
Received October 16, 2021, accepted October 25, 2021, date of publication October 27, 2021, date of current version November 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3123873

Scalable Real-Time Emulation of
5G Networks With Simu5G
GIOVANNI NARDINI , GIOVANNI STEA , AND ANTONIO VIRDIS
Dipartimento di Ingegneria dell’Informazione, University of Pisa, 56122 Pisa, Italy

Corresponding author: Giovanni Stea (giovanni.stea@unipi.it)

This work was supported in part by the Italian Ministry of Education and Research (MIUR) in the framework of the Cross-Lab Project
(Departments of Excellence), and in part by the European Commission through the H2020 Projects Hexa-X under Agreement 101015956.

ABSTRACT Real-time emulation of 5G networks is highly beneficial for several purposes, such as
prototyping or performance evaluation of distributed applications meant to run on 5G networks, research
demonstration, evaluation of other technologies (e.g., Multi-access Edge Computing) meant to interoperate
with 5G access. In this work, we describe how to use Simu5G, a new end-to-end simulator of 5G networks
based on OMNeT++, as a real-time emulator. We describe in detail the modeling choices that allow
emulation to scale up without compromising accuracy. We present a thorough evaluation of the Simu5G’s
emulation capabilities, showing that networks with hundreds of simulated users and tens of cells can be
emulated on a single desktop machine.

INDEX TERMS Emulation, real-time, Simu5G, simulation.

I. INTRODUCTION
Fifth-generation (5G) cellular networks will bring significant
changes to the wireless networking landscape. In fact, they
will enable unprecedented scenarios, such as smart cities,
autonomous vehicles, augmented reality and Industry 4.0.
Most of these services will be composed of both communi-
cation and computation, leveraging the deployment of com-
puting and storage capabilities in the cloud-edge continuum.
An independent, but complementary innovation is in fact
represented by Multi-access Edge Computing (MEC), which
will endow the mobile network with cloud-computing capa-
bilities, to allow mobile users to leverage the power of com-
plex algorithms such as those based on artificial intelligence.
While MEC is independent of the underlying technology
(it can already coexist with the current 4G networks, in fact),
it is foreseen that the progressive deployment of 5G will be
an enabler for more powerful MEC capabilities [30].

Application developers have a pressing need for instru-
ments for fast prototyping and credible performance evalua-
tion. In fact, some of the services that they will be developing
may have stringent latency constraints, such as autonomous
driving or factory automation. For these, changes in the
network configuration or deployment may have a drastic
impact on their timing properties. During the application

The associate editor coordinating the review of this manuscript and

approving it for publication was Jesus Felez .

development phase (hence before the application is brought
onto the market and run on the live network), developers
would benefit from knowing what performance they should
expect from a 5G network in terms of bandwidth and latency,
at the very least, so that they can in turn adapt the behavior
and/or requirements of the application. On the other hand, 5G
infrastructure owners and operators will need to assess the
performance of the services they are hosting in a controlled
environment, so as to, e.g., evaluate alternative deployments
or network functions partitioning. There is therefore a need
for instruments that allow one to quickly setup a testbed,
where applications exchange traffic through a 5G network.
Unfortunately, 5G network testbeds are hard to come by,
especially for developers.

We recently developed Simu5G [3], [4], a discrete-event
simulation library for 5G New Radio networks based on
OMNeT++, which evolves from the well-known SimuLTE
simulator of LTE/LTE-A networks [2] and is backward com-
patible with it. Simu5G is already being used by a large
community of researchers. It allows one to setup arbitrarily
complex network scenarios involving 5G access, leveraging
network models taken from the INET library [6], vehicular
mobility taken fromVeins [12] or Artery [13], etc. Thismakes
Simu5G capable of simulating scenarios including the full
Internet protocol stack in order to evaluate the performance
of applications exploiting 5G connectivity, as well as how
network-level metrics are affected by the traffic generated

148504 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-9796-6378
https://orcid.org/0000-0001-5310-6763
https://orcid.org/0000-0002-0629-1078
https://orcid.org/0000-0003-4501-1339


G. Nardini et al.: Scalable Real-Time Emulation of 5G Networks With Simu5G

by applications. An application developer can use Simu5G
in at least three different – and complementary – ways: first,
by building a model of its application, to the required level
of abstraction, and integrating the latter in Simu5G; second,
by compiling the real codebase with Simu5G, substituting
network calls with few localized modifications. These are
both useful for functional testing and non-real-time perfor-
mance evaluation (e.g., message counting). We show in this
paper that a third way exists, i.e., to use Simu5G as network
transport, having application endpoints exchange packets
through it, in real time. In the literature (e.g., [31]–[33]), such
approach is referred to as emulation – andwewill do the same
from now on – since packets exchanged by real applications
with the simulator perceive the same impairments (e.g., delay
and losses) as if they were running on the real network. This
is useful to test the real-time performance of an application,
e.g., when user input is required, or when closed-loop sensing
and control applications are to be tested. These applications
can be, for instance, the two counterparts of a MEC app,
one running on a 5G User Equipment (UE) in mobility and
the other on a MEC host connected to the 5G infrastructure.
This allows application developers to test the performance of
their software on a 5G network, under controlled conditions
(e.g., as for load, channel quality, mobility, etc.) in a pre-
production environment, so as to obtain confidence regarding
their performance. The main benefit of using Simu5G as a
real-time emulator is that users can rapidly define a cus-
tom, arbitrarily complex 5G network scenario and run their
own application through it, in order to measure its perfor-
mance or demonstrate it live to a third party, without buying
expensive hardware to implement a real network testbed. For
instance, developers of a multiplayer virtual reality gamemay
be interested in testing whether the latency introduced by
certain 5G network configurations could be detrimental for
the Quality of Experience perceived by the users of their
application. Simu5G allows them to assess such performance
in a simple and cost-effective way. Note that using a real
5G network (e.g., a commercial one provided by a telecom-
munications operator) would allow users no control on the
experimental conditions. Using Simu5G as an emulator can
also be beneficial to network operators, e.g., to test the impact
of real applications (instead of models thereof) on their
network.

Real-time emulation with Simu5G is possible thanks to the
combination of several concurring factors. First, the capa-
bilities of the OMNeT++ environment to run a real-time
event scheduler, and of the INET library to exchange pack-
ets between a running simulation and the operating system.
Second, but certainly no less important, a careful modeling
of Simu5G functionalities and entities is required to make the
software lightweight enough to be executed in real-time on a
desktop machine. In fact, real-time event scheduling is only
possible if simulator events are processed faster than wall-
clock time on the host machine. This means that, depend-
ing on the network model, there will be a maximum scale,
in terms of number of network entities (e.g., User Equipments

and Base Stations), carried traffic, etc., beyond which real-
time emulation will be impossible on a given host machine.

This paper presents the architectural and modeling choices
that allow Simu5G to run in real time up to fairly large
scales (i.e., ten cells, a thousand UEs). A scale such as this
is required to create scenarios where realistic intercell inter-
ference and resource contentions are emulated. Our solution
is to provide multiple models of the main network elements
(i.e., UEs and cells), representing different tradeoff points
between the level of detail and the processing overhead. For
instance, a standard UE model is endowed with the entire
protocol stack up to the application layer, and it can be
used as an application endpoint during emulation and/or to
compute node-specific or end-to-end metrics. A background
UE, instead, only needs to generate uplink (UL) interference
and resource contention at the MAC layer, without recording
any kind of UE-specific metric. This makes it possible to
do away with the processing overhead of all the upper lay-
ers, while still enabling it to participate to uplink/downlink
MAC scheduling, occupy resources, and generate interfer-
ence. A similar approach is used for cells: a background
cell generates downlink (DL) interference correctly without
the overhead of simulating the full model of their associated
UEs. Moreover, we report a thorough performance evaluation
of Simu5G’s emulation capabilities, identifying the limits in
all the relevant factors (number of simulated UEs and cells,
application traffic, system bandwidth, number of carriers,
numerologies). Our results show that Simu5G can run in
real time, carrying traffic up to 1-2 Mbps between external
endpoints, while emulating a scenario with ten 5G cells and a
thousand users. To the best of our knowledge, this is the first
work documenting a free, open-source simulator featuring
3GPP-compliant 5G New Radio implementation that can
run as both a simulator and a real-time emulator with the
same codebase, at that scale. Being able to use the same
codebase for both simulations and live prototyping abates the
developing time and makes results more reliable and easier
to demonstrate. For instance, Simu5G is being used in the
framework of theHexa-XEUproject [8], to support the devel-
opment and demonstration of federated learning algorithms
for Explainable Artificial Intelligence (XAI) models.

