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Abstract

Propellantless propulsion systems allow innovative mission scenarios to be envisaged, including the generation
and the stabilization of artificial equilibrium points in the circular restricted three-body problem. This paper
discusses the generation of collinear, L1-type, artificial equilibrium points in the Sun-[Earth+Moon] system,
using a (photonic) solar sail. The main contribution of this paper is to investigate the spacecraft dynamics and
its control when the sail propulsive acceleration is described with a recent thrust model that accounts for the
presence of wrinkles on the membrane surface. In particular, an H∞ static output-feedback control based on
reflectivity control devices is proposed to stabilize the spacecraft around the L1-type artificial equilibrium point,
and a procedure is described for estimating the required area covered by those devices as a fraction of the whole
solar sail surface.

Keywords: wrinkled solar sail, artificial equilibrium point, reflectivity control devices, H∞ static
output-feedback control

Nomenclature

A = sail reflective area, [m2]
{A,B,Bv,C,D,L,P,S} = auxiliary matrices
a = dimensionless propulsive acceleration vector
B = non-Lambertian coefficient
{b1, b2, b3} = dimensionless force coefficients, see Eqs. (6)
C = Sun-[Earth+Moon]’s center of mass
{c1, c2, c3} = dimensionless constants, see Eqs. (24)–(26)
d = disturbance vector
G = universal gravitational constant, [N m2/kg2]
H = spacecraft main body height, [m]
{I1, I2, I3} = spacecraft principal moment of inertia, [kg m2]
I = identity matrix

K , [Kp Kd] = control gain matrix
k = relative area variation, see Eq. (69)
{kpi, kdi} = proportional and derivative gains (i = 1, . . . 3)

L = control torque level arm vector (with L , ‖L‖), [m]
l = Sun-[Earth+Moon] distance, [au]
M = control torque vector, [N m]
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M = primary’s mass, [kg]
m = spacecraft total mass, [kg]
mPL = payload mass, [kg]
NTEC = number of TECs
n̂ = normal unit vector
O = zero matrix
{Q,R} = weighting matrices
P⊕ = solar radiation pressure at 1 au, [N/m2]
R = spacecraft main body radius, [m]

RT2T1 = rotational matrix from T1 to T2

r� = dimensionless Sun-spacecraft vector (with r� , ‖r�‖)
S = spacecraft center of mass
T = solar sail thrust vector, [N]
t = time, [s]

{TB , T̃B} = body-fixed reference frames
TS = synodic reference frame
TSBF = sail boom frame
u = control vector
x = state vector
y = vector of measured state variables
{α, ψ} = Euler angles, [deg]
β = sail lightness number
δA = reflective area reduction, [m2]
γ = attenuation factor, see Eq. (49)
δβ = sail lightness number variation
δr = dimensionless position perturbation
δṙ = dimensionless velocity perturbation
ε = emissivity coefficient
η = sail/RCD efficiency

Θ = angle between n̂0 and ˆ̃n , [deg]
θ = cone angle, [deg]
κ = absorbtion coefficient
Λi = i-th eigenvalue of matrix A
λ = auxiliary constant, see Eq. (93)
µ = [Earth+Moon]’s dimensionless mass
ρd = diffuse reflection coefficient
ρs = specular reflection coefficient

φ̃ = auxiliary angle, [deg]
σ = solar sail loading, [g/m2]
σcr = critical sail loading, [g/m2]

Subscripts

� = relative to the Sun
⊕ = relative to the [Earth+Moon]
0 = related to unwrinkled sail
1 = related to β-control RCDs
2 = related to attitude control RCDs
b = sail back-side
f = sail front-side
e = AEP nominal value
j = generic TEC
off = RCD off-state
on = RCD on-state
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RCD = relative to RCDs
s = related to the sail reflective membrane

Superscripts

· = derivative w.r.t. dimensionless time
∼ = relative to a wrinkled sail
∧ = unit vector

1. Introduction

A solar sail is a propulsive system that exploits the solar radiation pressure acting on a thin reflective
membrane (or some spinning blades) to generate thrust without any propellant consumption [1, 2, 3]. Due
to their peculiar working principle, propellantless propulsive systems like solar sails may be used in mission
scenarios otherwise difficult or even impossible to accomplish with conventional (i.e., chemical or electric)
thrusters, including the generation and maintenance of non-Keplerian orbits [4, 5, 6, 7, 8], the exploration of
near-Earth asteroids [9, 10] and of the inner Solar System [11, 12, 13, 14], the transfer to and maintenance at
an heliostationary position [15, 16, 17], and the exploration of outer Solar System [18, 19, 20, 21]. The interest
of the scientific community on solar sailing has led to the design of some solar sail-based missions, including
the recent JAXA’s IKAROS [22], NASA’s NanoSail-D2 [23] and Planetary Society’s LightSail [24], and the
plan or proposal of new missions such as OKEANOS [25], NEA Scout [26, 27, 28] and Solar Cruiser [29];
see Fig. 1.
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Figure 1: Timeline of the main past and planned solar sail-based missions.

Among all possible solar sail-based mission scenarios, this work deals with the generation of an artificial
equilibrium point (AEP) in the Sun-[Earth+Moon] circular restricted three-body problem (CRTBP) [30, 31,
32]. In particular, the Sun-[Earth+Moon] CRTBP assumes that the only relevant gravitational forces acting
on the spacecraft are those generated by the Sun’s mass and the total mass of the Earth and the Moon, the
latter being concentrated in a single point, placed at a distance of 1 au from the Sun, which revolves around
the star on the Ecliptic plane with a period equal to 1 year. An AEP is generated when the propulsive
acceleration continuously balances the centrifugal, Coriolis, and gravitational accelerations. Several types
of AEPs [33, 34, 35] may be generated by a solar sail in a CRTBP framework, but we concentrate on an
L1-type AEP, which could be exploited by a solar observation spacecraft to provide an early warning in case
of solar flares, geomagnetic storms, or other catastrophic solar events. Currently, NASA’s satellite Advanced
Composition Explorer (ACE) is tracking a periodic orbit in the vicinity of the natural Sun-[Earth+Moon]
L1 point. This guarantees a warning time of about 1 hour, under the assumption of an average solar wind
velocity of about 400 km/s [36]. A spacecraft equipped with a propellantless propulsive system is able to
generate an AEP closer to the Sun than the natural L1 point, thus increasing the warning time. A major
problem is that L1-type AEPs are known to be unstable, so that a control system is necessary to stabilize
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the spacecraft dynamics. In this paper, we discuss a control system based on the use of reflectivity control
devices (RCDs), which are actuators capable of modifying their optical properties under the application of
a suitable load voltage. In principle, RCDs may be used to generate control torques and also to vary the
sail propulsive acceleration magnitude. Their application for controlling the attitude of a solar sail in deep
space has been successfully tested in JAXA’s IKAROS mission [37, 38].

