounds were flexibly aligned one another so that the coordinates of their 

sulfonamide groups were properly superimposed. Based on the aligned reference ligands, a ligand-
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based pharmacophore model including six different features was obtained: the sulfonamide fragment 

was represented by a metal ligator and two H-bond acceptor features, while the central aromatic core 

and the terminal tails of the active ligands were represented, respectively, by an aromatic feature and 

two mixed features (hydrophobic/H-bond donor and H-bond donor/acceptor). Once generated the 

model, a dataset of about 1200 compounds was obtained by applying molecular properties and 

substructure filters to about 4.6 million commercial compounds belonging to the ZINC database. The 

compounds retained in the dataset were characterized by the presence of a sulfonamide ZBG group 

and satisfied the following molecular properties: -2 < logP  < +4; rotatable bonds < 12; H-bond donor 

< 5, Hbond acceptor < 10; polar surface area < 140. The selected compounds were then screened 

using the pharmacophore model and only the 500 hits respecting all pharmacophore features were 

subjected to molecular docking using the software GOLD. In this case, the 500 compounds were 

docked into a hCA IX homology model previously developed by the same research group.31 After 

visual inspection of the top-score 100 compounds, six potential new inhibitors were eventually 

selected for enzymatic assays and all ligands showed hCA IX inhibitory activities, with Ki values 

between 2.75 and 0.29 µM. Furthermore, the compounds demonstrated selectivity over hCA I (being 

3- to 28-fold less active against this hCA isoform) but showed comparable or higher activities against 

hCA II. For instance, the most interesting compound (compound 3 of Table 2), with the highest 

activity for hCA IX and selectivity over hCA I was also found to be 60-fold more potent against hCA 

II, with a Ki value of 5 nM. These results demonstrated the reliability of the VS workflow in the 

discovery of new hCA IX ligands but confirmed that the identification of hCA ligands also endowed 

with good a selectivity profile represents a more challenging task. 

 

Table 2. Ki values against hCAs showed by compounds 3. 
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Ki (nM) 

hCA I hCA II hCA VII 

8350 5 300 

 

A further VS campaigns focused on hCA IX allowed the identification of thirteen novel sulfonamide 

inhibitors with nanomolar potency.19 In this study, a pure docking-based approach was followed: the 

whole SPECS database, collecting about 280’000 commercial compounds, was docked into the X-

ray structure of hCA IX in complex with acetazolamide (PDB code 3IAI) by using Glide software 

with the standard-precision method (SP). Subsequently, the top-scored 10’000 compounds were 

subjected to an additional docking evaluation into the same receptor performed with the extra-

precision method (XP). The 500 compounds showing the highest score values after this second 

docking step were visually inspected and 49 structurally different ligands were eventually selected to 

be purchased and tested to evaluate their inhibitory activity. Although the final set of selected 

compounds included molecules bearing different types of ZBGs, only sulfonamide ligands showed 

activity against hCA IX. However, most of the 13 hit compounds showed single- to double-digit 

nanomolar potency and considerable selectivity over hCA II and/or hCA I. For instance, compound 

4 of Table 3 was probably the most interesting, with an IC50 value for hCA I inhibition of 2.86 nM, a 

21-fold selectivity over hCA II and 69-fold selectivity over hCA I, whereas compound 5 (IC50 for 

hCA I = 28.35) showed the highest selectivity over hCA II (about 137-fold). 

 

Table 3. IC50 values against hCAs showed by compounds 4 and 5. 

 

 
 

 IC50 (nM) 

 hCA I hCA II hCA VII 

4 197.64 60.93 2.86 

5 231.41 3873 28.35 
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A similar example of hCA IX-targeted VS study entirely relying on high-throughput docking was 

recently reported by Durdagi and collaborators in 2016.21 In this work, the X-ray co-crystal structure 

of hCA IX in complex with acetazolamide (PDB code 3IAI) was used. Prior to docking studies, the 

reference ligand-protein complex was subjected to a 10 ns molecular dynamics (MD) simulation 

performed with NAMD in an explicit water environment, in order to relax the system and the protein 

side chains. The average protein structure derived from the MD simulation was used for the docking 

evaluation of 7 million drug-like commercial compounds from ZINC database, performed with the 

high-throughput virtual screening (HTVS) method of Glide software. Out of the whole database of 

docked compounds, only the top-scored 70 molecules were selected and subjected to a more thorough 