The rest of the paper is organized as follows: Section II
introduces the necessary background, describing the basic
functionalities of OMNeT++ and Simu5G. Section III dis-
cusses the modeling choices that allow scalable real-time
emulation. Section IV evaluates the emulation capabilities of
Simu5G on a standard desktop computer, while Section V
reviews the related work. Finally, Section VI draws conclu-
sions and highlights directions for future work.

II. BACKGROUND
This section introduces the necessary background. More
specifically, we briefly describe the OMNeT++ framework
and the INET library, focusing on the features connected
with real-time emulation, and then we present an overview
of Simu5G.

VOLUME 9, 2021 148505



G. Nardini et al.: Scalable Real-Time Emulation of 5G Networks With Simu5G

A. THE OMNeT++ FRAMEWORK AND THE INET
MODEL LIBRARY
OMNeT++ is an open-source framework for discrete-event
simulation. It is free for academic use, and it has a very large
users’ community (including corporate ones). OMNeT++
is built on the concept of module. OMNeT++ modules
exchange messages through connections linking their gates.
A simulation model is represented by a network, which is
a top-level compound module, with no external gates. Hier-
archy must be preserved when connecting modules: with
reference to FIGURE 1, simple module 1 can only connect
to the compound module gate, and not to 2 directly. This
forces a user to design models that are easier to verify and
extend. Event handlers, called by the simulation kernel on
receipt of messages, implement the behavior of a module.
For instance, a module can schedule a timer by sending a
message to itself, set to be handled at the expiration time.
Simple modules have an initialization and finalization func-
tion, which are called at the start and the end of a simula-
tion. The OMNeT++ framework has built-in functionalities,
such as event queueing or random number generation, thus
allowing users to concentrate on writing their own simulation
models.

OMNeT++maintains separate model’s behavior, descrip-
tion and parameter values. Object-oriented C++ is used to
code a model’s behavior. The description (i.e., gates, connec-
tions and parameter definition) is instead coded separately
using the Network Description (NED) language. NED is a
declarative language, which exploits inheritance and inter-
faces, and it is fully convertible into XML. Using NED; one
can write parametric simulation scenarios, e.g., a hub-and-
spoke network with a variable number of spokes. Last, but
not least, parameter values are written in Initialization (INI)
files. INI files are read at runtime, and initialize the model.
Multiple values or intervals can be specified for a parameter,
which makes it easy to run simulation studies where factors
vary.

In OMNeT++, simulated time advances because events
are processed: every event carries a firing time, and events
are sorted by firing time into an event queue. When the next
future event is extracted from the queue, the current simu-
lated time is advanced to that event’s firing time. However,
OMNeT++ allows one to use (among others) a real-time
event scheduler, according to which the flow of simulated
time is slowed down to the pace of real (wall-clock) time. This
is only possible if simulated time flows faster than the real
time, i.e., if the density of events and their processing time are
not such as to overload the system processing capacity. The
above condition depends on the hardware/software system,
on how a simulator is coded, but also on the scenario being
run. Typically, there will be a scale in terms of number
of UEs, gNBs, or traffic transmitted within a 5G network,
beyond which a given simulation will not be able to run in
real time.

FIGURE 1. OMNeT++ modules and their connection.

INET1 is a popular model library devised for OMNeT++.
It includes a wealth of models of computer network ele-
ments, e.g., hosts, protocols, routers/switches, connections,
etc.. Notably, INET models many protocols of the TCP/IP
suite, such as TCP, UDP, IPv4, IPv6, OSPF, BGP, etc., as well
as wired and wireless layer-2 protocols (Ethernet, PPP, IEEE
802.11, etc.). A user can incorporate the INET library into
an OMNeT++ simulation scenario, and then be able to
run a simulation where an application, residing on a host,
communicates with another endpoint through a network of
IP routers, each having Ethernet cards and PPPWAN connec-
tions. The two endpoints themselves may be using different
access technologies, e.g., 802.11 and 802.15, without this
being a problem.

Moreover, the INET library comes with modules that inter-
face the simulation environment with the host operating sys-
tem (OS). They make packets received by the host OS from
either real network interfaces or local applications appear in
the simulation, and send packets generated within the simula-
tion out to the OS, that will process them as any other network
packet, i.e., forward them to either real network interfaces
or local applications. To do this, two conditions must apply
for the simulated modules that send/receive packets from/to
the host OS. First, the IP addresses they are configured with
in the simulation must be known to the host OS so that it
can forward packets to them, i.e., they must be ‘‘routable’’
within the host OS. This is achieved by adding dedicated IP
routes to the routing table of the latter. Second, such simulated
modules must be equipped with a new submodule provided
by the INET library, called ExtInterface. The INET library
provides specialized implementations for the ExtInterface
module, each of them allowing the simulation to exchange
packets at different layers of the network protocol stack, e.g.,
sending/receiving IP datagrams or UDP segments. For the
scope of this paper, we only describe the ExtLowerEther-
netInterface, which exchanges Ethernet frames with the host
OS using raw sockets. For incoming packets, an emulation-
enabled real-time scheduler is responsible for fetching such
packets from the socket, to convert them into the equivalent
C++ object representation used in the simulation, and to add
them to the event queue, where they are processed alongside
the other events generated within the simulation. However,
the real-time scheduler fetches new packets from the socket
onlywhen the simulation time is in line (henceforth, coherent)

1In this paper, we refer to version 4.3 of the INET library.

148506 VOLUME 9, 2021



G. Nardini et al.: Scalable Real-Time Emulation of 5G Networks With Simu5G

with wall-clock time. When the simulation time lags behind
the wall-clock time, real packets stay in the socket buffer
and accumulate delay, until coherence is resumed. Moreover,
if real packets arrive faster than the rate at which the scheduler
drains the socket buffer, the latter fills up and new packets are
eventually discarded. When packets need to be sent outside
the simulation environment, they are transmitted to the host
OS using the same socket. The above features allow one to
use Simu5G as a network emulator, that transports packets
of real applications, delaying them the way a 5G network
would.

B. OVERVIEW OF Simu5G
Simu5G [3], [4] is based on OMNeT++ and it incorporates
models from the INET library. It represents the evolution of
the well-known SimuLTE 4G network simulator [2] towards
5G NewRadio access, and incorporates all SimuLTE’s func-
tionalities, allowing one to evaluate legacy ormixed scenarios
as well. Simu5G simulates the data plane of both the core and
the radio access networks.

As far as the core network is concerned, it allows users
to instantiate a User Plane Function (UPF) or Packet Data
Network GateWay (PGW) and an arbitrary topology, where
forwarding occurs using the GPRS tunneling protocol (GTP).
As far as the radio access is concerned, it allows one to
instantiate gNBs and UEs, which interact using a model of
the New Radio protocol stack. gNBs can be connected to
the core network directly, as shown in FIGURE 2 (left),
in the so-called standalone deployment. Alternatively, a gNB
can operate in an E-UTRA/NR Dual Connectivity (ENDC)
deployment, shown in FIGURE 2 (right), where LTE and 5G
coexist [9]. This last deployment is expected to be the most
common in the early phases of 5G deployment. In this last
configuration, the gNB works as a secondary node for an
LTE eNB, which acts as master node connected to the core
network. The eNB and the gNB are connected through the
X2 interface and all NR traffic traverses the eNB first.

UEs and gNBs are modeled as compound OMNeT++
modules. Their architecture is shown in FIGURE 3. UEs
have all the protocol stack until the application layer, whereas
gNBs only have layer-3 functionalities. Both include a
NR Network Interface Card (NIC), which models the NR
protocol stack. The structure of the NR NIC modules is
shown in FIGURE 3, and is different for the two enti-
ties. Notably, UEs have a dual stack (both LTE and NR),
which allows them to leverage double (4G/5G) connec-
tivity in an ENDC scenario, in-sequence packet delivery
being guaranteed by the Packet Data Convergence Proto-
col. Packet transmission entails top-down traversal of the
NR protocol stack shown in FIGURE 3, with messages
exchanged by neighboring modules. Conversely, packet
reception entails bottom-up traversal. Note that OMNeT++
messages are events: the price to pay for complete mod-
eling of the layers within the NR protocol stack is that
the transmission of a single IP packet via the NR inter-
face requires Simu5G to handle a sizable number of events,

FIGURE 2. Standalone (left) and ENDC (right) deployment.

FIGURE 3. Simu5G main modules.

in the order or few tens, among inter-layer communication,
fragmentation/reassembly, timers, ACK/NACK sending, etc..

As far as the physical layer is concerned, Simu5G follows
the approach already used by SimuLTE, i.e., to model the
effects of propagation on the wireless channel at the receiver,
without modelling symbol transmission and constellations.
When a sender sends a MAC Protocol Data Unit (PDU) to
a receiver, the PHY modules of the two entities exchange
an OMNeT++ message, whose propagation delay is set to
the duration of one NR time slot. On receipt of said message
the receiver performs a series of operations, summarized as
follows:

- compute the reception power of the signal on each
Resource Block (RB) x occupied by the MAC PDU,
starting from the transmission power at the sender and
applying a channel model to model pathloss, fading and
shadowing;

- compute the interference by summing up the power
received by all the other senders that interfere on the
same RBs (using the same transformation as above);

- compute the SINR on each RB x, using obvious
algebra;

- ∀x, compute Px = BLER(CQI , SINRx), the error prob-
ability for that RB given the Channel Quality Indica-
tor (CQI) used by the sender and the received SINR.