The problem of generation and stabilization of an L1-type AEP by means of a propellantless propulsive
system has been discussed by several authors [33, 39, 40, 41, 42]. The main contribution of this paper may
be summarized in the following points. Firstly, our analysis concentrates on a solar sail-based L1-type AEP
maintenance, but, unlike other works available in the literature, the propulsive acceleration generated by the
sail is here estimated with a recent thrust model that accounts for the actual sail membrane optical properties
and the presence of wrinkles as film deformations [43, 44]. Moreover, an innovative H∞ static output-
feedback control law, discussed in Ref. [45], is applied to the wrinkled solar sail-case, and its effectiveness is
illustrated in a potential mission scenario. Finally, a procedure is proposed to obtain a first estimate of the
total sail area and to quantify the fraction of area covered by RCDs.

The rest of the paper is organized as follows. Section 2 discusses the nominal (equilibrium) requirements
for an L1-type AEP maintenance with a wrinkled sail, whose thrust model is detailed in the Appendix.
Section 3 describes the H∞ static output-feedback control that is used to stabilize the perturbed dynamics
in the vicinity of the target AEP. Section 3 also provides the mathematical tools necessary to calculate the
required control torques, and discusses a preliminary sail design procedure. Then, Section 4 simulates the
proposed control law in a test case scenario. Finally, the Conclusion section summarizes the main outcomes
of this work.

2. Mathematical preliminaries and mission description

Consider the problem of generation and maintenance of a collinear AEP in the Sun-[Earth+Moon]
CRTBP, where the Sun’s mass is M� while the [Earth+Moon]’s mass is M⊕. We concentrate on an L1-type
AEP, so that the solar sail-based spacecraft is placed between the Sun and the natural L1 Lagrange point,
the position of which is along the Sun-Earth line at a distance of about 0.01 au from Earth toward the Sun.
In case of catastrophic solar events, such as solar flares or coronal mass ejections, a spacecraft placed at
such an L1-type AEP could send a signal to a station on Earth with a warning time that varies depending
on the actual Earth-spacecraft distance.

Using the standard notation of the CRTBP, consider a right-handed (synodic) reference frame TS(C; î, ĵ, k̂)
with its origin C coinciding with the Sun-[Earth+Moon] center of mass, the unit vector î pointing from C
to [Earth+Moon] center of mass, and the unit vector k̂ being aligned with the [Earth+Moon] angular
momentum vector; see Fig. 2.

The spacecraft dynamics in TS is described, considering gravitational, centrifugal, Coriolis, and propulsive
accelerations, by the second order vectorial differential equation [30, 33]

r̈� + 2 k̂ × ṙ� + k̂ ×
[
k̂ ×

(
r� − µ î

)]
+

1− µ
r3
�

r� +
µ∥∥∥r� − î
∥∥∥3

(
r� − î

)
= a (1)

where µ ,M⊕/(M� +M⊕) ' 3.036×10−6 is the [Earth+Moon] dimensionless mass, r� is the dimensionless
Sun-spacecraft vector (with r� , ‖r�‖), and a is the dimensionless sail propulsive acceleration vector. In
Eq. (1), the Sun-[Earth+Moon] nominal distance (l , 1 au) and the total mass of the primaries (M� +M⊕)
are taken as the reference length and mass, respectively, while the time unit is chosen to make unitary the
angular velocity of the primaries ω⊕ ' 1.9965 × 10−7 rad/s. Finally, the dot symbol denotes a derivative
taken with respect to t ω⊕, where t is the time.

To complete the system dynamics, the sail propulsive acceleration vector must be expressed with a
suitable thrust model. Usually, the thrust vector is written as a function of the reflective area A and of
the solar sail attitude, defined by the orientation of the unit vector n̂ normal to the sail nominal plane in
the direction opposite to the Sun. In this context, several thrust models have been discussed in literature,
including the ideal sail [46, 47], the optical sail [46, 47] with degradation [48, 49], or even more complex
models [50, 51, 52, 53]. In this paper, a realistic thrust model is considered, which takes into account the
presence of wrinkles on the reflective surface and models their effect on the magnitude and direction of
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Figure 2: Sketch of the synodic frame TS with CRTBP notation.

the sail thrust vector. In fact, wrinkles modify the thrust direction and affect the propulsive acceleration
magnitude by reducing the effective sail area of a quantity δA < 0 [43, 44]. The overall effect on the thrust

vector direction is modelled by defining a unit vector ˜̂n normal to the unwrinkled-sail nominal plane.
According to the mathematical model thoroughly discussed in Refs. [43, 44], and bearing in mind the

scheme of Fig. 2, the dimensionless sail propulsive acceleration vector a may be expressed as

a =
P⊕A/m

G (M� +M⊕)/l2

(
1 +

δA

A

) (
1

r�

)2

cos θ̃
[
(2 ρs cos θ̃ + ρdBf ) ˜̂n + (κ+ ρd) r̂�

]
(2)

where G is the universal gravitational constant, P⊕ , 4.56×10−6 N/m2 is the solar radiation pressure at the
reference distance l, m is the constant spacecraft mass, ρs is the sail film specular reflection coefficient, ρd is
the sail film diffuse reflection coefficient, κ is the sail film absorption coefficient, Bf is the non-Lambertian

coefficient of the sail front side, and r̂� , r�/r� is the Sun-spacecraft unit vector. In Eq. (2), the term

θ̃ ∈ [0, π/2] rad is the wrinkled-sail cone angle, defined as the angle between the directions of r̂� and ˜̂n, viz.

θ̃ , arccos
(˜̂n · r̂�

)
(3)

Note that Eq. (2) accounts for the effect of wrinkles affecting both the propulsive acceleration vector mag-
nitude and its direction. More details on the derivation of Eq. (2) may be found in the Appendix.

The dimensionless propulsive acceleration vector can be rewritten in a more compact form as

a = β̃

(
1− µ
r2
�

) (
cos θ̃

b1 + b2 + b3

)[
b1 r̂� +

(
b2 cos θ̃ + b3

) ˜̂n] (4)

where β̃ is the wrinkled-sail lightness number, defined as the (dimensionless) ratio of the maximum propulsive

acceleration magnitude (when θ̃ = 0, that is, in a Sun-facing condition [54]) to the local Sun’s gravitational
acceleration, viz.