docking calculation employing Glide XP method. Out of the 19 compounds showing a docking score 

better than -8 kcal/mol and forming H-bond interactions with key anchoring residues of hCA IX 

binding site, such as T199 and T200, three compounds were chosen, purchased and tested for their 

hCA IX inhibitory activity. Surprisingly, none of the top-scored compounds presented a sulfonamide 

moiety as ZBG. The three tested compounds, all characterized by a central α-hydroxylactam core, 

showed hCA IX inhibitory activity in the low micromolar to submicromolar range, with Ki values 

between 1.58 and 0.85 µM. Interestingly, none of them was predicted to directly interact with the 

zinc ion in their proposed binding mode. 

Pure molecular docking screens were also successfully employed for the identification of novel hCAs 

inhibitors from virtual focused libraries of natural compounds or structurally related derivatives 

designed through combinatorial chemistry. Alcaro and collaborators performed a docking-based 

virtual screening on a pool of natural compounds belonging from both the volatile and non-volatile 

fractions of the typical Calabrian products Bergamot and Tropea red onion.20 Considering different 

possible tautomeric and protomeric forms of the specific natural compounds, a library of 280 

molecules was generated and the standard-precision method of Glide was used to dock the 

compounds into the X-ray structures of five different CA isoforms, i.e. hCAs I, II, IX and XII (PDB 
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codes 1AZM, 4CQ0, 3IAI and 4HT2 , respectively), as well as mCA VA (PDB code 1DMY). Self-

docking studies of the ligands co-crystallized with the different CA isoforms in the selected X-ray 

structures were used to assess the reliability of the docking protocol; moreover, the estimated binding 

energies associates to the docking results of acetazolamide into the different X-ray structures were 

used as reference values for selecting potential hCA ligands to be tested for inhibitory activity. 

Precisely, the ten flavonoid ligands that showed a docking score value better that that obtained for 

acetazolamide in at least one of the five CA isoforms were selected and subjected to enzymatic assays. 

The experimental results demonstrated that all tested compounds were endowed with inhibitory 

activity against all human isoforms of the five CAs with low micromolar to nanomolar potencies (Ki 

values ranging from 4.24 to 0.11 µM). Two of the identified hits, namely eritrocitin and apigenin, 

showed very interesting activities against hCA VA, since they were found to be more potent hCA VA 

inhibitors (Ki for hCA VA of 0.15 and 0.30 µM, respectively) than the reference ligand 

acetazolaminde (Ki for hCA VA of 0.38 µM). 

Finally, in 2018 Supuran and collaborators reported on the identification of novel nanomolar 

inhibitors of hCA I, II and IX through a VS study performed on a focused library of sulfonamide 

compounds with a 1,3,5-triazine core,32 as a continuation of previous works in which they discovered 

that sulfonamides bound to a triazine skeleton had high potency and usually also specificity for hCA 

IX over hCA I or II.33,34 The software CombiGlide from Schrodinger suite was used to create a 

combinatorial library comprising 2200 unique compounds (9766 molecules considering multiple 

possible isomers and ionization states for each ligand) by combining three different arylsulfonamide 

moieties and a set of 21 fragments (including aminoalcohols, aryltriazoles and others) with cyanuric 

chloride (2,4,6-trichloro-1,3,5-triazine). The library was built by considering the generations of the 

possible triazine-containing products obtained by substituting cyanuric chloride with an 

arylsulfonamide group and at least one among the other 21 fragments. The whole set of molecules 

was docked into the X-ray structure of hCA IX (PDB code 3IAI) using Glide HTVS method; the top-

scored 2000 compounds were then docked into the same protein structure using the SP method and 
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the best 400 ligands according to this second step were subjected to further docking calculation using 

the XP method. Finally, the 80 top-scored molecules based on the XP score (corresponding to 66 

unique ligands) were analysed through an additional docking evaluation using the quantum-polarized 

ligand docking (QPLD) protocol, which computes ligands partial charges with the semiempirical 

RM6 method. The same method was used to dock the 66 ligands into the X-ray structure of hCA II 

(PDB code 3MMF) in order to evaluate their potential selectivity over this hCA isoform. Among the 

20 top-scored molecules resulting from QPLD calculations, eleven compounds and their synthetic 

intermediates (for a total of 24 ligands) were selected to be synthesized and tested for hCA I, II and 

IX inhibitory activity. A final set of newly synthesized compounds was thus subjected to enzymatic 

assays, revealing nanomolar hCA IX inhibitory activity for all compounds, among which 14 ligands 

showed a high potency (Ki < 50 nM). All tested compounds were generally selective for hCA IX over 

hCA I, but most of them showed either comparable or higher potency against hCA II. The best 

selectivity over hCA II was shown by compound 6 of Table 4, which represented the most promising 

compound of the series, presenting subnanomolar activity against hCA IX (Ki = 0.4 nM) and being 

18.5-fold and about 42-fold less active against hCA II and I, respectively. 