VOLUME 9, 2021 148507



G. Nardini et al.: Scalable Real-Time Emulation of 5G Networks With Simu5G

This is done by using Block Error Rate (BLER) curves,
which can be obtained from measurements performed
using link-level simulators (e.g., [11]). With reference
to FIGURE 4, BLER curves have the SINR as an
abscissa, an error probability as an ordinate. There is
one curve for each CQI, and the one corresponding to
the transmission format used by the sender is selected.
Then, error probability Px is found at the abscissa
represented by SINRx ;

- compute P = 1 −
∏

x (1− Px), the error probability
of the whole MAC PDU, extract a sample of a uniform
random variable, and test its value against P to check if
the reception was correct.

It is shown in [10] that the above modeling reduces the
computational complexity of the decoding operation, hence
the simulation running time, it improves evolvability, making
it easy e.g., to add new modulations, and it still allows arbi-
trary channel models to be used.

Simu5G simulates radio access onmultiple carriers, in both
Frequency- and Time-division duplexing (FDD, TDD).
Carrier Aggregation is supported, and different component
carriers (CCs) can be configured with different numerolo-
gies and either FDD or configurable TDD slot format.
Moreover, different CCs can have different channel models.
Simu5G also incorporates functionalities already modelled
in SimuLTE, e.g., UE handover and network-controlled
device-to-device (D2D) communications, both one-to-one
and one-to-many. Being based on OMNeT++, it allows one
to incorporate models from other OMNeT++ libraries, such
as user mobility (e.g., through Veins [12] or LIMoSim [13]).

III. SCALABLE MODELING OF UEs AND CELLS IN Simu5G
In this section we explain the rationale behind our modeling
choices, and then describe the different models of UEs and
cells that can be instantiated in Simu5G. In the next Section,
we will present a validation of the models, comparing the
processing time and accuracy when using each version of the
entities.

A. MOTIVATION AND ANALYSIS
We first introduce a motivating example. It is often the case
that the focus of a simulation/emulation experiment is on
endpoints located in a single cell, or few cells at most.
With reference to FIGURE 5, one may want to measure
the latency and jitter of a D2D offloading scheme. UE 1
receives a Constant Bit Rate stream from its serving gNB,
and relays it to UE 2 using D2D resources allocated on
the UL spectrum. Both UEs move (while remaining close
to each other), and - at some point - traverse cell borders,
changing their serving gNB. This scenario can be simulated
with Simu5G. We discuss what exactly should be simulated,
in order for it to be realistic. Obviously enough, we need
at least two cells (i.e., two gNBs) and two UEs. However,
if we limit ourselves to this, communications (both the gNB-1
DL leg, and the 1-2 D2D leg) will have no interference, and
no resource contention will take place anywhere, making for

FIGURE 4. BLER curves employed in Simu5G.

a very optimistic assessment of latency and jitter. As an aside,
we observe that a bog-standard desktop computer would have
little trouble emulating that scenario in real-time. Should one
want to introduce resource contention on both the DL and the
D2D legs, one should increase the number of UEs, and their
associated application traffic to be ultimately transmitted via
the DL and UL (or D2D). Moreover, and worse yet, in order
to have realistic interference levels (in both the UL and the
DL), one should add to this scenario other neighboring cells
(say, a whole tier at least), each one having its own set of UEs
and associated application traffic. The result would then be a
very realistic scenario, with a number of UEs in the hundreds
or thousands and a number of cells in the few tens. However,
its required processing load per unit of time would put real-
time emulation out of the picture.

More in detail, three processes within Simu5G are par-
ticularly computation-intensive:MAC-level scheduling at the
gNBs; PHY-layer reporting at the UEs, and protocol stack
traversal for a packet. Assume that we are running a scenario
withB gNBs,N UEs per gNB, andC carriers per gNB.MAC-
level scheduling needs to be performed on each TTI (hence,
up to 16 times per ms, depending on the numerology) and
separately for each CC and it involves sorting all the UEs in a
cell according to some metric. This impliesO(B ·C ·N · logN )
operations per TTI (N · logN being the cost of sorting N
UEs). PHY-layer reporting is done by a UE at a configurable
reporting interval (e.g., 10 TTIs) independently for each CC,
and involves measuring the signal strength received by all the
gNBs it can hear (i.e., running O(B · C) instances of channel
models, involving floating-point algebra and transcendent
functions), compute the SINR, and send a message with the
reported CQIs to the serving gNB. This entails an overall
O(B2 ·C ·N ) operations and O(B ·N ) OMNeT++ messages
(hence events to be handled) per reporting interval. As far
as protocol stack traversal is concerned, we have already
mentioned that a single IP packet generates tens of events
in the system, due to the layered nature of the NR protocol
stack. More operations are required to run layer-4 protocols,
especially TCP. In this case the load depends not so much on
the number of entities, rather on the generated traffic (hence,
ultimately, on the system capacity and scale).

148508 VOLUME 9, 2021



G. Nardini et al.: Scalable Real-Time Emulation of 5G Networks With Simu5G

FIGURE 5. Example scenario.

FIGURE 6. Modelling of i) the enhanced gNB’s NR NIC module
(Foreground cell), ii) the BackgroundCell module, and
iii) the BackgroundTrafficGenerator module.

Parallel/distributed simulation is often used to address
scalability issues such as these. However, parallelism works
best when processing-heavy, low-interaction models are dis-
tributed across machines, which is not the case here: should
one distribute cells across computing cores, global interfer-
ence computationwould still require per-TTI synchronization
across cells. Moreover, parallel emulation has its own chal-
lenges, such as maintaining real-time synchronization across
instances, with sub-ms accuracy, and it does require a non-
negligible amount of hardware. In this paper, we choose a
different path: we provide alternative lightweight models of
UEs and cells, with limited functionalities, to be used for the
sole purpose of creating resource contention and interference.
This allows users to instantiate a judicious mix of complete
and lightweight versions of the entities, so as to create a realis-
tic scenario while keeping the processing load to a minimum.
We describe the lightweight models of UEs and cells, and
validate them by comparing scenarios with the two versions
of each model.

FIGURE 7. Inheritance of TrafficGenerator and mobility modules.

B. MODELING
We distinguish between foreground (FG) and background
(BG)UEs, depending on their role within a simulation exper-
iment. A FG UE is one whose application packets and/or
statistics you will want to observe. In a FG UE, all the
protocols must be modeled (from the application to the PHY
sublayer of the NR stack), and PHY-layer reporting must be
enabled. On the other hand, a BG UE needs not have the full
protocol stack and exists only for the sake of creating resource
contention at the MAC level and interference. Thus, a BG
UE basically consists of a traffic generator and a mobility
model.

Similarly, we distinguish FG and BG cells. A FG cell
is one to which at least one FG UE is associated, whereas
a BG cell only serves BG UEs. BG cells are employed to
create interference to FG cells. With reference to the exam-
ple in Section III.A, the only FG cells are those in which
UEs 1 and 2 move about, whereas all other cells are BG ones.
Moreover, the only FGUEs are 1 and 2, whereas all the others
(even in FG cells) are BGUEs. A FG cell needs to perform all
the operations required by all the layers of the protocol stack
including scheduling in both the DL and the UL directions.
This is because DL/UL packets sent to/received from its FG
UEs need to traverse the air interface, hence they must be
correctly delayed. On the other hand, a BG cell does not need
to implement the whole protocol stack, and DL scheduling
is not required. In fact, in order to generate interference on
nearby cells, it is only necessary to know how many RBs
are occupied on each TTI in the DL (as opposed to which
BG UE occupies which RBs, which would instead require
scheduling). UL scheduling is instead required in BG cells:
in fact, in the UL, interference is generated by BG UEs,
on specific RBs at specific TTIs, depending on UE’s traffic
and CQIs. Hence, we do need UL scheduling to determine
which BG UE occupies which RBs.

Since the only tangible effect of BG UEs in both FG
and BG’s MAC layers is to affect the scheduling process
at the gNB itself, we choose to deploy them using a new
module called BackgroundTrafficGenerator within both FG
and BG cells.

