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Simple Summary: Esophageal cancer (EC) has a poor prognosis when the diagnosis is delayed,
but curative treatment is possible if the diagnosis is timely. The disease subtly progresses before
symptoms prompt patients to seek medical attention. Effective pre-symptomatic screening strategies
may improve the outcome of the disease. Recent evidence provided insights into early diagnosis
of EC via blood tests, advanced endoscopic imaging, and artificial intelligence. Accordingly, we
reviewed available strategies to diagnose early EC.

Abstract: Esophageal cancer (EC) is the seventh most common cancer and the sixth cause of cancer
death worldwide. Histologically, esophageal squamous cell carcinoma (ESCC) and esophageal
adenocarcinoma (EAC) account for up to 90% and 20% of all ECs, respectively. Clinical symptoms
such as dysphagia, odynophagia, and bolus impaction occur late in the natural history of the disease,
and the diagnosis is often delayed. The prognosis of ESCC and EAC is poor in advanced stages, being
survival rates less than 20% at five years. However, when the diagnosis is achieved early, curative
treatment is possible, and survival exceeds 80%. For these reasons, mass screening strategies for EC
are highly desirable, and several options are currently under investigation. Blood biomarkers offer
an inexpensive, non-invasive screening strategy for cancers, and novel technologies have allowed
the identification of candidate markers for EC. The esophagus is easily accessible via endoscopy, and
endoscopic imaging represents the gold standard for cancer surveillance. However, lesion recognition
during endoscopic procedures is hampered by interobserver variability. To fill this gap, artificial
intelligence (AI) has recently been explored and provided encouraging results. In this review, we
provide a summary of currently available options to achieve early diagnosis of EC, focusing on blood
biomarkers, advanced endoscopy, and AI.

Keywords: diagnosis; esophageal cancer; early neoplasia; biomarkers; advanced endoscopy; artifi-
cial intelligence
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1. Introduction

In 2018 esophageal cancer (EC) was estimated to account for 508,000 deaths, being the
seventh most common cancer and the sixth cause of cancer death worldwide [1]. Histo-
logically, EC includes esophageal squamous cell carcinoma (ESCC) and adenocarcinoma
(EAC). Usually, ESCC occurs in the middle or upper one-third of the esophagus, whereas
EAC in the lower one-third or junction of the esophagus [2]. ESCC accounts for up to
90% of ECs in lower-income countries and in those regions spanning from Asian republics
to north-central China, known as the “esophageal cancer belt” [3,4]. Complementarily,
EAC accounts for around 20% of all ECs in Western Countries [3]. The replacement of
esophageal squamous epithelium with intestinal metaplasia containing goblet cells defines
Barrett’s esophagus (BE), which represents a well-known preneoplastic lesion for EAC.
Interestingly, a recent meta-analysis revealed that around 12% of patients diagnosed with
EAC had a prior BE diagnosis, and up to 57% of patients had concurrent diagnoses of BE
and EAC [5].

Due to the late onset of clinical symptoms and the lack of early disease markers, EC
is often diagnosed in advanced stages, when the prognosis is poor: ESCC has an overall
5-year survival rate of 18%, which decreases to less than 5%, when distant metastases are
present at diagnosis [3]. Similarly, when EAC is diagnosed in advanced stages, the disease
has a 5-year survival rate of less than 20% [1,6].

However, when early detection and management of EC is possible, the outcome
improves significantly, and mortality decreases [7]. Therefore, several screening and pre-
ventive strategies are under investigation, each having its specific applicability, advantages,
and disadvantages [8]. Of note, international guidelines do not currently include novel
blood biomarkers, advanced endoscopy, or artificial intelligence (AI)-assisted endoscopy
in the diagnostic work-up of EC. However, in recent years, the topic is increasingly being
investigated, and a growing body of evidence is being provided. Accordingly, we reviewed
the most recent literature addressing the early detection of ESCC and EAC via blood testing,
advanced upper endoscopy, and novel AI systems.

2. Literature Search

According to the aim of this narrative review, we provided an overview of the ev-
idence from systematic reviews, meta-analyses, original research articles, reviews, and
randomized controlled trials investigating the diagnosis of early EC. We conducted a
literature review using the electronic databases PubMed, MEDLINE, EMBASE, and the
Cochrane Library from inception to May 2021. The databases were searched combining
the terms esophageal cancer AND diagnosis, blood biomarker, tumor marker, metabolite,
protein, miRNA, lncRNA, circulating RNA, endoscopy, EGDS, advanced endoscopic imag-
ing, artificial intelligence, computer-aided diagnosis. All terms were used as MeSH terms.
Two authors independently reviewed all manuscripts retrieved from the literature research.
The references of included studies were also reviewed to increase the source of information.
All studies were included based on a consensus decision by the reviewing authors.