β̃ ,
P⊕A

m

(
1 +

δA

A

)
l2

GM�
(b1 + b2 + b3) (5)
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In Eqs. (4)-(5), the terms {b1, b2, b3} are the sail force coefficients [55, 56] defined as

b1 = κ+ ρd (6)

b2 = 2 ρs (7)

b3 = Bf ρd (8)

According to the most recent measurements of the solar sail optical properties [57, 58], the values of the
optical parameters of a typical solar sail membrane, composed of a polymeric substrate (made of CP1,
Kapton, or Mylar) and an aluminum front surface coating, are

ρs = 0.8099 , ρd = 0.1001 , κ = 0.0900 , Bf = 0.79 (9)

so that the value of the force coefficients are

b1 ' 0.1901 , b2 ' 1.6198 , b3 ' 0.0791 (10)

An L1-type AEP at a dimensionless distance r�e
from the Sun is obtained by enforcing, in Eq. (1), the

conditions
ṙ� = 0 , r̈� = 0 , r̂� ≡ î , r� = r�e

(11)

so that the dimensionless propulsive acceleration vector a is aligned with the Sun-Earth line, that is, a×î = 0;
see Fig. 3. Bearing in mind Eq. (4), the constraint a× î = 0 amounts to orienting the sail normal along the
radial direction or, equivalently, to enforcing the constraints˜̂n = r̂� ≡ î , θ̃ = 0 (12)

in Eq. (4). The result is

a = ae , β̃e
1− µ
r2
�e

î (13)

where the subscript “e” denotes an equilibrium value. The dimensionless spacecraft position vector re at the
equilibrium condition is therefore

re = (r�e
− µ) î (14)
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Figure 3: Sketch of an L1-type AEP in the Sun-[Earth+Moon] CRTBP.

Using Eqs. (11) and (13), Eq. (1) becomes

−r�e
+ µ+

1− µ
r2
�e

− µ

(1− r�e
)2

= β̃e
1− µ
r2
�e

(15)
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so that the required (nominal) wrinkled-sail lightness number β̃e necessary to maintain an L1-type AEP is

β̃e = 1−
µ r2

�e

1− µ

[
r�e

µ
+

1

(1− r�e
)2
− 1

]
(16)

The variation of the required wrinkled-sail lightness number as a function of the desired Sun-AEP distance
r�e

is plotted in Fig. 4, while Fig. 5 shows the warning time as a function of β̃e and the solar wind speed.
Lightness numbers corresponding to the current technology level (on the order of 0.01) may guarantee a
warning time of about 70 minutes in case of average solar wind speed (' 400 km/s), and of about 35 minutes
when fast streams (with velocities on the order of 800 km/s) are considered. Assuming a higher-performance
sail, with a lightness number of 0.02, (corresponding to the design value of the Solar Orbiter mission with a
near-term technology level), the warning time increases to about 80 minutes for an average solar wind speed
and about 40 minutes for fast streams.

0.95 0.96 0.97 0.98 0.99 1

0
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0.15

natural pointL1

Figure 4: Wrinkled-sail lightness number β̃e as a function of dimensionless Sun-AEP distance r�e .

Since L1-type AEPs are known to be intrinsically unstable [33, 42], as is confirmed by the linear stability
analysis reported in the remainder of this section, their maintenance requires a suitable control system to
be used.

2.1. Linear stability analysis

Consider a perturbed state in which the artificial equilibrium condition is modified as follows

r = re + δr , (r�e
− µ+ x) î + y ĵ + z k̂ (17)

ṙ = δṙ , vx î + vy ĵ + vz k̂ (18)

where δr is the dimensionless position vector perturbation (with components {x, y, z}), and δṙ is the dimen-
sionless velocity vector perturbation (with components {vx, vy, vz}). To analyze the spacecraft perturbed
dynamics in the AEP vicinity, introduce the dimensionless state vector x ∈ R6×1 defined as

x ,
[
δr
δṙ

]
(19)
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Figure 5: Warning time as a function of the wrinkled-sail lightness number β̃e and solar wind (average) speed.

Accordingly, the spacecraft linearized dynamics in the vicinity of an L1-type AEP can be written as [42]

ẋ = Ax (20)

with

A =
[ O I

C S
]

(21)

where O ∈ R3×3 is a zero matrix, I ∈ R3×3 is an identity matrix, S is a skew-symmetric matrix given by

S =

[
0 2 0
−2 0 0

0 0 0

]
(22)
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and

C ,

[
c1 0 0
0 c2 0
0 0 c3

]
(23)

where

c1 , 1 +
2µ

(1− r�e
)3

+
2 (1− µ)

r3
�e

− 2 β̃e
1− µ
r3
�e

(24)

c2 ,
µ

r�e

[
1− 1

(1− r�e
)3

]
(25)

c3 , c2 − 1 (26)

The system described by Eq. (20) is known to be unstable [33, 42], and this is confirmed by Fig. 6, which
shows the real parts of the eigenvalues Λi (with i = 1, 2, . . . , 6) of matrix A for r�e

> 0.95. In particular,
matrix A has four imaginary eigenvalues (Λ3, Λ4, Λ5, Λ6), one stable eigenvalue (Λ2) and one unstable
eigenvalue (Λ1). A control system is therefore required for the L1-type AEP maintenance.
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Figure 6: Real part of the eigenvalues Λi of matrix A for different Sun-AEP dimensionless distance r�e .

3. Wrinkled-sail controlled dynamics

To analyze the controlled dynamics of a solar sail-based spacecraft placed at an L1-type AEP, introduce
a right-handed body-fixed reference frame TB(S; n̂, p̂, q̂), with origin at the spacecraft center of mass S,
which also coincides with the solar sail center of mass. The unit vectors p̂ and q̂ are assumed to lie along
the principal axes of inertia of the (ideal) unwrinkled-sail.

In the nominal (unperturbed) equilibrium condition, the unwrinkled-sail is placed at the L1-type AEP
with a Sun-facing attitude, so that the normal unit vector n̂ is along the radial direction, and p̂ lies on the
Ecliptic. Consider now a second right-handed body-fixed reference frame T̃B(S; ˜̂n, ˜̂p, ˜̂q), in which ˜̂p, in its

turn, is on the Ecliptic. The reference frame TB can be overlapped to T̃B by means of two rotations, that
is, i) a clockwise rotation of an angle ψ0 around the unit the vector n̂ so that p̂ coincides with ˜̂p, and ii) a

counterclockwise rotation of an angle α0 around the unit vector ˜̂p; see Fig. 7.
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Figure 7: Sketch of the two body reference frames TB (red) and T̃B (green), and of the Euler angles {ψ0, α0}.

The rotation matrix RT̃BTB between the reference frames TB and T̃B is therefore

RT̃BTB = R2(α0)R3(−ψ0) =


cosψ0 cosα0 − sinψ0 cosα0 − sinα0

sinψ0 cosψ0 0

cosψ0 sinα0 − sinψ0 sinα0 cosα0

 (27)

To estimate the Euler’s angles α0 and ψ0, first note that [˜̂n]T̃B = [1 0 0]T. From Eq. (27), we get

[˜̂n]TB =
(
RT̃BTB

)T

 1

0

0

 =

 cosψ0 cosα0

− sinψ0 cosα0

− sinα0

 (28)

Based on the experimental measurements described in Ref. [44], the components of ˜̂n in TB may be estimated
(more details are given in the Appendix) as follows

[˜̂n]TB = [0.991 − 0.123 − 0.055]T (29)

so that, combining Eqs. (28) and (29), the values of angles α0 and ψ0 are

α0 = 3.153 deg (30)

ψ0 = 7.021 deg (31)

Note that the pair {α0, ψ0} fully defines the orientation of T̃B with respect to TB , thus allowing the dynamics
of a wrinkled-sail to be written in a similar way as that of an unwrinkled-sail.