FIGURE 6 depicts the enhanced internal architecture of the
NR NIC of a FG cell and the new BackgroundCell model
for the BG cell, both including a BackgroundTrafficGener-

VOLUME 9, 2021 148509



G. Nardini et al.: Scalable Real-Time Emulation of 5G Networks With Simu5G

ator submodule. The latter is shown in the bottom part of
FIGURE 6 and includes i) a vector of modules representing
a configurable number of BG UEs, and ii) a Background-
TrafficManagermodule that manages the interaction between
the BG UEs and the gNB’s protocol stack. In turn, each
BG UE is composed of two submodules, namely Mobility
and TrafficGenerator. The former stores the position of the
BG UE in the network floorplan and manages its movement,
whereas the latter stores the size of the BG UE’s data buffer
according to some traffic generation pattern. Both Mobility
and TrafficGenerator can be extended through inheritance
of OMNeT++ modules to configure the desired mobil-
ity pattern and traffic generation distribution, as shown in
FIGURE 7. Note that a TrafficGenerator has two buffers, one
for the UL and one for the DL, allowing asymmetric traffic in
the two directions. At every scheduling period, the gNB gets
the information about backlogged BG UEs from the Back-
groundTrafficManager and schedules them together with FG
UEs, if any, consuming bytes from their data buffer and
allocating RBs accordingly. Despite being simpler, the above
modeling for BG UEs allows the same degree of flexibility as
using FG UEs when building simulation scenarios: one can
simulate multiple gNBs, each serving a configurable number
of BGUEs and, in turn, each BGUE has its own mobility and
traffic generation pattern. As a side note, we observe that this
modeling allows one to easily create full-buffer UEs, which
are often employed in 3GPP reference scenarios [14]: a full-
buffer UE is a BG UE whose TrafficGenerator replenishes
DL/UL buffers every TTI.

In order to allocate RBs to BG UEs, the gNB’s scheduler
must know the CQI of the latter. However, we discussed
above that accurate CQI reporting requires computation-
intensive PHY-layer operations, which hampers the scalabil-
ity of emulation. For this reason, we allow users to select
between two methods to obtain the CQI of BG UEs: real-
istic and probabilistic. These represent different trade-off
points between accuracy and computation overhead. Realistic
CQI computation and reporting is the same employed in
FG UEs. It entails computing CQIs including the effects of
mobility and interference, using channel models to compute
signal attenuation and computing the SINR on each occupied
RB, hence it is costly. With probabilistic CQI computation,
instead, each BG UE is assigned a mean and a variance for
its CQI: during the simulation and at every CQI reporting
period, BGUEs extract a random value for the CQI, assuming
a set distribution (the Normal one being the default). On one
hand, this makes the CQI computation fast, as it only requires
generating a random variate. On the other hand, probabilistic
CQI computation is only viable if UEs are stationary: if they
are mobile, their position and the interference they perceive
will change over time, and so should the probability distribu-
tion of their CQI. We allow a user to choose the style of CQI
reporting dynamically, i.e., while the simulation is ongoing.
For instance, in a scenario when a single FG UE moves from
cell 1 to cell 2, BG UEs in cell 1 may switch from realistic to

FIGURE 8. Testbed setup.

probabilistic, while BGUEs in cell 2 may instead switch from
probabilistic to realistic, right at the time of the handover.

As far as the BackgroundCell module is concerned,
the BackgroundTrafficGenerator submodule described above
represents BG UEs under the control of such BG cell. Then,
a module called BackgroundScheduler takes care of allo-
cating RBs in both UL and DL directions. To accomplish
that, it interacts with the BackgroundTrafficGenerator to get
the BG UEs’ buffers and stores data structures relevant to
the resource allocation. Moreover, the BackgroundCellChan-
nelModel deals with the computation of SINR for the BG
UEs according to the configurable parameters provided by
this module (e.g., carrier frequency, transmission power and
so on), whereas theMobilitymodule stores the position of the
BG cell in the floorplan. Using this model, one can deploy the
desired number of BG cells in the floorplan and each of them
can be configured with its own channel model parameters and
BG UEs.

In an emulation experiment, we can capitalize the above
modeling to increase the scale of network scenarios consid-
erably. In fact, the UEs attached to external interfaces need
be FG UEs, whereas the other UEs can be modeled as BG
UEs. Similarly, only the cell(s) traversed by the emulated
UEs need to be FG cells, and all the others can be BG cells.
Consider, for instance, a scenario where an emulated UE
models a car traversing urban roads, performing handover
every now and then. The roads host other cars, and there are
residential 5G users around. All UEs except the emulated
car are BG UEs. There needs to be only one FG cell at
any time (the one hosting the emulated car). Only cars have
realistic CQI computation, whereas residential users have
probabilistic CQI computation. Possibly, cars in faraway cells
can be dynamically stopped (i.e., their position is not updated)
and switched to probabilistic CQI computation as well to fur-
ther decrease complexity, as this will have negligible impact
on the FG cell. We will show in the next section that the
modelling described so far allows one to emulate scenarios
with ten cells and up to one thousand UEs on a desktop PC,
with negligible (or null) loss of accuracy.

148510 VOLUME 9, 2021



G. Nardini et al.: Scalable Real-Time Emulation of 5G Networks With Simu5G

FIGURE 9. Distributed testbed.

IV. PERFORMANCE EVALUATION OF
Simu5G EMULATION
As anticipated in the previous section, real-time emulation
is only possible if event processing occurs faster than the
real time. This depends on the scenario being simulated: for
instance, themoreUEs are simulated in the scenario, themore
events will be triggered (e.g., due to CQI reporting). In this
section, we evaluate the performance of Simu5G emulation,
with the aim to identify which factors constrain the emulation
capabilities, and what a user can expect to be able to run
on an off-the-shelf desktop computer. To do so, we setup a
system that runs a request-response application composed of
two processes, namely the sender and the receiver. Packets
are forwarded through an intermediate process running the
emulated 5G network using Simu5G. In particular, one side
of the communication acts as a UE of the 5G network, receiv-
ing requests from a remote application and sending back
responses.

Ideally, to ascertain if and when the emulation is coherent,
we should log the system time Ti and the simulated time
ti whenever the event ‘‘beginning of TTI i’’ is fired. When
Ti − T0 > ti − t0 + δ, with δ being the measurement
tolerance, the emulation can be impaired. Unfortunately, with
TTIs being at or below 1 ms, measuring this is impossible
in practice – it would imply that the host machine would be
serving system calls to obtain the wall-clock time instead of
advancing the emulation. Performing the same test at longer
periods (say, every N TTIs, N � 1) is certainly feasible,
but inconclusive, since it does not guarantee coherence at
each TTI. For the above reasons, we exploit an indirect
measurement technique, which is both non-invasive and suf-
ficiently reliable. As discussed in section II.B, a characteristic
of OMNeT++, un-documented to the best of our knowl-
edge, is that packets from real host’s interfaces are delayed –
and eventually discarded – whenever the emulation is not
coherent. Therefore, by simply counting transmitted/received
IP packets at the interfaces and verifying their Round-trip
Time (RTT) we can have an indirect coherence assessment:
when the emulation is not coherent, the number of transmitted

FIGURE 10. Emulated network scenario.

packets will be strictly larger than the number of received
packets and/or the RTT will diverge. We are aware that this
only implies that the emulation was coherent at the time of
arrival of packets at the interfaces, which does not necessar-
ily warrant that it was at any other (unobserved) time; how-
ever, arrival times at the interfaces are those when coherence
matters, which makes this method quite reliable. Throughout
this section, we take care to distinguish simulated time and
real time whenever confusion may arise.

A. EXPERIMENTAL CONFIGURATION
Our testbed, shown in FIGURE 8, is composed of one
general-purpose desktop computer equipped with an Intel
Core(TM) i7 CPU at 3.60 GHz, with 16 GB of RAM and a
Linux Kubuntu 16.04 OS. The host installs OMNeT++ ver-
sion 6.0 and the INET library version 4.3. In order to reduce
the emulation overhead as much as possible, we built Simu5G
using the OMNeT++’s release mode, which performs addi-
tional code optimizations to the OMNeT++ simulation ker-
nel during compiling, and we disabled the reporting of the
Simu5G metrics, since we are only interested in application
performance in this testbed. We run the Simu5G network
emulation and one real application that generates the real
network traffic to be sent through the Simu5G network emu-
lation. The application is composed of two processes, i.e.,

VOLUME 9, 2021 148511



G. Nardini et al.: Scalable Real-Time Emulation of 5G Networks With Simu5G

FIGURE 11. Launching the testbed.

TABLE 1. Main network parameters.

the sender and receiver sides, both coded in C++. These
processes are unaware of the presence of Simu5G, since the
host OS takes care of forwarding their packets throughVirtual
Ethernet (veth) interfaces, as depicted in FIGURE 8: when
the sender transmits data via a UDP socket by specifying
the IP address of veth2 and the port number the receiver
is listening to, while the routing table of the host OS is
configured to reroute packets destined to veth2 through veth1
and vice versa, the OS forwards them to the Virtual Ethernet
interfaces depicted in FIGURE 8. Ethernet frames sent over
such interfaces will appear within the emulated network.
More complex configurations can also be envisaged like, e.g.,
having sender and receiver applications located on different
hosts, connected to the host running Simu5G through a local
network or the public Internet. An exemplary distributed
testbed is shown in FIGURE 9, where the network traffic
between two applications running on, respectively, hosts B
and C flows through a Simu5G instance running on Host A.