3. Blood Biomarkers of Esophageal Cancer: A Liquid Biopsy

A biomarker is a biological molecule that can be found in the blood or in biological
fluids or tissues of patients [9]. Blood biomarkers can be used for early diagnosis, prognosis,
and clinical management of several cancer types [10]. There are some highly desirable
characteristics that a cancer marker (CM) should possess, namely (i) high sensitivity in
the screening of the general population, (ii) high specificity to a given type of tumor,
(iii) be detectable in early cancers, providing a lead-time over clinical diagnosis, and (iv)
correlate with the burden of a tumor, reflecting any tumor progression or regression [11].
Currently, the perfect CM does not exist, and circulating CMs recommended for clinical
use are limited and include prostate-specific antigen, thyroglobulin, oncofetal antigens
(e.g., carcinoembryonic antigen (CEA), alpha-fetoprotein) and carbohydrate antigens (CA)
(e.g., CA125, CA19-9, CA15.3) [10].
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Historically, CEA has been used as serum CM in the diagnosis of EC [12]. In this
regard, CEA levels have been shown to be significantly higher in EC patients compared to
controls [13]. In a meta-analysis [14], the sensitivity and specificity of CEA ranged from
8% to 70%, and from 57% to 100%, respectively, while its positive likelihood ratio (PLR)
was 5.94 (95% confidence interval [CI], 3.24–10.89) meaning that patients with EC have
a six-fold higher chance of having increased CEA levels compared to patients without
EC [14]. The same study also investigated the diagnostic performance of squamous cell
cancer antigen (SCC-Ag) and cytokeratin 21-1 fragment (CYFRA21-1) in the diagnosis of
EC. The sensitivity and specificity Cyfra21–1 ranged from 36% to 63% and from 89% to
100%, respectively. The study revealed that patients with EC have a 12-fold higher chance
of being Cyfra21–1 test-positive compared with patients without EC, having a PLR of 12.11
(95% CI, 5.02–29.24). As regards SCC-Ag, its sensitivity and specificity ranged from 13% to
64% and from 91% to 100%, respectively, whereas its PLR was 7.66 (95% CI: 4.24–13.83).

More recently, the high level of technology of our era paved the way for novel sub-
stances that can be applied to the early detection of EC, providing insights into novel blood
tests for screening and early diagnosis of EC (Table 1).

Table 1. Potential circulating blood molecules in the screening of esophageal cancer.

Type of Biomarker Disease Panel

miRNA

ESCC
[15–17]

miR-25, miR-100, miR-193-3p, miR-194, miR-223, miR-337-5p, miR-483-5p
miR-10a, miR-22, miR-100, miR-148b, miR-223, miR-133a, miR-127-3p
MiR-21, miR-375

EAC
[18–20]

miR-92a-3p, miR-151a-5p, miR-362-3p, miR-345-3p, miR-619-3p, miR-1260b, and miR-1276
RNU6-1/miR-16-5p, miR-25-3p/miR-320a, let-7e-5p/miR-15b-5p, miR-30a-5p/miR-324-5p,
miR-17-5p/miR-194-5p
miR-25-3p, miR-151a-3p, miR-100-5p, miR-375

lncRNA
ESCC
[21,22]

POU3F3, SCCA
Linc00152, CFLAR-AS1, POU3F3

Metabolite
ESCC
[12,23]

propanoic acid, linoleic acid, glycerol-3-phosphate, and L-glutamine
propanoic acid, L-leucine, and hydroxyproline
α-glucose, choline, glutamine, glutamate, valine, and dihydrothymine

Antibody

ESCC
[24] Antibody against p53, NY-ESO-1, MMP-7, Hsp70, Prx VI, Bmi-1

EAC
[25]

Antibody against amino acid L-proline, ketone body 3-hydroxybutyrate, carbohydrate
D-mannose

ESCC/EAC
[4] anti-p53, anti-HSP70, anti-p16, anti-cyclin B1, anti c-Myc, anti-LY6K

Blood cells
EAC
[26,27]

Neutrophil-lymphocyte ratio
Erythrocyte mutant frequency

Abbreviations: miRNA, micro-RNA; lncRNA, long non-coding RNA; ESCC, esophageal squamous cell carcinoma; EAC, esophageal
adenocarcinoma.