The orientation of T̃B with respect to the synodic reference frame TS is defined through the azimuth
ψ and elevation α angles; see Fig. 8. More precisely, α is the angle between the direction of n̂ and the
Ecliptic, while ψ is the angle between the direction of î and the projection of ˜̂n on the Ecliptic. In this

case, the rotation matrix RT̃BTS from the synodic reference frame TS to the body reference frame T̃B may be
decomposed in two elementary rotations, that is, i) a counterclockwise rotation of an angle ψ around the

unit vector k̂ to overlap î with the projection of ˜̂n on the Ecliptic, and ii) a counterclockwise rotation of an
angle α around the rotated p̂ unit vector, viz.

RT̃BTS = R2(α)R3(ψ) =


cosψ cosα sinψ cosα − sinα

− sinψ cosψ 0

cosψ sinα sinψ sinα cosα

 (32)
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ĵ

k̂

î
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The components of ˜̂n in the synodic reference frame are therefore

[˜̂n]TS =
(
RT̃BTS

)T

[
1
0
0

]
=

[
cosψ cosα
sinψ cosα
− sinα

]
(33)

so that, bearing in mind Eq. (4), the components of the propulsive acceleration vector a in TS are given by

[a]TS = β̃
1− µ
r2
�

cosα cosψ

b1 + b2 + b3

[
b1 + b2 cos2 α cos2 ψ + b3 cosα cosψ

sinψ cosα (b2 cosα cosψ + b3)
− sinα (b2 cosα cosψ + b3)

]
(34)

Note that the expression of the propulsive acceleration vector along the (nominal) equilibrium point ae,
given by Eq. (13), can be recovered from Eq. (34) by enforcing the conditions

r� = r�e
, β̃ = β̃e , ψ = ψe , 0 , α = αe , 0 (35)

where β̃e is given by Eq. (16) as a function of the L1-type AEP position.
Consider now a perturbed state around the equilibrium condition, in which

r� =
√

(r�e
+ x)2 + y2 + z2 , ψ = ψe + ψ̃ ≡ ψ̃ , α = αe + α̃ ≡ α̃ (36)

with ψ̃ � 1 and α̃� 1. The components of a in Eq. (34) can be linearized under the assumption that the
spacecraft remains in the vicinity of the L1-type AEP, that is, by enforcing the conditions

r2
� '

r2
�e

(1− 2x/r�e
)

, cosα ≡ cosψ ' 1 , sinψ ' ψ̃ , sinα ' α̃ (37)

The result is

[a]TS ' β̃
1− µ
r2
�e

(
1− 2x

r�e

)


1

ψ̃
b2 + b3

b1 + b2 + b3

−α̃ b2 + b3
b1 + b2 + b3

 (38)

Assume now that the solar sail is equipped with RCDs, that is, a part of the sail area is covered by panels
whose optical properties can be varied within a prescribed range [42]. In that case, both the direction and

the magnitude of a can be controlled. This corresponds to assuming, in Eq. (38), that the angles {α̃, ψ̃}
and the sail lightness number play the role of control variables. In particular, β̃ can be written as

β̃ = β̃e + δβ̃ (39)
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where δβ̃ is the sail lightness number variation due to the RCD-based control system.
Substituting Eqs. (38)-(39) into Eq. (1), subtracting the equilibrium solution given by Eq. (15) and

neglecting the second order terms, the linearized equation of motion (neglecting any disturbance source) is

ẋ = Ax + Bu (40)

where A is given by Eq. (21), matrix B is defined as

B ,
[ O
Bv

]
(41)

in which

Bv =


1 0 0

0 β̃e
b2 + b3

b1 + b2 + b3
0

0 0 −β̃e
b2 + b3

b1 + b2 + b3

 (42)

and u is the control vector defined as
u = [δβ̃, ψ̃, α̃]T (43)

In particular, ψ̃ and α̃ are actually virtual inputs since they can be generated by means of suitable torques,
as will be discussed later.

3.1. Control law design

Since L1-type AEPs are unstable, a suitable feedback control law is necessary to maintain the spacecraft
at the desired position. A possible and effective choice is offered by a full-state feedback control law, in the
form

u = −Kx (44)

In that case, the 3 × 6 matrix K may be obtained by solving the associated linear quadratic problem, as
suggested in Ref. [42]. To simplify the control system structure, in this paper we face the problem by
avoiding the need of measuring the full system state, as required by Eq. (44). More precisely, the measured
variables are written as

y = Cx (45)

where y ∈ Rp, with p < 6, that is, the number of outputs is less than the number of states, and, accordingly,
C is a p× 6 matrix. Assume also that the linearized (vectorial) equation of motion (40) is modified as

ẋ = Ax + Bu + Dd (46)

where d is a vector, function of the time, which models the presence of disturbances, while D defines which
state is actually affected by some disturbance. A simple control law is sought in the form

u = −Ky (47)

where K is a 3× p constant gain matrix. Substituting Eqs. (47) and (45) into Eq. (46) yields

ẋ = (A− BKC)x + Dd (48)

whose dynamics clearly depends on the eigenvalues of (A− BKC). It is well known that the solution to the
static output feedback problem of Eq. (47) is a rather complex task to solve, although it is very attractive
in practical applications as it allows controllers with a prescribed structure to be obtained. An effective
algorithm [45] exists for calculating an H∞ static output-feedback control that solves the so called bounded
L2 gain design problem in the form of Eq. (47), that is, which defines a stable closed-loop system whose L2

gain is attenuated by a factor γ > 0, such that∫ +∞
0

(xTQx + uTRu) dt∫ +∞
0

(dT d) dt
≤ γ2 (49)
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where Q ≥ 0 and R > 0 are suitable symmetric matrices. Necessary and sufficient conditions for the existence
of a solution to the previous problem are as follows [45]: 1) the pair (A,B) is stabilizable, 2) the pair (A,C)
is detectable, and 3) there exist matrices K and L such that

KC = R−1(BTP + L) (50)

where P = PT is a solution of the algebraic Riccati equation

PA + ATP + Q + PDDTP/γ2 − PBR−1BTP + LTR−1L = 0 (51)

An algorithm for finding a solution to the bounded L2 gain problem is reported in Ref. [45], to which the
reader is referred for further details. To simplify the problem, it is assumed that Q = CTC, so that the
designer is only faced with a suitable choice of the weighting matrix R.