The sender application transmits periodic request mes-
sages to the receiver application via a UDP socket. For each
request, the receiver replies with a response message. Each
request message is tagged with a sequence number and a
timestamp so that the RTT of the communication can be
measured upon reception of the associated response. The size
Lreq and Lresp of both request and response messages can be
configured, as well as the requests’ sending interval T .
The generic emulated network scenario is depicted in

FIGURE 10 and includes one gNB and one FG UE, called
the endpoint UE henceforth. The latter is the counterpart of

FIGURE 12. Baseline scenario.

FIGURE 13. Emulation overhead.

the sender process in the real host, as it is endowed with
an ExtInterface module to capture packets coming from the
application. Likewise, the router has one ExtInterfacemodule
that captures packets coming from the receiver process. With
this configuration, packets sent by the sender appear into the
emulation at the UE and are forwarded towards the router,
which in turn sends them outside the emulation. Then, the OS
takes care of forwarding them towards the receiver process.
The reverse path is traversed by response messages sent by
the receiver process and directed to the sender. Moreover,
a number of simulated UEs and gNBs can be added to
the network to create a more realistic scenario: these UEs
communicate with the simulated server, generating traffic
that remains within the simulator. Unless explicitly stated
otherwise, the endpoint UE is 50m far from the gNB. As far
as the channel model is concerned, path loss is computed
according to the Urban Macro scenario in [15]. Fading and
shadowing effects are also considered: the former follows the
Jakes model, whereas the latter is modelled according to a
log-normal distribution with standard deviation σLOS = 4dB
and σNLOS = 6dB for UEs in line-of-sight and non-line-of-
sight, respectively. The main parameters of the network are
the ones shown in Table 1.

In order to run the testbed, the receiver process could be
launched at any time, since it will remain idle, listening to
incoming connections. On the other hand, the sender process
needs to start the traffic only after both the receiver and the
network emulation has been started. In order to automatize
the process, we created a simulation automation tool called

148512 VOLUME 9, 2021



G. Nardini et al.: Scalable Real-Time Emulation of 5G Networks With Simu5G

FIGURE 14. RTT analysis, one component carrier with varying number
of RBs.

launcher, coded in Perl, that performs the operations depicted
in FIGURE 11. It accepts parameters such as the number
of simulated UEs and gNBs, the number of RBs and NR
numerology index, and writes them to an INI configuration
file. Then, it launches Simu5G, which sets up the network
scenario according to the parameters found in the INI file
and starts the emulation. Five seconds after the emulation has
started, the launcher script creates two new processes for the
receiver and sender, respectively. The former starts waiting
for request messages from the sender, whereas the latter starts
the real data traffic.

B. EXPERIMENTAL RESULTS
In all the following experiments, we make sure that the num-
ber of packets sent and received is the same, and we measure
the real-time RTT to understand when the emulation starts
struggling, depending on the scenario.

In order to be accurate, we first need to quantify the
overhead introduced by physical/OS delays in the testbed,
as well as the delay due to OS/OMNeT++ interfacing
(i.e., the time it takes to capture packets from the real host’s

FIGURE 15. RTT analysis, 25 RBs per carrier, varying the number of CCs.

OS and inject them into the emulation). We do this by mea-
suring the real-time RTT in the following setup: we run a
very simple OMNeT++ emulation, consisting of an INET
router that forwards packets between its two infinite-speed
interfaces. On one hand, the emulated network is very simple,
hence we can expect any real-time delay due to its processing
overhead on the host machine to be negligible. On the other
hand, packets are not delayed within the emulated network
(because of infinite-speed interfaces). Thus, the real-time
RTT in this scenario will be due to the effects that we want to
measure. The setup is depicted in FIGURE 12. As a compar-
ison, we also measure the real-time RTT on the direct path,
where the sender and receiver applications communicate via
the loopback interface of the host. We compute the average
of 300 requests, considering a sending interval T = 1s.
Since the measured real-time RTT is considerably smaller
than T , we can assume that the obtained values are indepen-
dent. We also set Lreq = Lresp = 1000B. The results are
shown in FIGURE 13. The overhead introduced by traversing
an emulated OMNeT++ network is around 1 = 0.5 ms.
The 95% confidence intervals, barely visible in the figures,

VOLUME 9, 2021 148513



G. Nardini et al.: Scalable Real-Time Emulation of 5G Networks With Simu5G

FIGURE 16. Validation of BG UEs, RTT comparison.

FIGURE 17. Validation of BG UEs, allocated RBs in the downlink.

are negligible, which testifies that this overhead is almost
constant.

We now assess the scalability of emulation.We run an emu-
lated 5G network with one gNB and an increasing number of
simulated UEs (besides the endpoint UE). Initially, all UEs
are modeled as FG UEs. The external applications are the
same as for the previous experiment.

We measure the real-time RTT (call it R) of packets sent by
the sender application as they travel to the receiver and back,
traversing the emulated network twice. We need a baseline
to compare R to. To this end, we run the same scenario
within Simu5G in simulated mode (i.e., without real-time
scheduling of events), with the same application code, and
measure the simulated-time RTT of packets within Simu5G,
call it S. Now, S is a pessimistic baseline for R (i.e., R > S),
because S does not include the overhead 1 measured above.
However, on one hand, using S + 1 as a baseline would
instead be optimistic, since there is no evidence that the two

FIGURE 18. Validation of BG UEs, allocated RBs in the uplink.

FIGURE 19. Comparison of execution times for the scenarios.

times are additive (there are many performance-enhancing
mechanisms in a hardware/software system that may leverage
parallelism to make the total time less than the sum of the
two). On the other hand, we will soon show that S � 1,
at least while µ ≤ 2. Therefore, we will stick to S as
a baseline henceforth. In the above scenario, we vary the
number of simulated FG UEs N . Each of them generates the
same request-response traffic as the real application, i.e., one
1000-byte packet every 40ms, resulting in a 200kbps traffic
per UE. Periods of different applications are desynchronized
in the time domain by randomly selecting the starting time
of the application. Strictly speaking, S is a random variable.
However, the endpoint UE is close to the antenna, and the
cell is underloaded in all the simulation settings (N < 20).
For this reason, S has a negligible variance, and we plot its
mean value henceforth.

FIGURE 14 shows R with an increasing number of
RBs M and simulated FG UEs N (besides the endpoint UE).

148514 VOLUME 9, 2021



G. Nardini et al.: Scalable Real-Time Emulation of 5G Networks With Simu5G

FIGURE 20. RTT analysis, deployment with BG UEs, realistic CQI.

Values are reported for all the admissible numerologies. The
corresponding S is plotted as a dashed line. In these exper-
iments, carrier aggregation is not employed (i.e., a single
carrier is emulated). The figure shows that when M is small,
e.g., 25, and µ = 0 or µ = 1 are used, R is basically constant
while N ≤ 10, whereas such threshold is lower when higher
numerologies are used. For a larger M , coherence cannot be
maintained even for low values of N . Again, the threshold
depends on the numerology used. This can expected, since
higher numerologies means shorter TTIs (i.e., 1ms long for
µ = 0 and 62.5µs long for µ = 4), which makes the
emulation more challenging – Simu5G handles in fact 16×
events per unit of time when going from µ = 0 to µ = 4 –
and coherence is only preserved for small values ofM and N .
FIGURE 15 reports the results of the same analysis in a

scenario where the same number of RBs is split among dif-
ferent CCs. Each CC has 25 RBs available, and we simulate
carrier aggregation with 1, 2, and 4 CCs, hence each graph in
FIGURE 15 relates to a scenario with the same overall RBs
as the corresponding one in FIGURE 14. In order to balance
the load among CCs, we allow one simulated UE to use only
one CC, and each CC is assigned the same percentage of

FIGURE 21. RTT analysis, deployment with BG UEs, probabilistic CQI.

simulated UEs. Although the charts confirm that the real-
time RTT depends on M and N as in FIGURE 14, we note
that coherence is generally preserved for a larger N and a
higher µ. In fact, we are now able to perform a real-time
emulation with a few simulated UEs also using 100 RBs split
into four CCs andµ = 4. This is because each CC has its own
independent MAC-level scheduler, according to the carrier
aggregation model implemented in Simu5G. On one hand,
the MAC layer of the gNB runs more scheduling processes
on each TTI, i.e., one per CC. On the other hand, scheduling
has super-linear complexity with N . Thus, running more
schedulers with smaller M and N makes per-TTI operations
is faster than having one scheduler managing all the available
RBs and UEs, as in FIGURE 14.