3.1. Blood Biomarkers of Esophageal Squamous Cell Carcinoma

Metabolomics uses gas chromatography-mass spectrometry (MS) to investigate the
global fluctuation of molecular metabolites of <1500 Dalton in biofluids, cells and tis-
sues [28]. In this regard, ESCC patients have been found to have a significant alteration
of glucose, fatty acid metabolism, and tricarboxylic acid cycle compared to healthy con-
trols [29]. Consistently, in 2018, Wang et al. [30] analyzed the metabolic profile of ESCC
patients and identified that metabolite profiles in their serum were significantly differ-
ent from those of healthy controls. In particular, a dysregulated lipid metabolism was
found in ESCC patients, and phosphatidylcholines and choline kinase were identified
as potential serum biomarkers of ESCC. In 2020, Zhang et al. [12] investigated serum
metabolite changes in early-ESCC patients. The study demonstrated an activated synthe-
sis of amino acids and inhibited desaturation of saturated fatty acids in ESCC patients
compared to controls. Accordingly, a panel of four serum biomarkers including propanoic
acid, linoleic acid, glycerol-3-phosphate, and L-glutamine showed an area under the curve
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(AUC) of 0.817, sensitivity and specificity of 75% and 74%, respectively, in the detection
of esophageal squamous dysplasia (ESD). In the same study, the combination of serum
levels of propanoic acid, L-leucine, and hydroxyproline showed AUC, sensitivity, and
specificity of 0.817, 83%, and 74%, respectively, in the discrimination between ESCC and
ESD. Similarly, Yang et al. [23] identified six serum metabolites as potential biomarkers of
early ESCC, namely α-glucose, choline, glutamine, glutamate, valine, and dihydrothymine.
The AUC of this panel in the diagnosis of early ESCC was 0.969, whereas the combination
of serum levels of α-glucose, pyruvate, glutamate, and valine could distinguish ESCC from
post-operative ESCC patients with an AUC of 0.985.

Fan et al. [31] applied proteomics studies and MS for the protein profiling of sera of
ESCC patients. The authors evaluated the differences between molecular mass peaks in the
serum proteome profiles of ESCC patients and healthy subjects, identifying a five peptide
peptidome that could diagnose ESCC with 96.7% sensitivity, 100% specificity, and 98.4%
accuracy.

Tumor-derived microRNAs (miRNAs) are resistant to endogenous ribonuclease activ-
ity and are found in human serum in a stable form [32]. Therefore, such small molecules
have been investigated as serum markers of EC [15–17]. A recent meta-analysis, including
35 studies investigating plasma or serum miRNAs of ESCC patients [33], concluded that
circulating miRNAs could distinguish ESCC patients from controls with a pooled sensitiv-
ity of 79.4% (95% CI, 76.5–82.0%), specificity of 77.9% (95% CI, 74.6–80.8%), and AUC of
0.86 (95% CI, 0.82–0.88). Another meta-analysis exclusively focusing on Asian populations
found that miRNAs could distinguish patients with ESCC from controls with 77.7% pooled
sensitivity (95% CI, 74.2–80.9%), 80.9% specificity (95% CI, 76.6–84.6%), and AUC of 0.86
(95% CI, 0.83–0.89) [34].

Long non-coding RNAs (lncRNAs) have also been investigated as potential biomark-
ers for ESCC. LncRNAs are circulating genetic material that has no coding ability but
can regulate gene expression and play a role in tumorigenesis [35]. Among investigated
lncRNAs, POU3F3 demonstrated an AUC of 0.842, a sensitivity of 72.8%, and a specificity
of 89.4% in the diagnosis of ESCC [22]. In the same study, the combination of POU3F3 and
SCCA achieved an AUC of 0.926, a sensitivity of 85.7%, and a specificity of 81.4% in the
detection of early-stage ESCC [22]. In another study on lncRNAs [21], the combination of
Linc00152, CFLAR-AS1, and POU3F3 with CEA achieved an AUC of 0.955.

3.2. Blood Biomarkers of Esophageal Adenocarcinoma

Similar to ESCC, no tissue or circulating CM has been approved for clinical use in
the diagnosis of EAC. However, recent studies have shed light on possible novel blood
screening tests. Fassan et al. [18] have recently proposed circulating miRNAs as biomarkers
in the follow-up of BE patients. In particular, a significant upregulation of 10 miRNAs (miR-
92a-3p, miR-151a-5p, miR-362-3p, miR-345-3p, miR-619-3p, miR-1260b, and miR-1276), and
downregulation of three miRNAs (miR-381-3p, miR-502-3p, and miR-3615) was found in
patients with early EAC compared to patients with non-dysplastic BE (NDBE). Accordingly,
Chiam et al. [19] developed a panel of several miRNAs ratios that showed an AUC of
0.99 (95% CI, 0.96–1.0) for the distinction between EAC from NDBE (RNU6-1/miR-16-5p,
miR-25-3p/miR-320a, let-7e-5p/miR-15b-5p, miR-30a-5p/miR-324-5p, miR-17-5p/miR-
194-5p). Zhang et al. [20] profiled the circulating miRNAs of patients with EAC and found
significant differences compared to healthy controls. In contrast, Craig et al. [36] failed to
identify a serum miRNA signature of EAC.

As immune imbalance and inflammation seem to play a role in the progression from
BE to EAC, Campos et al. [26] investigated the neutrophil-lymphocyte ratio (NLR) in
BE and EAC patients. The authors found that NLR progressively increased and signifi-
cantly correlated with the presence of dysplasia or neoplasia (p < 0.001). Additionally, a
NLR > 2.27 detected EAC with 80% sensitivity, 71% specificity, and 0.8 AUC. In another
study, a panel of 10 serum glycoproteins distinguished BE from EAC with an AUC of
0.93 [37].
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Through the phosphatidylinositol glycan class-A (PIG-A) gene mutation assay, Haboubi
et al. [27] evaluated the erythrocyte mutant frequency (EMF) as a marker of genomic insta-
bility in EAC. The authors collected blood samples of patients undergoing upper endoscopy
and fluorescently stained erythrocytes for glycosylphosphatidylinositol (GPI)-anchored
proteins. GPI-anchor negative erythrocytes were considered mutants, and the EMF was
calculated through flow cytometry. EAC patients showed a three-fold increase in EMF
compared to controls (p < 0.001), thus suggesting that the PIG-A gene mutation assay
could be applied to early detection of EAC.