3.2. Control torque estimation

The control torques required by the control system may be estimated from the Euler’s equations, ob-
serving that the angular velocity ω of the body reference frame TB with respect to a generic inertial frame
is

ω = ωBS + ω⊕ (52)

where ωBS is the angular velocity of TB relative to the synodic reference frame TS and ω⊕ is the angular
velocity of the synodic frame TS with respect to an inertial reference frame. The components of ω⊕ in TB
are obtained from the rotation matrices (27) and (32) as

[ω⊕]TB = RTB
T̃B

RT̃BTS

 0

0

ω⊕

 =

 −ω⊕ sin α̃ cosψ0 cosα0 + ω⊕ cos α̃ cosψ0 sinα0

ω⊕ sin α̃ sinψ0 cosα0 − ω⊕ cos α̃ sinψ0 sinα0

ω⊕ sin α̃ sinα0 + ω⊕ cos α̃ cosα0

 (53)

while, with the aid of Fig. 8, the angular velocity ωBS can be written as

ωBS =
˙̃
ψ k̂ + ˙̃α ˜̂p (54)

from which

[ωBS ]TB =
˙̃
ψRTB
T̃B

RT̃BTS

 0

0

1

+ ˙̃αRTB
T̃B

 0

1

0

 =


− ˙̃
ψ sin α̃ cosψ0 cosα0 +

˙̃
ψ cos α̃ cosψ0 sinα0 + ˙̃α sinψ0

˙̃
ψ sin α̃ sinψ0 cosα0 −

˙̃
ψ cos α̃ sinψ0 sinα0 + ˙̃α cosψ0

˙̃
ψ sin α̃ sinα0 +

˙̃
ψ cos α̃ cosα0


(55)

Finally, the (linearized) components of ω in TB are

[ω]TB ,

[
ω1
ω2
ω3

]
'


−α̃ (ω⊕ +

˙̃
ψ) cosψ0 cosα0 + (ω⊕ +

˙̃
ψ) cosψ0 sinα0 + ˙̃α sinψ0

α̃ (ω⊕ +
˙̃
ψ) sinψ0 cosα0 − (ω⊕ +

˙̃
ψ) sinψ0 sinα0 + ˙̃α cosψ0

α̃ (ω⊕ +
˙̃
ψ) sinα0 + (ω⊕ +

˙̃
ψ) cosα0

 (56)

where α0 and ψ0 are given by Eqs. (30)-(31), while the time variations of the Euler angles are obtained
from the controlled outputs, once the non-linear equation of motion (1) has been numerically solved. From
Euler’s equations, the required control torque vector [M ]TB = [M1, M2, M3]T is

I1 ω̇1 + (I3 − I2)ω2 ω3 = M1 (57)

I2 ω̇2 + (I1 − I3)ω1 ω3 = M2 (58)

I3 ω̇3 + (I2 − I1)ω1 ω2 = M3 (59)

where {I1, I2, I3} are the spacecraft principal moments of inertia in TB .
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3.3. Solar radiation-induced force given by RCDs

To fully define the controlled dynamics of the spacecraft, the force produced by a set of RCDs in their
on- or off-state must be modelled. To that end, the optical properties in the on-state are often assumed to
be equal to those of the sail membrane [40], that is

ρs,on = ρs (60)

ρd,on = ρd (61)

κon = κ (62)

The optical properties of the RCDs in the off-state must be determined experimentally, but the fraction of
light that is not absorbed is, to a first order, assumed to be all diffusely reflected, that is

ρs,off = 0 (63)

ρd,off = 1− κ (64)

where, according to Ref. [38], the absorption coefficients in the on- and off-states are considered to be equal.
The force coefficients bi, defined in Eqs. (6), can be therefore specialized to the RCDs in their on- and
off-states. The results are summarized in Table 1.

Table 1: Force coefficients of sail and RCDs in their two possible states.

b1 b2 b3

Sail κ+ ρd 2 ρs Bf ρd
RCD on κ+ ρd 2 ρs Bf ρd
RCD off 1 0 Bf (1− κ)

Using the optical properties of Eq. (9), the numerical values of {b1, b2, b3} are reported in Tab. 2.

Table 2: Numerical values of the force coefficients of the sail and the RCDs in their two possible states.

b1 b2 b3

Sail 0.1901 1.6198 0.0791
RCD on 0.1901 1.6198 0.0791
RCD off 1 0 0.7189

With the aid of the model discussed in the Appendix, the expression of the solar radiation-induced force
T on given by a set of RCDs in their on- or off- state is

T on = P⊕Aon cos θ̃
[
b1on r̂� +

(
b2on cos θ̃ + b3on

) ˜̂n] (65)

T off = P⊕Aoff cos θ̃
(
r̂� + b3off

˜̂n) (66)

3.4. Preliminary solar sail sizing

When the time history of the control inputs is known from the numerical simulations, it is possible to
carry out a preliminary sizing of the solar sail by evaluating the total sail area and the fraction of surface
that must be covered with RCDs. To that end, consider a square sail with side length 2L. Paralleling the
procedure described in Ref. [40], a set of RCDs (of area 2A1) must be mounted on the central part of the
sail to control the value of the lightness number; see Fig. 9.

In the nominal (equilibrium) configuration, half of these RCDs should be switched on, so that β̃ can be
either increased or decreased according to the position and velocity errors along the î-axis. When some of
these devices are switched either on or off, a symmetric configuration must always be guaranteed, so that
the sail is in a torque-free condition. The angles {ψ̃, α̃}, which define the orientation of the unit vector ˜̂n,
are controlled by means of four sets of RCDs (each one of area A2) mounted along the four sides of the sail.
If the sail is in its nominal (equilibrium) configuration, the RCDs are in an off-state to avoid any power
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Figure 9: Sketch of the solar sail design with RCDs.

consumption. When a torque must be applied to the spacecraft, a set of RCDs is switched on, so that the
solar radiation pressure acting on them increases, while those on the opposite side of the sail remain in their
off-state. This causes the generation of a control torque with respect to the spacecraft center of mass S.

Let As be the area of the sail film not covered by any RCD. With the aid of Fig. 9, the (nominal)
unwrinkled-sail area is

A = As + 2A1 + 4A2 (67)

while the effective area that contributes to thrust is

Ã = Ãs + 2 Ã1 + 4 Ã2 = (As + δAs) + 2(A1 + δA1) + 4(A2 + δA2) (68)

Each area fraction is assumed to be subjected to the same relative variation that the whole sail undergoes
due to loading and wrinkles, that is

δAs

As
=
δA1

A1
=
δA2

A2
= k < 0 (69)

where k ' −0.126 is the output of the experiment described in Ref. [44].

To estimate As, A1 and A2, recall that the sail lightness number β̃ can be expressed as [40]

β̃ =
σcr (ηs Ãs + ηoff Ãoff + ηon Ãon)

m
(70)

where σcr = 1.56 g/m2 is a reference parameter, Ãon is the (wrinkled) area of RCDs in the on-state, Ãoff

is the (wrinkled) area of RCDs in the off-state, while ηon, ηoff and ηs measure the efficiency of RCDs and
sail. The latter values may be calculated from η = (b1 + b2 + b3)/2 with the aid of Tables 1 and 2, and
the result is ηs = ηon = 0.9445 and ηoff = 0.8595. The total mass of the spacecraft is a function of the sail
loading σ, defined as the ratio of the mass to the reflective area of the membrane. According to Ref. [59],
σs = 5.68 g/m2 is assumed for the sail membrane, while σRCD = 80 g/m2 is used for RCD panels [60]. The
spacecraft mass is therefore

m = σsAs + σRCD (2A1 + 4A2) +mPL (71)
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where mPL is the mass of the rest of the spacecraft, that is, the payload mass.
Consider now the nominal (equilibrium) configuration, with the spacecraft placed at the L1-type AEP.