Some comments are in order. The first one is that the above
results prove that it is actually possible to run a 5G emulation
on a desktop machine, in an environment with a gNB and
several FGUEs, whose entire network stack is modeled, from
the application to the physical layer. Our second comment
is that it is fairly evident that the combinations of number
of UEs, RBs, CCs and numerologies with which real-time
coherence is preserved are few, and this is quite constraining.

VOLUME 9, 2021 148515



G. Nardini et al.: Scalable Real-Time Emulation of 5G Networks With Simu5G

FIGURE 22. Validation of BG cells, RTT comparison with increasing
distance from the gNB.

FIGURE 23. Validation of BG cells, DL CQI for the endpoint UE with
increasing distance from the gNB.

FIGURE 24. Validation of BG cells, UL CQI for the endpoint UE with
increasing distance from the gNB.

On one hand, we observe that occasional, slight lapses of
coherence (e.g., a moderate, bounded divergence of R from
S – this happens when the emulation experiences occasional,
temporary losses of coherence and a few packet transmis-
sions suffer additional latency) do not make the emulation
worthless: timing properties of the emulated traffic are still
fairly reliable even if they may not always be accurate at the
TTI level. On the other, this justifies the need for modeling
of BG UEs and cells as described in Section III. In the next

FIGURE 25. Validation of BG cells, allocated RBs in the DL with increasing
offered load.

FIGURE 26. Validation of BG cells, allocated RBs in the UL with increasing
offered load.

subsection we describe what improvement these bring,
in terms of scalability.

C. IMPROVING SCALABILITY WITH BACKGROUND UEs
We now show that employing BG UEs warrants a huge
increase in scalability, without any loss in accuracy for the
emulated application on the endpoint UE. To demonstrate
that the results obtained by an emulation with BG UEs are
credible, we simulate a scenario with one gNB serving N
UEs, plus the endpoint UE. We assume one CC with µ = 0.
In the above scenario, we perform ten independent replicas
of a 20-second simulation and compare both application- and
network-level metrics obtained when the N UEs are either
FG or BG. When using BG UEs, we simulate both realistic
and probabilistic CQI computation. For a fair comparison
when using the latter method, the mean and variance for each
BG UE’s CQI is assigned equal to the mean and variance
extracted from the simulation with FG UEs. All the metrics
are shown for an increasing N and with 95% confidence
intervals.

FIGURE 16 shows the simulated-time RTT perceived by
the application residing on the endpoint UE. Despite the
increasing contention at the scheduler, the simulated-time
RTT confidence intervals are overlapping, i.e., the slight

148516 VOLUME 9, 2021



G. Nardini et al.: Scalable Real-Time Emulation of 5G Networks With Simu5G

variations are not statistically significant. FIGURE 17 and
FIGURE 18 show that the scheduler allocates the same num-
ber of RBs on average, in both the DL and UL directions,
regardless of whether UEs are FG or BG. This demonstrates
the accuracy of the modeling of BG UEs and their interaction
with the scheduler of the gNB.

FIGURE 19 shows the improvements in terms of execution
time of one simulation when replacing FGUEs with BGUEs.
We observe that the execution time of the deployment with
BGUEs is always smaller than the duration of the simulation,
i.e., 20s, also for large values ofN . This means that emulating
such configurations is feasible, since simulated time runs
faster than real time, which is the necessary condition to allow
real-time emulations. Instead, when employing the FG for the
N UEs, the execution time exceeds the simulation duration
when N ≥ 25, coherently with the results in the previous
subsection.

The scalability benefits of using BG UEs are made evident
in FIGURE 20, which shows the real-time RTT obtained with
the emulation testbed described previously with increasing
values ofM ,N and different numerologies. The graphs refer
to the scenario with realistic CQI computation and show that
we are now able to emulate tens of UEs. In this scenario,
the endpoint UE is close to the gNB (i.e., 50m), hence it
always has a high CQI. With MaxC/I scheduling, it is very
unlikely that many BG UEs are prioritized over the endpoint
UE and add significant scheduling latency. Therefore S (not
shown) is constant for all the values ofN ,M , and any increase
in the real-time RTT is due to the overhead of emulation.
FIGURE 21 shows the real-time RTT with probabilistic CQI
computation. In this case we observe that the real-time RTT
is constant with up to 300 UEs for all the configurations.
With some of them, e.g., with µ = 0, we can emulate up
to 1000 BG UEs. This shows that one can perform real-time
emulation of a 5G NR cell serving hundreds of UEs.

D. IMPROVING SCALABILITY WITH BACKGROUND CELLS
In this section we show that the proposed model of BG cells
provides another degree of freedom to increase the scale of
emulation, in addition to using BG UEs. Emulating multi-
cell networks makes scenarios more realistic by bringing the
effects of inter-cell interference into the picture.

We demonstrate that BG cells do not impair the accuracy of
the emulation. We consider a scenario where one gNB serves
the endpoint UE and N BG UEs. Moreover, we simulate
B = 6 gNBs surrounding the above gNB, each serving N BG
UEs. We assume that the latter generate 200kbps traffic each,
in both the UL and DL directions, and the gNBs have one CC
with µ = 0 and M = 100 RBs. While the central gNB is
mandatorily a FG cell (because packets sent and received by
the endpoint UE must traverse the whole NR protocol stack
and be affected accordingly), the surrounding B gNBs can be
either FG or BG cells. Thus, we compare the results obtained
in those two scenarios, by simulating ten independent replicas
of a 20-second simulation and showing average metrics with
95% confidence interval. Like we did in previous section,

FIGURE 27. Real-time RTT analysis, deployment with BG cells,
realistic CQI.

we consider both realistic and probabilistic CQI computation
for BG UEs. We consider several network configurations
(i.e., by varying the distance between the endpoint UE and the
gNB, as well as cells’ offered load) and show that the results
in terms of different metrics are the same when using either
FG or BG cells.

We first fix N = 50, resulting in an offered load of
10Mbps per cell, and consider increasing distance between
the endpoint UE and its serving gNB, i.e., 50, 125 and 200m.
FIGURE 22 shows the simulated-time RTT perceived by the
application on the endpoint UE. The chart shows that the
simulated-time RTT increases with the distance, as the chan-
nel quality between the UE and its serving gNB degrades.
This can be observed in FIGURE 23 and FIGURE 24, which
show the CQI for the endpoint UE in the DL and UL direc-
tions, respectively. In all the three graphs, the variations
among the three scenarios are not statistically significant,
which validates our models with BG cells. To validate the
number of allocated RBs, we now change the offered load
for all the cells, ranging from 5 to 15 Mbps, assuming that
the endpoint UE is 125m far from its gNB. FIGURE 25 and
FIGURE 26 report the allocated RBs by the central gNB in
DL and UL, respectively. Also in this case, we can conclude
that there are no significant differences in using FG and BG
cell, hence modeling cells as BG cells preserves the accuracy
of the emulation.

VOLUME 9, 2021 148517



G. Nardini et al.: Scalable Real-Time Emulation of 5G Networks With Simu5G

FIGURE 28. Real-time-RTT analysis, deployment with BG cells,
probabilistic CQI.

We now assess the benefits of BG cells in terms of emu-
lation scalability using the emulation testbed. FIGURE 27
and FIGURE 28 show the real-time RTT with increasing B
and different values of µ. FIGURE 27 plots results when BG
UEs employ realistic CQI computation, whereas FIGURE 28
reports results with probabilistic CQIs. The endpoint UE is
now 50m far from the gNB, hence variations in the real-time
RTT can be ascribed to distortions introduced by the real-
time emulation only.When realistic CQI computation is used,
we are able to emulate up to 20 BGUEs per cell with minimal
deviations when B = 3. For a larger B the emulation becomes
challenging, and this confirms that PHY-layer processing is
a scalability bottleneck. Instead, when probabilistic CQI is
employed, we avoid most of the time-consuming operations
for computing SINR of BG UEs and the emulation can scale
up to tens of BG UEs per cell. For example, with µ = 4 we
can emulate three BG cells with 200 BG UEs each, or nine
BG cells with 100 BG UEs each.

Finally, we evaluate the real-time RTT when varying
the offered load of the endpoint UE, i.e., the real traffic
injected by the external application into the emulation.We fix
M = 100 and N = 100, which has been shown to be one of
the most challenging configurations (see FIGURE 28). The
overall traffic load generated by background UEs in each
cell is 20 Mbps. FIGURE 29 shows the real-time RTT when
varying the application-level sending rate of the endpoint UE.

FIGURE 29. Real-time RTT analysis, deployment with BG cells and
increasing endpoint UE’s offered load.