 

Table 4. Ki values against hCAs showed by compounds 6. 

 
Ki (nM) 

hCA I hCA II hCA IX 

16.7 7.4 0.4 

 

Retrospective virtual screening studies using carbonic anhydrases as target receptors 



14 
 

Due to the number of known inhibitors and ligand-protein X-ray structures reported in literature, 

some well-studied hCA isoforms such as hCA I and hCA II has been used as reference target proteins 

for retrospective analyses aimed at assessing the hit identification performance of several different 

VS approaches, including docking, 2D fingerprint screenings, 3D shape-based ligand similarity and 

machine learning techniques. 

In an interesting work reported in 2005, Shoichet and collaborators evaluated the performance of their 

molecular docking software Dock in identifying potential ligands of metalloenzymes using a standard 

noncovalent scoring function, i.e. employing molecular mechanics parameters for treating the 

prosthetic metal ion but without considering the covalent-like interaction between metal and 

ligands.35 The analysis was performed using a dataset of about 95’000 compounds belonging from 

the MDL Drug Data Report (MDDR) version 2000.2, a licensable database of biologically relevant 

compounds from patent literature. The study considered reference metalloenzymes with a minimum 

of 20 known ligands included in the database and for which various ligand-protein co-crystal 

structures were available, i.e. xanthine oxidase (XO), neutral endopeptidase (NEP), peptide 

deformylase (PDF), matrix metalloproteinase 3 (MMP-3) and hCA II. In particular, the retrospective 

analysis focused on hCA II was carried out using the X-ray structure of hCA II bound to dorzolamide 

(PDB code 1CIL) and considering the 241 hCA II ligands included in the MDDR database as 

reference actives. The zinc ion was parametrized with van der Waals radius of 1.09 Å and a well-

depth minimum of 0.25 kcal/mol36 as well as a net charge of +1.4 (considering a net charge transfer 

of +0.2 to each of the three coordinating histidine residues). The enrichment plot analysis performed 

on the docking results showed that, using these parameters, a satisfying screening performance could 

be obtained. In fact, the enrichment factor (EF) calculated for the top-scoring 0.1% of the ranked 

database (EF1%) was 82-fold better than random selection and 25% of known actives were identified 

within the top 1.6% of the ranked database. Moreover, 95% of the reference hCA II ligands showed 

docking poses resembling the experimental disposition of dorzolamide. 
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McGaughey and co-workers performed an extensive analysis in which they assessed the VS 

performance of three different docking software (Flog, Fred and Glide) in comparison with both 2D 

ligand-based (Daylight, Toposim) and 3D shape-based (SQW, Rocs) similarity strategies.25 The 

seven total VS approaches were tested using a set of eleven different target enzymes that also included 

hCA I. In this study, the X-ray structure of the enzyme in complex with acetazolamide (PDB code 

1AZM) was used for docking studies and the co-crystallized ligand was employed as the query 

structure for ligand-based methods. Two screening databases were used: a dataset of about 24’500 

compounds obtained by clustering the MDDR database and a dataset of less than 10’000 elements 

including compounds randomly selected from Merck’s corporate database (MCIDB) and a set of 

reference active compounds carefully selected for each target. In both datasets, compounds with more 

than 80 heavy atoms were discarded. For hCA I, 80 and 241 reference actives were present in the 

final MDDR and MCIDB datasets, respectively. This analysis revealed that, on average, the ligand-

based VS approaches outperformed the docking methods, as demonstrated by comparing the EF 

values calculated for the top 1% of both ranked databases. This was particularly true for hCA I, which 

resulted to be one of the most challenging targets for docking-based VS among the 11 enzymes tested 

in the study, showing EF1% values between 0 and 2.5, compared to mean values ranging from 4.0 to 

13.4 (calculated considering all target enzymes). The fact that no special parametrization for the zinc 

ion was used in docking calculations may have contributed to the low enrichments obtained for hCA 

I, although similar results were showed by other targets with no metal prosthetic groups within the 

ligand binding site (namely HIV-rt and COX2). Conversely, the 2D ligand similarity methods 

performed the best on hCA I, showing the highest EF values among those obtained for all targets. 