3.3. Serum Autoantibodies in Esophageal Squamous Cell Carcinoma and Adenocarcinoma

The study of the immune system may be of help in cancer screening because there is
evidence of an immune response to cancer in humans due to the presence of autoantibodies
against intracellular and surface antigens in cancer patients [38–40]. In this regard, antibod-
ies directed against circulating tumor-associated antigens have been demonstrated to be
present in the serum of patients many years before the diagnosis of cancer and might be a
useful non-invasive tool in cancer screening [24,25]. Accordingly, serum antibodies against
p53 demonstrated a statistically significant relationship with the subsequent development
of malignancy with an average lead time to diagnosis of 3.5 years in lung cancer [41,42]
and have been recently associated with tumor progression in ESCC [43]. In 2015, a system-
atic review [4] investigated the role of autoantibodies in the diagnosis of ESCC and EAC.
Anti-p53, anti-p16, anti-cyclin B1, anti-c-Myc, anti-HSP70, and anti-LY6K were found to
be the most relevant. The sensitivity of single antibodies ranged from 3.9% to 93.7% and
the specificity from 78.7–100%. The highest sensitivities were found for antibodies against
HSP70 (93.7%) and the anti-HSP70 antibodies had the highest specificity of 100%. Similarly,
the sensitivity of anti-LY6K antibodies was more than 80%, but it had the lowest specificity
of 78.7%. As to the combinations of autoantibodies in the diagnosis of EC, their sensitivity
ranged from 22.5% to 86% (median 54.3%), whereas the specificity ranged from 89% to
100% (median 95.1%) [4].

In summary, several emerging technologies have been applied to the blood screening
of EC achieving good performance in the detection of both ESCC and EAC. However, most
studies involved small samples of patients and did not include multiple research centers.
Mass screening via blood sampling would be an ideal strategy to reduce the high costs and
low effectiveness of endoscopy screening for EC, but further multi-center, prospective, and
large-scale studies are needed to identify high-performing blood markers for EC to be used
in routine practice.

4. Advanced Endoscopic Imaging in the Diagnosis of Esophageal Cancer

Esophagogastroduodenoscopy (EGDS) is the gold standard test for EC and its pre-
cursor lesions [44]. At present, dysplasia and cancer surveillance in BE follows the Seattle
protocol with random 4-quadrant biopsies every 2 cm, which is expensive, time-consuming,
and has a sensitivity ranging from 28% to 85% for the detection of high-grade dysplasia
(HGD)/EAC [45]. These drawbacks contribute to <50% adherence to the Seattle protocol in
clinical practice [46]. Unlike BE, random sampling in ESCC screening would be unpractical
because the entire esophageal mucosa can harbor ESD, and this requires extensive biopsy
sampling [44]. Moreover, endoscopic recognition of early ESCC is challenging, as lesions
often pass unrecognized with standard WLE, which may miss up to 40% of early ESCC
even in high-risk populations [47]. Accordingly, the sensitivity of targeted biopsies for ESD
may be as low as 7.7% [48].

In order to improve the diagnostic yield of standard WLE procedures, novel endo-
scopic techniques have been investigated, namely dye spray chromoendoscopy, virtual
chromoendoscopy (VCE), confocal laser endomicroscopy (CLE), and volumetric laser
endomicroscopy (VLE) (Table 2).
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Table 2. Performance of advanced endoscopic imaging in the diagnosis of esophageal cancer accord-
ing to systematic reviews and meta-analyses.

Author Endoscopic Technique Disease Sensitivity
(95% CI, %)

Specificity
(95% CI, %)

Coletta et al. [49] AA Chromoendoscopy EAC 92%
(83 to 97)

96%
(85 to 99)

Morita et al. [50] Lugol Chromoendoscopy ESCC 92%
(86 to 96)

82%
(80 to 85)

Thosani et al. [51]
NBI

EAC 94.2%
(82.6 to 98.2)

94.4%
(80.5 to 98.6)

Morita et al. [50] ESCC 88%
(86 to 93)

88%
(86 to 90)

Thosani et al. [51] pCLE * EAC 90.4%
(71.9 to 97.2)

92.7%
(87 to 96)

Kohli et al. [52] VLE # EC 81–97% 57–92%

* Performance refers to detection of dysplasia; # evidence from a systematic review without meta-analysis. Abbre-
viations: AA, acetic acid; NBI, narrow-band imaging; pCLE, probe-based confocal laser endomicroscopy; VLE,
volumetric laser endomicroscopy; ESCC, esophageal squamous cell carcinoma; EAC, esophageal adenocarcinoma;
EC, esophageal cancer.