Results are shown for three, six and nine BG cells, and with
µ ∈ {0, 2, 4}. In this scenario, preserving the accuracy is
more challenging when µ = 0. This is not surprising, since
this is the configuration with the highest frequency resource
utilization, hence the scheduler has to perform more opera-
tions. However, we note that variations are in the order of few
milliseconds and thismight be still tolerable if the objective of
the emulation is to evaluate, e.g., other QoS/QoE metrics for
the application instead of its RTT with high level of detail.
With larger µ, the real-time RTT stays constant when three
BG cells are employed, whereas it starts to increase at higher
offered loads when the number of BG cells is six or nine.
In the most challenging configuration, i.e., nine BG cells and
µ = 4, we can emulate scenarios where the offered load
generated by the endpoint UE is up to 1.6 Mbps.

V. RELATED WORKS
To the best of our knowledge, there are few works that can
compare to the one described in this paper. As we argue in [3],
physical-layer simulators, such as the 5G K-Simulator [18]
suite or the Vienna 5G SL simulator [19], are designed
with different purposes, namely evaluating physical-layer
quantities, such as the Signal to Interference-plus-Noise
Ratio (SINR) or spectral efficiency, as a function of physical-
layer designs, such as antenna layout, transmission schemes.
They are often very accurate in the modeling of the physical

148518 VOLUME 9, 2021



G. Nardini et al.: Scalable Real-Time Emulation of 5G Networks With Simu5G

layer, but they seldom, if ever, allow end-to-end application-
level communication through the whole protocol stack.
On the other hand, end-to-end simulators, such as Simu5G,
are designed exactly for the last purpose. As a consequence,
they often model the physical layer in such a way that the
effects of physical impairments on packet transmission are
preserved, without necessarily modeling symbol transmis-
sion, constellations, receiver algorithms, etc. Among end-
to-end simulators of 5G networks, we find 5G-LENA [20]
and the 5G-air-simulator [21]. The former includes a subset
of Simu5G’s features (e.g., it lacks FDD, dual connectivity,
D2D, MEC modeling, etc.). The second one lacks some of
the above too, and does not incorporate models of layer-
4 protocols, which makes it impossible (e.g.) to simulate
anything TCP-based with the necessary credibility. To the
best of our knowledge, there is no mention of either of the
above working in real time. We are aware that ns3, on which
5G-LENA is based, allows real application to interact with
simulated models, and can also run in real time (see, e.g.,
[28], [29], which discuss LTE emulation). However, this does
not imply that 5G-LENA is lightweight enough to run in
real time, nor it sheds any light on the scale – if any – at
which this would be possible. We are not aware of any work
assessing feasibility and scalability of real-time emulation of
5G networks using 5G-LENA.

A previous work of ours [1] introduced the theme of
real-time emulation with Simu5G. However, that work relies
on outdated versions of Simu5G, INET and OMNeT++.
Simu5G’s version in [1] relied on version 3.6.4 of the INET
library, which did not exhibit the same performance as ver-
sion 4.3, on which this work is based. The differences are
many, and in fact involve the mechanism for interfacing with
external applications. All the above translated to improved
baseline performance: for instance, it is now possible – and
it was not in [1] – to run emulation with FG UEs at high
numerologies. Moreover, in this work we have added mod-
eling of BG UEs/gNBs, which allows Simu5G emulation to
scale up considerably.

A related effort is the OpenAirInterface (OAI) 5G-RAN
project [26], which is currently under way as we write, with a
schedule foreseen to complete in the second half of 2022. The
project promises to deliver an open-source software imple-
mentation of a programmable 5G RAN. With respect to that
project, Simu5Gmaintains the distinct advantage of allowing
both simulation and emulation with the same codebase. This
allows one, for instance, to modify elements in a whole
(simulated/emulated) network scenario with few modifica-
tions of an INI file, rather than (e.g.) by recompiling code on
several physical/virtual machines. Moreover, Simu5G allows
full control over the simulated scenario, which is constructed
by the user, whereas it is unlikely that OAI 5G-RAN will.

Two simulation software packages exist whose features
are at least comparable to Simu5G’s, namely Riverbed Mod-
eler [16] and Tetcos Netsim [17]. As far as we are aware,
Riverbed Modeler does not include any 5G NR module (the
website mentions LTE release 8 and 9), and there is no

indication that it allows real-time emulation. Tetcos Netsim
instead allows emulation, and it has 5G mm-wave NewRadio
access. However, both are only included in the standard,
non-academic version, which is not free. Finally, commercial
emulation software packages exist, aimed at network test-
ing, e.g., Simnovus Callbox [22], VIAVI TeraVM 5G Core
Test [23], NetTest 5G Network Emulators [24], Keysight
Technologies 5G products [25]. Their focus is mainly on
equipment testing, hence is different from ours.

VI. CONCLUSION AND FUTURE WORK
In this paper we have assessed the real-time emulation capa-
bilities of Simu5G, a novel 5GNewRadio simulator based on
OMNeT++ and INET. We introduced lightweightmodels of
UEs and gNBs, which allow a user to run a scenario where
UL/DL resource contention and interference are correctly
represented, without paying the price of a fully-fledgedmulti-
cell simulation: we showed that using lightweight models
greatly increases the scale at which emulation is possible
without sacrificing the accuracy in the least. We have shown
that it is possible to emulate in real time a multicell 5G net-
work with ten cells and a thousand UEs, carrying application
traffic exceeding 1.6Mbps, over an off-the-shelf desktop PC.

The work presented in this paper describes a new use for
Simu5G: beside the classical one as a tool for researchers
interested in evaluating network performance (e.g., compar-
ing scheduling algorithms), we now add that of 5G testbed for
application developers to test and demonstrate their applica-
tions, using inexpensive hardware. With respect to this, there
is more work being developed at the time of writing: we
are finalizing the addition of ETSI-compliant MEC models
to Simu5G, complete with standardized interfaces towards
the application endpoints. With Simu5G running the MEC
infrastructure in real time, a MEC app developer will be able
to test a MEC app over a mixed communication/computation
emulated infrastructure, in controllable experimental condi-
tions (e.g., network load, channel quality, resource contention
or availability of MEC services at the MEC host etc.), using
the same codebase used for production.

At the time of writing, Simu5G is also being used in the
framework of the Hexa-X EU project [8]. In that framework,
it will support the development, testing and demonstration
of federated learning of Explainable Artificial Intelligence
(XAI) models. In that context, the required network functions
and protocols will be added to Simu5G, and will interface
with external applications performing the learning task.

ACKNOWLEDGMENT
An earlier version of this paper was presented in part
at the 2020 IEEE 31st Annual International Symposium
on Personal, Indoor and Mobile Radio Communications
[DOI: 10.1109/PIMRC48278.2020.9217177].

REFERENCES
[1] G. Nardini, G. Stea, A. Virdis, D. Sabella, and P. Thakkar, ‘‘Using Simu5G

as a realtime network emulator to test MEC apps in an end-to-end 5G
testbed,’’ in Proc. PiMRC, London, U.K., Sep. 2020, pp. 1–7.

VOLUME 9, 2021 148519



G. Nardini et al.: Scalable Real-Time Emulation of 5G Networks With Simu5G

[2] A. Virdis, G. Stea, and G. Nardini, ‘‘Simulating LTE/LTE-advanced
networks with SimuLTE,’’ in Advances in Intelligent Systems and Com-
puting, vol. 402. Cham, Switzerland: Springer, Jan. 2016, pp. 83–105, doi:
10.1007/978-3-319-26470-7_5.

[3] G. Nardini, D. Sabella, G. Stea, P. Thakkar, and A. Virdis, ‘‘Simu5G—
An OMNeT++ library for end-to-end performance evaluation of
5G networks,’’ IEEE Access, vol. 8, pp. 181176–181191, 2020, doi:
10.1109/ACCESS.2020.3028550.

[4] Simu5g Website. Accessed: Jun. 2021. [Online]. Available: http://
simu5g.org

[5] OMNeT++ Website. Accessed: Jun. 2021. [Online]. Available:
https://omnetpp.org

[6] INET Library Website. Accessed: Jun. 2021. [Online]. Available:
https://inet.omnetpp.org

[7] VEINS Simulator Website. Accessed: Jun. 2021. [Online]. Available:
https://veins.car2x.org/documentation/modules/

[8] Hexa-X project Website. Accessed: Jun. 2021. [Online]. Available:
http://hexa-x.eu/

[9] NR; Multi-Connectivity; Overall Description; Stage-2 (Release 16),
Standard 3GPP TS 37.340 v16.5.0, Mar. 2021.

[10] G. Nardini, A. Virdis, and G. Stea, ‘‘Modeling network-controlled device-
to-device communications in SimuLTE,’’ Sensors, vol. 18, no. 10, p. 3551,
Oct. 2018, doi: 10.3390/s18103551.