Particularly, EF1% values of 50.2-56.4 were obtained for MDDR dataset and 17.6-25.5 for MCIDB 

dataset compared to mean values of 24.5-29.0 and 7.4-10.6 respectively. These results can be however 

rationalized considering that most of the hCA inhibitors present a sulfonamide moiety acting as ZBG, 

which can facilitate the retrieval of active compounds using VS approaches based on the structural 

similarity of the ligands. In fact, pure shape-based methods such as Rocs showed a lower performance 
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compared to 2D similarity, but when an atom type-based similarity component was included in the 

screening (as in Rocs-color) an about 3-fold improvement in the EF values were obtained for hCA I. 

An in-depth analysis focused on 2D fingerprint methods was reported by Sherman et al. in 2010.26 In 

this work, the VS performance of eight different fingerprint types available in the software Canvas 

(linear, dendritic, radial, pairwise, triplet, torsion, Molprint2D and MACCS fingerprints) was 

evaluated using a dataset of about 24’500 MDDR compounds obtained as described by McGaughey 

and co-workers25 and considering the same group of eleven target enzymes, including hCA I. The 

same reference ligand-protein co-crystal structures were also employed for each target. Therefore, 

acetazolamide was used as the query structure for the fingerprint similarity analyses aimed at 

retrieving the 80 reference actives of hCA I out of the MDDR compounds dataset. Since for each 

fingerprint type the performance evaluation was carried out using different atom typing schemes, bit 

scaling rules and similarity/distance metrics, a total number of almost 160’000 different parameter 

combinations were evaluated based on the EF1%. The analysis demonstrated the robustness of 

Molprint2D method, which showed the best overall performance across all 11 target enzymes 

considering both default settings and the best combination of parameters tested. Again, hCA I was 

found to be the target protein for which the best enrichments were obtained, on average. In particular, 

considering the best settings for each fingerprint type, Molprint2D and radial fingerprints achieved 

an EF1% value of 80.0 and even MACCS fingerprints, which produced the worst overall results, 

showed an EF1% of 50.0 for hCA I. These results are in agreement with the above reported 

considerations about the structural similarity of hCAIs; in fact, although the average tanimoto 

similarity of the 80 reference hCA I ligands was considerably low (around 0.1), the authors 

themselves pointed out that all ligands presented a sulfonamide group in a similar environment, and 

this may have contributed to the generally high performance of the fingerprints methods. Notably, 

atom typing schemes such as Mol2 and Daylight performed better than less specific atom typing (less 

likely to discriminate specific structural moieties). 
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The same author reported a further analysis concerning ligand-based techniques performed using the 

same set of target enzymes, reference actives, query structures and approximately the same dataset 

of MDDR compounds. This study was focused on shape-based flexible ligand superposition methods, 

as the Phase Shape tool implemented in Schrödinger suite was tested for its VS performance, 

analyzing the impact of multiple parameters such as conformer generation method and atom/feature 

typing method.37 The results shown in this study were consistent with those reported by McGaughey 

et. al, which were also used to compare the performance of Phase Shape with Rocs-color and SQW. 

Overall, the EF1% obtained with hCA I were above the average values calculated across all 11 target 

enzymes, but not the highest as observed for the 2D similarity methods, and the use of MacroModel 

atom types or better Phase pharmacophore feature types performed substantially better than more 

generic atom typing-based and shape-only scoring. However, the 3D alignments obtained with shape-

only scoring method demonstrated to perform qualitatively well for hCA I target. Surprisinlgy, the 

use of a low-energy conformer of acetazolamide generated with the conformer generator 

implemented in Phase Shape as the query structure produced better results than those obtained using 

the experimental disposition of the ligand. 

In summary, the results of these analyses highlighted that a proper parametrization of the prosthetic 

zinc ion in docking studies focused on hCAs can improve the quality and accuracy of the docking 

results and that ligand-based techniques, particularly 2D-similarity approaches, can show superior 

performance in identifying new potential hCA inhibitors, provided that either no or minimal structural 

diversity at the level of the ZBG is required or expected. 
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