4.1. Dye Spray Chromoendoscopy

Chromoendoscopy is a technique that involves the spraying of dyes on the luminal
esophageal surface to obtain selective mucosal uptake (vital staining, i.e., methylene blue,
Lugol’s iodine solution) or mucosal pattern enhancement (contrast staining, i.e., indigo
carmine, acetic acid (AA)) [53].

The topical application of 1.5–2.5% AA stains NDBE white, while early EAC loses
the aceto-whitening within a few seconds [44]. A recent meta-analysis including nine
studies and 1379 patients [49] found that AA chromoendoscopy had a pooled sensitivity of
92% (95% CI, 0.83–0.97), pooled specificity of 96% (95% CI, 0.85–0.99), positive likelihood
ratio (LR) of 25.0 (95% CI, 5.9–105.3), and negative LR of 0.08 (95% CI, 0.04–0.18) for the
diagnosis of HGD and EAC. The diagnostic performance of AA chromoendoscopy may
be up to six-fold higher than the Seattle protocol (p = 0.0001) [54]. Conversely, a meta-
analysis of eight studies concluded that there was no incremental yield with methylene
blue chromoendoscopy over standard four-quadrant biopsies for the detection of HGD or
EAC [55].

Lugol’s iodine dye spray is used in the diagnosis of ESCC as squamous neoplasia
appears as Lugol-voiding lesion (LVL) [44]. Additionally, discoloration of the LVL within
3 min from the staining is referred to as pink sign and significantly correlates with HGD
and EAC on histology [56]. A recent meta-analysis assessed the diagnostic performance of
Lugol chromoendoscopy (LC) in 12 studies and 1911 patients [50]. In per-patient analysis,
LC showed a sensitivity of 92% (95% CI, 86–96%), specificity of 82% (95% CI, 80–85%),
positive LR of 5.42 (95% CI, 3.21–9.13), and negative LR of 0.13 (95% CI, 0.08–0.23).

However, the use of chromoendoscopy is associated with drawbacks in clinical prac-
tice, including the need for dedicated equipment, impossibility to study superficial vascu-
larity, difficulty to obtain uniform mucosal coating, and the duration of the procedure [53].
Moreover, dye spraying carries the risk of allergic reaction to the dye, aspiration and
pneumonia, and chest discomfort [50]. For these reasons, dye spray chromoendoscopy is
being increasingly replaced by virtual chromoendoscopy (VCE).

4.2. Virtual Chromoendoscopy

The term VCE refers to endoscopic imaging techniques that provide contrast enhance-
ment of the mucosal surface and blood vessels without the use of stains or dyes [57].
This technology is based on the observation that visualization of some mucosal tissues
is wave-length dependent. Selective light transmittance is accomplished by the optical
filtering of white light in narrow-band imaging (NBI), and with post-image processing in
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flexible spectral imaging color enhancement (FICE) and i-SCAN [57]. Recently, blue laser
imaging (BLI), which utilizes two monochromatic lasers at 410 nm and 450 nm, has be-
come available [44]. However, currently available studies on FICE, i-SCAN, and BLI in the
diagnosis of EC are limited and appeared to be of controversial utility [58–60]. Therefore,
further studies are needed to assess whether such techniques could be incorporated in
clinical practice for EC diagnosis.

Conversely, NBI significantly increases the specificity of endoscopic procedures com-
pared to Lugol’s dye in the diagnosis of ESCC (per-patient and per-lesion specificities: 88%
and 65% versus 82% and 37%, respectively), with comparable sensitivity (per-patient and
per-lesion sensitivities: 88% and 94% versus 92% and 98%, respectively) [50]. Moreover, a
meta-analysis assessing the performance of NBI in the diagnosis of dysplasia in BE [51]
concluded that the use of NBI during EGDS showed a pooled sensitivity of 94.2% (95% CI,
82.6–98.2), specificity of 94.4% (95% CI, 80.5–98.6), and negative predictive value of 97.5%
(95% CI, 95.1–98.7). Additionally, a meta-analysis on advanced imaging techniques for the
identification of dysplasia or cancer in patients with BE showed that VCE significantly
increased the diagnostic yield compared to standard endoscopy [61].