[11] C. Yahiaoui, M. Bouhali, and C. Gontrand, ‘‘Simulating the long term evo-
lution physical layer,’’ in Proc. 17th EUSIPCO, Glasgow, U.K., Aug. 2009,
pp. 1471–1478.

[12] C. Sommer, R. German, and F. Dressler, ‘‘Bidirectionally coupled network
and road traffic simulation for improved IVC analysis,’’ IEEE Trans.
Mobile Comput., vol. 10, no. 1, pp. 3–15, Jan. 2011.

[13] A. Hegde and A. Festag, ‘‘Artery-C: An OMNeT++ based discrete event
simulation framework for cellular V2X,’’ in Proc. 23rd Int. ACM Conf.
Modeling, Anal. Simulation Wireless Mobile Syst., Nov. 2020, pp. 47–51,
doi: 10.1145/3416010.3423240.

[14] Study on New Radio Access Technology Physical Layer Aspets, Stan-
dard 3GPP TR 38.802 v14.2.0, Sep. 2017.

[15] Study on 3D Channel Model for LTE, Standard 3GPP TR 36.873 v12.7.0,
Dec. 2017.

[16] Riverbed Modeler Website. Accessed: Jun. 2021. [Online]. Available:
https://www.riverbed.com/gb/products/npm/riverbed-modeler.html

[17] Tetcos Netsim Website. Accessed: Jun. 2021. [Online]. Available:
https://www.tetcos.com/netsim-acad.html

[18] Y. Kim, J. Bae, J. Lim, E. Park, J. Baek, S. I. Han, C. Chu, and Y. Han,
‘‘5G K-simulator: 5G system simulator for performance evaluation,’’ in
Proc. IEEE Int. Symp. Dyn. Spectr. Access Netw. (DySPAN), Oct. 2018,
pp. 1–2, doi: 10.1109/DySPAN.2018.8610404.

[19] M. K. Müller, F. Ademaj, T. Dittrich, A. Fastenbauer, B. R. Elbal,
A. Nabavi, L. Nagel, S. Schwarz, and M. Rupp, ‘‘Flexible multi-node
simulation of cellular mobile communications: The Vienna 5G system
level simulator,’’ EURASIP J. Wireless Commun. Netw., vol. 2018, no. 1,
p. 227, Dec. 2018, doi: 10.1186/s13638-018-1238-7.

[20] N. Patriciello, S. Lagen, B. Bojovic, and L. Giupponi, ‘‘An E2E simulator
for 5G NR networks,’’ Simul. Model. Pract. Theory, vol. 96, Nov. 2019,
Art. no. 101933, doi: 10.1016/j.simpat.2019.101933.

[21] S. Martiradonna, A. Grassi, G. Piro, and G. Boggia, ‘‘5G-air-simulator: An
open-source tool modeling the 5G air interface,’’ Comput. Netw., vol. 173,
May 2020, Art. no. 107151.

[22] Simnovus Callbox Website. Accessed: Jun. 2021. [Online]. Available:
https://simnovus.com/products/callbox/

[23] Viavi Solutions Website. Accessed: Jun. 2021. [Online]. Available:
https://www.viavisolutions.com/

[24] Polaris Networks 5G Emulators Website. Accessed: Apr. 2021. [Online].
Available: https://www.polarisnetworks.net/5g-network-emulators.html

[25] Keysight Technologies Website. Accessed: Jun. 2021. [Online]. Available:
https://www.keysight.com/

[26] OpenAirInterface 5G Ran project Website. Accessed: Jun. 2021. [Online].
Available: https://openairinterface.org/oai-5g-ran-project/

[27] S. Tavakoli, A.Mousavi, and A. Komashie, ‘‘A generic framework for real-
time discrete event simulation (DES) modelling,’’ in Proc. Winter Simula-
tion Conf., Dec. 2008, pp. 1931–1938, doi: 10.1109/WSC.2008.4736285.

[28] R. Gupta, B. Bachmann, R. Ford, S. Rangan, N. Kundargi, A. Ekbal,
K. Rathi, M. I. Sanchez, A. de la Oliva, and A. Morelli, ‘‘Ns-3-based
real-time emulation of LTE testbed using LabVIEW platform for software
defined networking (SDN) in CROWD project,’’ in Proc. Workshop Ns-3,
May 2015, pp. 91–97, doi: 10.1145/2756509.2756516.

[29] T. Molloy, Z. Yuan, and G.-M. Muntean, ‘‘Real time emulation of an
LTE network using NS-3,’’ in Proc. 25th IET Irish Signals Syst. Conf.
China-Ireland Int. Conf. Inf. Communities Technol. (ISSC /CIICT), 2014,
pp. 251–257, doi: 10.1049/cp.2014.0694.

[30] A. Virdis, G. Nardini, G. Stea, and D. Sabella, ‘‘End-to-end performance
evaluation of MEC deployments in 5G scenarios,’’ J. Sensor Actuator
Netw., vol. 9, no. 4, p. 57, Dec. 2020, doi: 10.3390/jsan9040057.

[31] M. Carson and D. Santay, ‘‘NIST Net: A Linux-based network emu-
lation tool,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 33, no. 3,
pp. 111–126, Jul. 2003, doi: 10.1145/956993.957007.

[32] D. Mahrenholz and S. Ivanov, ‘‘Real-time network emulation with ns-
2,’’ in Proc. 8th IEEE Int. Symp. Distrib. Simulation Real-Time Appl.,
Oct. 2004, pp. 29–36, doi: 10.1109/DS-RT.2004.34.

[33] B. D. Noble, M. Satyanarayanan, G. T. Nguyen, and R. H. Katz, ‘‘Trace-
based mobile network emulation,’’ in Proc. ACM SIGCOMM Conf.
Appl., Technol., Archit., Protocols Comput. Commun. (SIGCOMM), 1997,
pp. 51–61, doi: 10.1145/263105.263140.

GIOVANNI NARDINI received the M.Sc. degree (summa cum laude) in
computer systems engineering and the Ph.D. degree in information engi-
neering from the University of Pisa, in 2013 and 2017, respectively. He is
currently an Assistant Professor with the Department of Information Engi-
neering, University of Pisa. In these fields, he has coauthored more than
30 peer-reviewed articles and holds six patents. His research interests include
resource allocation algorithms for quality of service in 4G and 5G networks,
multi-access edge computing, and the simulation and performance evaluation
of computer networks. He has been involved in EU-funded and industrial
research projects.

GIOVANNI STEA received the Ph.D. degree from the University of Pisa,
Italy, in 2003. He is currently an Associate Professor with the Department
of Information Engineering, University of Pisa. His current research inter-
ests include the quality of service and resource allocation in wireline and
wireless networks, performance evaluation through simulation and analytical
techniques, and traffic engineering. In these fields, he has coauthored more
than 100 peer-reviewed articles and holds 16 patents. He has been involved
in the national and European research projects, and he has led joint research
projects with industrial partners. He is a fellow of the European Alliance for
Innovation. He has served as a member of the technical and/or organization
committees for several international conferences, including SIGCOMM,
WoWMoM, and VALUETOOLS, and he is serving on the editorial board
for Wireless Networks journal.

ANTONIO VIRDIS received the M.Sc. degree in computer system engineer-
ing and the Ph.D. degree in information engineering from the University of
Pisa, in 2011 and 2015, respectively. He is currently an Assistant Professor
with the University of Pisa. He has edited the book titled ‘‘Recent Advances
in Network Simulation,’’ published by Springer/EAI. His research interests
include the quality of service, edge computing, network simulation, and
performance evaluation. He has coauthored more than 60 peer-reviewed
articles and holds eight patents in the above fields. He is/has been involved
in research projects supported by private industries and funded by the EU
community. He served as the TPC Chair for the International OMNeT++
Summit and for the IEEE SmartSys workshop. He is one of the authors
and maintainers of the SimuLTE and Simu5G opensource projects, for the
system-level simulation of 4G and 5G communication networks.

148520 VOLUME 9, 2021

http://dx.doi.org/10.1007/978-3-319-26470-7_5
http://dx.doi.org/10.1109/ACCESS.2020.3028550
http://dx.doi.org/10.3390/s18103551
http://dx.doi.org/10.1145/3416010.3423240
http://dx.doi.org/10.1109/DySPAN.2018.8610404
http://dx.doi.org/10.1186/s13638-018-1238-7
http://dx.doi.org/10.1016/j.simpat.2019.101933
http://dx.doi.org/10.1109/WSC.2008.4736285
http://dx.doi.org/10.1145/2756509.2756516
http://dx.doi.org/10.1049/cp.2014.0694
http://dx.doi.org/10.3390/jsan9040057
http://dx.doi.org/10.1145/956993.957007
http://dx.doi.org/10.1109/DS-RT.2004.34
http://dx.doi.org/10.1145/263105.263140