In this case, the RCDs covering one half of the total area 2Ã1 and devoted to the β̃-control are in the
on-state, while the others are switched off. Moreover, the RCDs devoted to the attitude control are all
in the off-state, since no torques is required for orbital maintenance. The overall lightness number in the
equilibrium configuration is therefore obtained by substituting

Ãone
= Ãone

, Ã1 , Ãoff = Ãoffe
, Ã1 + 4 Ã2 (72)

into Eq. (70). With the aid of Eq. (71), we obtain

β̃e =
σcr

[
ηsAs(1 + k) + ηonA1(1 + k) + ηoffA1(1 + k) + ηoff 4A2(1 + k)

]
σsAs + σRCD (2A1 + 4A2) +mPL

(73)

The sail, in its nominal configuration, may vary its lightness number using the RCDs. The condition
β̃ = β̃max corresponds to when the RCDs covering the central zone of the sail, with area 2A1, are in their
on-state. Although the lightness number is also affected by the RCDs devoted to attitude control, their total
area is small, so that this contribution is neglected. Therefore, the maximum value of the lightness number
comes from Eq. (70) when Ãon = 2 Ã1 and Ãoff = 4 Ã2. The result is

β̃max =
σcr

[
ηsAs(1 + k) + 2 ηonA1(1 + k)

]
σsAs + σRCD (2A1 + 4A2) +mPL

(74)

Note that Eqs. (73) and (74) provide two equations in the three unknowns As, A1 and A2. A third inde-
pendent equation is therefore necessary to solve the problem. This additional equation may be obtained
observing that the required control torque is a function of the RCD area and of the lever arm, which depends
on the sail geometry. An iterative process is therefore necessary to complete the preliminary solar sail sizing.
Since the RCDs devoted to attitude control are mounted at the sail edges, the lever arm for each set of RCDs
is about equal to L (one half the sail side length), see Fig. 9. When a control torque has to be generated,
one set of these RCDs is switched on, while the symmetric set is kept off, and the resultant control torque
M on the sail is

M = L× T on −L× T off (75)

where L is the center of mass-RCD vector (of magnitude L), and T on (or T off) is the solar radiation-induced
force due to the switched-on (or switched-off) RCDs. Recall that T on and T off are given by Eqs. (65) and

(66) where Ãon = Ãoff = A2.

4. Case study

The previous static output feedback solution to the bounded L2 gain problem is now simulated in a
potential mission scenario. The Sun-AEP distance is set equal to l r�e

= 0.98872 au, that is, the AEP is
shifted towards the Sun of about 189 840 km with respect to the natural Lagrangian point L1 [42]. Assuming
an average solar wind speed of 400 km/s, such an AEP guarantees an early warning time of about 1 hour
and 10 minutes, while a very fast stream travelling at 800 km/s would be detected about 35 minutes before it
reaches the Earth; see Fig. 5. Bearing in mind Eq. (16), the lightness number required to keep the spacecraft

in equilibrium at the desired distance is about β̃e = 0.0101. Recall that the reference dynamics is described
by Eq. (46), where we assume unitary disturbances acting along the three directions {x, y, z}, that is

D =
[ I
O
]

(76)

where I ∈ R3×3 is an identity matrix and O ∈ R3×3 is a zero matrix. In addition, from Eq. (21), the state
matrix is

A =


0 0 0 1.0000 0 0
0 0 0 0 1.0000 0
0 0 0 0 0 1.0000

7.2851 0 0 0 2.0000 0
0 −2.1425 0 −2.0000 0 0
0 0 −3.1425 0 0 0

 (77)

16



from which it is clear that the sail dynamics along z in uncoupled from that along x and y. The controlled
output vector is chosen as y = [x, vx, vz]T, that is

C =

[
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

]
(78)

Bearing in mind that Q = CTC, with a trial-and-error procedure the weighting matrix of Eq. (49) is chosen
as R = diag (0.3, 10−4, 10−5), where diag(·) is a diagonal matrix. The output-feedback algorithm provides

K =

[
10.2211 4.2247 0

157.2892 17.7268 0
0 0 −311.4142

]
(79)

and the closed-loop poles are

λ1,2 = −0.7817± 1.6157 j , λ3,4 = −1.3791± 0.4544 j , λ5,6 = −1.4470± 1.0241 j (80)

The static output feedback controller provides a well-damped dynamics and is able to move the solar sail
toward the desired AEP. However, in an attempt of further simplifying the control law, assume now that
u = [δβ̃, α̃]T, thus neglecting the virtual input ψ̃. As a result, the control system reduces to a 3 × 2 gain
matrix. Using again a trial-and-error procedure, we select R = diag (0.8, 10−7), from which

K =
[

8.1561 3.1275 0
0 0 −3161.9

]
(81)

and the closed-loop poles become

λ1,2 = −0.7132± 0.2034 j , λ3,4 = −0.8864± 1.8265 j , λ5 = −29.2757 , λ6 = −0.1073 (82)

The gain matrix of Eq. (81) allow the control variables to be written as a function of the spacecraft state as

δβ̃ = −kp1 x− kd1 vx (83)

α̃ = −kd3 vz (84)

The non-linear dynamical equation (1) have been integrated starting from an initial perturbed state in which
at time t0 , 0 each position component amounts to 500 km and each velocity component amounts to 0.5 m/s,
in analogy with Ref. [42]. These values are then normalized with the usual CRTBP notation, yielding

x(t0) = [ 1.93 1.93 1.93 9.60 9.60 9.60 ]
T × 10−6 (85)

The system perturbed dynamics is shown in Fig. 10, which highlights that the static output-feedback control
law guarantees stability, and the spacecraft converges towards the nominal equilibrium position (i.e., the
L1-type AEP). The errors in the state vector components decrease with time, with the only exception of

a first initial phase. The maximum variation of the equivalent lightness number is max
∣∣∣δβ̃∣∣∣ = 0.0086 β̃e '

8.62 × 10−5, while the maximum values of α̃ is max |α̃| = 3.04 deg, which is compatible with the previous
assumption of small Euler angles.