4.3. Confocal Laser Endomicroscopy

Probe-based CLE (pCLE) provides both surface and subsurface images of esophageal
mucosa, capturing near-microscopic images at approximately 150 µm of depth via a
flexible mini-probe introduced through the accessory channel of standard endoscopes [62].
However, the endoscope-integrated system for CLE (eCLE), which provided images at
different depths from 0 to 250 mlm and allowed a free accessory channel for esophageal
biopsy, is no longer available on the market [62]. CLE investigations require contrast
agents, including intravenous fluorescein sodium or topical acriflavine hydrochloride and
cresyl violet. When fluorescein is administered intravenously, it stains the extracellular
matrix of the surface epithelium, whereas topical acriflavine and cresyl violet stain the
nuclei of superficial layers of the mucosa [62]. In 2011, the Miami consensus classification
of CLE provided guidelines to distinguish normal squamous epithelium, BE with and
without dysplasia and intramucosal carcinoma [63]. Subsequently, CLE has been mainly
applied to the detection of BE-related dysplasia. A systematic review with meta-analysis
by the American Society for Gastrointestinal Endoscopy (ASGE) Technology Committee
concluded that, in expert hands, the pooled sensitivity, NPV and specificity of CLE in the
detection of BE dysplasia were 90.4% (95% CI, 71.9–97.2), 98.3% (95% CI, 94.2–99.5), and
92.7% (95% CI, 87–96), respectively [51]. Conversely, the lack of consensus on the use of
pCLE in ESCC limits the application of the technique in clinical practice [44]. However,
one study evaluating pCLE in the diagnosis of ESCC showed up to 95% accuracy, 100%
sensitivity, and 87% specificity [64].

Although CLE has proven utility in the diagnosis of EC, its routine use appears hardly
applicable to daily clinical practice because of its time-consuming nature, high costs, and
high level of expertise needed for proper interpretation.

4.4. Volumetric Laser Endomicroscopy (Optical Coherence Tomography)

VLE is a new advanced endoscopic imaging technology based on optical coherence
tomography (OCT). A balloon-based system generates a circumferential scan of 6 cm
segments of the esophagus to a depth of 3 mm into the mucosal and submucosal layers
with 7 µm axial resolution [65]. Unlike CLE, VLE does not require intravenous contrast
agents [62]. In 2017, VLE diagnostic criteria for the diagnosis of squamous esophagus,
NDBE and BE was proposed [66]. Historically, VLE has been mainly applied to BE. How-
ever, due to the long esophageal segments included in the field of view of VLE, the
technique may be suitable for screening and surveillance of ESCC. A systematic review
assessing the performance of OCT in the diagnosis of EC [52] concluded that VLE had a
sensitivity ranging from 81% to 97% and specificity from 57% to 92%. In the detection of
dysplasia and early EC, the sensitivity was 68–83% and specificity 75–82%. In the staging
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of early ESCC, OCT showed an accuracy of >90%. Additionally, a single study compared
the performance of VLE and pCLE in the detection of esophageal dysplasia [67]. The
diagnostic accuracy of VLE was 87%, which was significantly superior to that of pCLE.
Based on available evidence, OCT has the potential to support screening and diagnosis
of EC. However, further prospective and large sample-size studies are needed to confirm
these early results.

5. Artificial Intelligence in the Diagnosis of Esophageal Cancer

The ability to recognize endoscopic images depends on individual expertise, being
inter- and intra-observer variability that limits endoscopic procedures. AI is being exten-
sively applied to upper GI diseases aiming to improve the diagnostic yield of endoscopy.
The term AI generically refers to complex computer algorithms that mimic human cognitive
functions, including learning and problem solving [68]. Machine learning (ML) and deep
learning (DL) represent a form of AI in which computer algorithms are used to recognize
discriminative features of data and provide appropriate outputs (i.e., elaborating informa-
tion to provide a diagnosis) [68]. Numerous systems of computer-aided diagnosis (CAD)
have been recently tested in upper GI endoscopy showing encouraging results. AI has the
potential to successfully assist both trainees and expert physicians to reduce variability in
the detection of esophageal cancer, thus increasing the diagnostic accuracy regardless of
individual expertise and virtually overcoming the current limitations of EGDS [69].

Advanced endoscopic imaging techniques have shown an accuracy in the detection
of EC. As to ESCC, VCE with NBI and blue-laser imaging (BLI) improves the recognition
of lesions [70,71]. As regards EAC, the American Society for Gastrointestinal Endoscopy
(ASGE) recently endorsed targeted biopsies with AA chromoendoscopy, NBI, and eCLE
during surveillance of patients with previous NDBE because these techniques can meet the
optical diagnosis performance required by the Preservation and Incorporation of Valuable
Endoscopic Innovations (PIVI) initiative by ASGE (i.e., per-patient sensitivity of 90% or
greater, a negative predictive value (NPV) of 98% or greater, and a specificity of at least
80% for detecting HGD or EAC) [45,51].

Notably, advanced endoscopic imaging techniques require much training [71], which
limits the extensive use in clinical practice. In this regard, the support of AI tools is being
investigated and has already provided promising results in meta-analytic studies (Table 3).

Table 3. Performance of artificial intelligence in the diagnosis of esophageal cancer according to meta-analyses.

Author Disease Endoscopic
Light

AUC (95%
CI)/Accuracy
(95% CI, %)

Sensitivity
(95% CI, %)

Specificity
(95% CI, %)

PPV
(95% CI, %)

NPV
(95% CI, %)

Arribas et al.
[72]

ESCC
WLE and/or

NBI

- 93%
(73 to 99)

89%
(77 to 95)

77%
(55 to 89)

97%
(88 to 100)

EAC - 89%
(83 to 93)

88%
(84 to 91)

88%
(84 to 91)

89%
(83 to 93)

Bang et al. [73] ESCC or EAC WLE and/or
NBI

0.97
(0.89–0.96)

94%
(89 to 96)

88%
(76 to 94) - -

Lui et al. [74]
ESCC

WLE and/or
NBI or ECS or

ME

0.88
(0.82–0.96)

75.6%
(48.3 to 92.5)

92.5%
(66.8 to 99.5) - -

EAC WLE or VLE 0.96
(0.93 to 0.99)

88%
(82.0 to 92.1)

90.4%
(85.6 to 94.5) - -

Mohan et al.
[75] ESCC or EAC WLE and/or

NBI
87.2%

(76–93.6)
87.1%

(69.4 to 95.3)
87.3%

(74.3 to 94.2)
72.3%

(41.7 to 90.5)
92.1%

(85.9 to 95.7)

Abbreviations: AUC, area under the curve; CI, confidence interval; EAC, esophageal adenocarcinoma; ECS, endocytoscopic system; ESCC,
esophageal squamous cell carcinoma; ME, magnifying endoscopy; NBI, narrow band imaging; NPV, negative predictive value; PPV,
positive predictive value; VLE, volumetric laser endomicroscopy; WLE, white light endoscopy.
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In the diagnosis of ESCC, the pooled sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) of AI with WLE and/or NBI were 93% (CI
73% to 99%), 89% (CI 77% to 95%), 77% (CI 55% to 89%), and 97% (CI 88% to 100%),
respectively [72]. In the diagnosis of EAC, on the other hand, the pooled sensitivity,
specificity, PPV, and NPV of AI with WLE and/or NBI were 89% (CI 83% to 93%), 88% (CI
84% to 91%), 88% (CI 84% to 91%), and 89% (CI 83% to 93%), respectively.

In another meta-analysis [74], the overall pooled performance of AI in the detection
of ESCC with NBI, WLE, endo-cytoscopy and ME was: AUC 0.88 (95% CI, 0.82–0.96),
sensitivity 75.6% (95% CI, 48.3–92.5%), and specificity 92.5% (95% CI, 66.8–99.5%). In
the diagnosis of ESCC, AI performed significantly better with NBI compared to WLE,
achieving an AUC of 0.92 (95% CI, 0.86–1.00) and 0.83 (95% CI, 0.82–0.84), respectively. For
the detection of EAC, it was estimated that AI could make a diagnosis with pooled AUC,
sensitivity, and specificity of 0.96 (95% CI, 0.93–0.99), 88% (95% CI, 82.0–92.1%), and 90.4%
(95% CI, 85.6–94.5%), respectively, when applied to WLE and VLE. Notably, AI performed
significantly better than endoscopists in the diagnosis of EAC, demonstrating AUC, sen-
sitivity, and specificity of 0.96 (95% CI, 0.94–9.97) vs. 0.82, 90.7% (95% CI, 89.8–91.5%) vs.
72.3% (95% CI, 70.2–74.3%), and 88.0% (95% CI, 87.1–88.9%) vs. 74.0% (95% CI, 72.2–75.7%),
respectively.

Two meta-analyses evaluated the overall performance of AI in the diagnosis of
esophageal cancer regardless of histology and endoscopic light [73,75]. For the detec-
tion of EC, Bang et al. estimated a pooled AUC, sensitivity, and specificity of 0.97 (95% CI,
0.89–0.96), 94% (95% CI, 89–96%), and 88% (95% CI, 76–94%), respectively, whereas Mohan
et al. estimated a pooled accuracy, sensitivity, specificity, PPV, and NPV of 87.2% (95% CI
76–93.6), 87.1% (95% CI 69.4–95.3), 87.3% (95% CI 74.3–94.2), 72.3% (95% CI 41.7–90.5), and
92.1% (95% CI 85.9–95.7), respectively.

Although the performance of AI was proven to be high in several meta-analyses, the
majority of included studies were retrospective and used still endoscopic images to test the
AI system. More recent single studies investigated the performance of AI during real-time
endoscopic procedures.

In the diagnosis of ESCC from NBI video clips, AI achieved accuracy, sensitivity,
and specificity of 63%, 51%, and 91%, respectively [76]. In the same task, thirteen expert
endoscopists achieved accuracy, sensitivity, and specificity of 75%, 72% and 79%. In the
differentiation of cancerous from noncancerous lesions, AI had significantly better diagnos-
tic performance than endoscopists, with a sensitivity of 86% vs. 74%, specificity of 89% vs.
76%, and accuracy of 88% vs. 75%.

In the diagnosis of EAC and NDBE from NBI zoom video clips, AI showed accuracy,
sensitivity, and specificity of 83%, 85%, and 83%, respectively [77]. In another study, de
Groof et al. assessed the accuracy of a CAD system for the detection of Barrett’s neoplasia
within endoscopic images systematically taken every 2 cm in Barrett’s areas during live
endoscopic procedures [78].