Having defined the closed-loop system dynamics, we must calculate the maximum control torques pro-
vided by the RCDs. To that end, it is first necessary to estimate the spacecraft moments of inertia, which
are obtained by assigning the reference values to the sail area, the sail density and the payload mass. As for
the sail mass and density, we take the same values as that of IKAROS spacecraft, which was equipped with
reflectivity control devices. In particular, IKAROS had a sail area of 196 m2 and a total sail loading of about
σ = 40 g/m2, including membranes and RCDs. This value should then be adjusted when the portion of RCD
area has been quantified, but for the scope of a preliminary design, such an estimate is sufficiently accurate.
Since IKAROS was a demonstrative mission, its mass is too large for our purposes. A more realistic mass
estimate comes from the NEA Scout mission [26, 27], which is designed to carry a payload of about 14 kg.
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Figure 10: Time histories of state variables in the simulated test scenario when an H∞ static output-feedback control law is
applied.

The spacecraft hub is modelled as a uniform cylindrical body with a radius R = 1 m, a height H = 6.5 m,
and with its axis aligned with the unit vector n̂. The moments of inertia may therefore be written as

I1 =
1

2
(m− σA)R2 +

1

6
σA2 ' 260 kg m2 (86)

I2 =
1

12
(m− σA)(3R2 +H2) +

1

12
σA2 ' 150 kg m2 (87)

I3 =
1

12
(m− σA)(3R2 +H2) +

1

12
σA2 ' 150 kg m2 (88)

Assuming those moments of inertia, the maximum required control inputs derived from Euler’s equa-
tions (57)–(59) are max{|M1| , |M2| , |M3|} = {0.000, 8.1216, 0.000}×10−6 N m. Using Eq. (75) and assuming
a lever arm of 5 m, the area A2 of each set of RCDs is equal to about 0.44 m2. It is now possible to complete
the preliminary sizing of the solar sail by solving the algebraic system obtained by setting β̃e = 0.0101 in
Eq. (73) and β̃max = 0.010187 in Eq. (74), and solving for As and A1. The solution gives As = 92.01 m2
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and A1 = 32.65 m2, from which the total nominal area is A = As + 2A1 + 4A2 = 159.07 m2 and the side
length is about 12.61 m. Accordingly, the sail area covered by RCDs amounts to about 42% of the total.

4.1. Simplified control law

The numerical simulations show that very small torques are necessary to stabilize the motion of the
solar sail-based spacecraft in the proximity of an L1-type AEP, when the proposed control law is adopted.
However, this solution has a drawback, in that the Earth-spacecraft communications are highly disturbed by
the solar disk. It is therefore worth wondering whether it is possible to control the spacecraft by adjusting
the lightness number β̃ only, thus keeping the Euler’s angles constant, but allowing the probe to oscillate
above and below the Ecliptic to enable communications with stations on Earth, as suggested in Ref. [42].
In essence, we now assume that the equivalent normal of the wrinkled-sail is always aligned with the radial
direction, that is ψ̃ = α̃ = 0.

In this simplified version of the control system, only the gains kp1 and kd1 are taken different from zero.
The new gain matrix K is therefore:

K = [ 8.1561 3.1275 0 ] (89)

and the closed-loop poles are

λ1,2 = −0.7132± 0.2034 j , λ3,4 = −0.8864± 1.8265 j , λ5,6 = ±1.7727 j (90)

Note that the eigenvalues corresponding to the motion along z are unaffected by the control law since in this
case the z-dynamics is uncontrollable, leading to a marginally-stable motion. In this context, Fig. 11 shows
the results of the system dynamics when this simplified control law is used, and highlights that the motion
on the Ecliptic is asymptotically stable and practically identical to that sketched in Fig. 10. The maximum
value of the equivalent lightness number is again max (β̃) = 0.010187.

Using this simplified control law and neglecting the orbital perturbations, the sail design does not require
RCDs at its edges, that is, A2 = 0. In that case, the solutions of Eqs. (73) and (74) provide As = 106.42 m2

and A1 = 12.40 m2, and the total sail area is A = As + 2A1 = 131.22 m2, which is equivalent to a square
sail with a side length of 11.5 m. The fraction of sail area covered with RCDs is about 9% only.

5. Conclusion

The generation and maintenance of an L1-type artificial equilibrium point in the Sun-[Earth+Moon]
circular restricted three-body problem has been discussed. The propulsive acceleration generated by the
solar sail has been expressed with a recent thrust model, which takes into account the presence of wrinkles
on the sail surface and is based on experimental measurements. Since L1-type artificial equilibrium points
are intrinsically unstable, the solar sail uses reflectivity control devices to provide the required control torques
and to adjust the sail lightness number.

A proportional-derivative control strategy has been proposed to stabilize the sail dynamics, and a pro-
cedure has been proposed to provide a first estimation of the total sail area and the sail fraction covered
by reflectivity control devices. Numerical simulations have shown that the controlled dynamics is stable
and quickly converges to the equilibrium point. The required control torques are small and may be easily
generated by reflectivity control devices, without the need of more massive actuators. A simplified control
law that adjusts the wrinkled-sail lightness number has also been simulated, showing that a stable behavior
can be achieved on the Ecliptic, with an oscillating dynamics along the out-of-plane direction. This feature
simplifies the spacecraft communications with Earth as it avoids the scientific probe to be occulted by the
solar disk.

6. Appendix: wrinkled-sail thrust model

Consider a solar sail with a total mass m, and let n̂ be a unit vector normal to the (nominal) sail surface
in the direction opposite to the Sun. The thrust vector T may be written as a function of the Sun-spacecraft
distance l r� and the sail membrane optical properties as

T =
P⊕A

r2
�

cos θ
[
(2ρs cos θ + ρdBf + κλ)n̂ + (κ+ ρd)r̂�

]
(91)
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Figure 11: Time histories of state variables in the simulated test scenario when the simplified β̃-control law is applied.

where A is the reference sail area and θ ∈ [0, π/2] rad is the sail pitch angle, that is, the angle between the
directions of r̂� and n̂. The optical properties satisfy the following equation

ρs + ρd + κ = 1 (92)

where the photon transmission through the sail membrane has been neglected. Finally, the term λ in Eq. (91)
is defined as

λ ,
εfBf − εbBb

εf + εb
(93)

where Bf (or Bb) are the front-side (or back-side) non-Lambertian coefficients of the sail, while εf (or εb)
are the front-side (or back-side) emissivity coefficients. Since the value of λ is (usually) very small, it is
neglected in the rest of the analysis.

The thrust model described by Eq. (91) is valid for a (perfectly) flat solar sail. In fact, a real sail differs
from a flat and perfectly-smooth surface because of several deformations that take place at different length
scales. In particular, micro-scale effects, such as surface roughness of the sail material, directly affect the
film optical properties and should be accounted for when determining the optical parameters, as is discussed
in Ref. [58]. On the other hand, macro-scale effects, usually referred to as billowing, are deformations of the
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sail shape due to the action of solar radiation pressure. These effects have been neglected in this work, but
a parametric model capable of accounting for sail billowing is available in the literature [47, 61].

The most important source of deformations at an intermediate length scale are wrinkles, which are elastic
responses of the sail to compressive stresses, and creases, which are inelastic deformations due to folding
and handling. The effects of these deformations on the sail thrust have been evaluated in Refs. [43, 44],
in terms of their magnitude and direction, and these outcomes will now be briefly summarized, along with
their impact on the thrust model described by Eq. (91). Both wrinkles and creases, despite being caused
by different phenomena, have the same effect on the sail reflective film and therefore no distinction will be
made between these two deformations in the rest of the analysis.

When the solar sail is not (perfectly) flat due to the presence of wrinkles and creases, a single unit
vector normal to the sail cannot be univocally defined. Therefore, paralleling the approach discussed by
Refs. [43, 44], the sail membrane is divided into a set of small triangular elemental cells (TECs). The small
dimension of each TEC allows a normal unit vector n̂j to be defined for each TEC (denoted by an index j).
Accordingly, the (small) thrust contribution dT j , generated by the generic j-th TEC with area dAj , can be
written starting from Eq. (91) as

dT j =
P⊕ dAj

r2
�

cos θj

[
(2ρs cos θj + ρdBf )n̂j + (κ+ ρd)r̂�

]
(94)

where θj = arccos n̂j · r̂�, and it is assumed that the optical properties are constant for each TEC in the
structure.

The total thrust generated by a wrinkled solar sail is the sum of the contributions of each TEC, which
may be rewritten in a more compact form by defining an equivalent normal unit vector ˜̂n, viz.

T =

NTEC∑
j=1

dT j =
P⊕A

r2
�

cos θ̃
[
(2ρs cos θ + ρdBf )˜̂n + (κ+ ρd)r̂�

]
(95)

where the pitch angle θ̃ is the angle between the equivalent normal ˜̂n and the radial unit vector r̂�.
When the term dT j given by Eq. (94) is substituted into Eq. (95), we obtain

2ρs

NTEC∑
j=1

cos2 θ̃j n̂j dAj + ρdBf

NTEC∑
j=1

cos θ̃j n̂j dAj + (κ+ ρd)

NTEC∑
j=1

cos θ̃j r̂� dAj =

=
[
(2ρs cos2 Θ + ρdBf cos Θ)˜̂n + (κ+ ρd) cos Θ r̂�

]
A

(96)

which provides two independent conditions, viz.

cos Θ− 1

NTEC

NTEC∑
j=1

cos θ̃j = 0 (97)

(
2ρs cos2 Θ + ρdBf cos Θ

) ˜̂n− 1

NTEC

(
2ρs

NTEC∑
j=1

cos2 θ̃jn̂j + ρdBf

NTEC∑
j=1

cos θ̃jn̂j

)
= 0 (98)

where Θ is the (small) angle between the directions of ˜̂n and n̂.
The components of the unit vector relative to the generic j-th TEC may be written in a reference frame

referred to as “sail boom frame” TSBF (S; îSBF , ĵSBF , k̂SBF ), see Ref. [44], the origin of which is at the
center of mass S. The unit vectors îSBF and ĵSBF are on the sail nominal plane, aligned with the principal
axes of inertia, while the third unit vector is in the opposite direction with respect to the normal of the
unwrinkled sail, that is, k̂SBF = −n̂. The components of n̂j are therefore functions of both the j-th TEC
pitch angle θj , and of an azimuth angle φj as

[n̂j ]TSBF
= [− sin θ̃j cos φ̃j − sin θ̃j sin φ̃j − cos θ̃j ]T (99)
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which allows the equivalent normal ˜̂n to be expressed as a function of two equivalent spherical coordinates
θ̃ and φ̃, viz.

[˜̂n]TSBF
= [− sin θ̃ cos φ̃ − sin θ̃ sin φ̃ − cos θ̃ ]T (100)

Assume now that the n̂ ≡ r̂�, that is, the radial unit vector is aligned with the normal to the unwrinkled-
sail. Such an arrangement is equivalent to the experimental setup of the test discussed in Ref. [44]. In this

case, the angle Θ between the directions of n̂ and ˜̂n coincides with the equivalent pitch angle θ̃ between the
directions of ˜̂n and r̂�. Accordingly, the z-component of ˜̂n may be easily obtained from Eq. (97) as

ñz = − cos θ̃ = − cos 〈θj〉 (101)

where brackets denote the mean value calculated over all of the TECs. The other two components of ˜̂n are
obtained from the component along îSBF and the component along ĵSBF of Eq. (98) as

(2ρsñ
2
z + ρdBf ñz)ñx = 2ρs cos2 θ̃j sin θ̃j cos φ̃j + ρdBf 〈cos θ̃j sin θ̃j cos φ̃j〉 (102)

(2ρsñ
2
z + ρdBf ñz)ñy = 2ρs 〈cos2 θ̃j sin θ̃j sin φ̃j〉+ ρdBf 〈cos θ̃j sin θ̃j sin φ̃j〉 (103)

According to the experimental measurements discussed in Ref [44], when r̂� ≡ n̂, the following values of θ̃

and φ̃ are obtained

θ̃ = 7.774 deg (104)

φ̃ = 65.81 deg (105)

from which
[˜̂n]TSBF

= [−0.055 − 0.123 − 0.991]T (106)

This expression can be easily converted into the body-fixed reference frame TB used in our analysis by
recalling that k̂SBF ≡ −n̂ and assuming that, without loss of generality, îSBF ≡ q̂ and ĵSBF ≡ p̂. As a
result we obtain

[˜̂n]TB = [0.991 − 0.123 − 0.055]T (107)

which coincides with Eq. (29).
Finally, the model discussed in Refs. [43, 44] also accounts for the effect of wrinkles on the total sail area.

Indeed, experimental activities have shown that a solar sail sample, when loaded at its vertices, changes its
perimeter due to an effect of rolling up of its edges. This affects the sail area that varies, in its turn, by an
amount equal to δAl. This effect cannot be predicted through finite-elements methods, so that experimental
measures are necessary for an estimation of its magnitude. Moreover, the wrinkles reduce the total area
exposed to light, and a second contribution equal to δAw must also be accounted for. To summarize, the
area variation due to the wrinkles is

δA = δAl + δAw (108)

and the sail area may be rewritten as

Ã = A

(
1 +

δA

A

)
(109)

The contribution between brackets in Eq. (109) is the change in magnitude of the propulsive acceleration due
to the previous effect. The experimental measurements discussed in Ref. [43] show that δAl/A = −10.78 %
and δAw/A = −1.82 %, with a relative area variation equal to δA/A = −12.60 %. This implies that the
thrust magnitude decreases of the same amount.

When the effects on the sail normal and on the effective area are both taken into account, the general
expression for the sail thrust becomes

T =
P⊕A

r2
�

(
1 +

δA

A

)
cos θ̃

[
(2ρs cos θ̃ + ρdBf ) ˜̂n + (κ+ ρd) r̂�

]
(110)

where ñ is given by Eq. (107), δA is provided by Eq. (108), and cos θ̃ = ˜̂n · r̂�. The expression (110) gives
the dimensionless propulsive acceleration vector a of Eq. (2).
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