During the EGDS, the AI system in real-time achieved 90% accuracy, 91% sensitivity,
and 89% specificity, thus meeting PIVI thresholds. Finally, in another study [79], AI
distinguished EAC from NDBE with 89.9% accuracy, 83.7% sensitivity, and 100% specificity
from endoscopic images that were randomly captured from the camera live-stream during
endoscopy.

Recent studies tested AI in the characterization of EC. As regards ESCC, AI has been
applied to the detection of esophageal intrapapillary capillary loops (IPCLs) and invasion
depth estimation. IPCL are micro-vessels on the surface of the esophagus that appear as
brown loops on magnifying endoscopy (ME) with NBI, whose morphological changes cor-
relate with the invasion depth of ESCC, allowing intra-procedural decisions for endoscopic
resections [80,81]. Everson et al. [82] developed a DL system that detected abnormal IPCL
with 93.7% accuracy, 89.3% sensitivity, and 98% specificity. Herrera et al. [83] developed a
DL algorithm that detected abnormal IPCLs with 91.7% accuracy, 93.7% sensitivity, and
92.4% specificity, respectively, thus performing as well as experts in the field. The AI al-
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gorithm of Tokai et al. [84] estimated the invasion depth of ESCC images under NBI and
WLE with 80.9% accuracy, 84.1% sensitivity, and 73.3% specificity, thus performing signifi-
cantly better than expert endoscopists who achieved accuracy, sensitivity, and specificity of
73.5%, 78.8%, and 61.7%, respectively. Nakagawa et al. [85] developed an AI system that
differentiated mucosal and submucosal microinvasive (SM1) from the submucosal deep
invasive (SM2/3) cancers with 91.0% accuracy, 90.1% sensitivity, and 95.8% specificity.

As regards the characterization of lesions in EAC, in a pilot study, AI could predict
submucosal invasion and differentiated stage T1a from T1b in endoscopic images of
Barrett’s cancer with 71.0% accuracy, 77.0% sensitivity, and 64.0% specificity. Importantly,
the performance of AI was comparable to that of international experts in the field [86].

6. Conclusions

EC is a highly aggressive malignancy due to late diagnosis, rapid progression, and
poor prognosis of survival. However, curative treatment is possible when the disease is
diagnosed early.

The incidence of EAC is increasing in Western countries, likely due to widespread
risk factors as gastro-esophageal reflux, central obesity, and increasing age [62]. Although
the incidence of ESCC has declined in China in recent years, the absolute incidence is
high because of the large population [35]. Accordingly, screening strategies for a timely
diagnosis are needed to reduce the mortality of EC patients. Current guidelines do not
address the use of novel biochemical markers, recently introduced advanced endoscopic
imaging techniques or AI tools as screening for EC [87–91]. This is largely due to the lack
of high-quality evidence, the heterogeneity of available studies, and to the fact that highly
sophisticated technologies have been developed only recently. In this regard, a growing
body of evidence on the use of blood tests, advanced and AI-assisted endoscopy is now
becoming available, offering new insights into what the diagnosis of EC may look like in
the near future. Accordingly, we reviewed the most recent evidence that could possibly
contribute to innovate the diagnosis of EC.

Several blood-based biomarkers have been investigated. Circulating molecules that
have shown potential utility include CEA, Cyfra21-1, SCC-Ag, metabolites, proteins, NLR,
autoantibodies, and circulating RNAs (circRNAs). In this regard, a recent meta-analysis [92]
concluded that circRNAs have a pooled sensitivity of 79% (95% CI: 0.69–0.87), specificity
of 85% (95% CI: 0.68–0.94), overall positive likelihood ratio of 5.27 (95% CI: 2.46–11.32),
negative likelihood ratio 0.24 (95% CI: 0.16–0.36), diagnostic odds ratio 21.66 (95% CI:
9.33–50.30), and AUC of 0.88 (95% CI: 0.84–0.90) in the diagnosis of EC. In summary, liquid
biopsies appear as promising non-invasive inexpensive tests for the diagnosis of EC, and
further investigations are required to extensively disclose their clinical utility.

EGDS represents the test of choice for investigations on EC [44]. Several advanced
endoscopic imaging techniques are currently available to improve the recognition of
lesions during procedures, namely dye spray chromoendoscopy, VCE, CLE, and VLE.
Meta-analytic studies confirmed the superiority of advanced endoscopy compared to
standard WLE in the diagnosis of EC [50,61]. However, their routine application to clinical
practice is hampered by the high level of expertise required for their use.

In recent years, CAD tools are providing an interpretable universal method for
endoscopic diagnosis, virtually eliminating variability among observers. Recent meta-
analyses [72–75] confirmed the potential of AI to increase the diagnostic yield and reduce
underdiagnosis of upper GI neoplastic lesions, often performing comparably or better than
expert endoscopists. However, most studies on CAD tools were retrospective and tested
the diagnostic yield of AI on endoscopic images rather than during live EGDS. Accordingly,
available evidence should be interpreted with caution. More real-time, high-quality studies
are needed to confirm and expand these early results and allow the integration of AI into
medical workflows to anticipate the diagnosis of EC.
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